当前位置:文档之家› 留数定理及其应用

留数定理及其应用

留数定理及其应用
留数定理及其应用

留数定理在定积分计算中的应用论(参考模板)

留数定理在定积分计算中的应用 引言 在微积分或数学分析中,不少积分( 包括普通定积分与反常积分) 的计算用微积分教材里的知识很难解决或几乎是无能为力. 如果我们能结合其他数学分支的理论方法来讨论解决这类问题,会达到化难为易、化繁为简的效果.本文主要利用复变函数中的留数定理,将实积分转换为复积分的方法,讨论了几类定积分的计算,首先我们来给出留数的定义及留数定理. 1留数定义及留数定理 1.1 留数的定义 设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域0z a R

证明:以k a 为心,充分小的正数k ρ为半径画圆周:k k z a ρΓ?=(1,2,k =…,n )使这些圆周及内部均含于D ,并且彼此相互隔离,利用复周线的柯西定理得 ()()1k n k C f z dz f z dz =Γ=∑??, 由留数的定义,有 ()()2Re k k z a f z dz i s f z π=Γ=?. 特别地,由定义得 ()2Re k k z a f z dz i s π=Γ=?, 代入(1)式得 ()()1 2Re k n z a k C f z dz i s f z π===∑?. 2.留数定理在定积分中的应用 利用留数计算定积分活反常积分没有普遍的实用通法,我们只考虑几种特殊类型的积分. 2.1形如 ()20 cos ,sin f x x dx π ?型的积分 ()cos ,sin f x x 表示cos ,sin x x 的有理函数,且在[]0,2π上连续,解决此类积分要注意两点,一:积分上下限之差为2π,这样当作定积分时x 从0到2π,对应的复变函数积分正好沿闭曲线绕行一周.二:被积函数是以正弦和余弦函数为自变量。满足这两点之后,我们可以设ix z e =,则dz izdx =, 21sin 22ix ix e e z x i iz ---==,21 cos 22ix ix e e z x z -++== 得 ()22210 11cos ,sin ,22z z z dz f x x dx f z iz iz π =??--= ????? ()1 2Re k n z z k i s f z π===∑.

使用留数定理计算实积分

用留数定理计算实积分 一:教学内容(包括基本内容、重点、难点): 基本内容:用留数定理计算实积分的几种方法 重点:用留数定理计算实积分的方法 难点:定理的应用 二:教学目标或要求: 真正掌握用留数定理计算实积分的几种方法 三、教学手段与方法: 讲授、练习 四、思考题、讨论题、作业与练习:5-7 用留数定理计算实积分 留数定理的一个重要应用是计算某此实变函数的积分. 如,在研究阻尼振动时 计算积分,在研究光的衍射时,需要计算菲涅耳积分. 在热学中将遇到积分(,b为任意实数)如用实函数分析中的方法计算这些积分几乎是不可能的,既使能计算,也相当复杂.如果能把它们化为复积分,用哥西定理和留数定理,那就简单了.当然最关键的是设法把实变函数是积分跟复变函数回路积分联系起来. 把实变积分联系于复变回路积分的要点如下:定积分的积分区 间可以看作是复数平面上的实轴上的一段,于是,或者利用自变数的变换把变成某个新的复数平面上的回路,这样就可以应用留数定理了;或者另外补上一段曲线,使和合成回路l,l包围着区域B,这样

左端可应用留数定理,如果容易求出,则问题就解决了,下面具体 介绍几个类型的实变定积分. 一 计算? π20 d )sin ,(cos R θ θθ型积分 令θi e =z ,则θc o s 与θsin 均可用复变量z 表示出来,从而实现将 )sin ,(cos R θθ变形为复变量z 的函数的愿望,此时有 z z z z i 21sin ,21cos 2 2 -= += θθ 同时,由于θi e =z ,所以1=z ,且当θ由0变到π2时,z 恰好在圆周1:=z c 上变动一周。故使积分路径也变成了所期望的围线。 至此,有 ?? =?-+=1 2 2π20 d i 1 )i 21,21(R d )sin ,(cos R z z z z z z z θθθ 于是,计算积分? π20 d )sin ,(cos R θ θθ的方法找到了,只需令θi e =z 即可。 例 求。 解 当 时, ;当 时,令 , 当 时,在 内, 仅以 为一级极点, 在 上无奇点,故由留数定理

复变函数第五章留数学习方法指导

第五章 留数 留数(Residue )理论是复积分理论和复级数理论相结合的产物,它既是复积分问题的延续,又是复级数应用的一种体现,它对复变函数论本身以及实际应用都有着重要的作用.例如,它能给复积分的计算提供一种有效的方法,能为解析函数的零点和极点的分布状况的研究提供一种有效的工具.另外,它还能为数学分析中一些复杂实积分的计算提供有效地帮助. 本章,我们首先引进孤立奇点处留数的定义,利用洛朗展式建立留数计算的一般方法——洛朗展式法,以及各类孤立奇点处留数计算的更细致的方法.在此基础上,再建立反映复变函数沿封闭曲线积分与留数之间密切关系的留数定理,从而有效地解决“大范围”积分计算的问题.其次,介绍留数定理的两个方面的应用.一方面建立利用留数定理计算数学分析中某些定积分和反常积分的计算方法,另一方面建立讨论区域内解析函数的零点和极点分布状况的有效方法,即幅角原理与儒歇定理. 一.学习的基本要求 1.掌握函数在其孤立奇点处的留数的概念以及函数在孤立奇点处的留数计算的一般方法,即洛朗展式法.注意函数在有限孤立奇点处的留数和孤立奇点∞处的留数在定义方面的差异以及罗郎展式法方面的差异.并能熟练地运用洛朗展式法求函数在其孤立奇点处的留数. 2.熟练掌握函数在各类有限孤立奇点处的留数的具体计算方法以及孤立奇点∞处留数的的两种具体计算方法: 洛朗展式法: 1Res ()z f z β-=∞ =-,其中1β-为()f z 在∞处的洛朗展式中1z 的系数. 化为有限点处的留数:2011Res ()Res ()z z f z f z z =∞==-. 3.了解有限可去奇点处的留数与可去奇点∞处的留数的差异,理解为什么函数在可去奇点∞处的留数一般不一定为零? 4.掌握留数定理以及含∞的留数定理(即留数定理的推广),并能熟练地运用它们计算函

用留数定理计算实积分的再讨论分析

毕业论文 (2014届) 题目用留数定理计算实积分的再讨论 学院数计学院 专业数学与应用数学(师范) 年级2010级(2)班 学生学号12010244185 学生姓名刘艳 指导教师汪文帅 2014年5月8日 用留数定理计算实积分的再讨论

数学计算机学院数学与应用数学师范专业2014届刘艳 摘要:正确运用留数定理计算实积分就是要理解它的实质并且在计算实积分的过程中构造容易求解的积分路径,然而大量教材或者相关文献长期或者有意无意的按照既定思维对某些实积分计算问题选择基本固定不变的积分路径进行求解,在一定程度上给学生造成思维定势. 本文用例证的方法讨论了用留数定理计算实积分的过程中积分曲线的选择方法,从不同的角度体现了求解过程中选择积分路径的核心思想.这为进一步开拓思维,更为深刻理解留数定理有积极的意义. 关键词:留数定理;实积分;积分曲线 中图分类号:O174 Further discussion of Calculation on real integral by the residue theorem Abstract: The correct use of the residue theorem to calculate real integration means to understand its essence and to construct easy-solved integral path, but a lot of materials or the relevant studies always select the same integral path to solve the similar problem, which give the students wrong understanding when most teachers did not pay attention to the ideological inspiration in teaching. T o some extent, this limits students’ thinking. In this paper, the selection method of integral curve is given with examples in view of the different integral path and the core idea of the residue theorem is shown in calculating process, which has a positive significance for further development of thinking and more understanding of the residue theorem. Key words: real integral;residue theorem;integral curve

应用留数定理计算实变函数定积分

应用留数定理计算物理学中实变函数定积分 1问题 在物理学中,研究阻尼振动时计算积分 sin x dx x ∞ ? ,研究光的衍射时计算菲涅耳积分20sin()x dx ∞?, 在热学中遇到积分 cos (0,ax e bxdx b a ∞ ->? 为任意实数)如果用实函数分析中的方法计算这些积分几乎不 可能。而在复变函数的积分计算中,依据留数定理,我们可以将实变函数 定积分跟复变函数回路积分联系起来。 2应用留数定理求解实变函数定积分的类型 将实变函数定积分联系于复变函数回路积分的要点如下: 1)利用自变数变换把1l 变换为某个新的复数平面上的回路; 2)另外补上一段曲线2l ,使1l 和2l 合成回路l ,l 包围着区域B ,则 1l 上的()f x 延拓为B 上的()f z ,并将它沿l 积分,有 1 2 ()()()l l l f z dz f x dx f z dz =+? ??; 3) ()l f z dz ? 可以应用留数定理,1 ()l f x dx ?就是所求的定积分。如果2 ()l f z dz ?较易求出(往往是 证明为零)或可用第一个积分表示出,问题就解决了. 类型一 20 (cos ,sin )R x x dx π ? .被积函数是三角函数的有理式;积分区间为[0,2π]. 求解方法:因为被积函数是以正弦和余弦函数为自变量,积分上下限之差为2π,可以当作定积分x 从 0变到2π,对应的复变函数积分正好沿比曲线绕行一周,实变积分化为复变回路积分就可以应用留数定理. 可以设ix z e =,则dz izdx =∴dz dx iz = 而1 1cos ()22ix ix e e x z z --+= =+,11sin ()22ix ix e e x z z i i ---==- 则原积分化为111(,)2()22k z k z z z z dz I R i Resf z i iz π--=+-==∑? 类型二 -()f x dx ∞ ∞ ? .积分区间为(-∞,+∞);复变函数()f z 在实轴上有奇点,在上半平面除有限 个奇点外是解析的;当z 在上半平面及实轴上→∞时,()zf z 一致地→0. 求解方法:如果f(x)是有理分式()/()x x ?ψ,上述条件意味着()x ψ没有实的零点,()x ψ的次数至 图1

第五章留数定理习题及其解答

第五章 留数定理习题及其解答 5.1设有Λ ΛΛΛ++++++++=+-1212221111)(n n n n z z z z z z f ,能否说0=z 为) (z f 本性奇点?为什么? 答:这个级数由两部分组成:即∑∑∞ =∞ =+-+1 012n n n n n z z 。第一个级数当1 1z 时收敛,第二个级数当1 2()f z 在∞去心邻域内Laurent 展示无z 的正幂项,即 120a a ===L 。 故0()f z a ≡(常数); 当∞为()f z 的m 级极点?()f z 在∞去心邻域内Laurent 展示中只含有限个z 的正幂 项,且最高正幂为m 次(0m a ≠)。 1011() (0),0,()m m m m m n f z a a z a z a z a a n m --=++++≠=>L 即()f z 为m 次多项式; 除去上述两种情况, ∞为()f z 的本性奇点?()f z 在∞去心邻域内Laurent 展开式中 含有无限多个正幂项, 因此在 () z n n n f z a z ∞ ==<+∞ ∑中,有无限多个项的系数不为0。 注 (1). 对本题的结论,一定要注意成立的条件为()f z 在全面解析,否则结论不成 立。例: 1()f z z = 在0z <<+∞内解析(与全平面解析仅差一个点!),且以∞为可去奇点,

复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 §1.留数1.(定理柯西留数定理): 2.(定理):设a为f(z)的m阶极点, 其中在点a解析,,则 3.(推论):设a为f(z)的一阶极点, 则 4.(推论):设a为f(z)的二阶极点 则 5.本质奇点处的留数:可以利用洛朗展式 6.无穷远点的留数:

即,等于f(z)在点的洛朗展式中这一项系数的反号 7.(定理)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有,但是,如果点为f(z)的可去奇点(或解析点),则可以不为零。 8.计算留数的另一公式: §2.用留数定理计算实积分 一.→引入 注:注意偶函数 二.型积分 1.(引理大弧引理):上 则 2.(定理)设

为互质多项式,且符合条件: (1)n-m≥2; (2)Q(z)没有实零点 于是有 注:可记为 三.型积分 3.(引理若尔当引理):设函数g(z)沿半圆周 上连续,且 在上一致成立。则 4.(定理):设,其中P(z)及Q(z)为互质多项式,且符合条件:(1)Q的次数比P高; (2)Q无实数解; (3)m>0 则有 特别的,上式可拆分成:

及 四.计算积分路径上有奇点的积分 5.(引理小弧引理): 于上一致成立,则有 五.杂例 六.应用多值函数的积分 §3.辐角原理及其应用 即为:求解析函数零点个数 1.对数留数: 2.(引理):(1)设a为f(z)的n阶零点,则a必为函数的一阶极点,并且 (2)设b为f(z)的m阶极点,则b必为函数的一阶极点,并且 3.(定理对数留数定理):设C是一条周线,f(z)满足条件: (1)f(z)在C的内部是亚纯的;

留数定理

留数定理编辑讨论3 上传视频 本词条由“科普中国”科学百科词条编写与应用工作项目审核。在复分析中,留数定理是用来计算解析函数沿着闭曲线的路径积分的一个有力的工具,也可以用来计算实函数的积分。它是柯西积分定理和柯西积分公式的推广。[1] 中文名留数定理外文名Residue theorem别称柯西留数定理应用学科工程学、数学适用领域范围工学相关术语解析函数 目录 1 定律定义 2 推导过程 3 相关术语 定律定义编辑 假设U是复平面上的一个单连通开子集,,是复平面上有限个点,是定义在U\{ }的全纯函数。如果γ是一条把包围起来的可求长曲线,但不经过任何一个,并且其起点与终点重合,那么: 如果γ是若尔当曲线,那么I(γ,ak)=1, 因此: 在这里,Res(f, ak)表示f在点ak的留数,I(γ, ak)表示γ关于点ak 的卷绕数[2] 。卷绕数是一个整数,它描述了曲线γ绕过点ak的次数。如果γ依逆时针方向绕着ak移动,卷绕数就是一个正数,如果γ根本不绕过ak,卷绕数就是零。

推导过程编辑 以下的积分 在计算柯西分布的特征函数时会出现,用初等的微积分是不可能把它计算出来的。我们把这个积分表示成一个路径积分的极限,积分路径为沿着实直线从?a到a,然后再依逆时针方向沿着以0为中心的半圆从a到?a。取a为大于1,使得虚数单位i包围在曲线里面。路径积分为: 由于eitz是一个整函数(没有任何奇点),这个函数仅当分母z2 + 1为零时才具有奇点。由于z2 + 1 = (z + i)(z ? i),因此这个函数在z = i或z = ?i时具有奇点。这两个点只有一个在路径所包围的区域中。 由于f(z)是 f(z)在z = i的留数是: 根据留数定理,我们有: 路径C可以分为一个“直”的部分和一个曲线弧,使得:

留数定理与几类积分的计算

留数定理与几类积分的计算 中文摘要 本文主要总结几类可用留数定理计算的积分的特征并给出对应的用留数定理算积分的步骤以及可行性说明。其中类型3是对文献1中给出的结论的推广,类型3中的引理2是笔者对文献1的一道习题的推广并给出了证明。接着笔者补充了参考文献2中多值函数积分部分4个引理的证明并给出相应的应用例子,类型7笔者根据个人理解将分成瑕积分和黎曼积分两类给出计算方法。 关键词:留数定理,积分计算,单值函数,多值函数 …… 正文 (一)单值函数 类型1:形如20(sint,cost)dt I R π =?的实积分,其中(x,y)R 是有理函数,并且在圆 周22{(x,y):x y 1}+=上分母不为零。 解决技巧:令it z e =,将实积分转化为单位圆周上的复积分。 由sin ,cost ,22 it it it it it e e e e t dz ie dt i ---+= ==可得: 22221 111111 (,)2Re ((,),z )22222n k C k z z z z I R dz i s R iz z iz iz z i =-+-+==π∑?① 其中,12,,...,n z z z 是22111 (,)22z z R iz z zi -+在单位圆周的所有孤立奇点,22111 (,)22z z R iz z zi -+在单位闭圆盘除去12,,...,n z z z 外的其他点都解析。 例子: 类型2:形如(x)dx I R +∞ -∞ =? 的实反常积分,其中(x)R 是有理函数,在实轴上分 母不为零,并且分母的次数至少比分子次数高2。计算公式为 1 2Re (R(z),z )n k k I i s ==π∑(其中12,,...,n z z z 为R(z)在上半平面的所有孤立奇点,R(z ) 在上半平面除去这些点外的其他点解析)

留数定理及应用

留数及其应用 摘 要 数定理得知,计算函数)(z f 沿C 的积分,可归结为计算围线C 内各孤立 奇点处的留数之和.而留数又是该奇点处的罗朗级数的负一次幂的系数,因此我们只关心该奇点处罗朗留数理论是复积分和复级数理论相结合的产物,利用留数定理可 以把沿闭路的积分转化为计算孤立点处的留数.此外,在数学分析及实际问题中,往往一些被积函数的原函数不能用初等函数表示,有时即便可以,计算也非常复杂.我们利用留数定理可以把要求的积分转化为复变函数沿闭曲线的积分,从而把待求积分转化为留数计算.本文首先介绍留数定义及留数定理,然后针对具体不同的积分类型有不同的计算方法以及留数理论在定积分中的一些应用. 关键词 留数定理;留数计算;应用 引 言 对留数理论的学习不仅是前面知识的延伸,更为对原函数不易直接求得的定积分和反常积分的求法提供了一个较为方便的方法. 一. 预备知识 孤立奇点 1.设()f z 在点a 的把计算闭曲线上的积分值的问题转化为计算各个孤立奇点上的留数的问题,即计算在每一个孤立奇点处的罗朗展式中负幂一次项的系数1-C .在一般情况下,求罗朗展式也是比较麻烦的,因此,根据孤立奇点的不同类型,分别建立留数计算的一些简便方法是十分必要的. 1.1 若0z 为)(z f 的可去奇点 则)(z f 在R z z <-<00某去心邻域内解析,但在点a 不解析, 则称a 为f 的孤立奇点.例如sin z z ,1 z e 以0=z 为孤立奇点. z 以0=z 为奇点,但不是孤立奇点,是支点. 11sin z 以0=z 为奇点(又由1sin 0=z ,得1(1, 2...,)π ==±±z k k 故0=z 不是孤立奇点) 2.设a 为()f z 的孤立奇点,则()f z 在a 的某去心邻域内,有

论文留数定理及其应用

石河子大学 本科毕业论文(设计) 留数定理及其应用 院系师范学院 专业数学与应用数学 姓名向必旭 指导老师曹月波 职称讲师 摘要 留数,也称残数,是指函数在其孤立奇点处的积分。综观复分析理论的早期发展,这一概念的提出对认识孤立奇点的分类及各类奇点之间的关系具有十分重要的意义。同时,它将求解定积分的值的方法推进到一个新的阶段,通过函数的选取,积分路径的选取等等,求解出了许多被积函数的原函数解不出来的情况,为积分理论的发展奠定了充分的基础。 1825 年,柯西在其《关于积分限为虚数的定积分的报告》中,基于与计算实积分问题的情形的类比,处理了复积分的相关问题,并给出了关于留数的定义。随后,柯西进一步发展和完善留数的概念,形成了定义。 柯西所给的这一定义一直沿用到了现在,推广到了微分方程,级数理论

及其他一些学科,并在相关学科中产生了深远影响,成为一个极其重要的概念。因而很自然地产生了这样一个问题:柯西为什么要定义这一概念或者说,什么因素促使柯西提出了留数的定义显然这一问题对于全面再现柯西的数学思想,揭示柯西积分理论乃至整个复分析研究的深层动机等具有极为重要的理论意义和历史意义。随着留数的发展,复积分的相关问题得到了极大的进步,并解决了一些广义积分和特殊定积分的计算问题。 关键字:留数;留数定理;积分 目录 摘要··············································· 1. 引言············································· 2. 留数············································· 2.1 留数的定义及留数定理························ 2.2 留数的求法·································· 2.3 函数在无穷远处的留数························ 3. 用留数定理计算实积分 3.1 计算形如∫f (cos x ,sin x )dx 2π 0的积分············ 3.2 计算形如∫f (x )+∞ ?∞dx 的积分···················· 3.3 计算形如∫P (x ) Q (X )+∞?∞e imx dx 的积分················ 3.4 计算形如∫P (x )Q (x ) +∞?∞ cos mxdx 和∫P (x ) Q (x ) +∞?∞sin mxdx 的积分 3.5 计算积分路径上有奇点的积分···················· 参考文献 1. 引言

第五章 留数定理习题及其解答

第五章 留数定理习题及其解答 5、1设有,能否说为本性奇点?为什么? 答:这个级数由两部分组成:即。第一个级数当即时收敛,第二个级数当即时收敛。于就是所给级数在环域内收敛(成立),且与函数。显然就是得解析点。可见此级数并非在得去心领域内成立。故不能由其含无限多个负幂项断定得性质。 注: 此例说明,判断孤立奇点类型虽可从得Laurent 展开式含有负幂项得情况入手,但切不可忘掉必须就是在去心领域内得Laurent 展式,否则与就是什么性质得点没有关系。 5、2 设在全平面解析,证明:若为得可去奇点,则必有(常数);若为得级极点,则必为次多项式:;除此之外,在处得Taylor 展式必有无限多项系数。 证: 因为在全平面解析,所以在邻域内Taylor 展式为且。注意到这Taylor 级数也就是在去心邻域内得Taylor 级数。 所以,当在得可去奇点<═>在去心邻域内Laurent 展示无得正幂项,即。 故(常数); 当为得级极点在去心邻域内Laurent 展示中只含有限个得正幂项,且最高正幂为次()。 1011() (0),0,()m m m m m n f z a a z a z a z a a n m --=++++≠=>L 即为次多项式; 除去上述两种情况, 为得本性奇点在去心邻域内Laurent 展开式中含有无限多个正幂项, 因此在中,有无限多个项得系数不为0。 注 (1)、 对本题得结论,一定要注意成立得条件为在全面解析,否则结论不成立。例:在内解析(与全平面解析仅差一个点!),且以为可去奇点,但又在内解析,且以=为一级极点,但它并不就是一次多项式,也不可能与任何一次多项式等价(它以=0为本性奇点)。同样地, 在内解析,以为本性奇点,但它不就是超越整函数,(它不就是整函数); (2)、 本题证明完全依赖于无穷远点性态得分类定义,同时注意,全平面解析得函数在邻域内Taylor 展示得收敛半径R= +,从而此Taylor 展示成立得区域恰就是得去心领域,即同一展示对而言即就是其去心领域内得Laurent 展式。 5、3 证明:如果为解析函数得阶零点,则必为得阶零点。(>1) 证 因为在点解析,且为其阶零点。故在得邻域内Taylor 展式为 其中 由Taylor 级数在收敛圆内可逐项微分性质有 右端即为在内得Taylor 展开式,由解析函数零点定义知,以为阶零点。 注 本证明仅用到解析函数零点定义及幂级数在收敛圆内可逐项求导得性质、 5、4 判断下列函数在无穷远点得性态 1) 2) 3) 4) 解 1) 因为在内解析,且所给形式即为它在该环域内得Laurent 展式,所以为得一级极点(为一级极点)、 2) 因为在内解析,且在此环域内有 21111(1)3521sin 23!5!(21)!n n z z z z Z n z z -++=+-++++L L 即在得去心邻域里得Laurent 展式中含有无限多个得正幂项,故为得本性奇点(0为二级极点)。 3) 因为 在处解析,以为本性奇点。 在中令,得。为得本性奇点,即为得本性奇点。 4) 令,得,即。 ∴ 为得零点,且

留数定理在定积分中的应用

留数定理在定积分中的应用 1. 留数定义及留数定理 1.1 留数的定义 设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域0z a R

由留数的定义,有 ()()2Re k k z a f z dz i s f z π=Γ=?. 特别地,由定义得 ()2Re k k z a f z dz i s π=Γ=?, 代入(1)式得 ()()1 2Re k n z a k C f z dz i s f z π===∑?. 2.留数定理在定积分中的应用 利用留数计算定积分活反常积分没有普遍的实用通法,我们只考虑几种特殊类型的积分. 2.1 形如 ()20 cos ,sin f x x dx π ?型的积分 这里()cos ,sin f x x 表示cos ,sin x x 的有理函数,并且在[]0,2π上连续,把握此类积分要注意,第一:积分上下限之差为2π,这样当作定积分时x 从0经历变到2π,对应的复变函数积分正好沿闭曲线绕行一周.第二:被积函数是以正弦和余弦函数为自变量。当满足这两个特点之后,我们可设ix z e =,则dz izdx =, 21sin 22ix ix e e z x i iz ---==,21cos 22ix ix e e z x z -++== 得 ()222 10 11cos ,sin ,22z z z dz f x x dx f z iz iz π =??--= ???? ?

留数定理及其在积分中的运用

江西师范大学数学与信息科学学院 学士学位论文 留数定理及其在积分中的运用 (Residue theorem and the use in the Calculus) 姓名:刘燕 学号: 0507010122 学院:数学与信息科学学院 专业:数学与应用数学 指导老师:易才凤(教授) 完成时间:2009年*月*日

留数定理及其在积分中的应用 【摘要】本文首先在预备知识中介绍了复函数积分,并介绍了留数的计算 方法等。在此基础上,我们叙述并证明了本文的主要内容--留数定理,并得到留数定理的推广。然后利用留数定理探讨分析学中的积分计算问题,并利用积分技巧得到它们的一般计算方法和公式,进而更简捷的解决了分析学中积分的计算问题. 【关键词】解析孤立奇点留数留数定理

Residue theorem and the use in the Calculus 【Abstract】This paper, we first introduce the prior knowledge of complex function Calculus,and introduce the method of calculating the residue, etc.On this basis,We described and proved the main contents of this article--the Residue theorem,and the promotion of the Residue theorem . This paper discussed the calculating problems of intgral in analysis with the theorem of residue, got the general computating method and formula by using analysical skills, and then made it easier to resolve the calculating problems. 【Key words】Analysis Isolated singular point Residue Residue theorem

论文留数定理及其应用

论文留数定理及其应用 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

石河子大学 本科毕业论文(设计) 留数定理及其应用 院系师范学院 专业数学与应用数学 姓名向必旭 指导老师曹月波 职称讲师 摘要 留数,也称残数,是指函数在其孤立奇点处的积分。综观复分析理论的早期发展,这一概念的提出对认识孤立奇点的分类及各类奇点之间的关系具有十分重要的意义。同时,它将求解定积分的值的方法推进到一个新的阶段,通过函数的选取,积分路径的选取等等,求解出了许多被积函数的原函数解不出来的情况,为积分理论的发展奠定了充分的基础。 1825 年,柯西在其《关于积分限为虚数的定积分的报告》中,基于与计算实积分问题的情形的类比,处理了复积分的相关问题,并给出了关于留数的定义。随后,柯西进一步发展和完善留数的概念,形成了定义。

柯西所给的这一定义一直沿用到了现在,推广到了微分方程,级数理论及其他一些学科,并在相关学科中产生了深远影响,成为一个极其重要的概念。因而很自然地产生了这样一个问题:柯西为什么要定义这一概念或者说,什么因素促使柯西提出了留数的定义显然这一问题对于全面再现柯西的数学思想,揭示柯西积分理论乃至整个复分析研究的深层动机等具有极为重要的理论意义和历史意义。随着留数的发展,复积分的相关问题得到了极大的进步,并解决了一些广义积分和特殊定积分的计算问题。 关键字:留数;留数定理;积分 目录 摘要··············································· 1.引 言············································· 2.留 数············································· 2.1留数的定义及留数定 理························ 2.2留数的求 法···························· ······ 2.3函数在无穷远处的留

留数定理及应用

留数定理及应用

留数及其应用 摘 要 数定理得知,计算函数)(z f 沿C 的积分,可归结为计算围线C 内 各孤立奇点处的留数之和.而留数又是该奇点处的罗朗级数的负一次幂的系数, 因此我们只关心该奇点处罗朗 留数理论是复积分和复级数 理论相结合的产物,利用留数定理可以把沿闭路的积分转化为计算孤立点处的留数.此外,在数学分析及实际问题中,往往一些被积函数的原函数不能用初等函数表示,有时即便可以,计算也非常复杂.我们利用留数定理可以把要求的积分转化为复变函数沿闭曲线的积分,从而把待求积分转化为留数计算.本文首先介绍留数定义及留数定理,然后针对具体不同的积分类型有不同的计算方法以及留数理论在定积分中的一些应用. 关键词 留数定理;留数计算;应用 引 言 对留数理论的学习不仅是前面知识的延伸,更为对原函数不易直接求得的定积分和反常积分的求法提供了一个较为方便的方法. 一. 预备知识 孤立奇点 1.设()f z 在点a 的把计算闭曲线上的积分值的问题转化为计算各个孤立奇点上的留数的问题,即计算在每一个孤立奇点处的罗朗展式中负幂一次项的系数1-C .在一般情况下,求罗朗展式也是比较麻烦的,因此,根据孤立奇点的不同类型,分别建立留数计算的一些简便方法是十分必要的. 1.1 若0z 为)(z f 的可去奇点 则)(z f 在R z z <-<00某去心邻域内解析,但在点a 不解析, 则称a 为f 的孤立奇点.例如sin z z ,1 z e 以0=z 为孤立奇点. z 以0=z 为奇点,但不是孤立奇点,是支点.

11sin z 以0=z 为奇点(又由1sin 0=z ,得1(1, 2...,)π ==±±z k k 故0=z 不是孤立奇点) 2.设a 为()f z 的孤立奇点,则()f z 在a 的某去心邻域内,有1 ()()() , ∞ ∞ -===+-∑∑-n n n n n n f z c z a c z a 称()n=1 ∞ -∑-n n c z a 为()f z 在点a 的主要部分,称 () ∞ =-∑n n n z a c 为()f z 在点a 的正则部分, 当主要部分为0时,称a 为()f z 的可去奇点; 当主要部分为有限项时,设为 (1)11 (0)()()------+++≠---L m m m m m c c c c z a z a z a 称a 为()f z 的m 级极点;当主要部分为无限项时,称a 为本性奇点. 二. 留数的概念及留数定理 1. 留数的定义 设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域 0z a R

第五章 留数定理习题及其解答

第五章 留数定理习题及其解答 5.1设有 ++++++++=+-1212221111)(n n n n z z z z z z f ,能否说0=z 为) (z f 本性奇点?为什么? 答:这个级数由两部分组成:即 ∑∑∞ =∞ =+-+1 012n n n n n z z 。第一个级数当1 1z 时收敛,第二个级数当1 2()f z 在∞去心邻域内Laurent 展示无z 的正幂项,即 120a a === 。 故0()f z a ≡(常数); 当∞为()f z 的m 级极点?()f z 在∞去心邻域内Laurent 展示中只含有限个z 的正幂 项,且最高正幂为m 次(0m a ≠)。 1011() (0),0,()m m m m m n f z a a z a z a z a a n m --=++++≠=> 即()f z 为m 次多项式; 除去上述两种情况, ∞为()f z 的本性奇点?()f z 在∞去心邻域内Laurent 展开式中 含有无限多个正幂项, 因此在 () z n n n f z a z ∞ ==<+∞ ∑中,有无限多个项的系数不为0。 注 (1). 对本题的结论,一定要注意成立的条件为()f z 在全面解析,否则结论不成 立。例: 1()f z z = 在0z <<+∞内解析(与全平面解析仅差一个点!),且以∞为可去奇点,

第五章 留数定理习题及其解答

第五章 留数定理习题及其解答 设有 ++++++++=+-1212221111)(n n n n z z z z z z f ,能否说0=z 为)(z f 本 性奇点为什么 答:这个级数由两部分组成:即∑∑∞ =∞ =+-+1 012n n n n n z z 。第一个级数当1 1 z 时收敛,第二个级数当1 2()f z 在∞去心邻域内Laurent 展示无z 的正幂项,即 120a a == =。 故0()f z a ≡(常数); 当∞为()f z 的m 级极点?()f z 在∞去心邻域内Laurent 展示中只含有限个z 的正幂项,且最高正幂为m 次(0m a ≠)。 1011() (0),0,()m m m m m n f z a a z a z a z a a n m --=++++≠=> 。 即()f z 为m 次多项式; 除去上述两种情况, ∞为()f z 的本性奇点?()f z 在∞去心邻域内Laurent 展开式中含有无限多个正幂项, 因此在 () z n n n f z a z ∞ ==<+∞ ∑中,有无限多个项的系数不为0。 注 (1). 对本题的结论,一定要注意成立的条件为()f z 在全面解析,否则结论不成 立。例: 1()f z z = 在0z <<+∞内解析(与全平面解析仅差一个点!),且以∞为可去奇点,

相关主题
文本预览
相关文档 最新文档