当前位置:文档之家› 神经网络(BP网)—鸢尾花分类问题

神经网络(BP网)—鸢尾花分类问题

BP神经网络的数据分类MATLAB源代码.doc

%%%清除空间 clc clear all ; close all ; %%%训练数据预测数据提取以及归一化 %%%下载四类数据 load data1 c1 load data2 c2 load data3 c3 load data4 c4 %%%%四个特征信号矩阵合成一个矩阵data ( 1:500 , : ) = data1 ( 1:500 , :) ; data ( 501:1000 , : ) = data2 ( 1:500 , : ) ; data ( 1001:1500 , : ) = data3 ( 1:500 , : ) ; data ( 1501:2000 , : ) = data4 ( 1:500 , : ) ; %%%%%%从1到2000间的随机排序 k = rand ( 1 , 2000 ) ; [ m , n ] = sort ( k ) ; %%m为数值,n为标号

%%%%%%%%%%%输入输出数据 input = data ( : , 2:25 ) ; output1 = data ( : , 1) ; %%%%%%把输出从1维变到4维 for i = 1 : 1 :2000 switch output1( i ) case 1 output( i , :) = [ 1 0 0 0 ] ; case 2 output( i , :) = [ 0 1 0 0 ] ; case 3 output( i , :) = [ 0 0 1 0 ] ; case 4 output( i , :) = [ 0 0 0 1 ] ; end end %%%%随机抽取1500个样本作为训练样本,500个样本作为预测样本 input_train = input ( n( 1:1500 , : ) )’ ; output_train = output ( n( 1:1500 , : ) )’ ; input_test = input ( n( 1501:2000 , : ) )’ ;

MATLAB程序代码--BP神经网络的设计实例

MATLAB程序代码--BP神经网络的设计实例 例1 采用动量梯度下降算法训练 BP 网络。 训练样本定义如下: 输入矢量为 p =[-1 -2 3 1 -1 1 5 -3] 目标矢量为 t = [-1 -1 1 1] 解:本例的 MATLAB 程序如下: close all clear echo on clc % NEWFF——生成一个新的前向神经网络 % TRAIN——对 BP 神经网络进行训练 % SIM——对 BP 神经网络进行仿真 pause % 敲任意键开始 clc % 定义训练样本 % P 为输入矢量 P=[-1, -2, 3, 1; -1, 1, 5, -3]; % T 为目标矢量 T=[-1, -1, 1, 1]; pause; clc % 创建一个新的前向神经网络 net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights=net.IW{1,1} inputbias=net.b{1} % 当前网络层权值和阈值 layerWeights=net.LW{2,1} layerbias=net.b{2} pause clc % 设置训练参数 net.trainParam.show = 50; net.trainParam.lr = 0.05; net.trainParam.mc = 0.9;

net.trainParam.epochs = 1000; net.trainParam.goal = 1e-3; pause clc % 调用 TRAINGDM 算法训练 BP 网络 [net,tr]=train(net,P,T); pause clc % 对 BP 网络进行仿真 A = sim(net,P) % 计算仿真误差 E = T - A MSE=mse(E) pause clc echo off 例2 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。其中,样本数据可以采用如下MATLAB 语句生成:输入矢量:P = [-1:0.05:1]; 目标矢量:randn(’seed’,78341223); T = sin(2*pi*P)+0.1*randn(size(P)); 解:本例的 MATLAB 程序如下: close all clear echo on

1BP神经网络实现(JAVA代码)

BP神经网络实现(Java代码) 神经网络的原理虽然理解起来不难,但是要是想实现它,还是需要做一些工作的,并且有很多细节性的东西需要注意。通过参阅各种相关资料,以及参考网络上已有的资源,自己写了一个含有一个隐含层,且只能有一个输出单元的简单的BP网络,经过测试,达到了预期的效果。 需要说明的是,神经网络的每个输入都在[0,1]中,输出也在[0,1]中,在使用神经网络解决实际问题的时候,还需要对实际问题的输入输出进行归一化处理。另外,尽量不要使得神经网络的输入或输出接近于0或1,这样会影响拟合效果。 我用正弦函数进行了一次测试,效果如图所示: 以下是相关的代码: 1.神经网络代码 [java]view plaincopy 1.package pkg1; 2. 3.import java.util.Scanner; 4. 5./* 6.* 7.*/ 8.public class TestNeuro{

9. 10.private int INPUT_DIM=1; 11.private int HIDDEN_DIM=20; 12.private double LEARNING_RATE=0.05; 13.double[][]input_hidden_weights=new double[INPUT_DIM][HIDDEN_DIM]; 14.double[]hidden_output_weights=new double[HIDDEN_DIM]; 15.double[]hidden_thresholds=new double[HIDDEN_DIM]; 16.double output_threshold; 17. 18.public static void main(String[]args){ 19.Scanner in=new Scanner(System.in); 20.TestNeuro neuro=new TestNeuro(1,5); 21.neuro.initialize(); 22.for(int i=0;i<10000;i++){ 23.double[]input=new double[1]; 24.input[0]=Math.random(); 25.double expectedOutput=input[0]*input[0]; 26.//System.out.println("input:"+input[0]+"\t\texpectedOutput: "+expectedOutput); 27.//System.out.println("predict before training:"+neuro.predict (input)); 28.neuro.trainOnce(input,expectedOutput); 29.//System.out.println("predict after training:"+neuro.predict( input)); 30.//in.next(); 31.} 32.while(true){ 33.//neuro.printLinks(); 34.double[]input=new double[1]; 35.input[0]=in.nextDouble(); 36.double expectedOutput=in.nextDouble(); 37.System.out.println("predict before training:"+neuro.predict(i nput)); 38.neuro.trainOnce(input,expectedOutput); 39.System.out.println("predict after training:"+neuro.predict(in put)); 40. 41.} 42.} 43. 44.public TestNeuro(int input_dimension,int hidden_dimension){ 45.this.INPUT_DIM=input_dimension; 46.this.HIDDEN_DIM=hidden_dimension; 47.this.initialize();

基于遗传算法的BP神经网络MATLAB代码

用遗传算法优化BP神经网络的Matlab编程实例(转) 由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。 程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY) %-------------------------------------------------------------------------- % GABPNET.m % 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络 %-------------------------------------------------------------------------- %数据归一化预处理 nntwarn off XX=[1:19;2:20;3:21;4:22]'; YY=[1:4]; XX=premnmx(XX); YY=premnmx(YY); YY %创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'tra inlm'); %下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模 save data2 XX YY % 是将 xx,yy 二个变数的数值存入 data2 这个MAT-file,initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数

BP神经网络matlab源程序代码

close all clear echo on clc % NEWFF——生成一个新的前向神经网络 % TRAIN——对 BP 神经网络进行训练 % SIM——对 BP 神经网络进行仿真 % 定义训练样本 % P为输入矢量 P=[0.7317 0.6790 0.5710 0.5673 0.5948;0.6790 0.5710 0.5673 0.5948 0.6292; ... 0.5710 0.5673 0.5948 0.6292 0.6488;0.5673 0.5948 0.6292 0.6488 0.6130; ... 0.5948 0.6292 0.6488 0.6130 0.5654; 0.6292 0.6488 0.6130 0.5654 0.5567; ... 0.6488 0.6130 0.5654 0.5567 0.5673;0.6130 0.5654 0.5567 0.5673 0.5976; ... 0.5654 0.5567 0.5673 0.5976 0.6269;0.5567 0.5673 0.5976 0.6269 0.6274; ... 0.5673 0.5976 0.6269 0.6274 0.6301;0.5976 0.6269 0.6274 0.6301 0.5803; ... 0.6269 0.6274 0.6301 0.5803 0.6668;0.6274 0.6301 0.5803 0.6668 0.6896; ... 0.6301 0.5803 0.6668 0.6896 0.7497]; % T为目标矢量 T=[0.6292 0.6488 0.6130 0.5654 0.5567 0.5673 0.5976 ... 0.6269 0.6274 0.6301 0.5803 0.6668 0.6896 0.7497 0.8094]; % Ptest为测试输入矢量 Ptest=[0.5803 0.6668 0.6896 0.7497 0.8094;0.6668 0.6896 0.7497 0.8094 0.8722; ... 0.6896 0.7497 0.8094 0.8722 0.9096]; % Ttest为测试目标矢量 Ttest=[0.8722 0.9096 1.0000]; % 创建一个新的前向神经网络 net=newff(minmax(P'),[12,1],{'logsig','purelin'},'traingdm'); % 设置训练参数 net.trainParam.show = 50; net.trainParam.lr = 0.05; net.trainParam.mc = 0.9; net.trainParam.epochs = 5000; net.trainParam.goal = 0.001; % 调用TRAINGDM算法训练 BP 网络 [net,tr]=train(net,P',T); % 对BP网络进行仿真 A=sim(net,P'); figure; plot((1993:2007),T,'-*',(1993:2007),A,'-o'); title('网络的实际输出和仿真输出结果,*为真实值,o为预测值'); xlabel('年份'); ylabel('客运量'); % 对BP网络进行测试 A1=sim(net,Ptest');

BP神经网络MATLAB代码

BP神经网络matlab代码 p=[284528334488;283344884554;448845542928;455429283497;29283497 2261;... 349722616921;226169211391;692113913580;139135804451;35804451 2636;... 445126363471;263634713854;347138543556;385435562659;35562659 4335;... 265943352882;433528824084;433528821999;288219992889;19992889 2175;... 288921752510;217525103409;251034093729;340937293489;37293489 3172;... 348931724568;317245684015;]'; %====期望输出======= t=[4554292834972261692113913580445126363471385435562659... 4335288240841999288921752510340937293489317245684015... 3666]; ptest=[284528334488;283344884554;448845542928;455429283497;29283497 2261;... 349722616921;226169211391;692113913580;139135804451;35804451 2636;... 445126363471;263634713854;347138543556;385435562659;35562659 4335;... 265943352882;433528824084;433528821999;288219992889;19992889 2175;... 288921752510;217525103409;251034093729;340937293489;37293489 3172;... 348931724568;317245684015;456840153666]'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t);%将数据归一化 NodeNum1=20;%隐层第一层节点数 NodeNum2=40;%隐层第二层节点数 TypeNum=1;%输出维数 TF1='tansig'; TF2='tansig'; TF3='tansig'; net=newff(minmax(pn),[NodeNum1,NodeNum2,TypeNum],{TF1TF2 TF3},'traingdx');

BP神经网络matlab源程序代码

BP神经网络matlab源程序代码) %******************************% 学习程序 %******************************% %======原始数据输入======== p=[2845 2833 4488;2833 4488 4554;4488 4554 2928;4554 2928 3497;2928 3497 2261;... 3497 2261 6921;2261 6921 1391;6921 1391 3580;1391 3580 4451;3580 4451 2636;... 4451 2636 3471;2636 3471 3854;3471 3854 3556;3854 3556 2659;3556 2659 4335;... 2659 4335 2882;4335 2882 4084;4335 2882 1999;2882 1999 2889;1999 2889 2175;... 2889 2175 2510;2175 2510 3409;2510 3409 3729;3409 3729 3489;3729 3489 3172;... 3489 3172 4568;3172 4568 4015;]'; %===========期望输出======= t=[4554 2928 3497 2261 6921 1391 3580 4451 2636 3471 3854 3556 2659 ... 4335 2882 4084 1999 2889 2175 2510 3409 3729 3489 3172 4568 4015 ... 3666]; ptest=[2845 2833 4488;2833 4488 4554;4488 4554 2928;4554 2928 3497;2928 3497 2261;... 3497 2261 6921;2261 6921 1391;6921 1391 3580;1391 3580 4451;3580 4451 2636;... 4451 2636 3471;2636 3471 3854;3471 3854 3556;3854 3556 2659;3556 2659 4335;... 2659 4335 2882;4335 2882 4084;4335 2882 1999;2882 1999 2889;1999 2889 2175;... 2889 2175 2510;2175 2510 3409;2510 3409 3729;3409 3729 3489;3729 3489 3172;... 3489 3172 4568;3172 4568 4015;4568 4015 3666]'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %将数据归一化 NodeNum1 =20; % 隐层第一层节点数 NodeNum2=40; % 隐层第二层节点数 TypeNum = 1; % 输出维数 TF1 = 'tansig';

BP神经网络实例含源码

BP神经网络实例含源码 BP神经网络算法实现 一:关于BP网络 BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。 当实际输出与期望输出不符时,进入误差的反向传播阶段。误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。 BP网络主要应用于以下方面:函数逼近、模式识别和分类、数据压缩。BP神经网络有较强的泛化性能,使网络平滑的逼近函数,能合理的响应被训练以外的输入。 同时,BP网络又有自己的限制与不足,主要表现在:需要较长的训练时间、网络训练的结果可能使得权值逼近局部最优、训练数据范围外的数据泛化能力较差。 为了避免训练陷入局部最优解,本程序采用改进的BP网络训练,既加入动量因子,使得网络在最优解附近有一定的震荡,跳出局部最优的范围。 BP网络训练中学习速率与动量因子的选择很重要,在后面的内容中将进行详细的讨论。

二:训练的函数 程序中训练的函数为一个三输入一输出的非线性函数,如下所示: x3xR,yxxe,,,,2sin(),,,12 网络结构为:3—5—1 三:程序及相关界面(VB) 1 主界面 1 代码: Private Sub Command1_Click() form2.Visible = False Form3.Visible = True End Sub Private Sub Command2_Click() form2.Visible = False Form1.Visible = True End Sub Private Sub Command3_Click() form2.Visible = False Form4.Visible = True End Sub Private Sub Command4_Click() form2.Visible = False

(完整版)BP神经网络matlab实例(简单而经典)

p=p1';t=t1'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化 net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络 net.trainParam.lr=0.01; net.trainParam.epochs=100000; net.trainParam.goal=1e-5; [net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络 pnew=pnew1'; pnewn=tramnmx(pnew,minp,maxp); anewn=sim(net,pnewn); %对BP网络进行仿真 anew=postmnmx(anewn,mint,maxt); %还原数据 y=anew'; 1、BP网络构建 (1)生成BP网络 = net newff PR S S SNl TF TF TFNl BTF BLF PF (,[1 2...],{ 1 2...},,,) PR:由R维的输入样本最小最大值构成的2 R?维矩阵。 S S SNl:各层的神经元个数。 [ 1 2...] { 1 2...} TF TF TFNl:各层的神经元传递函数。 BTF:训练用函数的名称。 (2)网络训练 [,,,,,] (,,,,,,) = net tr Y E Pf Af train net P T Pi Ai VV TV (3)网络仿真 = [,,,,] (,,,,) Y Pf Af E perf sim net P Pi Ai T {'tansig','purelin'},'trainrp'

matlab 通用神经网络代码

matlab 通用神经网络代码 学习了一段时间的神经网络,总结了一些经验,在这愿意和大家分享一下, 希望对大家有帮助,也希望大家可以把其他神经网络的通用代码在这一起分享 感应器神经网络、线性网络、BP神经网络、径向基函数网络 %通用感应器神经网络。 P=[ -40; 1 50];%输入向量 T=[1 1 0 0 1];%期望输出 plotpv(P,T);%描绘输入点图像 net=newp([-40 1;-1 50],1);%生成网络,其中参数分别为输入向量的范围和神经元感应器数量hold on linehandle=plotpc{1},{1}); a=1:25%训练次数 [net,Y,E]=adapt(net,P,T); linehandle=plotpc{1},{1},linehandle); drawnow; end %通用newlin程序 %通用线性网络进行预测 time=0::5; T=sin(time*4*pi); Q=length(T);

P=zeros(5,Q);%P中存储信号T的前5(可变,根据需要而定)次值,作为网络输入。P(1,2:Q)=T(1,1:(Q-1)); P(2,3:Q)=T(1,1:(Q-2)); P(3,4:Q)=T(1,1:(Q-3)); P(4,5:Q)=T(1,1:(Q-4)); P(5,6:Q)=T(1,1:(Q-5)); plot(time,T)%绘制信号T曲线 xlabel('时间'); ylabel('目标信号'); title('待预测信号'); net=newlind(P,T);%根据输入和期望输出直接生成线性网络 a=sim(net,P);%网络测试 figure(2) plot(time,a,time,T,'+') xlabel('时间'); ylabel('输出-目标+'); title('输出信号和目标信号'); e=T-a; figure(3) plot(time,e) hold on plot([min(time) max(time)],[0 0],'r:')%可用plot(x,zeros(size(x)),'r:')代替 hold off xlabel('时间'); ylabel('误差'); title('误差信号');

BP神经网络预测代码

x=[54167 55196 56300 57482 58796 60266 61465 62828 64653 65994 67207 66207 65859 67295 69172 70499 72538 74542 76368

80671 82992 85229 87177 89211 90859 92420 93717 94974 96259 97542 98705 100072 101654 103008 104357 105851 107507

112704 114333 115823 117171 118517 119850 121121 122389 123626 124761 125786 126743 127627 128453 129227 129988 130756 131448

134480 135030 135770 136460 137510]'; % 该脚本用来做NAR神经网络预测 % 作者:Macer程 lag=3; % 自回归阶数 iinput=x; % x为原始序列(行向量) n=length(iinput); %准备输入和输出数据 inputs=zeros(lag,n-lag); for i=1:n-lag %绘制误差的自相关情况(20lags) figure, parcorr(errors) %绘制偏相关情况 %[h,pValue,stat,cValue]= lbqtest(errors) %Ljung-Box Q检验(20lags)figure,plotresponse(con2seq(targets),con2seq(yn)) %看预测的趋势与原趋势%figure, ploterrhist(errors) %误差直方图

C++实现的BP神经网络代码

#pragma hdrstop #include #include const A=30.0; const B=10.0; const MAX=500;//最大训练次数 const COEF=0.0035; //网络的学习效率 const BCOEF=0.001;//网络的阀值调整效率 const ERROR=0.002; // 网络训练中的允许误差 const ACCURACY=0.0005;//网络要求精度 double sample[41][4]={{0,0,0,0},{5,1,4,19.020},{5,3,3,14.150}, {5,5,2,14.360},{5,3,3,14.150},{5,3,2,15.390}, {5,3,2,15.390},{5,5,1,19.680},{5,1,2,21.060}, {5,3,3,14.150},{5,5,4,12.680},{5,5,2,14.360}, {5,1,3,19.610},{5,3,4,13.650},{5,5,5,12.430}, {5,1,4,19.020},{5,1,4,19.020},{5,3,5,13.390}, {5,5,4,12.680},{5,1,3,19.610},{5,3,2,15.390}, {1,3,1,11.110},{1,5,2,6.521},{1,1,3,10.190}, {1,3,4,6.043},{1,5,5,5.242},{1,5,3,5.724}, {1,1,4,9.766},{1,3,5,5.870},{1,5,4,5.406}, {1,1,3,10.190},{1,1,5,9.545},{1,3,4,6.043}, {1,5,3,5.724},{1,1,2,11.250},{1,3,1,11.110}, {1,3,3,6.380},{1,5,2,6.521},{1,1,1,16.000}, {1,3,2,7.219},{1,5,3,5.724}}; double w[4][10][10],wc[4][10][10],b[4][10],bc[4][10]; double o[4][10],netin[4][10],d[4][10],differ;//单个样本的误差 double is; //全体样本均方差 int count,a; void netout(int m, int n);//计算网络隐含层和输出层的输出 void calculd(int m,int n); //计算网络的反向传播误差 void calcalwc(int m,int n);//计算网络权值的调整量 void calcaulbc(int m,int n); //计算网络阀值的调整量 void changew(int m,int n); //调整网络权值 void changeb(int m,int n);//调整网络阀值 void clearwc(int m,int n);//清除网络权值变化量wc void clearbc(int m,int n);//清除网络阀值变化量bc- void initialw(void);//初始化NN网络权值W void initialb(void); //初始化NN网络阀值 void calculdiffer(void);//计算NN网络单个样本误差 void calculis(void);//计算NN网络全体样本误差 void trainNN(void);//训练NN网络 //------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------//

MATLAB程序代码--bp神经网络通用代码

MATLAB程序代码--bp神经网络通用代码 matlab通用神经网络代码学习了一段时间的神经网络,总结了一些经验,在这愿意和大家分享一下, 希望对大家有帮助,也希望大家可以把其他神经网络的通用代码在这一起分享 感应器神经网络、线性网络、BP神经网络、径向基函数网络 %通用感应器神经网络。 P=[-0.5 -0.5 0.3 -0.1 -40;-0.5 0.5 -0.5 1 50];%输入向量 T=[1 1 0 0 1];%期望输出 plotpv(P,T);%描绘输入点图像 net=newp([-40 1;-1 50],1);%生成网络,其中参数分别为输入向量的范围和神经元感应器数量 hold on linehandle=plotpc(net.iw{1},net.b{1}); net.adaptparam.passes=3; for a=1:25%训练次数 [net,Y,E]=adapt(net,P,T); linehandle=plotpc(net.iw{1},net.b{1},linehandle); drawnow; end %通用newlin程序 %通用线性网络进行预测 time=0:0.025:5; T=sin(time*4*pi); Q=length(T); P=zeros(5,Q);%P中存储信号T的前5(可变,根据需要而定)次值,作为网络输入。

P(1,2:Q)=T(1,1:(Q-1)); P(2,3:Q)=T(1,1:(Q-2)); P(3,4:Q)=T(1,1:(Q-3)); P(4,5:Q)=T(1,1:(Q-4)); P(5,6:Q)=T(1,1:(Q-5)); plot(time,T)%绘制信号T曲线 xlabel('时间'); ylabel('目标信号'); title('待预测信号'); net=newlind(P,T);%根据输入和期望输出直接生成线性网络 a=sim(net,P);%网络测试 figure(2) plot(time,a,time,T,'+') xlabel('时间'); ylabel('输出-目标+'); title('输出信号和目标信号'); e=T-a; figure(3) plot(time,e) hold on plot([min(time) max(time)],[0 0],'r:')%可用plot(x,zeros(size(x)),'r:')代替hold off xlabel('时间'); ylabel('误差');

BP神经网络工具箱代码

clear all clc inputNums=3; outputNums=3; ? hideNums=10; ? maxcount=20000; ? samplenum=3; ? precision=0.001;? yyy=1.3; ? alpha=0.01; ? a=0.5; error=zeros(1,maxcount+1); ? errorp=zeros(1,samplenum); ? v=rand(inputNums,hideNums); deltv=zeros(inputNums,hideNums); dv=zeros(inputNums,hideNums); ? w=rand(hideNums,outputNums); ? deltw=zeros(hideNums,outputNums);? dw=zeros(hideNums,outputNums); ? samplelist=[0.1323,0.323,-0.132;0.321,0.2434,0.456;-0.6546,-0.3242,0.3255]; expectlist=[0.5435,0.422,-0.642;0.1,0.562,0.5675;-0.6464,-0.756,0.11]; count=1; while (count<=maxcount) c=1; while (c<=samplenum) for k=1:outputNums d(k)=expectlist(c,k); end for i=1:inputNums x(i)=samplelist(c,i); ? end %Forward(); for j=1:hideNums net=0.0;

BP神经网络详细代码

运用BP神经网络进行预测 代码如下: clc clear all close all %bp神经网络预测 %输入输出赋值 p=[493 372 445;372 445 176;445 176 235;176 235 378;235 378 429;378 429 561;429 561 651;561 651 467;651 467 527;467 527 668;527 668 841; 668 841 526;841 526 480;526 480 567;480 567 685]'; t=[176 235 378 429 561 651 467 527 668 841 526 480 567 685 507]; %数据归一化 [p1ps]=mapminmax(p); [t1ts]=mapminmax(t); %数据集分配 [trainsample.pvalsample.ptestsample.p] =dividerand(p0.70.150.15); [https://www.doczj.com/doc/3810108178.html,alsample.ttestsample.t] =dividerand(t0.70.150.15); %建立BP神经网络 TF1='tansig';TF2='purelin'; net=newff(minmax(p)[101]{TF1 TF2}'traingdm'); %网络参数的设置 net.trainParam.epochs=10000;%训练次数设置 net.trainParam.goal=1e-7;%训练目标设置 net.trainParam.lr=0.01;%学习率设置 net.trainParam.mc=0.9;%动量因子的设置 net.trainParam.show=25;%显示的间隔次数 % 指定训练参数 net.trainFcn='trainlm'; [nettr]=train(nettrainsample.ptrainsample.t); %计算仿真 [normtrainoutputtrainPerf]=sim(nettrainsample.p[][]trainsample.t);%训练数据,经BP得到的结果[normvalidateoutputvalidatePerf]=sim(netvalsample.p[][]valsample.t);%验证数据,经BP得到的结果 [normtestoutputtestPerf]=sim(nettestsample.p[][]testsample.t);%测试数据,经BP得到的结果 %计算结果反归一化,得到拟合数据 trainoutput=mapminmax('reverse'normtrainoutputts); validateoutput=mapminmax('reverse'normvalidateoutputts); testoutput=mapminmax('reverse'normtestoutputts); %输入数据反归一化,得到正式值 trainvalue=mapminmax('reverse'trainsample.tts);%正式的训练数据 validatevalue=mapminmax('reverse'valsample.tts);%正式的验证数据 testvalue=mapminmax('reverse'testsample.tts);%正式的测试数据 %输入要预测的数据pnew pnew=[313256239]';

BP神经网络预测代码

B P神经网络预测代码 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

x=[54167 55196 56300 57482 58796 60266 61465 62828 64653 65994 67207 66207 65859 67295 69172 70499 72538 74542 76368 78534

80671 82992 85229 87177 89211 90859 92420 93717 94974 96259 97542 98705 100072 101654 103008 104357 105851 107507 109300 111026

112704 114333 115823 117171 118517 119850 121121 122389 123626 124761 125786 126743 127627 128453 129227 129988 130756 131448 132129 132802

134480 135030 135770 136460 137510]'; % 该脚本用来做NAR预测 % 作者:Macer程 lag=3; % 自回归阶数 iinput=x; % x为原始序列(行向量) n=length(iinput); %准备输入和输出数据 inputs=zeros(lag,n-lag); for i=1:n-lag %绘制误差的自相关情况(20lags) figure, parcorr(errors) %绘制偏相关情况 %[h,pValue,stat,cValue]= lbqtest(errors) %Ljung-Box Q检验(20lags)figure,plotresponse(con2seq(targets),con2seq(yn)) %看预测的趋势与原趋势%figure, ploterrhist(errors) %误差直方图 %figure, plotperform(tr) %误差下降线

相关主题
文本预览
相关文档 最新文档