当前位置:文档之家› 硫化物检测方法讲解

硫化物检测方法讲解

硫化物检测方法讲解
硫化物检测方法讲解

硫化物

地下水(特别是温泉水)及生活污水,通常含有硫化物,其中一部分是在厌氧条件下,由于细菌的作用,使硫酸盐还原或由含硫有机物的分解而产生的。某些工矿企业,如焦化、造气、选矿、造纸、印染和制革等工业废水亦含有硫化物。

水中硫化物包括溶解性的H2S、HSˉ、S2ˉ,存在于悬浮物中的可溶性硫化物、酸可溶性金属硫化物以及末电离的有机、无机类硫化物。硫化氢易从水中逸散于空气,产生臭味,且毒性很大,它可与人体内细胞色素、氧化酶及该类物质中的二硫键(—S—S—)作用,影响细胞氧化过程,造成细胞组织缺氧,危及人的生命。硫化氢除自身能腐蚀金属外,还可被污水中的生物氧化成硫酸进而腐蚀下水道等。因此,硫化物是水体污染的一项重要指标(清洁水中,硫化氢的嗅阀值为0.035μg/L)。

本书所列方法测定的硫化物是指水和废水中溶解性的无机硫化物和酸溶性金属硫化物。

1.方法的选择

测定上述硫化物的方法,通常有亚甲蓝比色法和碘量滴定法以及电极电位法。当水样中硫化物含量小于1mg/L时,采用对氨基二甲基苯胺光度法,样品中硫化物含量大于1mg/L时,采用碘量法。电极电位法具有较宽的测量范围,它可测定10-6--101mo1/L之间的硫化物。2.水样保存

由于硫离子很容易氧化,硫化氢易从水样中逸出。因此在采集时应

防止曝气,并加入一定量的乙酸锌溶液和适量氢氧化钠溶液,使呈碱性并生成硫化锌沉淀。通常1L水样中加入2mo1/L[1/2Zn(Ac)2)]的乙酸锌溶液2ml,硫化物含量高时,可酌情多加直至沉淀完全为止。水样充满瓶后立即密塞保存。

水样的预处理

由于还原性物质,例如硫代硫酸盐、亚硫酸盐和各种固体的、溶解的有机物都能与碘起反应,并能阻止亚甲蓝和硫离子的显色反应而干扰测定;悬浮物、水样色度等也对硫化物的测定产生干扰。若水样中存在上述这些干扰物时,必须根据不同情况,按下述方法进行水样的预处理。1.乙酸锌沉淀-过滤法

当水样中只含有少量硫代硫酸盐、亚硫酸盐等干扰物质时,可将现场采集并已固定的水样,用中速定量滤纸或玻璃纤维滤膜进行过滤,然后按含量高低选择适当方法,直接测定沉淀中的硫化物。

2.酸化—吹气法

若水样中存在悬浮物或浑浊度高、色度深时,可将现场采集固定后的水样加入一定量的磷酸,使水样中的硫化锌转变为硫化氢气体,利用载气将硫化氢吹出,用乙酸锌—乙酸钠溶液或2%氢氧化钠溶液吸收,再行测定。

3.过滤—酸化—吹气分离法

若水样污染严重,不仅含有不溶性物质及影响测定的还原性物质,

并且浊度和色度都高时,宜用此法。即将现场采集且固定的水样,用中速定量滤纸或玻璃纤维滤膜过滤后,按酸化吹气法进行预处理。

预处理操作是测定硫化物的一个关健性步骤,应注意既消除干扰物的影响,又不致造成硫化物的损失。

仪器

(1) 中速定量滤纸或玻璃纤维滤膜。

(2) 吹气装置。

试剂

(1) 乙酸铅棉花:称取10g乙酸铅(化学纯)溶于100m1水中,将脱脂

棉置于溶液中浸泡0.5h后,晾干备用。

(2) 1十1磷酸。

(3) 吸收液:①乙酸锌-乙酸钠溶液:称取50g二水合乙酸锌和12.5g

三水合乙酸钠溶于水中,用水稀释至1000ml。若溶液浑浊,应

过滤。

②2%氢氧化钠溶液。

以上两种吸收液可任选一种使用。

(4) 载气:氮气(>99.9%)。

步骤

1.适用碘量法的吹气步骤

(1) 连接好吹气装置,通载气检查各部位是否漏气。完毕后,关闭

气源。

(2) 向吸收瓶3、4中,各加入50m1水及10m1吸收液①或60m1吸收

液②(不加水)。

(3) 向500ml平底烧杯中放入采样现场已固定并混匀的水样适量(硫

化物含量0.5—20mg),加水至200ml,放入水浴锅内,装好导气

管和分液漏斗。开启气源,以连续冒泡的流速(由转子流量计控

制流速)吹气5-10min(驱除装置内空气,并再次检查装置的各部

位是否严密),关闭气源。

(4) 向分液漏斗6中加入1十1磷酸10m1,开启分液漏斗活塞,待磷

酸全部流入烧瓶后,迅速关闭活塞。开启气源,水浴温度控制

在65-80℃,以控制好载气流速,吹气45min。将导气管及吸收

瓶取下,关闭气源。按碘量法分别测定两个吸收瓶中的硫化物

含量。

2.用于光度法的吹气法

(1) 连接好吹气装置,通载气检查各部位是否漏气。

(2) 向吸收管(包式吸收管或50m1比色管)中,加入10m1吸收液(同碘

量法)。

(3) 按碘量法吹气步骤(3)、(4)吹气45min, 然后将导气管及吸收管取

下,关闭气源。

按光度法步骤测定吸收管中硫化物含量。

注意事项

(1)吹气速度影响测定结果,流速不宜过快或过慢。必要时,应通过硫化物标准溶液进行回收率的测定,以确定合适的载气流速。

在吹气40min后,流速可适当加大,以赶尽最后残留在容器中

的H2S气体。

(2) 注意载气质量,必要时应进行空白试验和回收率测定。

(3) 浸入吸收液部分的导管壁上,常常粘附一定量的硫化锌,难以

用热水洗下。因此,无论用碘量法或比色法,均应进行定量反

应后,再取出导气管。

(4) 当水样中含有硫代硫酸盐或亚硫酸盐时,可产生干扰,这时应

采用乙酸锌沉淀过滤—酸化—吹气法。

(5) 应注意磷酸质量。当磷酸中含氧化性物质时,可使测定结果偏

低。

一、对氨基二甲基苯胺光度法

概述

1.方法原理

在含高铁离子的酸性溶液中,硫离子与对氨基二甲苯胺作用,生成亚甲蓝,颜色深度与水中硫离子浓度成正比。

2.干扰及消除

亚硫酸盐、硫代硫酸盐超过10mg/L时,将影响测定。必要时,增加硫酸铁铵用量,则其允许量可达40mg/L。亚硝酸盐达0.5mg/L时,产生干扰。其他氧化剂或还原剂亦可影响显色反应。亚铁氰化物可生成蓝色,产生正干扰。

3.方法的适用范围

本法最低检出浓度为0.02mg/L(S2ˉ),测定上限为0.8mg/L。当采用酸化--吹气预处理法时,可进一步降低检出浓度。酌情减少取样量,测定浓度可高达4mg/L。

仪器

(1) 分光光度计,10mm比色皿。

(2) 50ml比色管。

试剂

(1) 无二氧化碳水:将蒸馏水煮沸15min后,加盖冷却至室温。所有

实验用水均为无二氧化碳水。

(2) 硫酸铁铵溶液:取25g十二水合硫酸高铁铵溶解于含有5ml硫酸的

水中,稀释至200m1。

(3) 0.2%(m/V)对氨基二甲基苯胺溶液:称取2g对氨基二甲基苯胺盐

酸盐溶于700ml水中,缓缓加入200ml硫酸,冷却后,用水稀释至

1000m1。

(4) 1十5硫酸。

(5) 0.1mo1/L硫代硫酸钠标准溶液:称取24.8g五水合硫代硫酸钠,

溶于无二氧化碳水中,转移至1000ml棕色容量瓶内,稀释至标线,

摇匀。按本节(三)碘量法、试剂(4)进行标定。

(6) 2mo1/L乙酸锌溶液:

(7) 0.05mo1/L (l/2 I2)碘标准溶液:准确称取6.400g碘于250m1烧杯

中,加入20g碘化钾,加适量水溶解后,转移至1000m1棕色容量

瓶中,用水稀释至标线,摇匀。

(8) 1%淀粉指示液。

(9) 硫化钠标准贮备液:取一定量结晶九水合硫化钠置布氏漏斗中,

用水淋洗除去表面杂质,用干滤纸吸去水分后,称取7.5g溶于少

量水中,转移至1000ml棕色容量瓶中,用水稀释至标线,摇匀备

测。

标定:在250ml碘量瓶中,加入10ml 1mo1/L乙酸锌溶液,10.00ml待标定的硫化钠溶液及0.1mo1/L的碘标准溶液20.00m1,用水稀释至60ml,加入1十5硫酸5m1,密塞摇匀。在暗处放置5min,用0.1mol/L硫代硫酸钠标准溶液,滴定至溶液呈淡黄色时,加入1ml淀粉指示液,继续滴定至蓝色刚好消失为止,记录标准液用量。

同时以10ml水代替硫化钠溶液,作空白试验。

按下式计算1m1硫化钠溶液中含硫化物的毫克数:

硫化物(mg/m1)=()

00

.

10

03

.

16

1

?

?

-c

V

V

式中,V1——滴定硫化钠溶液时,硫代硫酸钠标准溶液用量(m1);

V0——空白滴定时,硫代硫酸钠标准溶液用量(m1);

c——硫代硫酸钠标准溶液的浓度(mo1/L);

16.03——1/2 S2-的摩尔质量(g/mo1)。

(10) 硫化钠标准使用液的配制:①吸取一定量刚标定过的硫化钠溶

液,用水稀释成1.00ml含5.0μg硫化物(S2-)的标准使用液,临用时现配。

②吸取一定量刚标定过的硫化钠溶液,移入已盛有2m1乙酸锌-乙酸

钠溶液和800m1水的1000m1棕色容量瓶中,加水至标线,充分混匀,使成均匀的含硫(S2-)浓度为5.0μg/m1的硫化锌混悬液。该溶液在20℃下保存,可稳定1—2周,每次取用时,应充分振摇混匀。

以上两种使用液可根据需要选择使用。

步骤

1.校准曲线的绘制

分别取0、0.50、1.00、2.00、3.00、4.00、5.00m1的硫化钠标准使用液①或②置50ml比色管中,加水至40ml,加对氨基二甲基苯胺溶液5ml,密塞。颠倒一次,加硫酸铁铵溶液1m1,立即密塞,充分摇匀。10min 后,用水稀释至标线,混匀。用10mm比色皿,以水为参比,在665nm 处测量吸光度,并作空白校正。

2.水样测定

将预处理后的吸收液或硫化物沉淀转移至50ml比色管或在原吸收管中,加水至40m1。以下操作同校准曲线绘制,并以水代替试样,按相同操作步骤,进行空白试验,以此对试样作空白校正。

计算

m

硫化物(S2—,mg/L) =

V

式中,m——从校准曲线上查出的硫量(μg),

V——水样体积(m1)。

精密度和准确度

六个实验室分析含0.029---0.043mg/L的硫化物加标水样,回收率为65-108%;单个实验室的相对标准偏差不超过12%;单个实验室分析含0.289—0.350mg/L的硫化物加标水样,回收率为80—97%;相对标准偏差不超过16%。

注意事项

(1) 水样中硫化物浓度波动较大,为此,可先按下述手续进行定性试

验:分取25—50m1混匀并已固定的水样,置于150ml锥形瓶中,

加水至50m1,加1十1硫酸2ml及数粒玻璃珠,立即在瓶口覆盖滤纸,并用橡皮筋扎紧。在滤纸中央滴加10%(m/V)乙酸铅溶液1滴,置电热板上加热至沸,取下锥形瓶。冷却后,取下滤纸,查看朝液面的斑点是呈淡棕色还是呈黑褐色,从而判断水样中含硫化物的大致含量,以确定水样取用量。

(2) 显色时,加入的两种试剂均含硫酸,应沿管壁徐徐加入,并加塞

混匀,避免硫化氢逸出而损失。

(3) 绘制校准曲线时,向反应瓶中加入的水量应与测定水样时的加入

量相同。

二、碘量法

概述

1.方法原理

硫化物在酸性条件下,与过量的碘作用,剩余的碘用硫代硫酸钠溶液滴定。由硫代硫酸钠溶液所消耗的量,间接求出硫化物的含量。2.干扰及消除

还原性或氧化性物质干扰测定。水中悬浮物或浑浊度高时,对测定可溶态硫化物有干扰。遇此情况应进行适当处理。

3.方法的适用范围

本方法适用于含硫化物在1mg/L以上的水和废水的测定。

(1) 250m1碘量瓶。

(2) 中速定量滤纸或玻璃纤维滤膜。

(3) 25m1或50m1滴定管(棕色)。

试 剂

(1) 1mo1/L 乙酸锌溶液:溶解220g 二水合乙酸锌于水中,用水稀释至

1000ml 。

(2) 1%淀粉指示液。

(3) 1十5硫酸

(4) 0.05mol /L 硫代硫酸钠标准溶液:称取12.4g 五水合硫代硫酸钠溶

于水中,稀释至1000ml ,加入0.2g 无水碳酸钠,保存于棕色瓶中。 标定:向250ml 碘量瓶内,加入lg 碘化钾及50m1水,加入重铬酸钾标准溶液[(l /6K 2Cr 2O 7)=0.05mol /L) 10.00ml ,加入1十5硫酸5ml ,密塞混匀。置暗处静置5min ,用待标定的硫代硫酸钠标准溶液滴定至溶液呈淡黄色时,加入1m1淀粉指示液,继续滴定至蓝色刚好消失,记录标准液用量(同时作空白滴定)。硫代硫酸钠标准溶液的浓度按下式计算:

c(Na 2S 2O 3) = ()

05.000.1521?-V V 式中,V 1—滴定重铬酸钾标准溶液消耗硫代硫酸钠标准溶液体积

(ml);

V 2——滴定空白溶液消耗硫代硫酸钠标准溶液体积(ml);

0.05——重铬酸钾标准溶液的浓度(mo1/L)。

其余试剂参见本节对氨基二甲基苯胺光度法。

将硫化锌沉淀连同滤纸转入250ml碘量瓶中,用玻璃棒搅碎,加50ml 水及10.00ml碘标准溶液,5m1 1十5硫酸溶液,密塞混匀。暗处放置5min,用硫代硫酸钠标准溶液滴定至溶液呈淡黄色时,加入1ml淀粉指示液,继续滴定至蓝色刚好消失,记录用量。同时作空白试验。

水样若经酸化吹气预处理,则可在盛有吸收液的原碘量瓶中,同上加入试剂进行测定。

计算

硫化物(S2–,mg/L)=()

V

c

V

V1000

03

.

16

1

?

?

-

式中:V0——空白试验中,硫代硫酸钠标准溶液用量(m1);

V1——水样滴定时,硫代硫酸钠标准溶液用量(m1);

V——水样体积(ml);

16.03——硫离子(1/2S2--)摩尔质量(g/mol);

c——硫代硫酸钠标准溶液浓度(mo1/L)。

注意事项

当加入碘液和硫酸后,溶液为无色,说明硫化物含量较高,应补加适量碘标准溶液,使呈淡黄棕色止。空白试验亦应加入相同量的碘标准溶液。

三、硫离子选择电极电位滴定法

概述

1.方法原理

用硫离子选择电极作指示电极,双桥饱和甘汞电极为参比电极,用标准硝酸铅溶液滴定硫离子,以伏特计测定电位变化指示反应终点。

Pb2+ 十S2—=PbS↓

硫化铅的溶度积=1×10-28。等当点时,硫离子浓度为10-14mol/L,若在等当点前[S2—]=10-6mo1/L,此时浓度变化8个数量级。根据能斯特方程:

E = E0–29log a s2–(25℃)

式中,E——电极电位;

E0——标准电极电位;

a s2–——硫离子活度。

从方程中看出,硫离子浓度变化8个数量级时,电位变化29×8mV。在终点时电位变化有突跃。用二阶微分法算出硝酸铅标准溶液的用量,即可求出样品中硫离子的含量。

2.干扰及消除

工业废水大多色深、浑浊,含有机物、阳离子、阴离子,成份复杂;且硫离子极易被氧化,不易保持稳定的浓度。

本法不受色深、浑浊的影响。Hg2+、Ag+、Cu2+、Cd2+等干扰测定。加入抗氧缓冲溶液(SAOB),可防止硫离子的氧化。SAOB溶液中含有水扬酸,能与多种金属离子如Fe3+、Fe2+、Cu2+、Cd2+、Zn2+、Cr3+等生成稳定的络合物,也能与Pb2+络合,但很不稳定。故能游离出金属硫化物中的硫离子于溶液中。SAOB溶液中的抗坏血酸能还原Hg2+、Ag+。

阴离子CNˉ,SHˉ的干扰可在滴定前加入几滴丙烯腈的异丙醇(10%)溶液予以消除。阴离子C1ˉ、SO42ˉ、SiO32ˉ、SO32ˉ、S2O32ˉ、PO43ˉ等不干扰本法测定。若水样中含有胶体,如栲胶等存在,在滴定前加入约0.2g 固体硝酸钙破坏胶体。

3.方法的适用范围

本法适用样品中硫离子浓度范围10ˉ1一103mg/L,检测下限浓度为0.2mg/L。经六个以上实验室验证,本法可用于制革、化工、造纸、印染等工业废水以及地表水中硫离子含量的测定。

4.采样与保存

采集水样时,应立即准确加入等体积SAOB(50%)溶液,用塞子塞紧瓶口。样品应尽快分析。水样在3d内,其被测组分浓度下降3%。

仪器

(l ) 精密酸度计或毫伏计。

(2) 硫离子选择电极。

(3) 双盐桥饱和甘汞电极。

(4) 电磁搅拌器。

(5) 微量滴定管:10.0ml或5.0ml(1/10或1/20刻度)。

试剂

(1)0.1000mo1/L标准硝酸铅溶液:准确称取分析纯硝酸铅33.120g 溶于去离子水中,转移到1000m1容量瓶中并稀释至标线。用时

可将此溶液再准确稀释成0.0100mol/L或0.0010mo1/L的标

准溶液。

(2) 标准硫化钠溶液:取九水合硫化钠晶体,用去离子水冲洗表面,

配成1×102mo1/L的溶液。该浓度用标准硝酸铅溶液来标定。

(3) SAOB(硫化物抗氧缓冲溶液)贮备液:溶解80g氢氧化钠于500ml

去离子水中,慢慢加入320g水扬酸钠,搅拌至所有固体溶解后,

再加入72g抗坏血酸,并加水至1L。通氮气5min除氧后,用塞

子塞紧放于暗处备用。此溶液可保存1.5个月。当此溶液变黑时

即失效。若无氮气,亦可用新煮沸并冷却的去离子水配制,先

将氢氧化钠和水扬酸钠配好,用时再按比例加入抗坏血酸。

SAOB(50%,V/V):取上述贮备液与等体积去离子水混合。步骤

1.取样

取得水样立即准确加入等体积SAOB(50%)溶液。用塞子塞紧。2.测定

吸取上述试样50.00ml于100m1烧杯中,放入搅拌子,将烧杯置于电磁搅拌器上,插入硫离子选择电极和双盐桥饱和甘汞电极,开动搅拌器,搅拌以不起漩涡为宜。将滴定管的管尖刚好插入液面(如不够长,可接一个尖嘴玻管),慢慢加入标准硝酸铅溶液。同时记录电位值。当电位发生突变后,再加入0.1ml滴定液,记录电位值和消耗标准硝酸铅溶液的体积数(ml)。

注:使用标准硝酸铅溶液的浓度,应根据水样中硫化物浓度确定,如下表所示。

标准硝酸铅的浓度

计算

先以二阶微分法求出硝酸铅溶液的终点时准确体积数。

精密度和准确度

13个实验室对工业废水中硫化物浓度l01—103mg/L范围测定的相对偏差为3%;回收率为95%以上。

注意事项

(1)标准硫化钠溶液的配制,用于本方法的验证与回收率试验。

当用碘量法标定硫化钠溶液浓度时,因硫化钠中杂质含量将

消耗碘,故标定数据要加以校正。

(2)抗氧化缓冲溶液中的水扬酸钠可用Na2-EDTA盐代替。即溶解120g氢氧化钠和186g Na2-EDTA盐于600ml水中,定容至1L,

贮于塑料瓶中,用时将抗坏血酸量按取此液100ml 7.2g加入。

此液可使用较长时间。

(3)因为是沉淀反应,为了保护和清洗电极方便,滴定样品中硫化物的浓度不宜太高。该法的测定下限一般可到5×10-6mol/

L。

硫化物的测定 碘量法

硫化物的测定(碘量法) 试剂 ①淀粉指示液 称取1g可溶性淀粉用少量水调成糊状,再用刚煮沸水冲稀至100mL。 ②硫代硫酸钠标准溶液 C(Na2S2O3·5H2O)=mol/L。称取五水合硫代硫酸钠(Na2S2O3·5H2O)和无水碳酸钠(Na2CO3)溶于水中,转移到1000mL棕色容量瓶中,稀释至标线,摇匀。 ③重铬酸钾标准溶液 c(1/6K2Cr2O7)=L。称取105℃烘干2h的基准或优级纯重铬酸钾溶于水中,稀释至1000mL。 ④溶液标定 于250mL碘量瓶内,加入1g碘化钾及50mL水,加入重铬酸钾标准溶液,加入盐酸溶液5mL,密塞混匀,置暗处静置5min,用待标定的硫代硫酸钠溶液滴定至溶液呈淡黄色时,加入1mL淀粉指示液,继续滴定至蓝色刚好消失,记录标准溶液用量,同时作空白滴定。 硫代硫酸钠浓度c(mol/L)由下式求出: 式中:V1——滴定重铬酸钾标准溶液时硫代硫酸钠标准溶液用量,mL; V2——滴定空白溶液时硫代硫酸钠标准溶液用量,mL; ——重铬酸钾标准溶液的浓度,mol/L。 硫代硫酸钠标准滴定液:c(Na2S2O3)=L。移取100mL刚标定过的硫代硫酸钠标准溶液于1000mL棕色容量瓶中,用水稀释至标线,摇匀,使用时配制。

碘标准溶液:c(1/2 I2)=L。移取碘于500mL烧杯中,加入40g碘化钾,加适量水溶解后,转移至1000mL棕色容量瓶中,稀释至标线,摇匀。 仪器 恒温水浴,0~100℃。150mL或250mL碘量瓶。25mL或50mL 棕色滴定管。 测定步骤 ①取200mL水样各加入碘标准溶液,密塞混匀。在暗处放置10min,用L硫代硫酸钠标准溶液滴定至溶液呈淡黄色时,加入1mL 淀粉指示液,继续滴定至蓝色刚好消失为止。 ②以水代替试样,重复步骤①。 ③硫化物含量C (mg/L)按下式计算: 式中:V0——空白试验中,硫代硫酸钠标准溶液用量,mL; Vi——滴定收硫化物含量时,硫代硫酸钠标准溶液用量,mL; V——试样体积,mL; ——硫离子(1/2S2-)摩尔质量(g/mol); c——硫代硫酸钠标准溶液浓度(mol/L)。

温度常用测量方法及原理

温度常用测量方法及原理 (1)压力式测温系统是最早应用于生产过程温度测量方法之一,是就地显示、控制温度应用十分广泛的测量方法。带电接点的压力式测温系统常作为电路接点开关用于温度就地位式控制。 压力式测温系统适用于对铜或铜合金不起腐蚀作用场合,优点是结构简单,机械强度高,不怕振动;不需外部电源;价格低。缺点是测温范围有限制(-80~400℃);热损失大,响应时间较慢;仪表密封系统(温包,毛细管,弹簧管)损坏难以修理,必须更换;测量精度受环境温度及温包安置位置影响较大;毛细管传送距离有限制。 (2)热电阻热电阻测量精度高,可用作标准仪器,广泛用于生产过程各种介质的温度测量。优点是测量精度高;再现性好;与热电偶测量相比它不需要冷点温度补偿及补偿导线。缺点是需外接电源;热惯性大;不能使用在有机械振动场合。 铠装热电阻将温度检测元件、绝缘材料、导线三者封焊在一根金属管内,它的外径可以做得很小,具有良好的力学性能,不怕振动。同时,它具有响应快,时间常数小的优点。铠装热电阻可制成缆状形式,具有可挠性,任意弯曲,适应各种复杂结构场合中的温度测量。 (3)双金属温度计双金属温度计也是用途十分广泛的就地温度计。优点是结构简单,价格低;维护方便;比玻璃温度计坚固、耐振、耐冲击;示值连续。缺点是测量精度较低。 (4)热电偶热电偶在工业测温中占了很大比重。生产过程远距离测温大多使用热电偶。优点是体积小,安装方便;信号远传可作显示、控制用;与压力式温度计相比,响应速度快;测温范围宽;测量精度较高;再现性好;校验容易;价

低。缺点是热电势与温度之间是非线性关系;精度比电阻低;在同样条件下,热电偶接点易老化。 (5)光学高温计光学高温计结构简单、轻巧、使用方便,常用于金属冶炼、玻璃熔融、热处理等工艺过程中,实施非接触式温度测量。缺点是测量靠人眼比较,容易引入主观误差;价格较高。 (6)辐射高温计辐射高温计主要用于热电偶无法测量的超高温场合。优点是高温测量;响应速度快;非接触式测量;价格适中。缺点是非线性刻度;被测对象的辐射率、辐射通道中间介质的吸收率会对测量造成影响;结构复杂。(7)红外测温仪(便携式)特点是非接触测温;测温范围宽(600~1800℃ /900~2500℃);精度高示值的1%+1℃;性能稳定;响应时间快(0.7s);工作距离大于0.5m。

硫化物测试方法

6硫化物 6.1 N,N-=乙基对苯二胺分光光度法 6.1.1 范围 本标准规定了用N,N-=乙基对苯二胺分光光度法测定生活饮用水及其水源水中的硫化物。 24GB/T 5750.5-2006 本法适用于生活饮用水及其水源水中质量浓度低于1mg/l。的硫化物的测定。 本法最低检测质量为1.0tig,若取50 mL水样测定,则最低检测质量浓度为o.02 mg/L。 亚硫酸盐超过40 rng/l.,硫代硫酸盐超过20 mg/L,对本标准有干扰;水样有颜色或者浑浊时亦有 干扰,应分别采用沉淀分离或曝气分离法消除干扰。 6.1.2原理 硫化物与N,N-=乙基对苯二胺及氯化铁作用,生成稳定的蓝色,可比色定量。 6.1.3试剂 6.1.3.1 盐酸(P20一1.19 g/ mL)。 6.1.3.2盐酸溶液(1+1)。 6.1.3.3 乙酸(Pzo =1- 06 g/ mL)。 6.1.3.4 乙酸锌溶液(220 g/L):称取22 g乙酸锌[ZTl(CH3COO)Z.2Hz0],溶于纯水并稀释至 100 mL。 6.1.3.5 氢氧化钠溶液(40 g/L)。 6.1.3.6硫酸溶液(1+1)。 6.1.3.7 N,N-=乙基对苯二胺溶液:称取0.75 gN,N-=乙基对苯二胺硫酸盐[(CZHS)ZNC6H4NHZ ·H2 S04,简称DPD,也可用盐酸盐或草酸盐],溶于50 mL纯水中,加硫酸溶液(1+1)至100 ml。混匀, 保稃于棕色瓶中。如发现颜色变红,应予重配。 6.1.3.8氯化铁溶液(1000 g] L):称取100 g氯化铁(FeCI3.6Hz O),溶于纯水,并稀释至100 mL。 6.1.3.9抗坏血酸溶液(10 g/l。):此试剂用时新配。 6.1.3. 10 Na2 EDTA溶液:称取3,7g乙二胺四乙酸二钠(C,。H1z Na2·2Hz O)和4.0 g 氢氧化钠,溶于 纯水,并稀释至1 000 mL。 6.1.3. 11 碘标准溶液,[c(l/212) =0. 012 50 mol/L]:称取40 g碘化钾,置于玻璃乳钵内,加少许纯水 溶解。加入13 g碘片,研磨使碘完全溶解,移人棕色瓶内,用纯水稀释至1000 mL,用硫代硫酸钠标准 溶液(6.1.3.12)标定后保存在暗处,临用时将此碘液稀释为c(l/2 Iz) =0. 012 50 mol/L 碘标准溶液。 6.1.3. 12 硫代硫酸钠标准溶液[f(NazS:03)=o.1 rnol/L]:称取26 g硫代硫酸钠(Na2 S2 03. SH:O),溶于新煮沸放冷的纯水中,并稀释至1000 mL。加入0.4 g氢氧化钠或0.2 g无水碳酸钠 (Na2 C03),储于棕色瓶内,摇匀,放置1个月,过滤。按下述方法标定其准确浓度:

硫化物分析方法二 碘量法

3.11.2硫化物分析方法二 碘量法 1) 适用范围 本方法适用于废水中含量大于1mg/L 硫化物的测定。 2) 测定原理 废水中硫化物与醋酸锌反应,生成硫化锌白色沉淀,将此沉淀溶解于酸,加入过量的标准碘液,使它与之作用,过量的碘再用硫代硫酸钠标准溶液回滴。 3) 试剂 3.1) 10×10-2醋酸锌:称取10g 醋酸锌溶于90mL 蒸馏水。 3.2) C (Na 2S 2O 3)=0.0250mol/L 标准溶液 3.3) C (1/2I 2)=0.0250mol/L 标准溶液 3.4) (1+3H 2SO 4)溶液 3.5) 1×10-2淀粉指示剂:称取1g 可溶性淀粉,用少水调成糊状,倾入煮沸的蒸馏水中至总体积为100mL 。 4) 仪器 25mL 棕色滴定管 250mL 碘量瓶 5)分析步骤 于250mL 碘量瓶中加10.00mL10×10-2醋酸锌溶液(必须过量使硫化物全部沉淀),取含硫5—20mg 的水样于此碘量瓶中,摇匀过滤,并用蒸馏水洗涤沉淀几次,弃去滤液将滤纸连同沉淀物置于原碘量瓶中,加蒸馏水至100mL ,塞上塞子,用力摇碎滤纸,加入C (1/2I 2)=0.0250mol/L 标准溶液20.00mL ,(1+3)H 2SO 4溶液5.00mL ,盖上塞子,以蒸馏水封口,摇匀置暗处10~30分钟,使硫化物全部溶解,用C (Na 2S 2O 3)=0.0250mol/L 标准溶液滴定,当溶液呈淡黄色时,加入淀粉指示剂1mL ,继续滴至兰色消失,记录Na 2S 2O 3标准溶液消耗量V 1,mL ,并作空白试验,记录用量V 0,mL 。 6) 计算 201223()()16.031000(/)V V C Na S O S mg L V --???= 式中:

硫化氢的测定

硫化氢的测定 (依据GB/T 14678-93) 1适用范围 本方法适用于恶臭污染源排气和环境空气中硫化氢、甲硫醇和二甲 二硫的测定。气相色谱仪的火焰光度检测器对四种成分的检出限为0.2×10-9—1.0×10-9g,当气体样品中四种成分浓度高于1.0mg/m3时,可取1-2ml气体样品直接注入气相色谱仪分析。对1L气体样品进行 浓缩,四种成分的方法检出限分别为0.2×10-9-1.0×10-9mg/m3。 2原理 本方法以经真空处理的1L采气瓶采集无组织排放源恶臭气体或环 境空气样品,以聚酯塑料袋采集排气筒内恶臭气体样品。硫化物含 量较高的气体样品可直接用注射器取样1-2ml,注入安装火焰光度检测器(FPD)的气相色谱仪分析。当直接进样体积中硫化物绝对量 低于仪器检出限时,则需以浓缩管在以液氧为致冷剂的低温条件下 对1L气体样品中的硫化物进行浓缩,浓缩后将浓缩管连入色谱仪分析系统并加热至100℃,使全部浓缩成分流经色谱柱分离,由FPD 对各种硫化物进行定量分析。在一定浓度范围内,各种硫化物含量 的对数与色谱峰高的对数成正比。 3试剂和材料 3.1试剂 3.1.1苯(C6H6)分析纯(有毒),经色谱检验无干扰峰。如有干 扰峰则需用全玻璃蒸馏器重新蒸馏。 3.1.2硫化氢(H2S):纯度大于99.9%,实验室制备的硫化氢需进 行标定。 3.1.3甲硫醇(CH3SH):分析纯 3.1.4甲硫醚[(CH3)2S]:分析纯 3.1.5二甲二硫[(CH3)2S2]:分析纯 3.1.6磷酸(H3SO4):分析纯 3.1.7丙酮(CH3COCH3):分析纯 3.1.8液态氮 3.2色谱仪载气和辅助气体 3.2.1载气:氮气,纯度99.99%,用装5A分子筛净化管净化。

温度测量方法

材料物理专业杨洁学号:0743011033 温度测量方法材料物理专业一班杨洁学号:0743011033 我们大家都知道温度是表征物体冷热程度的物理量. 而测量温度的标尺是温度计,其按照测量方式可以分为接触式和非接触式两种. 通常来说的接触式测量仪表比较简单,可靠,测量精度高,但是因为测温元件与被测介质需要进行充分的热交换,所以其需要一定的时间才能达到热平衡, 所以,存在测温延迟现象,同时受耐高温和耐低温材料的限制,不能应用于这些极端的温度测量.非接触式仪表测温仪是通过热辐射的原理来测量温度的,测温元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体发射率,测量距离,烟尘和水汽等外界因素的影响,其测量误差较大. 下面就简单介绍几种温度计: 1,气体温度计:利用一定质量的气体作为工作物质的温度计.用气体温度计来体现理想气体温标为标准温标. 用气体温度计所测得的温度和热力学温度相吻合.气体温度计是在容器里装有氢或氮气(多用氢气或氦气作测温物质,因为氢气和氦气的液化温度很低,接近于绝对零度,故它的测温范围很广) ,它们的性质可外推到理想气体.这种温度计有两种类型:定容气体温度计和定压气体温度计.定容气体温度计是气体的体积保持不变,压强随温度改变.定压气体温度计是气体的压强保持不变,体积随温度改变. 2,电阻温度计:根据导体电阻随温度而变化的规律来测量温度的温度计. 最常用的电阻温度计都采用金属丝绕制成的感温元件, 主要有铂电阻温度计和铜电阻温度计,在低温下还有碳,锗和铑铁电阻温度计.精密的铂电阻温度计是目前最精确的温度计,温度覆盖范围约为14~903K,其误差可低到万分之一摄氏度,它是能复现国际实用温标的基准温度计.我国还用一等和二等标准铂电阻温度计来传递温标,用它作标准来检定水银温度计和其他类型的温度计.分为金属电阻温度计和半导体电阻温度计,都是根据电阻值随温度的变化这一特性制成的.金属温度计主要有用铂,金,铜,镍等纯金属的及铑铁,磷青铜合金的;半导体温度计主要用碳,锗等.电阻温度计使用方便可靠,已广泛应用.它的测量范围为-260℃至600℃左右. 3,温差电偶温度计:利用温差电偶来测量温度的温度计.将两种不同金属导体的两端分别连接起来,构成一个闭合回路,一端加热,另一端冷却,则两个接触点之间由于温度不同,将产生电动势,导体中会有电流发生.因为这种温差电动势是两个接触点温度差的函数,所以利用这一特性制成温度计.若在温差电偶的回路里再接入一种或几种不同金属的导线, 所接入的导线与接触点的温度都是均匀的,对原电动势并无影响,通过测量温差电动势来求被测的温度,这样就构成了温差电偶温度计.这种温度计测温范围很大.例如,铜和康铜构成的温差电偶的测温范围在200~400℃之间;铁和康铜则被使用在200~1000℃之间;由铂和铂铑合金(铑10%)构成的温差电偶测温可达千摄氏度以上;铱和铱铑(铑50%)可用在2300℃;若用钨和钼(钼25%)则可高达2600℃. 4,高温温度计:是指专门用来测量500℃以上的温度的温度计,有光测温度计,比色温度计和辐射温度计.高温温度计的原理和构造都比较复杂,这里不再讨论.其测量范围为500℃至3000℃以上,不适用于测量低温. 2010-3-25 1 材料物理专业杨洁学号:0743011033 5,指针式温度计:是形如仪表盘的温度计,也称寒暑表,用来测室温,是用金属的热胀冷缩原理制成的.它是以双金属片做为感温元件,用来控制指针. 双金属片通常是用铜片和铁片铆在一起,且铜片在左,铁片在右.由于铜的热胀冷缩效果要比铁明显的多,因此当温度升高时,铜片牵拉铁片向右弯曲,指针在双金属片的带动下就向右偏转(指向高温) ;反之,温度变低,指针在双金属片的带动下就向左偏转(指向低温) . 6,玻璃管温度计:玻璃管液体温度计是应用最广泛的一种温度计,其结构简单,使用方便,准确度高,价格低廉.按用途分类,可分为工业,标准和实验室用三种.标准玻璃温度计是成套供应的,可以作为检定其他温度计用,准确度可达0.05 ~ 0.1 摄氏度;工业用玻璃温度计为了避免使用是被碰碎,在玻璃管外通常由金属保护套管,仅露出标尺部分,供操作人员读数.实验室用的玻璃管温度计的形式和标准的相仿,准确度也较高. 7,压力式温度计:新一代液体压力式温度计以及由此开发的系列化测温仪表,克服了原仪表性能单一,可靠性差以及温包积大的缺点,并将测温元件体积缩小到原

简析水中硫化物的测定方法及影响因素

简析水中硫化物的测定方法及影响因素 我们在监测化验环境的时候常会用到碘量法。作者具体的论述了水质硫化物碘量测定法,并且论述了试剂和设备的选取等,论述了碘量法中对硫化物产生干扰的要素。 标签:水中硫化物;测定方法;碘量法;影响因素 水里面的硫化物很多,比如能够溶解的H2S、HS-、S2-,可溶性硫化物、酸可溶性金属硫化物以及未电离的有机类、无机类硫化物等。其中硫化氢会扩散在空气中,有毒,而且臭味较为明显。一旦和人体细胞中发生作用,就会干扰细胞的氧化,最终导致细胞无法获取氧气,进而使得人的生命垂危。它不但能够侵蚀金属,还会被水体里面的微生物侵蚀,进而生成硫酸物质。 1 水质硫化物碘量测定法 1.1 直接碘量法 所谓的直接碘量措施,具体的说是用碘滴液滴在物质上进而引起反应的一种方法。它只可以用到酸性或是弱碱的液体中,假如该溶液的pH值超过9的话,就会形成副反应,此时就无法保证测量结果的精准性。我们常用淀粉指示剂来指示终点。这主要是因为淀粉一旦遇到碘液就会变成蓝色,其反应非常灵敏。化学计量点稍后,液体中有过多的碘,碘和淀粉融合显示蓝色,标志终点。除此之外,也可以使用碘本身的色泽来指示,在计量之后,液体中过多的碘就会呈现出黄色,以此来标示终点。 1.2 剩余碘量法 所谓的剩余碘量法具体的说是在溶液里添加正好以及过多的碘液,当I2与测定组分反应完全后,然后用硫代硫酸钠滴定液滴定剩余的碘,进而得到待测组的物质含量的一种措施。该措施在使用的时候常将淀粉当成指示物质。一般淀粉应该在临近终点的时候才添加,这主要是因为液体中有过多的碘的话,它会附着在淀粉上面,进而干扰到我们判断终点。 1.3 置换碘量法 该措施指的是先在样本里面添加碘化钾,此时试品就会将其中的过多的钾析出,然后将硫酸钠滴放到碘上面,此时就能够得到测定物质的含量。 2 做好试剂以及设备的选取工作 2.1 正确选择试剂

水质 硫化物的测定 碘量法

水质硫化物的测定碘量法 Water quality-Determination of sulfides lodometric method HJ/T 60-2000 批准日期2000-12-07 实施日期2000-12-07 1 主题内容与适用范围 1.1主题内容 本标准规定了测定水和废水中硫化物的碘量法。本标准规定的硫化物是指水和废水中溶解性的无机硫化物和酸溶性金属硫化物的总称。 1.2适用范围 1.2.1本标准适用于测定水和废水中的硫化物。 1.2.2试样体积200mL,用0.01mol/L硫代硫酸钠溶液滴定时,本方法适用于含硫化物在 0.40mg/L以上的水和废水测定。 1.2.3共存物的干扰与消除:试样中含有硫代硫酸盐、亚硫酸盐等能与碘反应的还原性物质产生正干扰,悬浮物、色度、法度及部分重金属离子也干扰测定,硫化物含量为2.00mg/L时, 样品中干扰物的最高允许含量分别为S 2O 3 2-30mg/L、NO 2 -2mg/L、SCN-80mg/L、Cu2+2mg/L、Pb2+1mg/L 和Hg2+1mg/L;经酸化-吹气-吸收预处理后,悬浮物、色度、浊度不干扰测定,但SO 3 2-分离不 完全,会产生干扰。采用硫化锌沉淀过滤分离SO 32-,可有效消除30mg/L SO 3 2-的干扰。 2、原理 在酸性条件下,硫化物与过量的碘作用,剩余的碘用硫代硫酸钠滴定。由硫代硫酸钠溶液所消耗的量,间接求出硫化物的含量。 3、试剂 除非另有说明,分析时均使用符合国家标准的分析纯试剂,去离子水或同等纯度的水。 3.1盐酸(HCI):p=1.19g/mL。 3.2磷酸(H 3PO 4 ):p=1.69g/mL。 3.3乙酸(CH 3 COOH):p=1.05g/mL。 3.4载气:高纯氮,纯度不低于99.99%。 3.5盐酸溶液:1:1,用盐酸(3.1)配制。 3.6磷酸溶液:1:1,用磷酸(3.2)配制。 3.7乙酸溶液:1:1,用乙酸(3.3)配制。 3.8氢氧化钠溶液:c(NaOH)=1mol/L。将40g氢氧化钠(NaOH)溶于500mL水中,冷至室温,稀释至1000mL。 3.9乙酸锌溶液:c[Zn(CH 3COO) 2 ]=1mol/L。称取220g乙酸锌[Zn(CH 3 COO) 2 ,溶于水并稀 释至1000mL。

常用的温度测量方法

常用的温度测量方法 温度的测量方法,按照测量温度所使用工具以及原理的不同,通常分为以下几种: 电阻变化:热敏导体或半导体在受热后导致的电阻值变化。 热膨胀:固体、气体、液体等在受热后发生的热膨胀。 热电效应:不同材质导线连接的闭合回路,两接点的温度不同,造成回路内所产生热电势。 热辐射:物体的热辐射随温度的变化而变化。 其它:射流测温、涡流测温、激光测温等。 下表是各种不同温度计的量程和优缺点比较 (一)玻璃管温度计 1. 常用玻璃管温度计 特点:玻璃管温度计结构简单、价格便宜、读数方便,而且有较高的精度 种类:实验室用得最多的是水银温度计和有机液体温度计。水银温度计测量范围广、刻度均匀、读数准确,但玻璃管破损后会造成汞污染。有机液体(如乙醇、苯等)温度计着色后读数明显,但由于膨胀系数随温度而变化,故刻度不均匀,

读数误差较大。 2. 玻璃管温度计的安装和使用 (1)玻璃管温度计应安装在没有大的振动,不易受碰撞的设备上。特别是有机液体玻璃温度计,如果振动很大,容易使液柱中断。 (2)玻璃管温度计的感温泡中心应处于温度变化最敏感处。 (3)玻璃管温度计要安装在便于读数的场所。不能倒装,也应尽量不要倾斜安装。 (4)为了减少读数误差,应在玻璃管温度计保护管中加入甘油、变压器油等,以排除空气等不良导体。 (5)水银温度计读数时按凸面最高点读数;有机液体玻璃温度计则按凹面最低点读数。 (6)为了准确地测定温度,用玻璃管温度计测定物体温度时,如果指示液柱不是全部插入欲测的物体中,会使测定值不准确,必要时需进行校正。 3. 玻璃管温度计的校正 玻璃管温度计的校正方法有以下两种: (1)与标准 >标准温度计在同一状况下比较 实验室内将被校验的玻璃管温度计与标准温度计插入恒温糟中,待恒温槽的温度稳定后,比较被校验温度计与标准温度计的示值。示值误差的校验应采用升温校验,因为对于有机液体来说它与毛细管壁有附着力,在降温时,液柱下降会有部分液体停留在毛细管壁上,影响读数准确。水银玻璃管温度计在降温时也会因磨擦发生滞后现象。 (2)利用纯质相变点进行校正 ①用水和冰的混合液校正0℃ ②用水和水蒸汽校正100℃ (二)热电偶温度计 1. 热电偶测温原理 热电偶是根据热电效应制成的一种测温元件。它结构简单,坚固耐用,使用方便,精度高,测量范围宽,便于远距离、多点、集中测量和自动控制,是应用很广泛的一种温度计。如果取两根不同材料的金属导线A和B,将其两端焊在一起,这样就组成了一个闭合回路。因为两种不同金属的自由电子密度不同,当两种金属接触时在两种金属的交界处,就会因电子密度不同而产生电子扩散,扩散结果在两金属接触面两侧形成静电场即接触电势差。这种接触电势差仅与两金属的材料和接触点的温度有关,温度愈高,金属中自由电子就越活跃,致使接触处所产生的电场强度增加,接触面电动势也相应增高。由此可制成热电偶测温计。 2. 常用热电偶的特性 几种常用的热电偶的特性数据见表3-2。使用者可以根据表中列出的数据,选择合适的二次仪表,确定热电偶的使用温度范围。

硫化物检测方法.

硫化物 地下水(特别是温泉水)及生活污水,通常含有硫化物,其中一部分是在厌氧条件下,由于细菌的作用,使硫酸盐还原或由含硫有机物的分解而产生的。某些工矿企业,如焦化、造气、选矿、造纸、印染和制革等工业废水亦含有硫化物。 水中硫化物包括溶解性的H2S、HSˉ、S2ˉ,存在于悬浮物中的可溶性硫化物、酸可溶性金属硫化物以及末电离的有机、无机类硫化物。硫化氢易从水中逸散于空气,产生臭味,且毒性很大,它可与人体内细胞色素、氧化酶及该类物质中的二硫键(—S—S—)作用,影响细胞氧化过程,造成细胞组织缺氧,危及人的生命。硫化氢除自身能腐蚀金属外,还可被污水中的生物氧化成硫酸进而腐蚀下水道等。因此,硫化物是水体污染的一项重要指标(清洁水中,硫化氢的嗅阀值为0.035μg/L)。 本书所列方法测定的硫化物是指水和废水中溶解性的无机硫化物和酸溶性金属硫化物。 1.方法的选择 测定上述硫化物的方法,通常有亚甲蓝比色法和碘量滴定法以及电极电位法。当水样中硫化物含量小于1mg/L时,采用对氨基二甲基苯胺光度法,样品中硫化物含量大于1mg/L时,采用碘量法。电极电位法具有较宽的测量范围,它可测定10-6--101mo1/L之间的硫化物。2.水样保存 由于硫离子很容易氧化,硫化氢易从水样中逸出。因此在采集时应

防止曝气,并加入一定量的乙酸锌溶液和适量氢氧化钠溶液,使呈碱性并生成硫化锌沉淀。通常1L水样中加入2mo1/L[1/2Zn(Ac)2)]的乙酸锌溶液2ml,硫化物含量高时,可酌情多加直至沉淀完全为止。水样充满瓶后立即密塞保存。 水样的预处理 由于还原性物质,例如硫代硫酸盐、亚硫酸盐和各种固体的、溶解的有机物都能与碘起反应,并能阻止亚甲蓝和硫离子的显色反应而干扰测定;悬浮物、水样色度等也对硫化物的测定产生干扰。若水样中存在上述这些干扰物时,必须根据不同情况,按下述方法进行水样的预处理。1.乙酸锌沉淀-过滤法 当水样中只含有少量硫代硫酸盐、亚硫酸盐等干扰物质时,可将现场采集并已固定的水样,用中速定量滤纸或玻璃纤维滤膜进行过滤,然后按含量高低选择适当方法,直接测定沉淀中的硫化物。 2.酸化—吹气法 若水样中存在悬浮物或浑浊度高、色度深时,可将现场采集固定后的水样加入一定量的磷酸,使水样中的硫化锌转变为硫化氢气体,利用载气将硫化氢吹出,用乙酸锌—乙酸钠溶液或2%氢氧化钠溶液吸收,再行测定。 3.过滤—酸化—吹气分离法 若水样污染严重,不仅含有不溶性物质及影响测定的还原性物质,

硫化氢 亚甲基蓝分光光度法(打印版 《空气和废气监测分析方法》第

硫化氢亚甲基蓝分光光度法 《空气和废气监测分析方法》(第四版增补版) 1.原理 硫化氢被氢氧化镉-聚乙烯醇磷酸铵溶液吸收,生成硫化镉胶状沉淀。聚乙烯醇磷酸铵能保护硫化镉胶体,使其隔绝空气和阳光,以减少硫化物的氧化和光分解作用。在硫酸溶液中,硫离子与对氨基二甲基苯胺溶液和三氯化铁溶液作用,生成亚甲基蓝,根据颜色深浅,用分光光度法测定。 方法检出限为0.07μg/10ml(按与吸光度0.01相对应的硫化氢浓度计),当采样体积为60L 时,最低检出浓度为0.001mg/m3。 2.仪器 ①大型气泡吸收管:10ml。 ②具塞比色管:10ml ③空气采样器:0~1L/min ④分光光度计 3.试剂 1)吸收液:4.3g硫酸镉(3CdSO4·8H2O)、0.30g氢氧化钠和10.0g聚乙烯醇磷酸铵,分别溶于少量水后,并混合,强烈振摇混合均匀,用水稀释至1000ml。此溶液为乳白色悬浮液。在冰箱中可保存一周。 2)三氯化铁溶液:50g三氯化铁(FeCl3·6H2O),溶解于水中,稀释至50ml。 3)磷酸氢二铵溶液:20g磷酸氢二铵[(NH4)2HPO4],溶解于水,稀释至50ml。 4)硫代硫酸钠溶液C(Na2S2O3)=0.1mol/L:称取25g硫代硫酸钠(Na2S2O3·5H2O),溶于1000ml新煮沸并已冷却的水中,加0.20g无水碳酸钠,贮于棕色细口瓶中,放置一周后标定其浓度,若溶液呈现浑浊时,应该过滤。

5)硫代硫酸钠标准溶液C(Na2S2O3)=0.0100mol/L:取50.00ml标定过的0.1mol/L硫代硫酸钠溶液,置于500ml容量瓶中,用新煮沸并已冷却的水稀释至标线。 6)碘贮备液C(1/2 I2)=0.10mol/L:称取12.7g碘于烧杯中、加入40g碘化钾、25ml水,搅拌至全部溶解后,用水稀释至1000ml,贮于棕色细口瓶中。 7)碘溶液C(1/2 I2)=0.010mol/L:量取50ml碘贮备液,用水稀释至500ml,贮于棕色细口瓶中。 8)0.5%淀粉溶液:称取0.5g可溶性淀粉,用少量水调成糊状,搅拌下倒入100ml沸水中,煮沸至溶液澄清,冷却后贮于细口瓶中。 9)0.1%乙酸锌溶液:0.20g乙酸锌溶于200ml水中。 10)(1+1)盐酸溶液。 11)对氨基二甲基苯胺溶液(NH2C6H4N(CH3)2·2HCl): ①贮备液:量取浓硫酸25.0ml,边搅拌边倒入15.0ml水中,待冷。称取6.0g对氨基二甲基苯胺盐酸盐,溶解于上述硫酸溶液中,在冰箱中可长期保存。 ②使用液:吸取2.5ml贮备液,用(1+1)硫酸溶液稀释至100ml。 ③混合显色剂:临用时,按1.00ml对氨基二甲基苯胺使用液和一滴(约0.04ml)三氯化铁溶液的比例相混合。若溶液呈现浑浊,应弃之,重新配制。

T 环境空气 硫化氢的测定 亚甲蓝分光光度法

FHZHJDQ0147 环境空气硫化氢的测定亚甲蓝分光光度法 F-HZ-HJ-DQ-0147 环境空气—硫化氢的测定—亚甲蓝分光光度法 1 范围 本方法规定了用亚甲蓝分光光度法测定居住区空气中硫化氢的浓度。 本方法适用于居住区空气硫化氢浓度的测定,也适用于室内和公共场所空气中硫化氢浓度的测定。 10mL吸收液中含有1μg硫化氢应有0.155±0.010吸光度。 检出下限为0.15μg/10mL。若采样体积为30L时,则最低检出浓度为0.005mg/ m3。 测定范围为10mL样品溶液中含0.15~4μg硫化氢。若采样体积为30L时,则可测浓度范围为0.005~0.13mg/m3。如硫化氢浓度大于0.13mg/m3,应适当减小采样体积,或取部分样品溶液,进行分析。 由于硫化镉在光照下易被氧化,所以采样期和样品分析之前应避光,采样时间不应超过1h,采样后应在6h之内显色分析。空气SO2浓度小于1mg/m3,NO2浓度小于0.6mg/m3,不干扰测定。 2 原理 空气中硫化氢被碱性氢氧化镉悬浮液吸收,形成硫化镉沉淀。吸收液中加入聚乙烯醇磷酸铵可以减低硫化镉的光分解作用。然后,在硫酸溶液中,硫化氢与对氨基二甲基苯胺溶液和三氯化铁溶液作用,生成亚甲基蓝。根据颜色深浅,比色定量。 3 试剂 本法所用试剂纯度为分析纯,所用水为二次蒸馏水,即一次蒸馏水中加少量氢氧化钡和高锰酸钾再蒸馏制得。 3.1 吸收液:称量 4.3g硫酸镉(3CdSO4·8H2O)和0.3g氢氧化钠以及10g聚乙烯醇磷酸铵分别溶于水中。临用时,将三种溶液相混合,强烈振摇至完全混溶,再用水稀释至1L。此溶液为白色悬浮液,每次用时要强烈振摇均匀再量取,贮于冰箱中可保存—周。 3.2 对氨基二甲基苯胺溶液: 3.2.1 储备液:量取50mL浓硫酸,缓慢加入30mL水中,放冷后,称量12g对氨基二甲基苯胺盐酸盐[N,N-dimethyl-p-phenylenediamine dihydrochloride,(CH3)2NC6H4·2HCl]溶液中。置于冰箱中,可保存一年。 3.2.2 使用液:量取2.5mL储备液,用1+1硫酸溶液稀释至100mL。 3.3 三氯化铁溶液:称量100g三氯化铁(FeCl3·6H2O)溶于水中,稀释至100mL。若有沉淀,需要过滤后使用。 3.4 混合显色液:临用时,按1mL对氨基二甲基苯胺使用液和1滴(0.04mL)三氯化铁溶液的比例相混合。此混合液要现用现配,若出现有沉淀物生成,应弃之不用。 3.5 磷酸氢二铵溶液:称量40g磷酸氢二铵[(NH4)2HPO4]溶于水中,并稀释至100mL。 3.6 0.0100mol/L硫代硫酸钠标准溶液;准确吸量100mL 0.1000N硫代硫酸钠标准溶液,用新煮沸冷却后的水稀释至1L。配制和浓度标定方法见附录A。 3.7 碘溶液c(1/2I2)=0.1mol/L,称量40g碘化钾,溶于25mL水中,再称量12.7g碘,溶于碘化钾溶液中,并用水稀释1L。移入容量色瓶中,暗处贮存。 3.8 0.01mol/L碘溶液:精确吸量100mL 0.1mol/L 碘溶液于1L棕色容量瓶中,另称量18g 碘化钾溶于少量水中,移入容量瓶中,用水稀释至刻度。 3.9 0.5g/100mL淀粉溶液:称量0.5g可溶性淀粉,加5mL水调成糊状后,再加入100mL沸水中,并煮沸2~3min,至溶液透明,冷却,临用现配。 3.10 1+1盐酸溶液:50mL浓盐酸与50mL水相混合。

海洋沉积物的采集和硫化物的测定

沉积物样品的采集和沉积物中硫化物的测定 1 沉积物样品 1.1 样品采集 1.1.1 表层样品的采集 1.1.1.1 采样器类型及其选择 用自身重量或杠杆作用设计的抓斗式工或其他类型的沉积物采样器,其设计特点各异,包括弹簧制动、重力或齿板锁合方式。这些要随深入泥层的形状而不同,以及随所取样品的规模和面积不同,各自不一。采样器的选择主要考虑以下几方面: --贯穿泥层的深度; --齿板锁合的角度; --锁合效率(避免障碍的能力); --引起波浪“振荡”和造成样品的流失或者在泥水界面上洗掉样品组成或生物体的程度; --在急流中样品的稳定性。在选择沉积物采样器时,对生境、水流情况、采样面积以及采样船只设备均应统筹考虑。 常用的抓斗式采泥器与地面挖土设备很相似.它们是通过水文绞车将其沉降到选定的采样点上.通常采集较大量的混合样品能够比较准确地代表所选定的采样地点情况. 1.1.1.2 表层样品采集操作 1.1.1. 2.1 将绞车的钢丝绳与采泥器连结,检查是否牢固,同时,测采样点水深; 1.1.1. 2.2 慢速开动绞车将采泥器放入水中。稳定后,常速下放至离海底一定距离3~5m,再全速降至海底,此时应将钢丝绳适当放长,浪大流急时更应如此; 1.1.1. 2.3 慢速提升采泥器离底后,快速提至水面,再行慢速,当采泥器高过船舷时,停车,将其轻轻降至接样板上; 1.1.1. 2.4 打开采泥器上部耳盖,轻轻倾斜采泥器,使上部积水缓缓流出。若因采泥器在提升过程中受海水冲刷,致使样品流失过多或因沉积物太软、采泥器下降过猛,沉积物从耳盖中冒出,均应重采; 1.1.1. 2.5 样品处理完毕,弃出采泥器中的残留沉积物,冲洗干净,待用。 1.2.2 柱状样的采集 柱状采样器可以采集垂直断面沉积物样品。如果采集到的样品本身不具有机械强度,那么从采泥器上取下样器时应小心保持泥样纵向的完整性。 柱状样的采集操作。 1.2.2.2 首先要检查柱状采样器各部件是否安全牢固; 1.2.2.2 先作表层采样,了解沉积物性质,若为砂砾沉积物,就不作重力取样; 1.2.2.3 确定作重力采样后,慢速开动绞车,将采泥器慢慢放入水中待取样管在水中稳定后,常速下至离海3~5m处,再全速降至海底,立即停车; 1.1. 2.4 慢速提升采样器,离底后快速提至水面,再行慢速。停车后,用铁勾勾住管身,转入舷内,

温度测量方法

温度测量方法 2011-04-17 18:47 温度测量方法 我们大家都知道温度是表征物体冷热程度的物理量。而测量温度的标尺是温度计,其按照测量方式可以分为接触式和非接触式两种。 通常来说的接触式测量仪表比较简单、可靠,测量精度高,但是因为测温元件与被测介质需要进行充分的热交换,所以其需要一定的时间才能达到热平衡,所以,存在测温延迟现象,同时受耐高温和耐低温材料的限制,不能应用于这些极端的温度测量。非接触式仪表测温仪是通过热辐射的原理来测量温度的,测温元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体发射率、测量距离、烟尘和水汽等外界因素的影响,其测量误差较大。 下面就简单介绍几种温度计: 1、气体温度计:利用一定质量的气体作为工作物质的温度计。用气体温度计来体现理想气体温标为标准温标。用气体温度计所测得的温度和热力学温度相吻合。气体温度计是在容器里装有氢或氮气(多用氢气或氦气作测温物质,因为氢气和氦气的液化温度很低,接近于绝对零度,故它的测温范围很广),它们的性质可外推到理想气体。这种温度计有两种类型:定容气体温度计和定压气体温度计。定容气体温度计是气体的体积保持不变,压强随温度改变。定压气体温度计是气体的压强保持不变,体积随温度改变。 2、电阻温度计:根据导体电阻随温度而变化的规律来测量温度的温度计。最常用的电阻温度计都采用金属丝绕制成的感温元件,主要有铂电阻温度计和铜电阻温度计,在低温下还有碳、锗和铑铁电阻温度计。精密的铂电阻温度计是目前最精确的温度计,温度覆盖范围约为14~903K,其误差可低到万分之一摄氏度,它是能复现国际实用温标的基准温度计。我国还用一等和二等标准铂电阻温度计来传递温标,用它作标准来检定水银温度计和其他类型的温度计。分为金属电阻温度计和半导体电阻温度计,都是根据电阻值随温度的变化这一特性制成的。金属温度计主要有用铂、金、铜、镍等纯金属的及铑铁、磷青铜合金的;半导体温度计主要用碳、锗等。电阻温度计使用方便可靠,已广泛应用。它的测量范围为-260℃至600℃左右。 3、温差电偶温度计:利用温差电偶来测量温度的温度计。将两种不同金属导体的两端分别连接起来,构成一个闭合回路,一端加热,另一端冷却,则两个接触点之间由于温度不同,将产生电动势,导体中会有电流发生。因为这种温差电动势是两个接触点温度差的函数,所以利用这一特性制成温度计。若在温差电偶的回路里再接入一种或几种不同金属的导线,所接入的导线与接触点的温度都是均匀的,对原电动势并无影响,通过测量温差电动势来求被测的温度,这样就构成了温差电偶温度计。这种温度计测温范围很大。例如,铜和康铜构成的温差电偶的测温范围在200~400℃之间;铁和康铜则被使用在200~1000℃之间;由铂和铂铑合金(铑10%)构成的温差电偶测温可达千摄氏度以上;铱和铱铑(铑50%)可用在2300℃;若用钨和钼(钼25%)则可高达2600℃ 4、高温温度计:是指专门用来测量500℃以上的温度的温度计,有光测温度计、比色温度计和辐射温度计。高温温度计的原理和构造都比较复杂,这里不再讨论。其测量范围为500℃至3000℃以上,不适用于测量低温。 5、指针式温度计:是形如仪表盘的温度计,也称寒暑表,用来测室温,是用金属的热胀冷缩原理制成的。它是以双金属片做为感温元件,用来控制指针。双金属片通常是用铜片和铁片铆在一起,且铜片在左,铁片在右。由于铜的热胀冷缩效果要比铁明显的多,因此当温度升高时,铜片牵拉铁片向右弯曲,指针在双金属片的带动下就向右偏转(指向高温);反之,温度变低,指针在双金属片的带动下就向左偏转(指向低温)。

水中硫化物的测定

实验一 水中硫化物的测定 一、实验目的 1.掌握用碘量法测定水中硫化物含量的原理和基本操作; 2.分析影响实验结果准确度的因素; 3.了解硫化物测定的其它方法。 二、实验原理 水中的硫化物包括溶解性的H 2S 、HS -、S 2-,存在于悬浮物中的可溶性硫化物、酸可溶性金属硫化物以及未电离的有机、无机类硫化物。硫化氢易从水中逸散于空气,产生臭味,且毒性很大,它可与人体内的细胞色素、氧化酶及该类物质中的二硫键(—S —S —)作用,影响细胞氧化过程,造成细胞组织缺氧,危及生命。因此硫化物是水体污染的一项重要指标。在厌氧工艺中,一般采用碘量法测硫化物。测定水中硫化物的方法还有对氨基二甲基苯胺分光光度法、电位滴定法、离子色谱法、极谱法、库仑滴定法、比浊法等。 碘量法是环境监测中常用的一种氧化还原滴定法。在硫化物的测定中,碘量法是使硫化物在酸性条件下与过量的碘作用,再用硫代硫酸钠标准溶液滴定反应剩余的碘,直到按化学计量定量反应完全为止,然后根据硫代硫酸钠的浓度和用量计量硫化物的含量,滴定时以淀粉指示剂反应为终点。 222S I I S --+→+(碘和硫化物摩尔比是1:1) 223224622N a S O I N a S O N aI +→+(碘和硫代硫酸钠摩尔比是1:2) 根据上述两个反应式,计算水样中硫化物浓度。 三、实验方法 本方法适用于含硫化物1mg/L 以上的水和污水的测定。当试样体积为200mL ,用0.01mol/L 硫代硫酸钠溶液滴定时,可用于含硫化物0.40mg/L 以上的水和污水的测定。 1、仪器和设备 烧杯、移液管、锥形瓶、滴定管、容量瓶。 2、试剂 纯水、盐酸、K 2Cr 2O 7、淀粉、碘化钾、碘、硫代硫酸钠。 3、溶液的配制 (1) 盐酸溶液:1:1,用盐酸ρ=1.19g/mL 配置。 (2) 重铬酸钾标准溶液:C(1/6K 2Cr 2O 7)=0.1000 mol/L 。称取在105℃烘干2h

常见的温度检测方法

常见温度检测方法分析 摘要:在目前工农业生产和国民经济生活中,温度测量日益重要,新型温度传感器不断涌现,通过对现代常用温度传感器的工作原理和特性的分析,便于在工作中根据具体情况,选用提供依据,以减少生活生产中不必要的损失。 关键词:温度;检测方法;传感器;测量 Study On Methods Of Measuring Teamperature Abstract:In the of industrial and agricultural Produetionornationaleconomicife,measuringtemperatureisinereasinglyimportant,andmoderntemrerat uresensorseontinuouslyarise.Prineipleand charaeterofmoderntemperaturesensorsanalyzedhere is usefulforseientific eworkers.It is foundmentalto choicetemperaturesensorsforuser aeeordingto praetieal circumstances ,So that it can reduce unnecessary lossin thelife production. Keywords:temperature:sensor;measure 温度是科学技术中最基本的物理量之一, 物理、化学、热力学、飞行力学、流体力学等学科都离不开温度,它也是工业生产中最普遍最重要的参数之一。许多工农业产品的质量都与温度密切相关,比如, 离开合适的温度, 许多化学反应就不能正常进行甚至不能进行;没有合适的温度炉窑就不能炼制出合格的产品;没有合适的温度环境, 农作物就不能正常生长, 许多电子仪器就不能正常工作, 粮仓的储粮就会变质霉烂, 家禽的孵化也不能进行。可见, 温度的测量与控制十分重要。 测温方法很多,仅从测量体与被测介质接触与否来分,有接触式测温与非接触式测温两大类。接触式测温是基于热平衡原理,测温敏感元件必须与被测介质接触,使两者处于同一热平衡状态,具有同一温度,如水银温度计,热电偶温度计等就是利用此法测量。非接触式测温是利用物质的热辐射原理,测温元件不需与被测介质接触,而是通过接收被测物体发出的辐射热来判断温度,如辐射温度计,光纤温度计等[1]。 接触式测温简单、可靠,且测量精度高。但是由于测温元件需与被测介质接触后进行的热交换,才能达到热平衡,因而产生了滞后现象。另外,由于受到耐高温材料的限制,接触式测量不能应用于很高温度的测量。非接触式测温,由于测温元件不与被测介质接触,因而其测温范围很广,其测温上限原则上不受限制,测温速度也较快,而且可以对运动体进行测量。但是,它受到物体的发射率,被测对象到仪表之间的距离,烟尘和水汽等其它介质的影响,一般测温误差较大,目前使用较广的是接触式测温。下面介绍几种现代常用温度测量方法。 1电阻温度传感器 这种传感器以电阻作为温度敏感元件,根据敏感材料不同又可分成热电阻式和热敏电阻式,热电阻式一般用金属材料制成, 如铂、铜、镍等1热敏电阻是以半导体材料制成的陶瓷器件, 如锰、镍、钴等金属的氧化物与其它化合物按不同配比烧结而成。 热电阻的温度系数一般为正值,以铂电阻为例, 其阻值Rt 与温度间的关系为Rt=R0(1+At+Bt2), 0℃≤t≤650℃; Rt= R0[1+At+Bt2+Ct3(t- 100) ],- 200℃≤t≤0℃, 其中A = 319684×10- 8/℃, B= - 518470

相关主题
文本预览
相关文档 最新文档