当前位置:文档之家› 单自由度振动系统固有频率及阻尼的测定

单自由度振动系统固有频率及阻尼的测定

单自由度振动系统固有频率及阻尼的测定
单自由度振动系统固有频率及阻尼的测定

单自由度振动系统固有频率及阻尼的测定

实验报告

系别:土木

班级:

姓名:

学号:

实验日期:2010.11.10

一、实验目的

1、掌握测定单自由度系统固有频率、阻尼比的几种常用方法

2、掌握常用振动仪器的正确使用方法

二、实验内容

1、记录水平振动台的自由衰减振动波形

2、测定水平振动台在简谐激励下的幅频特性

3、测定水平振动台在简谐激励下的相频特性

4、根据上面测得的数据,计算出水平振动台的固有频率、阻尼比

三、实验原理

具有粘滞阻尼的单自由度振动系统,自由振动微分方程的标准形式为

022=++q p q n q

式中q 为广义坐标,n 为阻尼系数,eq eq m C n /2=,eq C 为广义阻力系数,eq m 为等效质量;p 为固有的圆频率,eq eq m K p /2=,eq K 为等效刚度。在阻尼比

1/<=p n ζ的小阻尼情况下,运动规律为)sin(22α+-=-t n p Ae q nt ,式中A ,

α由运动的起始条件决定,d f n p π222=-。

具有粘滞阻尼的单自由度振动系统,在广义简谐激振力t H t s ωsin )(=作用下,系统强迫振动微分方程的标准形式为

t h p q n q

ωsin 22=++ 式中eq m H h /=。系统稳态强迫振动的运动规律)sin(?ω-=t B q ,式中

振幅2

2

2

20

2

2

2

22

4)1(4)(λ

ζλω

ω+-=

+-=

B n p h

B

相位差2

2212arctg 2arctg

λ

ζλ

ωω?-=-=p n 其中eq k H p h B ==

2

0,p

ω

λ=。 由台面、支撑弹簧片及电磁阻尼器组成的水平振动台,可视为单自由度系统,它在瞬时或持续的干扰力作用下,台面可沿水平方向振动。

1.衰减振动:用一点电脉冲沿水平方向冲击振动台,系统获得一初始速度而作自由振动,因存在阻尼,系统的自由振动为振幅逐渐减小的衰减振动。阻尼越大,振幅衰减越快。

为了便于观察和分析运动规律,采用电动式相对速度拾振器将机械振动信号

变换为与速度成比例的电压信号,该电压信号经过计算机A/D 和积分处理,得到与运动位移成比例的数字量,并显示运动位移随时间变化的波形。改变阻尼的大小可观察衰减振动波形的相应变化。

选x 为广义坐标,根据记录的曲线(图一)可分析衰减振动的周期d T ,频率

d f ,对数减幅系数δ及阻尼比ζ,有

i t

T d ?=

, d

d T f 1= )ln(

11

1

+=i X X i

δd nT =, π

δδπδ

ζ242

2≈

+=

其中?t 为i 个整周期相应的时间间隔,1X 和1+i X 为相隔i 个周期的振幅。

图一 衰减振动记录

2. 强迫振动的幅频特性测定:

电磁激振系统由计算机虚拟信号发生器、功率放大器和激振器组成,它能对台面施加简谐激振力,当正弦交变信号通过功率放大器输给激振器的线圈时,磁场对线圈产生简谐激振力,并通过顶杆作用于台面。

保持功放的输出电流幅值不变,即保持激振力力幅不变,缓慢地由低频2Hz 到高频40Hz 改变激振频率,用相对式速度拾振器检测速度振动量,再经过积分处理后得到位移量,由测试数据可描绘出一条振幅频率特性曲线(图二)。

而根据该测试曲线可由如下关系式估算系统的固有频率n f 及阻尼比ζ

n f ≈m f ,

21B B m =

ζ 或 ζm f f

f 212-≈ 其中m f 为振幅达到最大m B 时的激振频率;0B 为零频率的相应振幅(约等于f =2Hz 时的振幅);1f 和2f 为振幅m B B 707.0=的对应频率,即半功率点频率。

改变阻尼大小重新进行频率扫描可获得一组相应于不同阻尼比的幅频特性曲线。

3. 强迫振动的相频特性测定:

进行频率扫描同时,如将激振力信号和拾振器的检测信号(正比于振动速度)分别接到相位计A ,B 输入端,可测出振动速度与激振力之间相位差v ?随频率的变化。振动位移对激振力的相位差?x 则可根据速度领先于位移90°的关系求得,即 90-=v x ??。这里将拾振器检测的速度信号直接输入相位计,由测试数据可描绘出相位差频率特性曲线如图三。 90-=x ?时对应的频率即为系统固有频率。

图二 强迫振动的幅频特性曲线 图三 强迫振动的相频特性曲线

由相频特性求阻尼比的原理如下:

2

12arctg

λζλ

?-=x 其中n f f /=λ,f —激振频率,n f —固有频率。由于

2

2222

2222

)2()1()

1(2)1()2(2)1(2)121(11d d ζλλλζλλζλλζλ

ζλλ

?+-+=----?-++=

x

故有

ζλ

?λ1

d d 1

=

=x

即1

1

)d d (

=-=λλ

?ζx

即在相位共振点(n f f =,2/π?=x )附近,取一小段频率区间△f 求出相应的相位变化)rad (x ??即可由下式确定阻尼比ζ(参看图三):

x

n f f

?ζ??≈

四、实验装置

测试系统如图四所示。

1、实验装置:振动台系统由台面、支撑弹簧片及电磁阻尼器组成,台面可沿水平面纵轴方向振动。铝质台面在电磁阻尼器的磁隙中运动时,产生与运动速度成正比的电涡流阻尼,调节阻尼电磁铁的励磁电流可改变阻尼的大小。

表一 实验设备名称

图四 测试系统框图

2、 相对式速度拾振器:

CD-2型相对式速度拾振器由磁路系统、线圈、弹簧片、连接杆、顶杆和限幅箱等六部分组成。其中,线圈、连接杆和顶杆构成拾振器的可动部分,磁钢和钢质外壳构成带有环形磁隙的磁路系统。使用时,传感器外壳用安装座固定在基座上,顶杆借助拱形簧片的变形恢复力压紧在测量对象上,从而带动线圈相对环形磁隙以相对速度r V 振动,因而切割磁力线而产生感应电势,其开路电压的大小为

或V (r BlV U )mV

B 为磁隙的磁感应强度)(wb/m 2;l 为线圈在磁隙中有效长度(m );Bl 的值表示对应于单位速度的感应电势,称为拾振器的名义灵敏度,由厂家提供。CD-2拾振器的名义灵敏度约为30V/m/s 或30mV/mm/s 。 3、电磁激振器:

JZ-1型电磁激振器与CD-2型相对式速度拾振器在结构上甚至尺寸上都完全相同,只是二者互为逆变换器。拾振器的作用是将机械能转换为电能。为获得高的名义灵敏度,线圈通常用很细的铜线绕成很多圈。激振器的作用是将电能转换为机械能,为生产较大推力,线圈选用较粗的铜线绕成,以便允许通过较强的电流。设电流为I (A 或mA),产生的激振力为F ,则

)N (B l I F =

B 、

l 的意义同拾振器。但对激振器说,Bl 的值表示单位电流产生的激振力大小,称为力常数,由厂家提供。JZ-1的力常数约为5N/A 。频率可变的简谐电流由计算机的虚拟信号发生器和功率放大器提供。 4、计算机虚拟设备:

在计算机内部,插有A/D 、D/A 接口板。按照单自由系统按测试要求,进行专门编程,完成模拟信号输入、输出、显示、信号分析和处理等功能。

在自由衰减振动测试中,调用“衰减记录”程序,可以实现触发等待、积分、波形记录、光标读数等功能。

在强迫振动的幅频特性和相频特性的测试中,单击“简谐激励振动”程序,可以实现信号发生器(产生一个可调节频率的正弦信号)、积分、电压表(完成两个信号有效值比)、波形显示等功能。

五、实验步骤

1、 打开微型计算机,进入“单自由度系统”程序。

2、 接通阻尼器励磁电源,调励磁电流为某一定值。(分别为I=0.6A 、0.8A )

3、 测定自由衰减振动:

单击“自由衰减记录”功能图标,单击(Start)键,开始测试。由一电脉冲沿水平方向突然激励振动台,微机屏幕上显示自由衰减曲线。用鼠标调节光标的位置,读出有关的数据。改变周期数i 的值,即可直接显示相应的周期和频率。

4、 测定幅频特性和相频特性:

单击“简谐激励振动”功能图标,单击信号输入显示框中的频率,将弹出一个对话框,可以直接输入激励频率,也可以单击频率的单步步进键进行激励调节。

单击(start )键,开始强迫振动幅频特性和相频特性测量,其中2Hz —15Hz 内大致相隔1Hz 设一个测点;15Hz —40Hz 内每隔5Hz 设一个测点。

精确测出幅频的振幅B 的最大值m B 及对应的频率m f ,并精确找出与振幅m B B 707.0=对应的频率1f 和)(212f f f f m <<。精确测出相位差 0=v ?(即

90-=x ?)相应的频率n f 。由于相频特性在n f 邻近变化大,应加密测点。

5、 改变阻尼器励磁电流值2~3次,重复以上步骤。

六、实验数据记录及处理

1、自由衰减实验 (1) 数据记录

(2)数据分析处理

由上表知固有频率fd=10.152Hz ; 由δd nT =,知n=δ/Td ;

由ζ=n / p ,知p=n / ζ , 其中p 为系统固有圆频率,ζ 为阻尼比;

数据处理计算如下表:

表中最后一列是系统固有圆频率值,它是系统固有属性,与励磁电流无关,表中三个数据相差并不大:

(64.07-63.63)/ 63.63 = 0.69%

从固有圆频率值的稳定性推断,可以认为实验数据误差在允许范围以内。

2、强迫振动的幅频特性和相频特性

(1) 数据记录

(2) 用Excel 画出的幅频特性曲线:

用Excel 画出的相频特性曲线:

(3) 数据处理:

① 由幅频特性曲线图以及数据记录表,

·I=0.6A 时, n f ≈m f =10.07Hz ; 对应的 Bm = 0.872mm, ∴

, 对应的

ζm

f f f 21

2-≈

=0.048 或 ζ46.0020==

m B B ·I=0.8A 时, n

f

≈m f =10.07Hz ; 对应的 Bm = 0.575mm,

, 对应的

ζm

f f f 21

2-≈

=0.070 或 ζ78.0020==

m B B

② 由相频特性曲线图以及数据记录表,

·I=0.6A 时, 对应

取 ; 则 = °=0.735(rad ) ∴ ζ050.0735.007.1037

.0=?=??≈

?n f f

·I=0.8A 时, 对应

取 ; 则 = °=0.271(rad ) ∴ ζ073.0271

.009.1020

.0=?=??≈

?n f f

(4)数据分析:

①上表显示,2、3两种方法测得的系统固有频率是很接近的,并且在不同电流下测得的值也很接近,这一方面说明系统固有频率并不因阻尼大小或是外加驱动力的大小而改变,另一方面也说明实验结果是在误差允许范围之内的。

对比不同电流下测得的阻尼比,可以得知,不同励磁电流下阻尼比是不同

的,励磁电流越大,阻尼比越大,这是与事实相符合的——电流越大时,电磁阻尼器提供的阻尼越大,而阻尼比是反映阻尼大小的参数,当然会随之增大。

②考察幅频特性曲线:该曲线直观的显示出系统做受迫振动时,外加驱动力频率越接近系统固有频率,振幅越大。当驱动力频率等于系统固有频率时,振幅达最大值,即“共振”现象。比较不同电流下的曲线,也容易发现阻尼的大小并不影响系统的固有频率,但能影响振幅:驱动力大小和频率一定时,阻尼越大,振幅越小。阻尼越大,系统振动过程中损失的能量越大,而能量与振幅是呈正相关的,故振幅越小。

③考察相频振动曲线:可以发现不同电流下绘出的两曲线是接近重合的。由于驱动力的变化节奏与阻尼无关,而不同阻尼下系统与激振力位移的相位差并没有多大改变,这说明阻尼对系统的振动节奏影响不大。

七、实验结果分析

1、在误差允许范围内,电流不同的情况下,系统的固有频率是相等的。因为系统的固有频率是由本身的属性决定的。

2、系统的阻尼随电流的变化而变化,电流越大,阻尼越大,在第一个实验中,表现为其振幅衰减越快;在第二个实验中,表现为其最大振幅越小。

3、自由衰减减幅系数法和强迫振动的功率最大值法测出的阻尼比是比较准确的。而用半功率和相频法测出的数值相对偏小。

4、最大功率法求解的误差在于最大功率点的频率及幅值比的确定有一定误差,且零频率的幅值比也比较难于确定(波动很大)。半功率法的误差在于其半功率点的位置不太好找,只能选择一点使其幅值比在m B B 707.0 附近这使得结果误差变大。同时,实验原理中也取近似,也造成误差。

八、方法比较

自由衰减实验直观的反应出阻尼对系统运动的振幅的影响;幅频特性图反应驱动力频率与系统振动的振幅之间的关系,且据图很容易得到系统的固有频率,也易于获得阻尼比的值,另外,从图中也方便观察不同阻尼对系统振动能量的影响;相频特性曲线反应驱动力振动相位与系统振动相位之差随频率的变化关系,此法也不难求得固有频率和阻尼比。

单自由度机械振动系统习题

单自由度系统机械振动 1. 图示系统的轮和绳之间无相对滑动,只作纯 滚动,建立系统的运动微分方程,并求系统 的固有频率,圆盘转动惯量为J ,质量块的 质量为m ,弹簧刚度为K 。 2. 图所示,W=1000N ,k=2 104N/m ,图示位 置弹簧已承受初压力F 0=100N ,现将支承突 然撤去,重块落下后作自由振动时的振动位 移表达式?(取重力加速度g=10m/s 2) 3.如图所示为一台机器,其总质 量为M ,安装在一个弹簧和一 个阻尼器上,弹簧常数为k ,阻 尼系数为c 。机器工作时旋转中 心为O ,角速度为ω,不平衡 质量大小为m ,偏心距离为e 。 机器只能在垂直方向运动。求机器振动时传给地面的力的最大值。 W K

4.图示系统中,质量m 上受激励力为 F (t )=sin ωt+10sin10ωt 时, 求质量m 的稳态响应 5. 图示系统的轮和绳之间无相对滑动,只作纯滚动,建立系统的运动微分方程,并求系统的固 有频率,圆盘转动惯量为J ,质量块的质量为m , 弹簧刚度为K 6. 一重块与两弹簧相连,W=490N ,k=9800N/m , 图示位置弹簧不受力,现将支承突然撤去,重块 落下后作自由振动时的振动位移表达式? 7. 如图所示为一台机器,其总质量为m ,通过一个弹簧和一个阻尼器安装在基础上,弹 簧常数为k ,阻尼系数为c 。基础的运动为 y(t)=Ysin ωt ,机器只能在垂直方向运动。求 基础振动时传给机器的力的最大值。 W K K

8.图示系统中,质量m上受激励力为 F(t)=sinωt+10sin10ωt时, 求质量m的稳态响应。 9.一般振动问题,如图所示: 三类振动问题分别是: (1)振动分析,已知,求; (2)振动环境预测或载荷分析,已知,求; (3)系统识别,已知,求。 10. 振动问题的分类,根据自由度数分,有, 和。 11. 简谐振动x=Asin(ωt+φ),其中的振动位移为,振幅 为, 振动频率为为,振动的初相位为 12. n个自由度振动系统有个固有频率,有个固有 振型, 其中的第i阶主振型有个节点。

第1章--单自由度系统的自由振动题解

习 题 1-1一单层房屋结构可简化为题1-1图所示的模型,房顶质量为m ,视为一刚性杆;柱子高h ,视为无质量的弹性杆,其抗弯刚度为EJ 。求该房屋作水平方向振动时的固有频率。 解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。 等效弹簧系数为k 则 mg k δ= 其中δ为两根杆的静形变量,由材料力学易知 δ=3 24mgh EJ = 则 k = 3 24EJ h 设静平衡位置水平向右为正方向,则有 " m x kx =- 所以固有频率3 n 24mh EJ p = 1-2 一均质等直杆,长为 l ,重量为W ,用两根长h 的相同的铅垂线悬挂成水平位置,如题1-2图所示。试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。 解:给杆一个微转角 2 a =h 2F cos α=mg 由动量矩定理: a h a mg a mg Fa M ml I M I 822cos sin 12 1 2 2-=-≈?-=== =αθ αθ&& 题1-1图 题1-2图 F sin α 2 θ h mg

其中 12 cos sin ≈≈θ α α h l ga p h a mg ml n 2 2 2 2 2304121==?+θθ&& g h a l ga h l p T n 3π23π2π22 2= == 1-3求题1-3图中系统的固有频率,悬臂梁端点的刚度分别是k 1和k 3,悬臂梁的质量忽略不计。 解:悬臂梁可看成刚度分别为k 1和k 3的弹簧,因此,k 1与k 2串联,设总刚度为k 1ˊ。k 1ˊ与k 3并联,设总刚度为k 2ˊ。k 2ˊ与k 4串联,设总刚度为k 。即为 21211k k k k k += ',212132k k k k k k ++=',4 241213231421432421k k k k k k k k k k k k k k k k k k k k ++++++= ) (42412132314 214324212k k k k k k k k k k m k k k k k k k k k p ++++++= 1-4求题1-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。其中J 1、J 2和J 3是三个轴段截面的极惯性矩,I 是圆盘的转动惯量,各个轴段的转动惯量不计,材料剪切弹性模量为G 。 解: 111/l GJ k = (1) 222/l GJ k = (2) 333/l GJ k = (3) )/(23323223l J l J J GJ k += (4) ) (/)()4)(3)(2(1/)(2332113221332122312l J l J Il l J J l J J l J J G P I k k P n n +++=+=知 )由( 题1-3图 题1-4图

机械振动课程期终考试卷-答案

一、填空题 1、机械振动按不同情况进行分类大致可分成(线性振动)和非线性振动;确定性振动和(随机振动);(自由振动)和强迫振动。 2、周期运动的最简单形式是(简谐运动),它是时间的单一(正弦)或( 余弦)函数。 3、单自由度系统无阻尼自由振动的频率只与(质量)和(刚度)有关,与系统受到的激励无关。 4、简谐激励下单自由度系统的响应由(瞬态响应)和(稳态响应)组成。 5、工程上分析随机振动用(数学统计)方法,描述随机过程的最基本的数字特征包括均值、方差、(自相关函数)和(互相关函数)。 6、单位脉冲力激励下,系统的脉冲响应函数和系统的(频响函数)函数是一对傅里叶变换对,和系统的(传递函数)函数是一对拉普拉斯变换对。 2、在离散系统中,弹性元件储存( 势能),惯性元件储存(动能),(阻尼)元件耗散能量。 4、叠加原理是分析(线性)系统的基础。 5、系统固有频率主要与系统的(刚度)和(质量)有关,与系统受到的激励无关。 6、系统的脉冲响应函数和(频响函数)函数是一对傅里叶变换对,和(传递函数)函数是一对拉普拉斯变换对。 7、机械振动是指机械或结构在平衡位置附近的(往复弹性)运动。 1.振动基本研究课题中的系统识别是指根据已知的激励和响应特性分析系统的性质,并可得到振动系统的全部参数。(本小题2分) 2.振动按激励情况可分为自由振动和强迫振动两类。(本小题2分)。 3.图(a)所示n个弹簧串联的等效刚度= k ∑ = n i i k1 1 1 ;图(b)所示n个粘性阻尼串联的等效粘 性阻尼系数= e C ∑ = n i i c1 1 1 。(本小题3分) (a)(b) 题一 3 题图 4.已知简谐振动的物体通过距离静平衡位置为cm x5 1 =和cm x10 2 =时的速度分别为s cm x20 1 = &和s cm x8 2 = &,则其振动周期= T;振幅= A10.69cm。(本小题4分) 5.如图(a)所示扭转振动系统,等效为如图(b)所示以转角 2 ?描述系统运动的单自由度 系统后,则系统的等效转动惯量= eq I 2 2 1 I i I+,等效扭转刚度= teq k 2 2 1t t k i k+。(本小题4分)

第2章 单自由度系统的受迫振动题解

习 题 2-1已知系统的弹簧刚度k =800 N/m ,作自由振动时的阻尼振动周期为1.8s ,相邻两振幅的比值 1 2 .41=+i i A A ,若质量块受激振力t t F 3cos 360)(=N 的作用,求系统的稳态响应。 解:由题意,可求出系统的运动微分方程为 t m x n x p x n 3cos 360 22 =++ 得到稳态解 )3cos(α-=t B x 其中 m k B B B 45.0360 4)1(02 2220 == +-= λζλ 222 122tg λζλ ωωα-=-= n p n 由 d nT i i A A e 2.41 === +η 489 .3π 2797 .0ln 8 .1ln ======d d d d d T p T n T nT η η 又 22n p p n d -= 有 579.32 22=+=n d n p n p p 45.51255.1298.0374 .0838 .01838.0223.02tg 103.1408 .045 .0838.0223.04)838.01(45 .0223.0579 .3797.0838.0579 .33 2 222===-??= == ??+-= === == =ααζω λB p n p n n 所以 x =1.103 cos(3t -51?27') 2-2一个无阻尼弹簧质量系统受简谐激振力作用,当激振频率ω1 =6rad/s 时,系统发生共振;给

质量块增加1 kg 的质量后重新试验,测得共振频率ω2 =5.86rad/s ,试求系统原来的质量及弹簧刚度。 解:设原系统的质量为m ,弹簧常数为k 由 m k p n = ,共振时m k p n ==1ω 所以 m k =6 ① 又由 当 86.51 2=+= =m k p n ω ② ①与②联立解出 m =20.69 kg ,k =744.84 N/m 2-3总质量为W 的电机装在弹性梁上,使梁产生静挠度st δ,转子重Q ,重心偏离轴线e ,梁重及阻尼可以不计,求转速为ω时电机在垂直方向上稳态强迫振动的振幅。 解:列出平衡方程可得: 222()sin sin()sin()st Q W W k x w e wt x g g W Q x kx w e wt g g kg Q x x w e wt W W ππ-σ+- =+=++=+ 所以:2n kg P W Q h w e W ==, 又因为st st W W k k =σ=σ即 22() st st B w e B W g w =σ-σ将结果代入Q = 即为所求的振幅 2-4如题2-4图所示,作用在质量块上的激振力t F t F ωsin )(0=,弹簧支承端有运动 t a x s ωco s =,写出系统的运动微分方程,并求稳态振动。 题2-4图

0727第三章 两自由度系统振动(讲)

第三章两自由度系统振动 §3-1 概述 单自由度系统的振动理论是振动理论的基础。在实际工程问题中,还经常会遇到一些不能简化为单自由度系统的振动问题,因此有必要进一步研究多自由度系统的振动理论。 两自由度系统是最简单的多自由度系统。从单自由度系统到两自由度系统,振动的性质和研究的方法有质的不同。研究两自由度系统是分析和掌握多自由度系统振动特性的基础。 所谓两自由度系统是指要用两个独立坐标才能确定系统在振动过程中任何瞬时的几何位置的振动系统。很多生产实际中的问题都可以简化为两自由度的振动系统。例如,车床刀架系统(a)、车床两顶尖间的工件系统(b)、磨床主轴及砂轮架系统(c)。只要将这些系统中的主要结合面(或芯轴)视为弹簧(即只计弹性,忽略质量),将系统中的小刀架、工件、砂轮及砂轮架等视为集中质量,再忽略存在于系统中的阻尼,就可以把这些系统近似简化成图(d)所示的两自由度振动系统的动力学模型。 以图3.1(c)所示的磨床磨头系统为例分析,因为砂轮主轴安装在砂轮架内轴承上,可以近似地认为是刚性很好的,具有集中质量的砂轮主轴系统支承在弹性很好的轴承上,因此可以把它看成是支承在砂轮架内的一个弹簧——质量系统。此外,砂轮架安装在砂轮进刀

拖板上,如果把进刀拖板看成是静止不动的,而把砂轮架与进刀拖板的结合面看成是弹簧,把砂轮架看成是集中的质量,则砂轮架系统又近似地可以看成是支承在进刀拖板上的另一个弹簧——质量系统。这样,磨头系统就可以近似地简化为图示的支承在进刀拖板上的两自由度系统。 在这一系统的动力学模型中,m1是砂轮架的质量,k1是砂轮架支承在进刀拖板上的静刚度,m2是砂轮及其主轴系统的质量,k2是砂轮主轴支承在砂轮架轴承上的静刚度。取每个质量的静平衡位置作为坐标原点,取其铅垂位移x1及x2分别作为各质量的独立坐标。这样x1和x2就是用以确定磨头系统运动的广义坐标。(工程实际中两自由

第三章两自由度系统振动

1α,小车与斜面之间摩擦力 gk P T π 2=, ?? ? ??+= α2sin 2k P h k P A 2 m 。 ()2 2 34mr a r k n +=ω 3.确定图2-3系统的固有频率。

() r R g n -= 32ω 图2-3 第三章 两自由度系统振动 §3-1 概述 单自由度系统的振动理论是振动理论的基础。在实际工程问题中,还经常会遇到一些不能简化为单自由度系统的振动问题,因此有必要进一步研究多自由度系统的振动理论。 两自由度系统是最简单的多自由度系统。从单自由度系统到两自由度系统,振动的性质和研究的方法有质的不同。研究两自由度系统是分析和掌握多自由度系统振动特性的基础。 所谓两自由度系统是指要用两个独立坐标才能确定系统在振动过程中任何瞬时的几何位置的振动系统。很多生产实际中的问题都可以简化为两自由度的振动系统。例如,车床刀架系统(a )、车床两顶尖间的工件系统(b )、磨床主轴及砂轮架系统(c )。只要将这些系统中的主要结合面(或芯轴)视为弹簧(即只计弹性,忽略质量),将系统中的小刀架、工件、砂轮及砂轮架等视为集中质量,再忽略存在

于系统中的阻尼,就可以把这些系统近似简化成图(d)所示的两自由度振动系统的动力学模型。 以图3.1(c)所示的磨床磨头系统为例分析,因为砂轮主轴安装在砂轮架内轴承上,可以近似地认为是刚性很好的,具有集中质量的砂轮主轴系统支承在弹性很好的轴承上,因此可以把它看成是支承在砂轮架内的一个弹簧——质量系统。此外,砂轮架安装在砂轮进刀拖板上,如果把进刀拖板看成是静止不动的,而把砂轮架与进刀拖板的结合面看成是弹簧,把砂轮架看成是集中的质量,则砂轮架系统又近似地可以看成是支承在进刀拖板上的另一个弹簧——质量系统。这样,磨头系统就可以近似地简化为图示的支承在进刀拖板上的两自由度系统。

第5章--两自由度系统的振动

第5章 两自由度系统的振动 应用单自由度系统的振动理论,可以解决机械振动中的一些问题。但是,工程中有很多实际问题必须简化成两个或两个以上自由度,即多自由度的系统,才能描述其机械振动的主要特征。多自由度系统的振动特性与单自由度系统的振动特性有较大的差别,例如,有多个固有频率、主振型、 主振动和多个共振频率等。本章主要介绍研究两自由度系统机械振动的基本方法。 如图5-1所示。平板代表车身,它的位置可以由质心C 偏离其平衡位置的铅直位移z 及平板的转角 来确定。这样,车辆在铅直面内的振动问题就被简化为一个两自由度的系统。 5.1 双质量弹簧系统的自由振动 5.1.1 运动微分方程 图5-2(a)表示两自由度的弹簧质量系统。略去摩擦力及其它阻尼,以它们各自的静平衡位置为坐标x 1、x 2的原点,物体离开其平衡位置的位移用x 1、x 2表示。两物体在水平方向的受力图如图5-2(b)所示,由牛顿第二定律得 ? ? ?=+-=-++00)(2212222212111x k x k x m x k x k k x m &&&& (5-1) 这就是两自由度系统的自由振动微分方程。习惯上写成下列形式 ??? =+-=-+00212211dx cx x bx ax x &&&& (5-2) 显然此时 2 2 1 2 1 2 1,,m k d c m k b m k k a = == += 但对不同的系统, 式(5-2)中各系数的意义并不相同。 图5-1车辆模型 图5-2两自由度的弹簧质量系统

5.1.2 固有频率和主振型 根据微分方程的理论,设方程(5-2)的解,即两自由度无阻尼自由振动系统的解为 ?? ? ??+=+=)sin()sin(2211ααpt A x pt A x (5-3) 或写成以下的矩阵形式 )sin(2121α+?? ? ???????=??????????pt A A x x (5-4) 将式(5-4)代入式(5-2),可得代数齐次方程组 ? ?? ???=????????????----002122 A A p d c b p a (5-5) 保证式(5-5)具有非零解的充分必要条件是式(5-5)的系数行列式等于零,即 0)(2 2 2 =----= ?p d c b p a p 展开后为 0)(24=-++-bc ad p d a p (5-6) 式(5-6)唯一确定了频率p 满足的条件,通常称为频率分程或特征方程。它是2p 的二次代数方程,它的两个特征根为 )(222 22 ,1bc ad d a d a p --??? ??++=μ bc d a d a +?? ? ??-+=2 22μ (5-7) 由于式(5-7)确定的2p 的两个正实根仅取决于系统本身的物理性质,与运动的初始条件无关,因此p 称为系统的固有频率。较小的一个称为第一阶固有频率,较大的一个称为第二阶固有频率。 5.2.2 主振型 将固有频率p 1和p 2分别代入式(5-5)的任一式,可得到对应于它们的振幅比

[整理]matlab二自由度系统振动.

利用Adams 和Matlab 对二自由度系统振动进行仿真与分析 一、实验思想 Adams 是一种可以对一些典型运动进行高效仿真的软件,本实验是利用Adams 对二自由度系统振动进行仿真及分析,再和理论公式对比,并用另外一种常见的仿真软件Matlab 的仿真结果进行对比,观察两者的差异,分析软件仿真产生差异的原因,加深对二自由度系统振动的理解。 二、二自由度系统振动分析 固有频率取决于系统本身物理性质,而与初始条件无关。对于二 自由度的振动系统是有两种频率的简谐波组成的复合运动,这两个频率都是系统的固有频率。 主振型是当系统按固有频率作自由振动时,称为主振动。系统作 主振动时,任何瞬时各个运动坐标之间具有一定的相对比值,即整个系统具有确定的振动形态,称为主振型。 强迫振动是振动系统在周期性的外力作用下,其所发生的振动称 为强迫振动,这个周期性的外力称为驱动力。 三、二自由度系统自由振动 1.建立二自由度系统振动模型 1)创建底座:先生成一个尺寸合适的长方体基体,再使用add to part 指令创建底座的侧壁。 2)使用new part 指令分别创建两个滑块,创建滑块时应注意滑

块与滑块、滑块与侧壁之间的尺寸适当。 3)弹簧连接:分别用弹簧链接滑块、侧壁的中心点。弹簧生成后,依次选中弹簧,在modify 选项中的stiffness and damping 下拉菜单中将damping coefficient 设置成no damping,即弹簧无阻尼。 添加约束:底座和地面固定,滑块和底座用滑动副连接。 弹簧刚度分别改为1、1、2(newton/mm) 滑块质量分别为1.0 2.0 滑块与机体滑动副的阻尼改为1.0E-007 2.模型展示 3.运动仿真结果 设置x10=12 经过Adams 运算后,滑块1、2 运动状态如图所示:

单自由度系统自由衰减振动及固有频率、阻尼比

:单自由度系统自由衰减振动及固有频率、阻尼比的测定实验指导书 陈安远 (武汉大学力学实验教学中心) 1.实验目的 1、了解单自由度系统模型的自由衰减振动的有关概念; 2、学习用频谱分析信号的频率; 3、学习测试单自由度系统模型阻尼比的方法。 2.实验仪器及安装示意图 实验仪器:INV1601B型振动教学实验仪、INV1601T型振动教学实验台、加速度传感器、MSC-1力锤(橡胶头)、重块。 软件:INV1601型DASP软件。 图1实验系统示意图 3实验原理 单自由度系统的阻尼计算,在结构和测振仪器的分析中是很重要的。阻尼的计算常常通过衰减振动的过程曲线(波形)振幅的衰减比例来进行计算。衰减振动波形示于图2。用衰减波形求阻尼可以通过半个周期的相邻两个振幅绝对值之比,或经过一个周期的两个同方向

振幅之比,这两种基本方式进行计算。通常以一个周期的相邻两个振幅值之比为基准来计算的较多。两个相邻振幅绝对值之比,称为波形衰减系数。 图2衰减振动波形 1、对经过一个周期为基准的阻尼计算 每经过一个周期的振幅的比值为一常量: η=d nT i i e A A =+1 这个比例系数η表示阻尼振动的振幅(最大位移)按几何级数递减。衰减系数η常用来表示振幅的减小速率。叫做振幅减缩率或减幅系数。 如果用减幅系数η的自然对数来表示振幅的衰减则更加方便。 δ=ln (η)=ln d i i nT A A =+1=21ξπξ- δ称为振动的对数衰减率或对数减幅系数。可以利用δ来求得阻尼比ξ。 2、在小阻尼时,由于η很小;这样读数和计算误差较大,所以一般地取相隔若干个波峰序号的振幅比来计算对数衰减率和阻尼比。 4.实验步骤 1、仪器安装 参照仪器安装示意图安装好配重质量块,加速度传感器。 2、开机进入INV1601型DASP 软件的主界面, 进入单通道示波状态进行波形和频谱同时示波,见图2。 3400Hz 、采样点数为2K,标定值和工程单位等参数(按实际

单自由度系统

第二章 单自由度系统的自由振动 本章以阻尼弹簧质量系统为模型,讨论单自由度系统的自由振动。 §2-1 无阻尼系统的自由振动 无阻尼单自由度系统的动力学模型如图所示。设质量为m ,单位是kg 。弹簧刚度为K ,单位是N /m ,即弹簧单位变形所需的外力。弹簧在自由状态位置如图中虚线所示。当联接质量块后,弹簧受重力W=mg 作用而产生拉伸变形:,同时也产生弹簧恢复力K ,当其等于重力W 时,则处于静平衡位置,即 W=K 若系统受到外界某种初始干扰,使系统静平衡状态遭到破坏.则弹簧力不等于重力,这种不平衡的弹性恢复力,便使系统产生自由振动。首先建立座标,为简便起见,可选静平衡位置为座标原点,建立铅垂方向的座标x ,从原点算起,向下为正,向上为负,表示振动过程中质量块的位置。现设质量m 向下运动 到x ,此时弹簧恢复力为K(+x),显然大于重力W ,由 于力不平衡,质量块在合力作用下,将产生加速度运动,故可按牛顿运动定律(作用于一个质点上所有力的合力,等于该质点的质量和沿合力方向的加速度的乘 积),建立运动方程,取与x 正方向一致的力、加速度、速度为正,可列如下方程 改写为 0=+kx x m && (1-1-1 令 m k p = 2 (1-1-2) 单自由度无阻尼系统自由振动运动方程为 02=+x p x && (1-1-3) 设方程的特解为 st e x = 将上式代入(1-1-3)处特征方程及特征根为 ip s p s ±==+2,1220 则(1-1-3)的通解为 pt D pt C e C e C x ipt ipt sin cos 11+=+=- (1-1-4) C 、 D 为任意积分常数,由运动的初始条件确定,设t=0时 00,x x x x &&== (1-1-5) ()x m x k W F && =+?-= ∑量位静平衡位置 一自由度弹簧—质量系统 ? ==k mg W x &x )

两自由度系统的振动

5-1 如图所示的系统,若运动的初始条件:,0,mm 5,0201010====x x x t 试求系统对初始条件的响应。 解: 112211222112102,,22,0,202020cos(),cos()cos()005,k k k k k x x k k x k k x mx kx kx mx kx kx x x A t t kA t t x mm ω?ωω?ω?ω-?? =??-?? -??????????+=??????????-??????????+-=+-===++++== ==2带入可得运动微分方程:m,00,m 令代入原方程可得 -mA 有 时,1020120, cos 5,sin 0,5,0 ().x x A A A mm x x mm ?ω??===-=====有可得 ω有两个值 12p p = = 15522x =+ 255c o c 22x =- 5-2 图示为一带有附于质量m 1和m 2上的约束弹簧的双摆,采用质量的微小水平平移 x 1和x 2为坐标,设m m m ==21,l l l ==21,021==k k ,试求系统的固有频率和主振型。

解:设1m 沿1x 方向移动1个单位,保持 2m 不动,对2m ,1m 进行受力分析,可得: 212 2()0, m A k l m g =--=∑2212m g k l =- 11 12111212122 111211112()()()0 m B k k k l m m g m m m m m g k g k k g k l l l =-+-+=++= +-=++∑ 同理使2m 沿2x 方向移动一个单位,保持1m 不变,对2m 受力分析可得: 22 222()()*0m C k k l m g =--=∑, 22222m g k k l =+ ; 刚度矩阵为 11211222,,k k k k ??=????k ,质量距阵12,00,m m ??=????m , 带入可得运动的微分方程为:mx kx F += 12,00,m m ?? ???? 12x x ??????+11211222,,k k k k ?? ????12x x ???? ??=F ; 综上解得:????? ????=???? ??++-=-???? ??++++)()(222221222212221 2212111t F x l g m k x l g m x m t F x l g m x g l m g l m m k x m 利用刚度影响系数法求刚度矩阵k 。 设0,121==x x ,分别画出1m 与2m 的受力图,并施加二物块力2111,k k ,列平衡方程, 对1m : ∑=0X ,0sin sin 1221111 =---k T T k θθ ∑=0Y ,0cos cos 1 2 2 1 1 =--g m T T θθ 对2 m : ∑ =0X , 0sin 2 2 21 =+θT k ∑ =0Y , 0cos 2 22=-g m T θ

第1章 单自由度系统的振动

第1章 单自由度系统的振动 1.1概述 机械振动是工程中常见的物理现象。悬挂在弹簧上的物体在外界干扰下所作的往复运动就是最简单直观的机械振动。广泛地说,各种机器设备及其零部件和基础,都可以看成是不同程度的弹性系统。例如桥梁在车辆通过时引起的振动,汽轮机、发电机由于转子不平衡引起的振动等。因此,机械振动就是在一定的条件下,振 动体在其平衡位置附近所作的往复性的机械运动。 实际中的振动系统是很复杂的。为了便于分析研究和运用数学工具进行计算,需要在满足工程要求的条件下,把实际的振动系统简化为力学模型。例如图示1.1-1 就是个最简单的单自由度质量(m )—弹簧(k )系统。 如果实际系统很复杂,要求的精度较高,简化的力学模型也就复杂。 振动系统中和参数的动态特性,可以用常系数线性微分方程来描述的,称为线性振动。但工程实际中也有很多振动系统是不能线性化的,如果勉强线性化,就会使系统的性质改变,所得的系统只能按非线性振动系统处理。 机械振动分析方法很多。对于简单的振动系统,可以直接求解其微分方程的通解。由于计算机进行数值计算非常方便,所以振动仿真是一种最直接的方法。 由于振动模型中尤其是多自由度振动很方便用矩阵微分方程来描述,所以MATLAB 语言在振动仿真中体现出十分优越的特性。 本章先介绍机械振动的单自由度、多自由度振动的基础,然后介绍仿真计算的各种计算公式,最后通过MATLAB 语言来实现。 1.2单自由度系统的振动 1.2.1 无阻尼自由振动 如图1.1-1所示的单自由度振动系统可以用如下微分方程描述 : 0=+kx x m (1.2.1-1) 令 m k n = 2ω ,方程的通解为 t b t a x n n ωωcos sin += (1.2.1-2) 式(1.2.1-2)表示了图示(1.1-1)中质量m 的位置随时间而变化的函数关系,反映了振动的形式与特点,称为振动函数。 式(1.2.1-2)中,a 、b 为积分常数,它决定于振动的初始条件。如假定t =0时,质量块的位移 x=x 0,其速度 00V x x == ,则 00 ,x b V a n == ω 即 图 1.1-1

两自由度系统的振动

x 1 ax 1 bx 2 x 2 cx 1 dx 2 显然此时 m 2 但对不同的系统, 式(5-2)中各系数的意义并不相同。 第5章两自由度系统的振动 应用单自由度系统的振动理论,可以解决机械振动中的一些问题。但是,工程中有很多实际问 题必须简化成两个或两个以上自由度,即多自由度的系统,才能描述其机械振动的主要特征。多自 由度系统的振动特性与单自由度系统的振动特性有较大的差别,例如,有多个固有频率、主振型、 主振动和多个共振频率等。本章主要介绍研究两 自由度系统机械振动的基本方法。 如图5-1所示。平板代表车身,它的位置可以 由质心C 偏离其平衡位置的铅直位移 z 及平板的 转角 来确定。这样,车辆在铅直面内的振动问 题就被简化为一个两自由度的系统。 图 21-1 5.1双质量弹簧系统的自由振动 5.1.1 运动微分方程 图5-2(a)表示两自由度的弹簧质量系统。略去摩 擦力及其它阻尼,以它们各自的静平衡位置为坐标 X 1、X 2的原点,物体离开其平衡位置的位移用 X 1、X 2 何 表示。两物体在水平方向的受力图如图 5-2(b)所示, 由牛顿第二定律得 图5-2两自由度的弹簧质量系统 m 1x 1 (k 1 k 2)x 1 k 2x 2 0 m 2x 2 k 2 x 1 k 2x 2 0 (5-1) 这就是两自由度系统的自由振动微分方程 。习惯上写成下列形式 (5-2) k 1 k 2 k 2 k 2 m 1

5.1.2 固有频率和主振型 根据微分方程的理论,设方程 (5-2)的解,即两自由度无阻尼自由振动系统的解为 x i A i sin( pt ) x 2 A 2 sin( pt ) 或写成以下的矩阵形式 将式(5-4)代入式(5-2),可得代数齐次方程组 a p 2 b A i 0 c d p 2 A 2 保证式(5-5)具有非零解的充分必要条件是式 (5-5)的系数行列式等于零,即 2 a p 2 b (p 2) p 2 c d p 展开后为 p 4 (a d) p 2 ad be 0 的两个特征根为 (ad bc) (5-7) 由于式(5-7)确定的p 2的两个正实根仅取决于系统本身的物理性质, 与运动的初始条件无关, 因此p 称为系统的固有频率。较小的一个称为第一阶固有频率,较大的一个称为第二阶固有频率。 5.2.2 主振型 将固有频率P 1和p 2分别代入式(5-5)的任一式,可得到对应于它们的 振幅比 (5-3) x i X 2 A i sin( pt ) A 2 (5-4) (5-5) (5-6) 式(5-6)唯一确定了频率 p 满足的条件, 通常称为频率分程或特征方程。 它是p 2的二次代数方程,它 2 a d 2 bc

相关主题
文本预览
相关文档 最新文档