当前位置:文档之家› 600MW亚临界火电机组热力系统(火用)分析

600MW亚临界火电机组热力系统(火用)分析

600MW亚临界火电机组热力系统(火用)分析
600MW亚临界火电机组热力系统(火用)分析

600MW亚临界火电机组热力系统(火用)分析

摘要:随着我国国民经济迅速发展,我国逐渐成为能源生产和消费大国。某典

型600MW 亚临界空冷机组为例,详细分析了主再热汽温变化对机组运行特性的

影响,从热力学角度揭示了提高蒸汽初参数的经济性;在此基础上,又对机组在

不同工况下初参数变化对能耗的影响进行了计算分析。结果表明:对于机组,在100% THA 工况下,当将其主再热蒸汽温度由538℃提高至580℃时,机组的发电

效率可提高0.61%,供电煤耗可降低4.73g /kWh,节能效果显著。

关键词:亚临界;机组;主再热汽温

由于现代火力发电厂的蒸汽循环以朗肯循环为基础,提高主蒸汽压力,主蒸

汽流量增加,蒸汽在汽轮机内焓降增加,负荷升高,这点有利于机组的经济性,

但随着主蒸汽压力的提高,末级排汽湿度增加,这不利于机组的安全运行。因此,综合考虑,同时提高主蒸汽温度和再热蒸汽温度更利于机组的安全经济运行提高

蒸汽初温,平均吸热温度提高,则朗肯循环效率提高;同时减少了低压缸排汽的

湿气损失,高压端的漏气损失,从而提高了汽轮机的绝对内效率,即提高主蒸汽

温度,总可以提高热经济性。

一、机组介绍

某600MW 亚临界空冷机组,其锅炉为亚临界参数、一次中间再热的Ⅱ型汽

包炉,锅炉设计排烟温度为130℃。其汽轮机组为2×600MW 国产空冷机组,安

装有2台600MW 单轴、三缸四排汽、空冷、中间再热、凝汽式汽轮机,主蒸汽

压力为16.67MPa,温度为538℃,再热蒸汽压力为3.41MPa,温度为538℃,回

热系统为“三高三低一除氧”布置。

二、热力系统建模

1、系统主要设备模型。机组的热力学性能可通过EBSILON 软件模拟分析,EBSILON 软件是专业的电站系统模拟软件,其基于基本物理学原理,主要应用于

电站的设计、热力性能评价以及优化。该软件能够较为精确模拟计算电站系统的

热力学参数以及系统不同工况下的热力学参数与性能。采用该软件对机组热力系

统进行建模,为保证模拟结果的准确性,选用的系统设备的模型,同时,还将EBSILON 模型的计算结果与经典热平衡计算结果及汽轮机说明书中数据进行对比,以验证模型的准确性。

2、模型准确性验证。根据设备模型,并参照机组汽轮机说明书中汽水流程图,对机组在100%THA 工况下的热力特性进行了模拟,由EBSILION 软件搭建出的机

组100%THA 工况模型如图所示。

为了验证搭建计算模型的正确性与准确性,在此选取机组的2个重要参数,

即发电功率、热耗率。将计算模型得出的发电功率、热耗率同京隆电厂汽轮机说

明书中两项数据做对比,对比结果模型计算得出发电功率为600.77MW,汽轮机

说明书中设计值为600.185MW,两者之差为0.585MW,计算得出相对误差为0。0975%;模型计算得出热耗率为8076.04kJ /kWh,汽轮机说明书中设计值为

8064kJ /kWh,两者之差为12.04kJ /kWh,计算得出相对误差为0.1493%;可见利

用EBSILON软件搭建的模型其正确性与准确性是可以保证的,能够作为其他改造

方案的原模型。

三、主再热汽温节能效果分析

1、热力学分析。根据朗肯循环定理,提高主蒸汽的初温与再热温度会提高平

电厂热力系统节能分析

电厂热力系统节能分析 【摘要】:电能是最洁净的便于使用的二次能源,但是在生产电能的同时却消耗了大量的一次能源。本文简要分析了当前节能形势,归纳了主要的热力系统计算分析方法,指出了电厂热力分析仍然存在的问题,并对电站节能改造给出了建议和节能策略分析。 【摘要】:热力系统经济指标计算方法节能技术 众所周知,能源问题已经成为世界各国共同关注的问题,在我国这一现象更加凸显。由于我国粗放型经济增长方式,又处在消费结构升级加快的历史阶段,能源消耗过大,因此节能降耗将是一项长远而艰巨的任务。根据美国及我国电力行业调查统计表明,我国平均供电煤耗率要比发达国家高出30~60g/kWh,这是一个很大的差距,说明我国的电厂节能有很大的节能潜力可以挖掘。因此,电站热力系统节能是关系到节能全局以及可持续性发展的大事。因此,在热力系的环境下,揭示各种节能理论内在的联系,深入地研究和发展节能要的理论和现实意义,对电厂的节能降耗工作具有很强的指导性。 一、热力系统经济指标 我国火力发电厂常用的热经济型指标主要有效率和能耗率两种。 (一)全场热效率ηcp: 其中,Nj为净上网功率,B为燃煤量,Ql为燃煤低位发热量。 全厂热效率指标是电厂运行的综合指标,在进行系统分析是,常将这一综合指标进行分解,以区分各厂家的责任和主攻方向,因此可以改写为: 其中,ηb:锅炉效率,锅炉有效吸热量与燃煤低位发热量之比; ηp:管道效率,汽轮机循环吸热量与锅炉有效吸热量之比; ηi:汽轮机循环装置效率,汽轮机内部功与循环吸热量之比; ηm:机械效率,汽轮机输出功率与内部功率之比; ηg:发电机效率,发电机上网功率与前端功率之比; ∑ξi:厂用电率,电厂所有辅机消耗电功率之和与发电机上网功率之比。 (二)热耗率和标准煤耗率 热耗率指标综合评价汽轮机发电机组热经济性,其实质是发电机每发电1kWh,工质从锅炉吸收的热量值。定义式如下: 煤耗率指标也可以分为两种:发电标准煤耗率和供电标准煤耗率。

供暖热力站的节能途径与措施

供暖热力站的节能途径与措施 供暖热力站是城镇集中供热系统的一个重要组成部分,通过它可以把热源厂生产的蒸汽或高温热水转换成用户可直接采暖的低温热水。在保证设备安全和采暖用户室内温度指标的前提下,怎样做好站内节能降耗是供热工作者研究的一个重要课题。下面从设备选型配置和运行管理的两个方面,浅谈水-水换热供暖热力站的节能途径与措施。 ???????1.站内主要设备选型配置 ???????水-水换热的热力站主要设备有换热器、循环水泵、补水泵、软化水设备、补给水箱、除污器;电器、自控、仪表柜。 ???????正确选配热力站设备是节能工作的基础,热力站的设备选用应该全面统筹考虑,既要节省初期建设的投资,还应论证分析运行中的成本费用,在设备使用寿命的期限内,找到一个设备购置的最佳点,达到在保证设备安全运行,供热质量达标的前提下节能降耗。 ???????1.1换热器 ???????热交换设备的选型正确与否直接影响着换热效率及能耗大小。《民用建筑节能设计标准(采暖居住建筑部分)》JGJ26-95中 ??????? ???????1.1.2板式换热器水流速在0.5m/s时,传热系数一般为4500~6500W/(㎡·℃)【1】。所以在水-水换热系统选用不锈钢板片的可拆卸板式换热器为最佳选择。 ???????

???????热源温度与采暖温度的温差较小的系统(如散热器采暖)可选用等截面(对称)型板式换热器。热源温度与采暖温度的温差较大的系统(地板辐射采暖)可考虑选用不等截面(非对称)型板式换热器;这样可以减少换热面积15%~30%。 ??????? ???????为了降低站内管道系统阻力损失,选配换热器的一二次水的进出口管径不易过小,最大流速要控制在0.5m/s以下,如果管径小流速过高,可在进出口之间加装旁通管和调节阀门。单台换热器(一二次侧)的进出口管径最小不能小于热源和供暖系统总供回水管道一号。两台以上换热器的进出口管径总的流通面积不能小于系统总供回水管道的80%。 ???????1.1.5配置台数及单台板片数量 ???????(1)用户采暖面积较小的系统(5万㎡以下)可选用1台换热器;用户采暖面积5万~15万㎡的系统可考虑选用2台换热器;大于15万㎡的系统可考虑配置3台以上。 ???????(2)单台板片数量不宜过多,不要超过制造厂家产品样本中所列出换热器单台最大的板片数量。 ??????? ???????考虑到热源厂输送的高温水在实际运行中的温度及流量参数不能达到设计参数等因素,为了保证实际运行状态下的换热量和换热效率,换热器选配时的实际有效换热面积最好比计算出的所需换热面积增加20%~30%。 ???????1.1.7总压降 ???????一次侧≤30KPa;二次侧≤50KPa。

热力系统运行方式节能优化调整

热力系统运行方式节能优化调整 发表时间:2018-09-11T16:30:16.517Z 来源:《基层建设》2018年第21期作者:李鑫 [导读] 摘要:近几年对于机组的热力系统进行优化与改造之后,不仅有效提升了机组效率,更开阔了调整运行方式的空间。 国家电投集团东方新能源股份有限公司热力分公司河北石家庄 050000 摘要:近几年对于机组的热力系统进行优化与改造之后,不仅有效提升了机组效率,更开阔了调整运行方式的空间。通过运行部门不断加强对机组节能的管理,采用行之有效的技术方法,获得广泛的认可与推行。机组设备运行方式得到进一步优化与改造之后,提升了能源的利用率,降低了能源消耗程度,提高了机组运行的经济性,帮助公司实现最大化的经济效益。本文分析了热力系统运行方式节能优化调整。 关键词:热力系统;运行方式;节能调整 目前阶段我国的能源利用率低下的问题可谓是日益严重,并且在能源的使用过程当中,主要是以一次性的能源为主要对象,而煤炭等能源的使用和燃烧,会产生出大量的废气,进而对生态环境造成不利影响。 1 对节能技术的可行性认识 ①具有潜力大、易实现、投资少、见效快等特点。火电厂热力系统节能是电厂节能工作的新领域,是热力系统节能理论与高科技应用技术相结合的产物。在实施时大都不需要对主设备进行改造,不增加新设备,因此,它广泛开展热力系统节能工作,对当前调整产业结构提高管理水平,促进技术进步,具有非常重要的现实意义。 ②热力系统节能有多种可行的途径。对于新设计机组,可通过优化设计,合理配套进行节能;而对于运行机组,可通过节能诊断,优化改造,监测能损,指导运行,实现节能目标。 ③热力系统节能潜力大,效果明显。在过去一个相当长的时期内,由于工程界很少注意热力系统的节能,缺少完整的热力系统节能理论以及必要的优化分析工具。在火电厂热力系统设计方面,存在着系统结构与连接方式不合理的现象;在电厂运行过程中,除去设计不足外还存在着运行操作和维护不当的因素,致使运行经济性达不到设计水平。所有这些,都导致了机组热经济性的降低,热力系统节能理论及其实用节能新技术可以全面推广。 2 热力系统运行方式节能优化调整 ①针对非线性协调系统进行有规划的设计,合理的提升火电单位的工作效率。非线性协调系统对于维持电厂热力系统的稳定运行以及能源的运用有着关键性的价值和意义。一般来讲,非线性协调系统可以运用并且开发等来对常规性的PID控制器进行改造,进而进一步提升控制系统的性能以及控制效率,使得煤炭的燃烧可以更加节能,促进和推动社会经济的可持续性发展。在疏水泵系统上安装多级水封系统,在原先的暖风器的疏水扩管到上添加管道,并令其与凝汽器相连接,充分利用凝汽器内的真空抽吸暖风器疏水。具体流程为:炉暖风器疏水、多级水封、高价疏水扩容器到凝汽器。通过利用多级水封以及调整门来将暖风器疏水箱的水位维持在正常的水平,以免疏水箱内的水被抽干,致使将暖风器中的蒸汽被抽到凝汽器内部,而影响机组的经济性。将暖风器中的疏水吸到凝汽器内部之后,节能效果显著。在改造系统之后,还可以尽可能减少对日常维护暖风器疏水泵的工作量,让暖风器的疏水泵在运行过程中,有效解决“跑、滴、漏、冒”等现象,满足文明生产的要求。 ②通过进一步减少煤炭的燃烧来提升火电厂的发电工作效率。减少煤炭的消耗量,可以使得污染物质排放量进一步降低。在热力系统的火电发电机组当中,全面并且大力的推广性能管理系统,此系统适用的是基于离散线性坐标针对热力系统机组之中的锅炉密度以及流量等进行描述,是一种全新的工作方式,并且广泛的分析和研究了火焰等动态化的计算模型,将分析火焰的中心、高温腐蚀以及炉膛的结渣等问题,全面实现了运行的经济化以及条件话。另外,运用当前阶段国际先进的水蒸气物理计算指标,全面并且综合性的、立体化的构建出一种可以客观上反映热力系统火电机组性能的现代化模型,使得机组的能源消耗以及性能的分析可以更加合理和先进。在现代化的信息管理系统当中,还引入了相关的机组运行性能管理与检测系统模块,针对机组的运行进行实时监控,并且可以主动的针对机组进行管理,及时、准确、可靠的发现机组运行当中存在的问题与缺陷,根据运行以及电力负荷的现状提出合理化的改进对策以及工作建议,进而为节能性的增强以及机组工作效率的提升奠定了坚实的基础条件。 ③深入的研究机组锅炉燃烧的稳定性系数,并且对不充分燃烧的区域进行全面研究,对不充分燃烧的分布状况进行合理性的分析针对锅炉内部不充分燃烧的区域和分布状况进行全面分析,可以逐步的确定得出最佳的煤风配合比例,并且确定出整体燃烧措施的调整规划。另外,还需要根据电厂相关工作人员以及技术人员的工作经验,通过对特征参数以及主题词等的调整和提取,全面快速的检测出相关性能上的故障,为现代化的知识库建设以及电厂发展改革奠定坚实的条件。 ④提升机组的流通效率,进而逐步的降低机组运行过程当中缸内压力以及排气压力,使得机组的能耗降低。热力系统当中机组供电过程所消耗的煤炭量越少,管理的水准越高、管理的模式越先进,则可以使得经济成本控制效果达到最佳。为了更好的占领当前的市场,在竞价的过程之中可以报出相对较低的价格,而成本高则意味着煤炭消耗量进一步增加,并且管理不科学、不合理,这种企业在当前的市场竞争当中就会逐渐的处于劣势,最终可能会由于成本竞争压力过大以及成本费用较高而退出市场竞争。所以,这样的一个过程其本质上就是一个优胜劣汰的过程,最终的产能富余,主要依靠的是整个电力市场之间的竞争,这一点对于当前的电力环境而言非常关键。 ⑤针对热力系统的机组设备和相关设施进行日常运行的分析和实时监测控制。针对设备的运行参数进行研究,在全面的保障了安全运行和经济运行的前提基础之上,有计划的对机组进行调整,开展相应的优化测试试验,最终使得机组运行的基准参数得以确定,得出机组运行的基本工作情况,最终为提升机组系统运行效率提供必要的依据支持,逐步的降低煤炭的消耗量。另外,还可以在线的对机组性能进行检测,对运行和管理提供优化改良的措施方案。除氧器主要是用来出去锅炉给水时产生的氧气,它能够保持锅炉水的质量。如果在传统的运行方式下,排氧门是经常打开的,工质浪费严重。现在在确保锅炉给水时产生的溶氧达标的条件下,可以关闭排氧门,并对除氧器中的溶氧指标采取化学监督。根据情况来确定是否开启并调整溶氧,以达到减少工质损失的效果。 ⑥不断加快工业技术发展,将控制生态环境污染以及提升能源利用效率作为主要的工作方向。为了使我国的热力系统得到进一步的节能改造,还需要将全面降低能源损耗以及提升能源燃烧效率为主要的工作目标,并且需要在以上工作基础之上,保证机组的模型对称、保证机组基本运行的效率,很好的提升机组在不确定环境之下以及不稳定环境之下的运行效果,控制品质,提升机组的工作水准。另外,还需要机组可以在短时间之内迅速的适应电网负荷量的变化,应对不同的电力压力,保证其机前压力不会超过规定的范围。加快产业技术革

6.8供暖热力站的节能实施方案

供暖热力站的节能实施方案 批准:马福友 审核:王立华 编写:刘明华 天津市武清区九九热力有限公司 2012年09月15日

供暖热力站的节能实施方案 一、节能规划 水—水换热的热力站主要设备有换热器、循环水泵、补水泵、软化水设备、补给水箱、除污器;电器、自控、仪表柜。 正确选配热力站设备是节能工作的基础,热力站的设备选用应该全面统筹考虑,既要节省初期建设的投资,还应论证分析运行中的成本费用,在设备使用寿命的期限内,找到一个设备购置的最佳点,达到在保证设备安全运行,供热质量达标的前提下节能降耗。 (一)换热器 1、热交换设备的选型正确与否直接影响着换热效率及能耗大小。《民用建筑节能设计标准(采暖居 住建筑部分)》JGJ 26—95中 5.2.4条是这样规定的:“在设计热力站时,间接连接的热力站应选用结构紧凑,传热系数高,使用寿命长的换热器。换热器的传热系数宜大于或等于3000W/(㎡·K)。”因此选用换热器的要点如下: 1.1换热器的选配应遵照CJJ34-2010《城镇供热管网设计规范》10.3.10(P43)条进行;换热器 设备的布置应遵照CJJ34-2010《城镇供热管网设计规范》10.3.11(P44)条进行。 1.2板式换热器水流速在0.5m/s时,传热系数一般为4500~6500W/(㎡·℃)。所以在水—水换 热系统选用不锈钢板片的可拆卸板式换热器为最佳选择。 2、换热器形式 热源温度与采暖温度的温差较小的系统(如散热器采暖)可选用等截面(对称)型板式换热器。 热源温度与采暖温度的温差较大的系统(地板辐射采暖)可考虑选用不等截面(非对称)型板式换热器;这样可以减少换热面积15%~30%。 3、一二次侧的进出口管径 为了降低站内管道系统阻力损失,选配换热器的一二次水的进出口管径不易过小,最大流速要控制在0.5m/s以下,如果管径小流速过高,可在进出口之间加装旁通管和调节阀门。单台换热器(一二次侧)的进出口管径最小不能小于热源和供暖系统总供回水管道一号。两台以上换热器的进出口管径总的流通面积不能小于系统总供回水管道的80%。 4、配置台数及单台板片数量 4.1用户采暖面积较小的系统(5万㎡以下)可选用1台换热器;用户采暖面积5万~15万㎡的 系统可考虑选用2台换热器;大于15万㎡的系统可考虑配置3台以上。

分布式能源系统的热力学分析

分布式能源系统的热力学分析 张海洁 华电分布式能源工程技术有限公司北京100070 【摘要】分布式能源系统,相对于传统的集中供电方式而言,是指分布在用户端的、可独立地输出冷、热、电能的系统。对我国能源系统的发展具有重要意义。文章就分布式能源系统的热力学进行分析探讨。 【关键词】分布式;能源系统;热力学;分析 中图分类号:O414.1文献标识码:A 一、前言 文章对分布式能源系统的定义、主要形式和特点进行了介绍和阐述,通过分析,并结合自身实践经验和相关理论知识,以DES为例,对分布式能源系统的热力学进行了分析和探讨。 二、分布式能源系统概述 1.分布式能源系统的定义 顾名思义,分布式能源系统,是相对于能源集中生产(主要代表形式是大电厂加大电网)而言的。电在已知的二次能源中最为有用,且占有绝对优势。如果没有电,就没有了绝大多数的先进生产力。一切高新技术的研发、应用都要在电力运行的基础上进行。所以,保证充足、安全、有效的电力供应是非常重要的。然而,在目前,我国只有大电厂加大电网才能够比较好地完成此任务。估计这种状态在较长一段时间内不会改变。 分布式能源与上述比较集中的大电厂加大电网正好相反,它是把二次能源供能点分散到很多企业、社区、大厦、医院、学校、写字楼,甚至到个别家庭住宅中去。由于分散,所以每个系统的出力都不会太大,需根据用户的具体要求而定,一般在成百上千kW以下。如上所述,电是最主要的二次能源,所以目前通称的分布式能源系统都至少有电力输出;而只出热、出冷的简单小型供能系统,如仅供热的小锅炉装置、仅供冷的独立空调设备,是极少有人称之为分布式能源系统的。但是,绝大多数的分布式能源系统,是除了供电之外,还同时供热及/或供冷,是多联产系统。当然,也许还可能是多功能系统(意指除多联产输出外,输入的能源也是多种的,例如可以同时有化石能源与可再生能源输入)。 2.分布式能源系统的主要形式 分布式能源系统是一种建在用户端的能源供应方式,可独立运行,也可并网运行,是以资源、

热电厂热力系统计算

热力发电厂课程设计 1.1 设计目的 1. 学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2. 学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3. 提高计算机绘图、制表、数据处理的能力 1.2 原始资料 西安 某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安 地区采暖期 101 天,室外采暖计算温度 –5℃,采暖期室外平均温度 1.0℃,工业用汽 和采暖用汽热负荷参数均为 0.8MPa 、230℃。通过调查统计得到的近期工业热负荷和采暖热 负荷如下表所示: 1.3 计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别 链条炉 煤粉炉 沸腾炉 旋风炉 循环流化床锅炉 锅炉效率 0.72~0.85 0.85~0.90 0.65~ 0.70 0.85 0.85~ 0.90 (2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率 750~ 6000 12000 ~ 25000 5000 汽轮机相对内效率 0.7~0.8 0.75~ 0.85 0.85~0.87 汽轮机机械效率 0.95~0.98 0.97~ 0.99 ~ 0.99 发电机效率 0.93~0.96 0.96~ 0.97 0.98~0.985 3)热电厂内管道效率,取为 0.96。 4)各种热交换器效率,包括高、低压加热器、除氧器,一般取 0.96~0.98。

5)热交换器端温差,取3~7℃。 2%

6)锅炉排污率,一般不超过下列数值: 以化学除盐水或蒸馏水为补给水的供热式电厂 以化学软化水为补给水的供热式电厂5% 7)厂内汽水损失,取锅炉蒸发量的3%。 8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。 9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。 10)生水水温,一般取5~20℃。 11)进入凝汽器的蒸汽干度,取0.88~0.95。 12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。 2、原则性热力系统 2.1 设计热负荷和年持续热负荷曲线 根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见 表2-1 。用户处工业用汽符合总量:采暖期最大为175 t/h, 折算汇总到电厂出口处为166.65 t/h 。 2-1 折算到热电厂出口的工业热负荷,再乘以0.9 的折算系数,得到热电厂设计工业热负荷,再按供热比焓和回水比焓(回水率为零,补水比焓62.8 kJ/kg)计算出供热量,见表2-2。根据设计热负荷,绘制采暖负荷持续曲线和年热负荷持续曲线图,见图2-1 、图2-2。 表2-2 热电厂设计热负荷

汽轮机火用分析方法的热力系统计算

汽轮机火用分析方法的热力系统计算 前言 在把整个汽轮机装置系统划分成若干个单元的过程中,任何一个单元由于某些因素而引起的微弱变化,都会影响到其它单元。这种引起某单元变化的因素叫做“扰动”。也就是说,某单元局部参量的微小变化(即扰动),会引起整个系统的“反弹”,但是它不会引起系统所有参数的“反弹”。就汽轮机装置系统而言,系统产生的任何变化,都可归结为扰动后本级或邻近级抽汽量的变化,从而引起汽轮机装置系统及各单元的火用损变化。因此,在对电厂热力系统进行经济性分析时,仅计算出某一工况下各单元火用损失分布还是不够的,还应计算出当某局部参量变化时整个热力系统火用效率变化情况。 1、火用分析方法 与热力系统的能量分析法一样,可以把热力系统中的回热加热器分为疏水放流式和汇集式两类(参见图1和图2),并把热力系统的参数整理为3类:其一是蒸汽在加热器中的放热火用,用q’表示;其二是疏水在加热器中的放热火用,用y 表示;其三是给水在加热器中的火用升,以r’表示。其计算方法与能量分析法类似。

对疏水式加热器: 对疏水汇集式加热器: 式中,e f、e dj、e sj分别为j级抽汽比火用、加热器疏水比火用和加热器出口水比火用。1.1 抽汽有效火用降的引入 对于抽汽回热系统,某级回热抽汽减少或某小流量进入某加热器“排挤”抽汽量,诸如此类原因使某级加热器抽汽产生变化(一般是抽汽量减少),如果认为此变化很小而不致引起加热器及热力系统参数变化,那么便可基于等效焓降理论引入放热火用效率来求取某段抽汽量变化时对整个系统火用效率的影响。 为便于分析,定义抽汽的有效火用降,在抽汽减少的情况下表示1kg排挤抽汽做功的增加值;在抽汽量增加时,则表示做功的减少值;用符号Ej来表示。当从靠近凝汽器侧开始,研究各级抽汽有效火用降时,Ej的计算是从排挤l kg抽汽的火用降(e j-e c)ηej中减去某些固定

火力发电厂热力系统的节能措施探讨

火力发电厂热力系统的节能措施探讨 为了提高火力发电厂整体优化运行及其管理水平,达到节能减排的目的,对电厂热力系统节能减排策略进行探讨,符合国家能源战略发展目标的需求。 标签:节能减排;火电机组;策略;能源 1 引言 节能减排作为当前加强宏观调控的重点,要正确处理经济增长速度和节能减排的关系,真正把节能减排作为硬任务,使经济增长建立在节约能源资源和保护环境的基础上。 目前我国能源的利用效率较低,且一次能源消费中以煤为主,煤炭的大量消费造成了严重的环境污染。作为国家中长期科学技术发展的11个重点领域之首的能源领域,发展思路是坚持节能优先,以降低单位GDP的能耗。 提高能源利用率是我國“十二五”规划及长期的战略发展目标,电力行业节能降耗潜力十分巨大。近年来,尽管节能降耗工作取得了较大成效,一些行业的能耗持续下降。但与世界先进水平相比,我国能源利用效率仍然较低。电力行业火电供电煤耗高出1/5。综观全国已投入运行的发电机组供电煤耗值,与世界先进水平相比相差约60克/千瓦时,也就是说,按世界先进水平,目前我国一年发电多耗原煤约1.1亿吨。能源效率低既是我国能源发展中的突出问题,也是节约能源的潜力所在。 2 对节能技术改造的可行性认识 2.1 具有潜力大、易实现、投资少、见效快等特点 火电广热力系统节能是电厂节能工作的新领域,是热力系统节能理论与高科技应用技术相结合的产物。在实施时大都不需要对主设备进行改造,不增加新设备,因此,它广泛开展热力系统节能工作,对当前调整产业结构提高管理水平,促进技术进步,具有非常重要的现实意义。 2.2 热力系统节能有多种可行的途径 对于新设计机组,可通过优化设计,合理配套进行节能;而对于运行机组,可通过节能诊断,优化改造,监测能损,指导运行,实现节能目标。 2.3 热力系统节能潜力大,效果明显 在过去一个相当长的时期内,由于工程界很少注意热力系统的节能,缺少完整的热力系统节能理论以及必要的优化分析工具。

供暖热力站的节能途径与措施通用版

解决方案编号:YTO-FS-PD832 供暖热力站的节能途径与措施通用版 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

供暖热力站的节能途径与措施通用 版 使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。 供暖热力站是城镇集中供热系统的一个重要组成部分,通过它可以把热源厂生产的蒸汽或高温热水转换成用户可直接采暖的低温热水。在保证设备安全和采暖用户室内温度指标的前提下,怎样做好站内节能降耗是供热工作者研究的一个重要课题。下面从设备选型配置和运行管理的两个方面,浅谈水- 水换热供暖热力站的节能途径与措施。 1.站内主要设备选型配置 水-水换热的热力站主要设备有换热器、循环水泵、补水泵、软化水设备、补给水箱、除污器;电器、自控、仪表柜。 正确选配热力站设备是节能工作的基础,热力站的设备选用应该全面统筹考虑,既要节省初期建设的投资,还应论证分析运行中的成本费用,在设备使用寿命的期限内,找到一个设备购置的最佳点,达到在保证设备安全运行,供热质量达标的前提下节能降耗。

MW超临界火力发电热力系统分析

1 绪论 1.1 课题研究背景及意义 我国的煤炭消耗量在世界上名列前茅,并且我们知道一次能源的主要消耗就是煤炭的消耗,而在电力行业中煤炭又作为主要的消耗品。根据统计,在2010年的时候,全国的煤炭在一次能源消费和生产的结构中,占有率达到了71.0%和75.9%,从全球范围来看,煤炭在一次能源的消费和生产结构中达到了48.5%和47.9%。根据权威机构的预测,到了2020年,我国一次能源的消费结构中,煤炭占有率约为55%,煤炭的消费量将达到38亿吨以上;到了2050年,煤炭在一次能源消费的结构中占有率仍有50%左右。由此看来,煤炭消耗量还是最主要的能源消耗[1]。电力生产这块来看,在2011年,我国整体的用电量达到46819亿千瓦时,比2010年增长了11.79%.在这中间,火力发电的发电量达到了38900亿千瓦时,比2010年增长了14.10%,整个火力发电量占据全国发电量的82.45%,对比2010年增长了1.73个百分点,这说明电力行业的主要生产来自于火力发电,是电力生产的主要提供[2]。自改革开放以来,国家大力发展电力工业中的火力发电,每年的装机发电量以每年8各百分点飞速增长[3]。飞速发展的中国经济使得电力需求急剧上升,这也带来相应的高能耗,据统计,全国2002年到2009年的火力发电装机容量从几乎翻2.5倍的增长为到了,煤耗的消耗量增加了13亿吨。预计到2020年,火电装机的容量还会增长到,需要的煤耗量预计为38亿吨多,估计占有量会达到届时总煤碳量的55%[4],[5]。随着发展的需要,大功率和高参数的机组对能耗的能量使用率会大大提升,这样对于提高火力发电燃煤机组的效率有着很重要的发展方向。 2011年,全国600兆瓦级别以上的火力发电厂消耗的标准煤是329克/千瓦时,比2010年降低了约有4克/千瓦时,在2012年时,消耗的标准煤降低了3克/千瓦时达到了326克/千瓦时,但是在发达国家,美、日等技术成熟国家的600兆瓦级别以上的火力发电厂消耗的标准煤仅仅约为每千瓦时300克上下,可以从中看出和我国的差距还是很大的。这表明,全国600兆瓦及其以上级别的超临界火电机组在设计水平、实际运行等方面与国外成熟的火电技术是有着较大的差距。这样看来,对于600兆瓦及其以上级别的超临界火电机组的热力系统优化,探求其节能的潜力有着很重要的意义[6]。 节能是我国很多年来一直遵循的重要方针和贯彻可持续发展的重要战略,从2016年开始,我国进入十三五规划的重要时期,在这一时期,我国全面建成小康社会的最为重要的时期。预计世界经济会进入后危机时期,全国经济建设和工业发展将进入新的平稳上升期[7]-[9]。工业发展进入更为绿色的新阶段,新能源带来的冲击会给传统工业带来更大的危机。这对于传统工业来是机遇和挑战,对于火力发电来说,能耗的高消耗是绿色发展的重要方向[10]。火电厂标准煤耗的降低会节

供热系统节能技术措施

供热系统节能技术措施 【摘要】从当前国家建筑节能形势出发,简单阐述了北方供暖地区既有居住建筑节能改造的必要性。分析比较了近年来国内外既有居住建筑改造实例,探讨了我国北方既有居住建筑节能改造的若干技术问题。分析了节能改造各环节技术路线的基本要求,介绍了节能改造的评估与诊断方法,具体分析了节能改造的技术方案。 【关键词】供暖地区节能改造技术路线技术方案 1. 安装热工仪表,掌握系统的实际运行情况 供热系统安装所需的热工仪表是掌握系统运行工况、准确了解和分析系统存在的问题、采取正确方法与措施以达到节能挖潜目的重要手段。目前热工仪表安装不全、不准的情况比较普遍,因此,必须要按照规定补齐所有热工仪表,并保证仪表的完好和准确。 2. 加强锅炉房的运行管理,是投资少、效果显著的节能措施 1.司炉人员及水处理人员必须经国家劳动部门或技术监督部门培训并考试合格; 2.建立正确、完善、切实可行的运行操作规程; 3.锅炉房水处理(包括软化水或脱盐、除氧)设备处理后的水质,必须达到而易见国家规程规定的水质标准,严禁锅炉直接补自来水或河水; 4.严格执行定期维修,停炉保养制度,保证设备完好,杜绝跑、冒、滴、漏。 3. 采用分层燃烧技术,改善锅炉燃烧状况 目前城市集中供热锅炉房多采用链条炉排,燃煤多为煤炭公司供应的混煤,着火条件差,炉膛温度低,燃烧不完全,炉渣含碳量高,锅炉热效率普遍偏低。采用分层燃烧技术对减少炉渣含碳量、提高锅炉热效率,有明显的效果。 鞍山锅炉厂生产的一台10.5MW的热水炉,采用分层燃烧后,热效率由70.2%提高到75.1%,炉渣含碳量由13%下降为10%。唐山热力公司采用该技术,使锅炉热效率提高10~15%,炉渣含碳量降低至10%以下,而且锅炉燃烧系统的设备故障大大减少,提高了锅炉运行的可靠性和安全性。 对于粉末含量高的燃煤,可以采用分层燃烧及型煤技术。该技术是将原煤在入料口先通过分层装置进行筛分,使大颗粒煤直接落至炉排上,小颗粒及粉末送入炉前型煤装置压制成核桃大小形状的煤块,然后送入炉排,以提高煤层的透气性,从而强化燃烧,提高锅炉热效率和减少环境污染。中原油田锅炉燃用鹤壁煤,粉末含量高,Φ<3mm的煤粒约占60~70%,采用此技术后,炉渣含碳量降低到15%以下,锅炉效率提高了8%,烟尘排放达到环保标准,年节煤8~10%。没有空气予热器的锅炉,因为向炉排上送的是冷风,容易造成大块煤不易烧透,使炉渣含碳量反而略有增加,不宜采用。

火用分析方法及其应用

[?]分析方法及其应用 摘要:本文从?的定义出发,给出了?的定义以及分析的意义。?传递研究?的传递和转换规律,系经典热力学在从热静力学向热动力学过渡的过程中产生的研究新领域。阐述了静态的?分析方法的特点,分析了?传递的产生与发展现状,指出?传递的学科属性及其应用。 关键词:热力学;?;?分析;?传递 1 引言 热力学第一定律“能量守恒定律”只是从数量上说明了能量在转化过程中的总量守恒关系,它可以发现装置或循环中哪些设备、部位能量损失大,但未顾及到能量质量的变化,不能发现耗能的真正原因。而热力学第二定律阐述了孤立系统熵增原理,从能的本性的高度,规定过程发生的方向性与限制,特别是指出了能量转化的条件和限制,指出能量在转移过程中具有部分地乃至全部地失去其使用价值的客观规律。为提高火电机组的发电效率,减少在电力生产过程中排放物对环境的影响,人们对火电机组的热力系统性能开展了大量的理论与试验研究。从热力学观点,所从事的这些研究大体可分为能量分析与?分析两类方法。传统的研究主要基于热力学第一定律的能量分析,它们从能的“量”方面评价热力设备和系统,而近年来广泛开展的?分析法则是基于热力学第二定律,它们从能的“量”与“质”2个方面进行评价。后者既能辨别?损的性质,即内部不可逆性与外部排放性,也能揭示?损的分布规律,从而能很好地指明系统性能改进方向。 2 ?的概念及其定义 表征物质所含热量多少的状态参数之一的焓,只表达了单位质量物质所含热量的多少,但并未表明热量质量的优劣。能源是有级别的,相同的热能量,其有效作功的能力并不相同。最能说明这一问题的是:稍高于环境温度的锅炉排出的烟气,尽管其量很大,但其热量很难加以利用。

汽轮机组效率及热力系统节能降耗定量分析计算

汽轮机组主要经济技术指标的计算 为了统一汽轮机组主要经济技术指标的计算方法及过程,本章节计算公式选自中华人民国电力行业标准DL/T904—2004《火力发电厂技术经济指标计算方法》和GB/T8117—87《电站汽轮机热力性能验收规程》。 1 凝汽式汽轮机组主要经济技术指标计算 1.1 汽轮机组热耗率及功率计算 a. 非再热机组 试验热耗率: G 0H G H HR0 fw fw N t kJ/kWh 式中G ─主蒸汽流量,kg/h;G fw ─给水流量,kg/h;H ─ 主蒸汽焓值,kJ/kg ;H fw─ 给水焓值,kJ/kg; N t ─实测发电机端功率,kW。 修正后(经二类)的热耗率: HQ HR C Q kJ/kWh 式中C Q─主蒸汽压力、主蒸汽温度、汽机背压对热耗的综合修正系数。修正后的功率: N N t kW p Q 式中K Q ─主蒸汽压力、主蒸汽温度、汽机背压对功率的综合修正系数。 b. 再热机组 试验热耗率:: G 0H G fw H fw G R (H r H 1 ) G J (H r H J) HR N t kJ/kWh 式中G R─高压缸排汽流量,kg/h; G J ─再热减温水流量,kg/h; H r ─再热蒸汽焓值,kJ/kg; K

p c ?υ0 p 0?υc k H k H 1─ 高压缸排汽焓值,kJ/kg ; H J ─ 再热减温水焓值,kJ/kg 。 修正后(经二类)的热耗率: HQ HR C Q kJ/kWh 式中 C Q ─ 主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及汽 机背压对热耗的综合修正系数。 修正后的功率: N N t kW p Q 式中 K Q ─主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及 汽机背压对功率的综合修正系数。 1.2 汽轮机汽耗率计算 a. 试验汽耗率: SR G 0 N t kg/kWh b. 修正后的汽耗率: SR G c kg/kWh c p 式中G c ─修正后的主蒸汽流量,G c G 0 ,kg/h ; p c 、c ─设计主蒸汽压力、主蒸汽比容; p 0、 ─实测主蒸汽压力、主蒸汽比容。 1.3 汽轮机相对效率计算 a. 非再热机组 汽轮机相对效率: H 0 H k 100% oi 0 - H ' 式中 ' H k ─ 汽轮机等熵排汽焓,kJ/kg ; ─ 汽轮机排汽焓,kJ/kg 。 K N H

火电厂热力系统节能技术分析 李梦洁

火电厂热力系统节能技术分析李梦洁 发表时间:2018-04-12T11:37:43.853Z 来源:《电力设备》2017年第7期作者:李梦洁 [导读] 摘要:众所周知,能源问题已经成为世界各国共同关注的问题,在我国这一现象更加凸显。 (国网能源哈密煤电有限公司新疆 839000) 摘要:众所周知,能源问题已经成为世界各国共同关注的问题,在我国这一现象更加凸显。我国是能源生产大国,同时也是能源消耗大国,每年煤炭产量的一半都用于火力发电,提高煤炭资源的有效利用率,发展火电厂热力系统节能技术具有很大的现实意义。 关键词:火电厂热力系统;节能技术 能源是国民经济的基础,随着能源价格的攀升和节能减排政策的要求,提高能源利用效率,节约煤炭资源受到越来越多的重视。火电厂作为耗能大户,更应采取各种节能措施,最大限度降低能源消耗。 1 节能技术措施的提出和选择原则 在火电厂节能技术措施的提出和选择过程中,应针对工程特性合理选择匹配的节能降耗方案,即节能工程必须追求高效合理的投资回报率,不能盲目地为了节能而大肆投入,也不能盲目求新而忽视其实际应用功能特性。火力电厂节能降耗工程的具体指导原则,笔者认为应该按照“效益为主”、“分项实施”、“技术更新”与“重点突破”等原则进行,通过合理搭配,力求节能项目取得较为良好的经济效益和社会效益,确保电厂电能生产运营具有较高的安全可靠性和节能经济性。 2节能技术分析及措施 2.1 锅炉方面 2.1.1 加强燃烧调整 锅炉应加强燃烧调整,锅炉效率是锅炉设备节能降耗经济性的总指标。影响锅炉效率的因素主要有排烟损失、一氧化碳损失、机械未完全燃烧损失、散热损失等各类指标。除合理的燃烧调整外,锅炉的完全燃烧还应该加强对风量的配比。合理的过量空气系数,对燃烧过程十分重要,该系数过大或过小都会使锅炉效率降低。在正常运行中,随着负荷的增减,不断调整风量可以保证燃料完全燃烧,从而降低燃料的未完全燃烧损失。此外,氧量也应进行适当控制,避免因烟气量的增加而增加损失,降低锅炉热效率,影响发电煤耗。所以,在低负荷时应加强对风量和氧量的控制。 2.1.2 减少再热器减温水量 提高机组热效率的主要途径是提高初温、初压、降低排汽压力,而再热器属于中压设备,再热器加热出来的蒸汽进入汽轮机做功,相比高压蒸汽进入高压缸做功,效率明显降低,因此,应该尽量采用高温高压的蒸汽做功。再热减温水的喷入相当于增加中压蒸汽量,用低压蒸汽来代替高压蒸汽以满足机组负荷,降低了热经济性。所以,应尽量保证再热器温度,减少喷水量。 2.1.3 加强受热面的吹灰 锅炉各项损失中最重要的一项损失是排烟热损失,约为4%~8%,机组中排烟温度越高,排烟处烟容积越大,排烟热损失越大。若受热面在锅炉运行中发生积灰时,其传热性变差,排烟温度就会升高,排烟损失随之增大。为防止这种现象的发生,应经常对锅炉受热面进行清洁维护,清洁次数也不可过多,否则容易增加工质和热量损失,应根据工况合理安排吹灰次数并严格执行,保证锅炉效率。 2.2 汽轮机组方面 2.2.1 提高真空 提高真空,减少燃料是提高汽轮机组节能降耗的重要方面,主要有以下几个方面的措施:每月进行一次真空密闭实验,定期检查负压系统,投入封水阀系统;每年夏季根据系统负荷情况启动备用循环水泵;根据蓄水库结冰情况及时关闭循环水;正常投入循环水水室真空系统;检查凝汽器循环水入口压力差,发现入口过滤器堵塞及时联系检修清理;保持凝汽器水位正常,凝汽器水位在正常运行中一般保持在 500 mm左右,这是一项重要的运行调整任务。 2.2.2 维持正常的给水温度 维持正常的给水温度是汽轮机组节能减排的重要环节,给水温度变化不但影响做工能力还会影响锅炉效率。 首先,要确保高加投入率,用三态控制电动门代替高加进汽电动门,杜绝漏泄。 其次,将高加水位调整至正常。这一环节是保证主、辅设备安全运行的基础和保障。 水位过高,会淹没传热面,危害主机安全;水位过低或无水位,会造成加热器汽侧超压、尾部管束受到冲蚀,加速对疏水管道及阀门的冲刷,引起疏水管振动和疲劳损坏。 再次,检查高加旁路无漏泄,以保证抽汽管压降正常。 经过以上三个步骤的检查,来判断是否达到负荷对应的给水温度,降低汽轮机组能耗。 2.3 电气方面 当前火电厂为达到主机负荷调节、辅机出力的节点目的,已大量采用电机调速技术手段,采用的方法主要有变频调速、永磁调速和电机由单速改为双速等技术手段。 目前火电厂机组负荷率较低,这几种调速技术取得了比较显著的节能降耗效果[1]。例如,某330MW机组进行一次风机改造后,各负荷点节电率分别在20%~30%范围内,风机的平均功率从1150KW降低到590KW,若一年运行7000小时,则,每年便可节约电量7730000kWh[2]。 2.4热力系统方面 火力发电厂节能工作的内容包括设计施工、运行管理和技术改造等多个方面,从节能的对象和采用的措施来看,可归纳为两个方面:一是针对锅炉、汽轮机和主要辅机,旨在提高主机的热效率、降低辅机的电耗,达到节能的目的;二是针对热力系统,着眼于优化和完善热力系统及其设备,改善运行操作方式,提高运行效率,以实现节能目标。对于新设计机组,可通过优化设计、合理配套实现节能目标。 2.4.1节能诊断,优化改造 应用热力系统节能理论对热力试验或热平衡查定数据进行全面诊断和优化分析,发现热力系统及其设备的缺陷,分析能损分布情况,

采暖热力站运行调试与节能改造 熊英超

采暖热力站运行调试与节能改造熊英超 发表时间:2018-10-17T16:04:14.287Z 来源:《电力设备》2018年第21期作者:熊英超 [导读] 摘要:随着经济的发展和社会主义现代化进程的推进,供暖系统越来越受到政府和公众的关注。 (阜新金山煤矸石热电有限公司辽宁阜新 123000) 摘要:随着经济的发展和社会主义现代化进程的推进,供暖系统越来越受到政府和公众的关注。采暖热力站作为供暖系统的重要组成部分,它的运行效率、运行成本直接影响到整个供暖系统的功能发挥和经济效益实现。文章对采暖热力站运行调试和节能改造进行了分析和研究,并提出了有效的控制措施,提供参考和借鉴。 关键词:供热;节能控制;改造 近年来随着市场经济的迅速发展,供热行业逐步走向市场,“热”像电、水一样逐渐商品化。随着节约能源、环境保护等问题日益得广泛关注与重视,在供热领域中逐步出现了多种能源并存、相互竞争的局面,集中供热受到了电采暖、燃气、燃油等多种供热形式的挑战。因此,集中供热必须在确保用户供热品质的前提下,降低供热运行成本,提高供热系统技术管理水平,从而达到节能的目的。提高并改进城市集中供热生产管理运营水平已成为适应集中供热区域和规模迅速发展的重要课题。 1采暖热力站运行调试与节能改造必要性分析 传统的采暖热力站,规模较大、运行效率较低,耗费成本较高。为了更好地适应形势变化,在不改变供暖效果的基础上适当地进行运行调试控制和节能改造,能够进一步降低运行成本,提高运行效率,并且改善供热不足和供热浪费等供热不平衡的矛盾,进而在公众供热需求和节能环保运行方面实现“双赢”。总之进行采暖热力站运行调试与节能改造,是必然趋势。采暖热力站只有及时转变观念,创新工艺方法,不断学习和借鉴先进的改造工艺和节能控制措施,结合热力站现状进行适当地改进和优化,才能更好地适应行业发展需求,提高竞争力。 2采暖热力站运行调试和节能改造基本原则 采暖热力站运行调试和节能改造过程中必须要遵循一定的原则。具体包括:完善热力站控制系统,提高自动化控制水平;不能影响正常供暖,分步实施、循序推进;必须对工艺参数进行科学分析和试验,试验调试平衡之后方可全面实施。 3现场测试与节能诊断 3.1二次管网水力平衡调试 供热系统普遍都存在着水力不平衡问题,这种情况表现在靠近换热站的用户流量过大,室温过高;远离热力站的用户流量不足,室温过低。“近热远冷”的现象比较严重。热力站运行人员很少调节二次管网的平衡阀门,对于供热不足的不利支路,往往以提高供热温度和增大供回水流量的手段解决。供暖系统的水力不平衡是造成供暖系统能量浪费的主要原因之一,实现供暖系统的水力平衡是实现冬季建筑供暖系统节能的必要条件。 3.2气候补偿可行性分析 目前热力站一次侧供水温度和压力由大热网统一调节,供水温度和供水压力随着室外温度有一定的波动,但调节幅度较小。热力站一次回水和二次侧全部由运行人员根据经验调节,人工控制不及时且没有准确的目标值。同一室外气温下,一次回水温度的随机波动幅度较大,没有随着室外气温进行调控,浪费了大量的热量。因此需要安装气候补偿控制柜,根据室外气温计算热负荷后进行补偿调节控制一次回水和二次供回水温度,实现供热系统的气候补偿,预计节能率为21%。 3.3水泵测试与节能问题检测 当前很多水泵都没有实现变频处理,所以会导致供水温差波动较大,所以要对水泵的运行效率和情况进行测试,并进行科学计算,从而在更换水泵和改进水泵等方面进行分析,最终实现变频改造。 4采暖热力站节能改造的具体流程 在对采暖热力站运行现状进行分析的基础上,技术人员就要根据运行参数和诊断数据进行供热系统分步改造,从而达到节能目标。具体改造措施有:在供热改造过程中技术人员首先要保证供热设备正常运行的情况下安装其他设备,避免影响供热进程。 一是要在一次网总管上进行热量计安装。当前热力站热计量设施不健全,生活热水和采暖供热系统都是同用一台热源设备,不利于操控和节能,所以要根据运行情况选取合适的设计部位安装采暖供热计量分表,将流量传感器在一次侧回水部位安装一个,在一次侧供水和回水部位安装温度传感器,进而对热量耗能情况进行计算和分析。 二是要对水泵进行变频调节和控制。在每一个供热系统的二次网循环泵上安装变频器。同时要根据整个系统的运行情况和设计要求安装一定的设备,从而提高监控水平,保证在正常运行过程中实现节能的目的。采暖热力站技能改造是一项复杂的系统工程,需要统筹考虑、全面分析,从多个角度分步实施,才能更好地达到节能效果。 5采暖热力站技能改造后的运行调试控制手段 通过对采暖热力站进行节能改造之后,还需要对改造后的节能运行系统进行控制,从而确保节能改造效果,实现低成本、环保性运行。一是要对温度实现自动调节控制。二次侧始终有一个稳定的供水温度,安装电动调节阀从而保证换热器一次侧供水量稳定,一旦发生超限制情况,就要启动控制调节系统自动化控制机制,通过调节电动调节阀的张闭程度来调整一次热媒的流量,进而实现供热均匀。二是要对循环水量实现自动调节控制。技术人员要对循环水量情况进行分析,通过采取分阶段改变流量的方法进行控制,将室外温度设置标准限值,一旦超过限值,零循环水泵就要启动变频运行装置,从而控制循环水量大小,进而保证热能稳定供应不中断,不浪费。三是控制水压恒定系统的稳定。根据水循环系统和供水系统的具体运行情况,通过采取变频调速补水定压、连续或间歇补水定压等方式保持水压处于恒定状态,进而减少对管网造成太大的压力,从而实现持续节能供热。 6循环水泵的节能技术分析与实践应用 热力站系统形式和结构设计的不合理是导致循环水泵能耗偏高的重要原因之一。在采暖输配系统中,常常由于多余的局部阻力部件如阀门等造成不必要的压力损失,各环节压降之和即为水泵扬程,各热力站管路上的某些多余阀门等调节装置,导致水泵必须提高扬程以克服系统阻力。通过对热力管网水力平衡的调节,一端的压头需求和流量需求均明显的降低。热力站内管路与阀门改造后,水力压头需求又进一步降低。最重要的是通过对各个站循环水泵的测试得出热力站在最初设计过程中,循环水泵的选型都显偏大。综合以上三点可得出通

相关主题
文本预览
相关文档 最新文档