当前位置:文档之家› 电力电子电路、波形及公式

电力电子电路、波形及公式

电力电子电路、波形及公式
电力电子电路、波形及公式

a )

V T i d b )

c )

d )

e )

f )

L T

R

u 1

u 2

u V T

u d

V D R

i V D

R

i V T

I d

ωωO O π-απ+α

i V D

R

u 2

u d

i d

I d

ωt 1

ωωO O ?+=+=

=

π

α

α

α

πωωπ

2

cos 19.02

cos 122)(d sin 21

2

22d U U t t U U T

L

u 1

u V i V i V ?+==

=

α

πα

α

απ

ωωπ

cos 9.0cos 2

2)(d sin 21

222d U U t t U U d

dT 2

1I I =

d

d T 707.02

1I I I ==

晶闸管移相范围为90? 晶闸管承受的最大正反向电压均为 晶闸管导通角θ与α 无关,均为180?,电流平均值和有效值分别为:

输出电压平均值:

d

d I t d I I ==

?+α

πα

ωπ

2

21

R

U R U I E

-=

=

d d d 带反电动势负载时2

2U

考虑变压器漏感

i u

α

αωωα

π

π

cos 17.1cos 63)(sin 21226

52d U U t td U U ==

=

?+?

?

?

???++==

?+)6cos(1675.0)(sin 23

216

2απωωππ

α

π

t td U U d R

U I d d =

222RM 45.2632U U U U ==

?

=

2

2U U =FM 负载电流平均值为 晶闸管电流平均值

d

dT 31I I =

α

cos 17.12U U =d d

VT

VT(AV)368.057

.1I I I ==

2

RM FM 45.2U U U ==d

d d d VT I I I t d I I I 577.03

13

1212

3

/20

2

2==

=

==?

πωπR

U I d d =

L 对ud 波形的影响主要是通过延续SCR 的导通时间而作用的,而在电流连续时无需延续。

当整流输出电压连续时(即带阻感负载时,或带电阻负载a ≤60?时)的平均值为:

α

ωωπα

π

απcos 34.2)(sin 32312323

2U t td U U =?=?++d 带电阻负载且α>60?时,整流电压平均值为

?

?

?

???++==

?

+)3cos(134.2)(sin 63

232d απωωπ

πα

π

U t td U U 输出电流平均值为 : I d =U d /R

线电压过零点为时间坐标零点

d

d d d I I I I I 816.03

232)(32212

22==??

? ???-+?=

πππL-R-E 负载时 R

E U I -=

d d 0

2)cos(cos d d U U ?=

+-γααR I E U U U d d d

d +=?-'=?

??

??=三相全桥

三相半波单相全波、全桥

34.2 17.1 9.02220

U U U U d

U d =2.34U 2cos α=-2.34U 2cos β

( Ud 与EM 均取正值) 每管平均电流: (导通1/3周期)

每管电流有效值:

-=R U E I d M

d 3/d dT I I =d

d

VT I I I 577.03/

==逆变角:β=π-α,α≥90°

, α +β= π。

d

d VT 2816.03

22I I I I ==

=

?

?

?

??= ( 2.1 9.0

( 2222均接入,一般负载),或特重载)(无断)空载时,RC U C U R U U d

R

I U

d

R =

2

2

I

I

R

d

D I =

=

R

U I o o =

O

T I I 2

1=

U o =E/(1- α)

电压变换比: M=U o /E=1/(1- α)≧1 (升压式) R

U I o o =

U U R I U E d

d d ?+'=+=0

2)cos(cos d d U U ?=

+-γαα

(完整版)智能电子电路设计与制作期末试卷A

淮安信息职业技术学院2012-2013学年度第2学期 《智能电子电路设计与制作》期末试卷A 一、填空题(每空0.5分)共15分 1、MEGA16单片机I/O 端口的方向寄存器作用是(对端口输入输出选择)。 2、MEGA16单片机I/O 端口的输入寄存器作用是( 判断端口电平高低 )。 3、MEGA16单片机I/O 端口的数据寄存器作用是(对端口写入“1”或“0” )。 4、ATmega16单片机是( 8 )位单片机。 5、MCUCR 寄存器是( 控制寄存器 ),用于设置 INTO 和INT1的中断( 触发)方式。 6、GICR 寄存器是( 中断控制寄存器 ),用于设置外部中断的中断(允许 )位。 7、全局中断使能位是(状态)寄存器中的 第( 七 )位 即( BIT/7 )位。 8、TCNT0是定时器( T/C0)的(数据 )寄存器,作用是( 对计数器进行读写 )。 9、T/C0的计数时钟源可以来自( 内部 )和( 外部 )两种。 10、T/C0工作在普通模式时,( 计数初值 )由TCNTO 设置,最大值为( OXFFFF )。 11、使用MEGA16单片机的AD 相关寄存器有( AD 多工选择寄存器 )、( ADC 控制和状态寄存器A )、( ADC 数据寄存器)、( 特殊功能IO 寄存器 )。 12、MEGA16单片机TWI 相关寄存器有( TWI 比特率寄存器 )、( TWI 控制寄存器 )、( TWI 状态寄存器 )、( TWI 数据寄存器 )。 13、MEGA16单片机与SPI 相关的寄存器有( SPI 控制寄存器 )、( SPI 状态寄存器 )。 14、24C08是具有( I 2c )总线协议的非易失性存储器。 15、USART 模块的管脚发送数据管脚名称为( TXD )。 二、选择题(每题3分,共45分) 1. MCUCR 寄存器中的中断触发模式位是?(D ) A 、ICS00\ICS01 B 、ICS10\ICS11 C 、SM2 D 、A 和B 2. ATmega16的GICR 寄存器中外部中断0的中断使能位是(B ) A 、INT1 B 、INT0 C 、INT2 D 、INT3 3.多位数码管显示器通常采用(B )法显示 系部: 班级: 学号: 姓名:

电气原理图设计方法及实例分析

电气原理图设计方法及实例分析 【摘要】本文主要对电气原理图绘制的要求、原则以及设计方法进行了说明,并通过实例对设计方法进行了分析。 【关键词】电气原理图;设计方法;实例 继电-接触器控制系统是由按钮、继电器等低压控制电器组成的控制系统,可以实现对 电力拖动系统的起动、调速等动作的控制和保护,以满足生产工艺对拖动控制的要求。继电-接触器控制系统具有电路简单、维修方便等许多优点,多年来在各种生产机械的电气控制 中获得广泛的应用。由于生产机械的种类繁多,所要求的控制系统也是千变万化、多种多样的。但无论是比较简单的,还是很复杂的控制系统,都是由一些基本环节组合而成。因此本节着重阐明组成这些控制系统的基本规律和典型电路环节。这样,再结合具体的生产工艺要求,就不难掌握控制系统的分析和设计方法。 一、绘制电气原理图的基本要求 电气控制系统是由许多电气元件按照一定要求连接而成,从而实现对某种设备的电气自动控制。为了便于对控制系统进行设计、研究分析、安装调试、使用和维修,需要将电气控制系统中各电气元件及其相互连接关系用国家规定的统一图形符号、文字符号以图的形式表示出来。这种图就是电气控制系统图,其形式主要有电气原理图和电气安装图两种。 安装图是按照电器实际位置和实际接线电路,用给定的符号画出来的,这种电路图便于安装。电气原理图是根据电气设备的工作原理绘制而成,具有结构简单、层次分明、便于研究和分析电路的工作原理等优点。绘制电气原理图应按GB4728-85、GBTl59-87等规定的标 准绘制。如果采用上述标准中未规定的图形符号时,必须加以说明。当标准中给出几种形式时,选择符号应遵循以下原则: ①应尽可能采用优选形式; ②在满足需要的前提下,应尽量采用最简单形式; ③在同一图号的图中使用同一种形式。 根据简单清晰的原则,原理图采用电气元件展开的形式绘制。它包括所有电气元件的导电部件和接线端点,但并不按照电气元件的实际位置来绘制,也不反映电气元件的大小。由于电气原理图具有结构简单、层次分明、适于研究等优点,所以无论在设计部门还是生产现场都得到广泛应用。 控制电路绘制的原则: ①原理图一般分主电路、控制电路、信号电路、照明电路及保护电路等。 ②图中所有电器触头,都按没有通电和外力作用时的开闭状态(常态)画出。 ③无论主电路还是辅助电路,各元件应按动作顺序从上到下、从左到右依次排列。 ④为了突出或区分某些电路、功能等,导线符号、连接线等可采用粗细不同的线条来表示。 ⑤原理图中各电气元件和部件在控制电路中的位置,应根据便于阅读的原则安排。同一电气元件的各个部件可以不画在一起,但必须采用同一文字符号标明。 ⑥原理图中有直接电联系的交叉导线连接点,用实心圆点表示;可拆卸或测试点用空心圆点表示;无直接电联系的交叉点则不画圆点。 ⑦对非电气控制和人工操作的电器,必须在原理图上用相应的图形符号表示其操作方式。 ⑧对于电气控制有关的机、液、气等装置,应用符号绘出简图,以表示其关系。 二、分析设计法及实例设计分析 根据生产工艺要求,利用各种典型的电路环节,直接设计控制电路。这种设计方法比较简单,但要求设计人员必须熟悉大量的控制电路,掌握多种典型电路的设计资料,同时具有丰富的设计经验,在设计过程中往往还要经过多次反复地修改、试验,才能使电路符合设计

电力电子技术课程设计范例

电力电子技术课程设计 题目:直流降压斩波电路的设计 专业:电气自动化 班级:14电气 姓名:周方舟 学号: 指导教师:喻丽丽

目录 一设计要求与方案 (4) 二设计原理分析 (4) 2.1总体结构分分析 (4) 2.2直流电源设计 (5) 2.3主电路工作原理 (6) 2.4触发电路设计 (10) 2.5过压过流保护原理与设计 (15) 三仿真分析与调试 (17) 3.1M a t l a b仿真图 (17) 3.2仿真结果 (18) 3.3仿真实验结论 (24) 元器件列表 (24) 设计心得 (25) 参考文献 (25) 致 (26) 一.设计要求与方案 供电方案有两种选择。一,线性直流电源。线性电源(Linear power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。要达到高精度的直流电压,必须经过稳压电源进行稳压。线性电源体积重量大,很难实现小型化、损耗大、效率低、输出与输入之间有公共端,不易实现隔离,只能降压,不能升压。二,升压斩波电路。由脉宽调制芯片TL494为控制器构成BOOST原理的,实现升压型DC-DC变换器,输出电压的可调整与稳压控制的开关源是借助晶体管的开/关实现的。因此选择方案二。 设计要求:设计要求是输出电压Uo=220V可调的DC/DC变换器,这里为升压斩波电路。由于这些电路中都需要直流电源,所以这部分由以前所学模拟电路知识可以由整流器解决。MOSFET的通断用PWM控制,用PWM方式来控制MOSFET的通断需要使用脉宽调制器TL494来产生

电力电子技术总结

1、电力电子技术的概念:所谓电力电子技术就是应用于电力领域的电子技术。 2、电力电子技术的诞生是以 1957年美国通用电气公司研制出第一个晶闸管为标志的。 3、晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对 晶闸管电路的控制方式主要是相位控制方式,简称相控方式。4、70年代后期,以门极可关断晶闸管( GTO )、电力双极型晶体管( BJT )和电力场效应晶 体管(Power-MOSFET )为代表的全控型器件迅速发展。 5、全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。 6、把驱动、控制、保护电路和电力电子器件集成在一起,构成电力电子集成电路( PIC )。 第二章 1、电力电子器件的特征 ◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。 ◆为了减小本身的损耗,提高效率,一般都工作在开关状态。◆由信息电子电路来控制 ,而且需要驱动电路。 ◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器2、电力电子器件的功率损耗 3、电力电子器件的分类 (1)按照能够被控制电路信号所控制的程度 ◆半控型器件:?主要是指晶闸管(Thyristor )及其大部分派生器件。 ?器件的关断完全是由其在主电路中承受的电压和电流决定的。◆全控型器件:?目前最常用的是 IGBT 和Power MOSFET 。 通态损耗断态损耗开关损耗 开通损耗关断损耗

?通过控制信号既可以控制其导通,又可以控制其关断。 ◆不可控器件:?电力二极管(Power Diode)?不能用控制信号来控制其通断。(2)按照驱动信号的性质 ◆电流驱动型:?通过从控制端注入或者抽出电流来实现导通或者关断的控制。 ◆电压驱动型 ?仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控 制。 (3)按照驱动信号的波形(电力二极管除外) ◆脉冲触发型 ?通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控 制。 ◆电平控制型 ?必须通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件 开通并维持在导通状态或者关断并维持在阻断状态。 4、几种常用的电力二极管:普通二极管、快恢复二极管、肖特基二极管 肖特基二极管优点在于:反向恢复时间很短(10~40ns),正向恢复过程中也不会有明显的电压过冲;在反向耐压较低的情况下其正向压降也很小,明显低于快恢复二极管;因此, 其开关损耗和正向导通损耗都比快速二极管还要小,效率高。 弱点在于:当所能承受的反向耐压提高时其正向压降也会高得不能满足要求,因此 多用于200V以下的低压场合;反向漏电流较大且对温度敏感,因此反向稳态损耗不能忽略,而且必须更严格地限制其工作温度。 5、晶闸管除门极触发外其他几种可能导通的情况 ◆阳极电压升高至相当高的数值造成雪崩效应◆阳极电压上升率du/dt过高 ◆结温较高◆光触发

电子电路设计与制作教学大纲

《电子电路设计与制作》教学大纲1.课程中文名称:电子电路设计与制作 2.课程代码: 3.课程类别:实践教学环节 4.课程性质:必修课 5.课程属性:独立设课 6.电子技术课程理论课总学时:256总学分:16 电子电路设计与制作学时:3周课程设计学分:3 7.适用专业:电子信息类各专业 8.先修课程:电路分析基础、模拟电子技术、数字电子技术、PCB电路设计一、课程设计简介 实验课、课程设计、毕业设计是大学阶段既相互联系又相互区别的三大实践性教学环节。实验课是着眼于实验验证课程的基本理论,培养学生的初步实验技能;毕业设计是针对本专业的要求所进行的全面的综合训练;而课程设计则是针对某几门课程构成的课程群的要求,对学生进行综合性训练,培养学生运用课程群中所学到的理论学以致用,独立地解决实际问题。电子电路设计与制作是电子信息类各专业必不可少的重要实践环节,它包括设计方案的选择、设计方案的论证、方案的电路原理图设计、印制板电路(即PCB)设计、元器件的选型、元器件在PCB板上的安装与焊接,电路的调试,撰写设计报告等实践内容。电子电路设计与制作的全过程是以学生自学为主,实践操作为主,教师的讲授、指导、讨论和研究相结合为辅的方式进行,着重就设计题目的要求对设计思路、设计方案的形成、电路调试和参数测量等展开讨论。 由指导教师下达设计任务书(学生自选题目需要通过指导教师和教研室共同审核批准),讲解示范的案例,指导学生各自对自己考虑到的多种可行的设计方案进行

比较,选择其中的最佳方案并进行论证,制作出满足设计要求的电子产品,撰写设计报告。需要注意是,设计方案的原理图须经Proteus软件仿真确信无误后,才能进行印刷电路图的制作,硬件电路的制作,以避免造成覆铜板、元器件等材料的浪费。电路系统经反复调试,完全达到(或超过)设计要求后,再完善设计报告。设计的整个过程在创新实验室或电子工艺实验室中完成。 二、电子电路设计与制作的教学目标与基本要求 教学目标: 1、通过课程设计巩固、深化和扩展学生的理论知识,提高综合运用知识的能力,逐步提升从事工程设计的能力。 2、注重培养学生正确的工程设计思想,掌握工程设计的思路、内容、步骤和方法。使学生能根据设计要求和性能参数,查阅文献资料,收集、分析类似电路的性能,并通过设计、安装、焊接、调试等实践过程,使电子产品达到设计任务书中要求的性能指标的能力。 3、为后续的毕业设计打好基础。课程设计的着眼点是让学生开始从理论学习的轨道上逐渐转向实际运用,从已学过的定性分析、定量计算的方法,逐步掌握工程设计的步骤和方法,了解工程设计的程序和实施方法;通过课程设计的训练,可以给毕业设计提供坚实的铺垫。 4、培养学生获取信息和综合处理信息的能力,文字和语言表达能力以及协调工作能力。课程设计报告的撰写,为今后从事技术工作撰写科技报告和技术文件打下基础。 5、提高学生运用所学的理论知识和技能解决实际问题的能力及其基本工程素质。 基本要求: 1、能够根据设计任务和指标要求,综合运用电路分析、电子技术课程中所学到的理论知识与实践操作技能独立完成一个设计课题的工程设计能力。 2、会根据课题需要选择参考书籍,查阅手册、图表等有关文献资料。能独立思考、深入钻研课程设计中所遇到的问题,培养自己分析问韪、解决问题的能力。

电子技术课程设计的基本方法和步骤模板

电子技术课程设计的基本方法和步骤

电子技术课程设计的基本方法和步骤 一、明确电子系统的设计任务 对系统的设计任务进行具体分析, 充分了解系统的性能、指标及要求, 明确系统应完成的任务。 二、总体方案的设计与选择 1、查阅文献, 根据掌握的资料和已有条件, 完成方案原理的构想; 2、提出多种原理方案 3、原理方案的比较、选择与确定 4、将系统任务的分解成若干个单元电路, 并画出整机原理框图, 完成系统的功能设计。 三、单元电路的设计、参数计算与器件选择 1、单元电路设计 每个单元电路设计前都需明确本单元电路的任务, 详细拟订出单元电路的性能指标, 与前后级之间的关系, 分析电路的组成形式。具体设计时, 能够模拟成熟的先进电路, 也能够进行创新和改进, 但都必须保证性能要求。而且, 不但单元电路本身要求设计合理, 各单元电路间也要相互配合, 注意各部分的输入信号、输出信号和控制信号的关系。 2、参数计算 为保证单元电路达到功能指标要求, 就需要用电子技术知识对参数进行计算, 例如放大电路中各电阻值、放大倍数、振荡器中电阻、电容、振荡频率等参数。只有很好地理解电路的工作原理, 正确利用计算公式, 计算的参数才能满足设计要求。 参数计算时, 同一个电路可能有几组数据, 注意选择一组能完成

电路设计功能、在实践中能真正可行的参数。 计算电路参数时应注意下列问题: (1)元器件的工作电流、电压、频率和功耗等参数应能满足电路指标的要求。 (2)元器件的极限必须留有足够的裕量, 一般应大于额定值的 1.5倍。 (3)电阻和电容的参数应选计算值附近的标称值。 3、器件选择 ( 1) 阻容元件的选择 电阻和电容种类很多, 正确选择电阻和电容是很重要的。不同的电路对电阻和电容性能要求也不同, 有些电路对电容的漏电要求很严, 还有些电路对电阻、电容的性能和容量要求很高, 例如滤波电路中常见大容量( 100~3000uF) 铝电解电容, 为滤掉高频一般还需并联小容量( 0.01~0.1uF) 瓷片电容。设计时要根据电路的要求选择性能和参数合适的阻容元件, 并要注意功耗、容量、频率和耐压范围是否满足要求。 ( 2) 分立元件的选择 分立元件包括二极管、晶体三极管、场效应管、光电二极管、晶闸管等。根据其用途分别进行选择。选择的器件类型不同, 注意事项也不同。 ( 3) 集成电路的选择 由于集成电路能够实现很多单元电路甚至整机电路的功能, 因此选用集成电路设计单元电路和总体电路既方便又灵活, 它不但使系统体积缩小, 而且性能可靠, 便于调试及运用, 在设计电路时颇受欢迎。选用的集成电路不但要在功能和特性上实现设计方案, 而且要满足功耗、电压、速度、价格等方面要求。 4、注意单元电路之间的级联设计, 单元电路之间电气性能的 相互匹配问题, 信号的耦合方式

电力电子技术课程设计报告

电力电子课程设计报告题目三相桥式全控整流电路设计 学院:电子与电气工程学院 年级专业:2015级电气工程及其自动化 姓名: 学号: 指导教师:高婷婷,林建华 成绩:

摘要 整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要同时也是应用得最为广泛的电路,不仅用于一般工业,也广泛应用于交通运输、电力系统、通信系统,能源系统及其他领域,因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,这不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用,因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。 关键词:电力电子,三相,整流

目录 1 设计的目的和意义………………………………………1 2 设计任务与要求 (1) 3 设计方案 (1) ?3.1三相全控整流电路设计 (1) 3.1.1三相全控整流电路图原理分析 (2) ?3.1.2整流变压器的设计 (2) ?3.1.3晶闸管的选择 (3) 3.2 保护电路的设计 (4) 3.2.1变压器二次侧过压保护 (4) ?3.2.2 晶闸管的过压保护………………………………………………4 3.2.3 晶闸管的过流保护………………………………………………5 3.3 触发电路的选择设计 (5) 4 实验调试与分析 (6) 4.1三相桥式全控整流电路的仿真模型 (6)

4.2仿真结果及其分析……………………………………………7 5 设计总结 (8) 6 参考文献 (9)

1 设计的目的和意义 本课程设计属于《电力电子技术》课程的延续,通过设计实践,进一步学习掌握《电力电子技术》,更进一步的掌握和了解他三相桥式全控整流电路。通过设计基本技能的训练,培养学生具备一定的工程实践能力。通过反复调试、训练、便于学生掌握规范系统的电子电力方面的知识,同时也提高了学生的动手能力。 2 设计任务与要求 三相桥式全控整流电路要求输入交流电压2150,10,0.5U V R L H ==Ω=为阻 感性负载。 1.写出三相桥式全控整流电路阻感性负载的移相范围,并计算出直流电压的变化范围 2.计算α=60°时,负载两端电压和电流,晶闸管平均电流和有效电流。 3.画出α=60°时,负载两端 d U 和晶闸管两端 1 VT U 波形。 4.分析纯电阻负载和大电感负载以及加续流二极管电路的区别。 5.晶闸管的型号选择。 3 设计方案 3.1三相全控整流电路设计

电力电子总结完美版

一、填空题 1、对SCR 、TRIAC 、GTO 、GTR 、Power MOSFET 、这六种电力电子器件,其中要用交流 电压相位控制的有SCR TRIAC 。可以用PWM 控制的有GTO GTR Power MOSFET IGBT;要用电流驱动的有SCR TRIAC GTO GTR (准确地讲SCR 、TRIAC 为电流触发型 器件),要用电压驱动的有Power MOSFET IGBT ;其中工作频率最高的一个是Power MOSFET ,功率容量最大的两个器件是SCR GTR;属于单极性的是Power MOSFET;可能发生 二次击穿的器件是GTR,可能会发生擎住效应的器件是IGBT ;属于多元集成结构的是Power MOSFET IGBT GTO GTR 。 2、SCR 导通原理可以用双晶体管模型来解释,其触发导通条件是阳极加正电压并且门极有触发电流,其关断条件是阳极电流小于维持电流。 3、GTO 要用门极负脉冲电流关断,其关断增益定义为最大可关断阳极电流与门极负脉冲电流最大值的比即off β=ATO GM I I ,其值约为5左右,其关断时会出现特殊的拖尾 电流。 4、Power MOSFET 通态电阻为正温度系数;其定义式为= |DS DS U GS I ≥0,比较特殊的是器件体内有寄生的反向二极管,此外,应防止其栅源极间发生擎住效应。 5、电力二极管额定电流是指最大工频正弦半波波形条件下测得值,对于应用于高频电力电子电路的电力二极管要用快恢复型二极管,但要求其反向恢复特性要软。 6、在电力电子电路中,半导体器件总是工作在开关状态,分析这类电路可以用理想开关等效电路;电力电子技术的基础是电力电子器件制造技术,追求的目标是高效地处理电力。 7、硬开关电路的电力电子器件在换流过程中会产生较大的开关损耗,主要原因是其电压波形与电流波形发生重叠,为了解决该缺陷,最好使电力电子器件工作在零电压开通,零电流关断状态;也可采用由无源元件构成的缓冲技术,但它们一般是有损耗 的。 8、电力电子电路对功率因数的定义与线性电路理论的定义在本质上的差别是有基波因数。 9、交流调压电路采用由两个SCR 反并联接法组成交流开关作为控制,若交流电路的大感性 负载阻抗角为80度,则SCR 开通角的移相范围80度到180度。 10、SCR 三相全控变流电路带直流电动机负载时,其处于整流状态时触发角应满足小于90度 条件;其处于有源逆变状态时触发角应满足大于90度 条件;SCR 的换流方式都为电网 换流。 11、有源逆变与无源逆变的差异是交流侧接在电网上还是接在负载上;加有续流二极管的任何整流电路都不能实现有源逆变的原因是负载被二极管短路不能产生负电压。逆变角的定义是α>90度时的控制角βπα=- 12、电压源逆变器的输出电压是交流方 波;其逆变桥各臂都要反并联 二极管。 13、SPWM 的全部中文意思是正弦脉冲宽度调制,这种技术可以控制输出交流的大小;产 生SPWM 波的模拟法用自然采样法。而计算机则采用规则采样法。 14、单端正激式DC/DC 变换电路要求在变压器上附加一个复位 绕组,构成磁复位 电路; 反激式DC/DC 变换电路与Buck-Boost 直流斩波器类似。 15、肖特基二极管具有工作频率高 ,耐压低 的应用特点。肖特基二极管具有反向恢复时间短,正向压降小,耐压低,效率高等特点。 16、GTR 关断是工作点应在 截止 区,导通时工作点应在 饱和 区;它有可能因存在 二 次击穿而永久失效的缺陷。

电力电子技术课程重点知识点总结

1.解释GTO、GTR、电力MOSFET、BJT、IGBT,以及这些元件的应用范围、基本特性。 2.解释什么是整流、什么是逆变。 3.解释PN结的特性,以及正向偏置、反向偏置时会有什么样的电流通过。 4.肖特基二极管的结构,和普通二极管有什么不同 5.画出单相半波可控整流电路、单相全波可控整流电路、单相整流电路、单相桥式半控整流电路电路图。 6.如何选配二极管(选用二极管时考虑的电压电流裕量) 7.单相半波可控整流的输出电压计算(P44) 8.可控整流和不可控整流电路的区别在哪 9.当负载串联电感线圈时输出电压有什么变化(P45) 10.单相桥式全控整流电路中,元件承受的最大正向电压和反向电压。 11.保证电流连续所需电感量计算。 12.单相全波可控整流电路中元件承受的最大正向、反向电压(思考题,书上没答案,自己试着算) 13.什么是自然换相点,为什么会有自然换相点。 14.会画三相桥式全控整流电路电路图,波形图(P56、57、P58、P59、P60,对比着记忆),以及这些管子的导通顺序。

15.三相桥式全控整流输出电压、电流计算。 16.为什么会有换相重叠角换相压降和换相重叠角计算。 17.什么是无源逆变什么是有源逆变 18.逆变产生的条件。 19.逆变失败原因、最小逆变角如何确定公式。 做题:P95:1 3 5 13 16 17,重点会做 27 28,非常重要。 20.四种换流方式,实现的原理。 21.电压型、电流型逆变电路有什么区别这两个图要会画。 22.单相全桥逆变电路的电压计算。P102 23.会画buck、boost电路,以及这两种电路的输出电压计算。 24.这两种电路的电压、电流连续性有什么特点 做题,P138 2 3题,非常重要。 25.什么是PWM,SPWM。 26.什么是同步调制什么是异步调制什么是载波比,如何计算 27.载波频率过大过小有什么影响 28.会画同步调制单相PWM波形。 29.软开关技术实现原理。

电子系统设计的基本原则和方法

电子系统设计的基本原则和设计方法 一、电子系统设计的基本原则: 电子电路设计最基本的原则应该使用最经济的资源实现最好的电路功能。具体如下: 1、整体性原则 在设计电子系统时,应当从整体出发,从分析电子电路整体内部各组成元件的关系以及电路整体与外部环境之间的关系入手,去揭示与掌握电子系统整体性质,判断电子系统类型,明确所要设计的电子系统应具有哪些功能、相互信号与控制关系如何、参数指标在那个功能模块实现等,从而确定总体设计方案。 整体原则强调以综合为基础,在综合的控制与指导下,进行分析,并且对分析的结果进行恰当的综合。基本的要点是:(1)电子系统分析必须以综合为目的,以综合为前提。离开了综合的分析是盲目的,不全面的。(2)在以分析为主的过程中往往包含着小的综合。即在对电子系统各部分进行分别考察的过程中,往往也需要又电子局部的综合。(3)综合不许以分析为基础。只有对电子系统的分析了解打到一定程度以后,才能进行综合。没有详尽以分析电子系统作基础,综合就是匆忙的、不坚定的,往往带有某种主管臆测的成分。 2、最优化原则 最优化原则是一个基本达到设计性能指标的电子系统而言的,由于元件自身或相互配合、功能模块的相互配合或耦合还存在一些缺陷,使电子系统对信号的传送、处理等方面不尽完美,需要在约束条件的限制下,从电路中每个待调整的原器件或功能模块入手,进行参数分析,分别计算每个优化指标,并根据有忽而

指标的要求,调整元器件或功能模块的参数,知道目标参数满足最优化目标值的要求,完成这个系统的最优化设计。 3、功能性原则 任何一个复杂的电子系统都可以逐步划分成不同层次的较小的电子子系统。仙子系统设计一般先将大电子系统分为若干个具有相对独立的功能部分,并将其作为独立电子系统更能模块;再全面分析各模块功能类型及功能要求,考虑如何实现这些技术功能,即采用那些电路来完成它;然后选用具体的实际电路,选择出合适的元器件,计算元器件参数并设计个单元电路。 4、可靠性与稳定性原则 电子电路是各种电气设备的心脏,它决定着电气设备的功能和用途,尤其是电气设备性能的可靠性更是由其电子电路的可靠性来决定的。电路形式及元器件选型等设计工作,设计方案在很大程度上也就决定可靠性,在电子电路设计时应遵循如下原则:只要能满足系统的性能和功能指标就尽可能的简化电子电路结构;避免片面追求高性能指标和过多的功能;合理划分软硬件功能,贯彻以软代硬的原则,使软件和硬件相辅相成;尽可能用数字电路代替模拟电路。影响电子电路可靠性的因素很多,在发生的时间和程度上的随机性也很大,在设计时,对易遭受不可靠因素干扰的薄弱环节应主动地采取可靠性保障措施,使电子电路遭受不可靠因素干扰时能保持稳定。抗干扰技术和容错设计是变被动为主动的两个重要手段。 5、性能与价格比原则 在当今竞争激烈的市场中,产品必须具有较短的开发设计周期,以及出色的性能和可靠性。为了占领市场,提高竞争力,所设计的产品应当成本低、性能好、

电力电子技术总结

电力电子技术总结标准化管理部编码-[99968T-6889628-J68568-1689N]

1、电力电子技术的概念:所谓电力电子技术就是应用于电力领域的电子技术。 2、电力电子技术的诞生是以1957年美国通用电气公司研制出第一个晶闸管为标志的。 3、晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对晶闸管电路的控制方式主要是相位控制方式,简称相控方式。 4、70年代后期,以门极可关断晶闸管(GTO )、电力双极型晶体管(BJT )和电力场效应晶体管(Power-MOSFET )为代表的全控型器件迅速发展。 5、全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。 6、把驱动、控制、保护电路和电力电子器件集成在一起,构成电力电子集成电路(PIC )。 第二章 1、电力电子器件的特征 ◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。 ◆为了减小本身的损耗,提高效率,一般都工作在开关状态。 ◆由信息电子电路来控制 ,而且需要驱动电路。 ◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器 2、电力电子器件的功率损耗 3、电力电子器件的分类 (1)按照能够被控制电路信号所控制的程度 ◆半控型器件:主要是指晶闸管(Thyristor )及其大部分派生器件。 器件的关断完全是由其在主电路中承受的电压和电流决定的。 ◆全控型器件:目前最常用的是 IGBT 和Power MOSFET 。 通过控制信号既可以控制其导通,又可以控制其关断。 ◆不可控器件: 电力二极管(Power Diode ) 不能用控制信号来控制其通断。 (2)按照驱动信号的性质 ◆电流驱动型 :通过从控制端注入或者抽出电流来实现导通或者关断的控制。 ◆电压驱动型 仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。 (3)按照驱动信号的波形(电力二极管除外 ) ◆脉冲触发型 通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控制。 ◆电平控制型 必须通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件开通并维持在导通状态或者关断并维持在阻断状态。 4、几种常用的电力二极管:普通二极管、快恢复二极管、肖特基二极管 通态损耗 断态损耗 开关损耗 开通损耗 关断损耗

电子电路设计的一般方法和步骤

电子电路设计的一般方法与步骤 一、总体方案的设计与选择 1.方案原理的构想 (1)提出原理方案 一个复杂的系统需要进行原理方案的构思,也就是用什么原理来实现系统要求。因此,应对课题的任务、要求和条件进行仔细的分析与研究,找出其关键问题是什么,然后根据此关键问题提出实现的原理与方法,并画出其原理框图(即提出原理方案)。提出原理方案关系到设计全局,应广泛收集与查阅有关资料,广开思路,开动脑筋,利用已有的各种理论知识,提出尽可能多的方案,以便作出更合理的选择。所提方案必须对关键部分的可行性进行讨论,一般应通过试验加以确认。 (2)原理方案的比较选择 原理方案提出后,必须对所提出的几种方案进行分析比较。在详细的总体方案尚未完成之前,只能就原理方案的简单与复杂,方案实现的难易程度进行分析比较,并作出初步的选择。如果有两种方案难以敲定,那么可对两种方案都进行后续阶段设计,直到得出两种方案的总体电路图,然后就性能、成本、体积等方面进行分析比较,才能最后确定下来。 2.总体方案的确定 原理方案选定以后,便可着手进行总体方案的确定,原理方案只着眼于方案的原理,不涉及方案的许多细节,因此,原理方案框图中的每个框图也只是原理性的、粗略的,它可能由一个单元电路构成,亦可能由许多单元电路构成。为了把总体方案确定下来,必须把每一个框图进一步分解成若干个小框,每个小框为一个较简单的单元电路。当然,每个框图不宜分得太细,亦不能分得太粗,太细对选择不同的单元电路或器件带来不利,并使单元电路之间的相互连接复杂化;但太粗将使单元电路本身功能过于复杂,不好进行设计或选择。总之,

应从单元电路和单元之间连接的设计与选择出发,恰当地分解框图。 二、单元电路的设计与选择 1.单元电路结构形式的选择与设计 按已确定的总体方案框图,对各功能框分别设计或选择出满足其要求的单元电路。因此,必须根据系统要求,明确功能框对单元电路的技术要求,必要时应详细拟定出单元电路的性能指标,然后进行单元电路结构形式的选择或设计。 满足功能框要求的单元电路可能不止一个,因此必须进行分析比较,择优选择。 2.元器件的选择 (1)元器件选择的一般原则 元器件的品种规格十分繁多,性能、价格和体积各异,而且新品种不断涌现,这就需要我们经常关心元器件信息和新动向,多查阅器件手册和有关的科技资料,尤其要熟悉一些常用的元器件型号、性能和价格,这对单元电路和总体电路设计极为有利。选择什么样的元器件最合适,需要进行分析比较。首先应考虑满足单元电路对元器件性能指标的要求,其次是考虑价格、货源和元器件体积等方面的要求。 (2)集成电路与分立元件电路的选择问题 随着微电子技术的飞速发展,各种集成电路大量涌现,集成电路的应用越来越广泛。今天,一块集成电路常常就是具有一定功能的单元电路,它的性能、体积、成本、安装调试和维修等方面一般都优于由分立元件构成的单元电路。 优先选用集成电路不等于什么场合都一定要用集成电路。在某些特殊情况,如:在高频、宽频带、高电压、大电流等场合,集成电路往往还不能适应,有时仍需采用分立元件。另外,对一些功能十分简单的电路,往往只需一只三极管或一只二极管就能解决问题,就不必选用集成电路。

电力电子-降压斩波电路设计..教学总结

1.引言 随着电力电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多。电子设备的小型化和低成本化使电源向轻,薄,小和高效率方向发展。开关电源因其体积小,重量轻和效率高的优点而在各种电子信息设备中得到广泛的应用。伴随着人们对开关电源的进一步升级,低电压,大电流和高效率的开关电源成为研究趋势。 开关电源分为AC/DC和DC/DC,其中DC/DC 变换已实现模块化,其设计技术和生产工艺已相对成熟和标准化。DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。 IGBT降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。IGBT是MOSFET与双极晶体管的复合器件。它既有MOSFET易驱动的特点,又具有功率晶体管电压、电流容量大等优点。其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。所以用IGBT作为全控型器件的降压斩波电路就有了IGBT易驱动,电压、电流容量大的优点。 IGBT降压斩波电路由于易驱动,电压、电流容量大在电力电子技术应用领域中有广阔的发展前景,也由于开关电源向低电压,大电流和高效率发展的趋势,促进了IGBT降压斩波电路的发展。

2.方案确定 电力电子器件在实际应用中,一般是由控制电路,驱动电路,保护电路和以电力电子器件为核心的主电路组成一个系统。由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断来完成整个系统的功能,当控制电路所产生的控制信号能够足以驱动电力电子开关时就无需驱动电路。 根据降压斩波电路设计任务要求设计主电路、控制电路、驱动及保护电路,设计出降压斩波电路的结构框图如图1所示。 图1降压斩波电路结构框图 在图1结构框图中,控制电路是用来产生降压斩波电路的控制信号,控制电路产生的控制信号传到驱动电路,驱动电路把控制信号转换为加在开关控制端,可以使其开通或关断的信号。通过控制开关的开通和关断来控制降压斩波电路的主电路工作。控制电路中的保护电路是用来保护电路的,防止电路产生过电流现象损害电路设备。

电力电子技术第二章总结

2016 电力电子技术 作业:第二章总结 班级:XXXXXX学号:XXXXXXX姓名:XXXXXX

第二章电力电子器件总结 1.概述 不可控器件——电力二极管(Power Diode) GPD FRD SBD 半控型器件——晶闸管(Thyristor) FST TRIAC LTT 典型全控型器件GTO GTR MOSFET IGBT 其他新型电力电子器件MCT SIT SITH IGCT 功率集成电路与集成电力电子模块HVIC SPIC IPM 1.1相关概念 主电路(Main Power Circuit):在电气设备或电力系统中,直接承担电能的变换或控制任务的电路? 电力电子器件(Power Electronic Device)是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件? 1.2特点 电功率大,一般都远大于处理信息的电子器件? 一般都工作在开关状态? 由信息电子电路来控制,而且需要驱动电路(主要对控制信号进行放大)? 功率损耗大,工作时一般都需要安装散热器? 通态损耗,断态损耗,开关损耗(开通损耗关断损耗) 开关频率较高时,可能成为器件功率损耗的主要因素? 电力电子器件在实际应用中的系统组成 一般是由控制电路?驱动电路和以电力电子器件为核心的主电路组成一个系统? 关键词电力电子系统电气隔离检测电路保护电路三个端子 1.3电力电子器件的分类 按能够被控制电路信号控制的程度不同可分为半控型器件(开通可控,关断不可控) 全控型器件(开通,关断都可控) 不可控器件(开通,关断都不可控) 按照驱动信号的性质不同可分为电流驱动型电压驱动型 按照驱动信号的波形(电力二极管除外)不同可分为脉冲触发型电平控制型 按照载流子参与导电的情况不同可分为单极型器件(由一种载流子参与导电) 双极型器件(由电子和空穴两种载流子参与导电)复合型器件(由单极型器件和双极型器件集成混合而成,也称混合型器件) 关键词控制的程度驱动信号的性质?波形载流子参与导电的情况工作原理基本特性主要参数2不可控器件——电力二极管(Power Diode) 2.1结构与工作原理 电力二极管实际上是由一个面积较大的PN结和两端引线以及封装组成的? PN节(PN junction):采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称为PN结? N型半导体(N为Negative的字头,由于电子带负电荷而得此名):即自由电子浓度远大于空穴浓度的杂质半导体? P型半导体(P为Positive的字头,由于空穴带正电而得此名):即空穴浓度远大于自由电子浓度的杂质半导体? 正向电流IF :当PN结外加正向电压(正向偏置)时,在外电路上则形成自P区流入而从N区流出的电流? 反向截止状态:当PN结外加反向电压时(反向偏置)时,反向偏置的PN结表现为高阻态,几乎没有电流流过的状态? 反向击穿:PN结具有一定的反向耐压能力,但当施加的反向电压过大,反向电流将会急剧增大,破坏PN 结反向偏置为截止的工作状态?雪崩击穿齐纳击穿(可以恢复) 热击穿(不可恢复) P-i-N结构

电力电子降压斩波电路课程设计

电力电子降压斩波电路课程设计

《电力电子技术》课程设计说明书 直流降压斩波电路的设计与仿真 院、部:电气与信息工程学院 学生姓名:刘贝贝 指导教师:胡小娣职称助教 专业:电气工程及其自动化 班级:电气本1305 学号: 完成时间: 6月

湖南工学院《电力电子技术》课程设计课题任务书 学院:电气与信息工程学院专业:电气工程及其自动化

摘要 直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC 变换器,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路. 直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。 关键字:直流斩波,降压斩波

ABSTRACT DC chopper as DC into another fixed voltage DC voltage or adjustable in DC converter, and DC - regenerative power transmission system, charging circuit, switch power, power electronics device and all sorts of electrical equipment transformation in ordinary application. Then appeared such as step-down chopper, booster chopper, lift pressure chopper composite chopper, etc.. the commutation circuit DC chopper technology has been widely used in switching power supply and DC driver, make its smooth acceleration control, and obtain the fast response, managing electric energy effect. All-controlling power electronics device IGBT in traction power transmission and transformation of power transmission and active filter etc widely application. Keywords: DC chopping; Buck chopper

电子线路设计与制作实验报告

电子线路设计与制作 实验报告 班级:电信12305班 指导老师:朱婷 小组成员:张壮安剑锋罗杰杨康熊施任务分工:1.张壮实验报告的撰写 2.安剑锋检查元件及整理 3.罗杰电路的焊接 4.杨康元器件的保管及测试 5.熊施协助电路的焊接 2014年11月14日

项目一:红外线电路设计 一、电路工作原理 常用的红外线遥控系统一般分发射和接收两个部分。发射部分的主要元件为红外发光二极管。它实际上是一直特殊的发光二极管,由于其内部材料不同于普通发光二极管,因而在其两端施加一定电压时,它便发出的红外线而不会死可见光。 接收部分的红外接收管是一种光敏二极管。在实际应用中要给红外线接收二极管加反向偏压,它才能正常工作,亦即红外线接收二极管在电路中应用时是反向运用,这样才能获得较高的灵敏度。红外线二极管一般有圆形和方形两种。 二、电路原理图设计

课题名称元件数量备注 红外线发射——接收模拟 电路红外线发射管 1 红外线接收管 1 发光二极管 1 运放uA741 1 20K可调电位器 1 100Ω电阻 1 10kΩ电阻 1 330Ω电阻 1 元件清单表 三、电路设计与调试 (1)各小组从指导老师那里领取元器件,分工检测元器件的性能。(2)依据电路原理图,各小组讨论如何布局,最后确定一最佳方案在洞洞板上搭建红外线发射\接收电路图。 (3)检查电路无误后,从信号发生器送入适应电压。 (4)调节可调电阻R3的阻值,观察发光二极管LED是否出现闪烁现象,如果出现说明有发射和接收,如果没有检查电路。(5)实验完毕,记录结果,并写实验报告。

四、实验注意事项 (1)发光二极管的电流不能天大(小于200mA);(2)在通电前必须检查电路无误后才可; (3)信号发生器的输出电压峰峰值1.5~2.5V。 项目二:定时电路的设计一、电路原理图与工作原理

相关主题
相关文档 最新文档