当前位置:文档之家› 第二章 推理与证明(B)

第二章 推理与证明(B)

第二章 推理与证明(B)
第二章 推理与证明(B)

第二章推理与证明(B)

一、选择题

1、下列有关三段论推理“自然数都是整数,4是自然数,所以4是整数”的说法正确的是( )

A.推理正确B.推理形式不正确

C.大前提错误D.小前提错误

2、下列推理过程是类比推理的是( )

A.人们通过大量试验得出掷硬币出现正面的概率为1 2

B.科学家通过研究老鹰的眼睛发明了电子鹰眼

C.通过检测溶液的pH值得出溶液的酸碱性

D.由周期函数的定义判断某函数是否为周期函数

3、已知f(x)=x3+x,a,b,c∈R,且a+b>0,a+c>0,b+c>0,则f(a)+f(b)+f(c)的值( )

A.一定大于零B.一定等于零

C.一定小于零D.正负都有可能

实用文档

4、勾股定理:在直角边长为a、b,斜边长为c的直角三角形中,有a2+b2=c2.类比勾股定理可得,在长、宽、高分别为p、q、r,体对角线长为d的长方体中,有( )

A.p+q+r=d

B.p2+q2+r2=d2

C.p3+q3+r3=d3

D.p2+q2+r2+pq+pr+qr=d2

5、观察式子:1+1

22

<

3

2

,1+

1

22

1

32

<

5

3

,1+

1

22

1

32

1

42

<

7

4

,…,则可归纳出一般式子为( )

A.1+1

22+

1

32

+…+

1

n2<

1

2n-1

(n≥2)

B.1+1

22+

1

32

+…+

1

n2<

2n+1

n(

n≥2)

C.1+1

22

1

32

+…+

1

n2<

2n-1

n(

n≥2)

D.1+1

22+

1

32

+…+

1

n2<

2n

2n+1

(n≥2)

6、若a,b,c均为实数,则下面四个结论均是正确的:

实用文档

①ab=ba;②(ab)c=a(bc);③若ab=bc,b≠0,则a-c=0;④若ab=0,则a=0或b=0.对向量a,b,c,用类比的思想可得到以下四个结论:

①a·b=b·a;

②(a·b)c=a(b·c);

③若a·b=b·c,b≠0,则a=c;

④若a·b=0,则a=0或b=0.

其中结论正确的有( )

A.0个B.1个

C.2个D.3个

7、已知数列{a n}满足a1=0,a n+1=a n-3

3a n+1

(n∈N*),则a2 010等于( )

A.0 B.- 3 C. 3 D.

3 2

8、由“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四个侧面( )

A.各正三角形内任一点

实用文档

实用文档

B .各正三角形的某高线上的点

C .各正三角形的中心

D .各正三角形外的某点

9、已知1+2×3+3×32+4×33+…+n ×3n -1=3n (na -b )+c 对一切n ∈N *都成立,那么( )

A .a =12,b =c =1

4

B .a =b =c =1

4

C .a =0,b =c =1

4

D .不存在这样的a ,b ,c

10、下列三句话按三段论的模式排列顺序正确的是( )

①2 006能被2整除;

②一切偶数都能被2整除;

③2 006是偶数.

A .①②③

B .②①③

C .②③①

D .③②①

11、有以下结论:

①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;

②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.

下列说法中正确的是( )

A.①与②的假设都错误

B.①与②的假设都正确

C.①的假设正确;②的假设错误

D.①的假设错误;②的假设正确

二、填空题

12、在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,55,…这些数叫做三角形数,这是因为这些数目的点可以排成正三角形(如图所示),则三角形数的一般表达式f(n)=__________.

13、对于“求证函数f(x)=-x3在R上是减函数”,用“三段论”可表示为:大前提是“对于定义域为D的函数f(x),若对任意x1,x2∈D且x2-x1>0,有f(x2)-f(x1)<0,则函数f(x)在D上是减

函数”,小前提是“__________________________”,结论是“f(x)=-x3在R上是减函数”.

实用文档

实用文档

14、在△ABC 中,D 为边BC 的中点,则=1

2

(+).将上述命题类比到四面体中去,得到一个类比

命题:________________________________.

15、下面的四个不等式:

①a 2+b 2+c 2≥ab +bc +ca ;

②a (1-a )≤14;③a b +b

a

≥2;

④(a 2+b 2)·(c 2+d 2)≥(ac +bd )2.

其中不成立的有________个.

三、解答题

16、设f (x )=x 2+ax +b ,

求证:|f (1)|,|f (2)|,|f (3)|中至少有一个不小于1

2

.

17、观察下表:

1,

2,3

4,5,6,7

8,9,10,11,12,13,14,15,

问:(1)此表第n行的最后一个数是多少?

(2)此表第n行的各个数之和是多少?

(3)2 008是第几行的第几个数?

18、设二次函数f(x)=ax2+bx+c (a≠0)中的a,b,c均为整数,且f(0),f(1)均为奇数,求证:实用文档

方程f(x)=0无整数根.

19、如图所示,△ABC是正三角形,AE和CD都垂直于平面ABC,且AE=AB=2a,CD=a,F 是BE的中点.

(1)求证:DF∥平面ABC;

(2)求证:AF⊥BD.

20、已知a>0,b>0,a+b=1,

求证:a+1

2

+b+

1

2

≤2.

实用文档

实用文档

21、已知函数f (x )=lg ? ????1x -1,x ∈? ????0,12.若x 1,x 2∈? ????0,12且x 1≠x 2,求证:1

2[f (x 1)+

f (x 2)]>f ? ??

??

x 1+x 22.

以下是答案 一、选择题

1、A [三段论中的大前提,小前提以及推理形式都是正确的,所以结论正确.]

2、B

实用文档

3、A [f (x )=x 3+x 是奇函数,且在R 上是增函数,由a +b >0得a >-b ,

所以f (a )>f (-b ),即f (a )+f (b )>0,

同理f (a )+f (c )>0,f (b )+f (c )>0,

所以f (a )+f (b )+f (c )>0.]

4、B

5、C [由合情推理可归纳出1+1

22+1

32+…+1n 2<2n -1

n

(n ≥2).]

6、B [利用类比思想结合向量的定义及性质,特别是向量的数量积的定义可知①正确,②③④

不正确.]

7、C [a 2=0-3

0+1

=-

3,a 3=

-3-3

3+1

=3,a 4=0,所以此数列具有周期性,0,-

3,3依次重复出现.因为2 010=3×670,所以a 2 010= 3.]

8、C [正三角形的边对应正四面体的面,即正三角形所在的正四面体的侧面,所以边的中点对

应的就是正四面体各正三角形的中心.故选C.]

实用文档

9、A [分别令n =1,2,3,

得????

?

3(a -b )+c =1,9(2a -b )+c =7,27(3a -b )+c =34.

所以a =12,b =c =14

.]

10、C

11、D [用反证法证题时一定要将对立面找全.在(1)中应假设p +q >2.故(1)的假设是错误的,

而(2)的假设是正确的,故选D.]

二、填空题

12、

n (n +1)

2

解析 当n =1时,1=1×22;当n =2时,3=2×32;当n =3时,6=3×42;当n =4时,10=4×5

2

;…,

猜想:f (n )=

n (n +1)

2

.

13、对于任意x 1,x 2∈R 且x 2-x 1>0,有f (x 2)-f (x 1)=-x 32+x 31=-(x 2-x 1)(x 22+x 1x 2+x 21)=-

实用文档

(x 2-x 1)·?????

??

?? ????x 2+x 122+34x 21<0

14、在四面体A —BCD 中,G 为△BCD 的重心,

则=1

3

(++)

15、1

解析 由a 2+b 2+c 2-(ab +bc +ca )

=1

2

[2a 2+2b 2+2c 2-2ab -2bc -2ca ] =1

2

[(a -b )2+(b -c )2+(c -a )2]≥0, 故①正确.

由14-a (1-a )=1

4-a +a 2=? ??

??a -122≥0,

故②正确.

(a 2+b 2)·(c 2+d 2)-(ac +bd )2

=a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-2acbd -b 2d 2

=a 2d 2+b 2c 2-2abcd =(ad -bc )2≥0,故④正确.

实用文档

∵a b +b a ≥2或a b +b

a

≤-2,∴③不正确.

三、解答题

16、证明 假设|f (1)|<12,|f (2)|<12,|f (3)|<1

2

于是有-12<1+a +b <1

2

-1

2<4+2a +b <1

2

-1

2<9+3a +b <12

①+③,得-1<10+4a +2b <1,

所以-3<8+4a +2b <-1,

所以-32<4+2a +b <-12

.

由②知-12<4+2a +b <1

2

,矛盾,

所以假设不成立,即|f (1)|,|f (2)|,|f (3)|中至少有一个不小于1

2

.

17、解 (1)由表知,第二行起,每行的第一个数为偶数,所以第n +1行的第一个数为2n ,所

实用文档

以第n 行的最后一个数为2n -1.

(2)由(1)知第n -1行的最后一个数为2n -1-1,第n 行的第一个数为2n -1,第n 行的最后一个

数为2n -1.又由观察知,每行数字的个数与这一行的第一个数相同,所以由等差数列求和公式得,

S n =2n -1(2n -1+2n -1)2

=22n -3+22n -2-2n -2.

(3)因为210=1 024,211=2 048,又第11行最后一个数为211-1=2 047,所以2 008是在第

11行中,由等差数列的通项公式得,2 008=1 024+(n -1)·1,所以n =985,所以2 008是第11

行的第985个数.

18、证明 假设方程f (x )=0有一个整数根k ,

则ak 2+bk +c =0.①

因为f (0)=c ,f (1)=a +b +c 均为奇数,

所以a +b 必为偶数,

当k 为偶数时,令k =2n (n ∈Z ),

则ak 2+bk +c =4n 2a +2nb +c =2n (2na +b )+c 必为奇数,与①式矛盾;

当k 为奇数时,令k =2n +1 (n ∈Z ),

实用文档

则ak 2+bk +c =(2n +1)(2na +a +b )+c 为一奇数与一偶数乘积加上一个奇数,必为奇数,也与

①式矛盾,故假设不成立.

综上可知方程f (x )=0无整数根.

19、证明 (1)取AB 的中点G ,连接FG ,CG ,

可得FG ∥AE ,FG

=1

2

AE ,

又CD ⊥平面ABC ,AE ⊥平面ABC ,

∴CD ∥AE ,CD =1

2

AE ,

∴FG ∥CD ,FG =CD .

又∵FG ⊥平面ABC ,

∴四边形CDFG 是矩形,

DF ∥CG ,CG ?平面ABC , DF ?平面ABC ,

∴DF ∥平面ABC .

实用文档

(2)Rt △ABE 中,AE =2a ,AB =2a ,F 为BE 的中点,

∴AF ⊥BE ,∵△ABC 是正三角形,

∴CG ⊥AB ,∴DF ⊥AB ,

又DF ⊥FG ,FG ∩AB =G ,

∴DF ⊥平面ABE ,DF ⊥AF ,

又∵DF ∩BE =F ,∴AF ⊥平面BDF ,

又BD ?平面BDF ,∴AF ⊥BD .

20、证明 ∵1=a +b ≥2

ab ,∴ab ≤1

4

.

∴12(a +b )+ab +14

≤1. ∴

? ????a +12?

????

b +12≤1.

从而有2+2

? ????a +12?

????b +12≤4.

即? ????a +12+? ????

b +12+2

? ????a +12?

????b +12≤4.

∴?

?

?

??

?a +12

b +122≤4.

实用文档

∴a +1

2

b +12

≤2.

21、证明 要证原不等式成立,只需证明

? ????1x 1-1? ????1x 2-1>?

??

??

2x 1+x 2-12, 事实上,∵0

2

,x 1≠x 2,

∴? ????1x 1-1? ????1x 2-1-?

??

??

2x 1+x 2-12 =

1

x 1x 2-1

x 1-1

x 2-4

(x 1+x 2)2+

4

x 1+x 2

=(x 1-x 2)2(1-x 1-x 2)x 1x 2(x 1+x 2)2

>0.

∴? ????1x 1-1? ????1x 2-1>?

??

??

2x 1+x 2-12, 即有lg ??????? ????1x 1-1? ????1x 2-1>lg ?

????

2x 1+x 2-12, 故1

2[f (x 1)+f (x 2)]>f ? ??

??

x 1+x 22.

推理与证明(教案)

富县高级中学集体备课教案 年级:高二科目:数学授课人:授课时间:序号:第节课题第三章§1.1 归纳推理第 1 课时 教学目标1、掌握归纳推理的技巧,并能运用解决实际问题。 2、通过“自主、合作与探究”实现“一切以学生为中心”的理念。 3、感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。 重点归纳推理及方法的总结中心 发言 人王晓君 难点归纳推理的含义及其具体应用 教具课型新授课课时 安排 1课 时 教法讲练结合学法归纳总结个人主页 教学过程 教一、原理初探 ①引入:“阿基米德曾对国王说,给我一个支点,我将撬起整个地球!” ②提问:大家认为可能吗?他为何敢夸下如此海口?理由何在? ③探究:他是怎么发现“杠杆原理”的? 正是基于这两个发现,阿基米德大胆地猜想,然后小心求证,终于发现了伟大的“杠杆原理”。 ④思考:整个过程对你有什么启发? ⑤启发:在教师的引导下归纳出:“科学离不开生活,离不开观察,也离不开猜想和证明”。 二、新课学习 1、哥德巴赫猜想 哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个≥6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个≥9之奇数,都可以表示成三个奇质数之和。这就是着名的哥德巴赫猜想200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法观察猜想证明 归纳推理的发展过程

推理与证明

推理与证明 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

第3讲推理与证明 【知识要点】 1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理 2.类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质。类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。3.类比推理的一般步骤: ①找出两类事物之间的相似性或者一致性。 ②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想) 【典型例题】 1、(2011江西)观察下列各式:72=49,73=343,74=2401,…,则72011的末两位数字为 () A、01 B、43 C、07 D、49 2、(2011江西)观察下列各式:55=3125,56=15625,57=78125,…,则52011的末四位数字为() A、3125 B、5625 C、0625 D、8125 3、(2010临颍县)平面内平行于同一条直线的两条直线平行,由此类比思维,我们可以得到() A、空间中平行于同一平面的两个平面平行 B、空间中平行于同一条直线的两条直线平行 C、空间中平行于同一条平面的两条直线平行 D、空间中平行于同一条直线的两个平面平行

4、(2007广东)设S是至少含有两个元素的集合,在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素与之对应)有a* (b*a)=b,则对任意的a,b∈S,下列等式中不恒成立的是() A、(a*b)*a=a B、[a*(b*a)]*(a*b)=a C、b*(b*b)=b D、(a*b)*[b*(a*b)]=b 5、(2007广东)如图是某汽车维修公司的维修点环形分布图.公司在 年初分配给A,B,C,D四个维修点某种配件各50件.在使用前发 现需将A,B,C,D四个维修点的这批配件分别调整为40,45, 54,61件,但调整只能在相邻维修点之间进行,那么要完成上述调 整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为() A、15 B、16 C、17 D、18 6、(2006陕西)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3, 4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为() A、4,6,1,7 B、7,6,1,4 C、6,4,1,7 D、1,6,4,7 7、(2006山东)定义集合运算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},设集合A={0, 1},B={2,3},则集合A⊙B的所有元素之和为() A、0 B、6 C、12 D、18 8、(2006辽宁)设⊕是R上的一个运算,A是V的非空子集,若对任意a,b∈A,有a⊕b ∈A,则称A对运算⊕封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是()

高考数学:专题三 第三讲 推理与证明配套限时规范训练

第三讲 推理与证明 (推荐时间:50分钟) 一、选择题 1.下列四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项 公式为 ( ) A .a n =3 n -1 B .a n =3n C .a n =3n -2n D .a n =3n -1+2n -3 2.已知22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2 -2-4 =2,依照以上各 式的规律,得到一般性的等式为 ( ) A.n n -4+8-n 8-n -4 =2 B.n +1n +1-4+n +1+5n +1-4=2 C.n n -4+n +4n +1-4 =2 D.n +1n +1-4+n +5n +5-4 =2 3. “因为指数函数y =a x 是增函数(大前提),而y = ??? ?13x 是指数函数(小前提),所以函数y = ??? ?13x 是增函数(结论)”,上面推理的错误在于 ( ) A .大前提错误导致结论错 B .小前提错误导致结论错 C .推理形式错误导致结论错 D .大前提和小前提错误导致结论错 4.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a ·b =b ·a ”; ②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”; ④“t ≠0,mt =xt ?m =x ”类比得到“p ≠0,a ·p =x ·p ?a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”; ⑥“ac bc =a b ”类比得到“a ·c b ·c =a b ”. 以上的式子中,类比得到的结论正确的个数是 ( ) A .1 B .2 C .3 D .4 5.已知定义在R 上的函数f (x ),g (x )满足f x g x =a x ,且f ′(x )g (x )

苏教版数学高二-2.1素材 《合情推理与演绎证明》文字素材1

高考中的类比推理 大数学家波利亚说过:“类比是某种类型的相似性,是一种更确定的和更概念性的相似。”应用类比的关键就在于如何把关于对象在某些方面一致性说清楚。类比是提出新问题和作出新发现的一个重要源泉,是一种较高层次的信息迁移。 例1 半径为r 的圆的面积2 )(r r S ?=π,周长r r C ?=π2)(,若将r 看作),0(+∞上的变量,则r r ?=?ππ2)'(2, ①,①式可用语言叙述为:圆的面积函数的导数等于圆的周长函数。对于半径为R 的球,若将R 看作),0(+∞上的变量,请你写出类似于①的式子:_________________,②,②式可用语言叙述为___________. 解:由提供的形式找出球的两个常用量体积、表面积公式,类似写出恰好成立, ,3 4)(3R R V π=24)(R r S π=. 答案:①)'3 4(3R π.42R π= ②球的体积函数的导数等于球的表面积函数。 点评:主要考查类比意识考查学生分散思维,注意将圆的面积与周长与球的体积与表面积进行类比 例2 在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+……+a n =a 1+a 2+……+a 19-n (n <19,n ∈N *)成立。类比上述性质,相应地:在等比数列{b n }中,若b 9=1,则有等式 成立。 分析:这是由一类事物(等差数列)到与其相似的一类事物(等比数列)间的类比。在等差数列{a n }前19项中,其中间一项a 10=0,则a 1+a 19= a 2+a 18=……= a n +a 20-n = a n +1+a 19-n =2a 10=0,所以a 1+a 2+……+a n +……+a 19=0,即a 1+a 2+……+a n =-a 19-a 18-…-a n +1,又∵a 1=-a 19, a 2=-a 18,…,a 19-n =-a n +1,∴ a 1+a 2+……+a n =-a 19-a 18-…-a n +1= a 1+a 2+…+a 19-n 。相似地,在等比数列{b n }的前17项中,b 9=1为其中间项,则可得b 1b 2…b n = b 1b 2…b 17-n (n <17,n ∈N * )。 例3 在平面几何里,有勾股定理:“设△ABC 的两边AB 、AC 互相垂直,则AB 2+AC 2= BC 2。”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得到的正确结论是:“设三棱锥A —BCD 的三个侧面ABC 、ACD 、ADB 两两相互垂直,则 ________________”。 分析:这是由低维(平面)到高维(空间)之间的类比。三角形中的许多结论都可以类比到三棱锥中(当然必须经过论证其正确性),像直角三角形中的勾股定理类比到三侧面两两垂直的三棱锥中,则有S △ABC 2+S △ACD 2+S △ADB 2= S △BCD 2。需要指出的是,勾股定理的证明也可进行类比。如在Rt △ABC 中,过A 作AH ⊥BC 于H ,则由AB 2=BH ·BC ,AC 2=CH ·BC 相加即得AB 2+AC 2=BC 2;在三侧面两两垂直的三棱锥A —BCD 中,过A 作AH ⊥平面BCD 于H ,类似地由S △ABC 2=S △HBC ·S △BCD ,S △ACD 2=S △HCD ·S △BCD ,S △ADB 2=S △HDB ·S △BCD 相加即得S △ABC 2+S △ACD 2+S △ADB 2= S △BCD 2。

2019高考数学一轮复习第11章复数算法推理与证明第3讲合情推理与演绎推理分层演练文

第3讲 合情推理与演绎推理 一、选择题 1.观察下列各式:a +b =1,a 2 +b 2 =3,a 3 +b 3 =4,a 4 +b 4 =7,a 5 +b 5 =11,…,则a 10 +b 10 =( ) A .121 B .123 C .231 D .211 解析:选B .法一:令a n =a n +b n ,则a 1=1,a 2=3,a 3=4,a 4=7,…,得a n +2=a n + a n +1,从而a 6=18,a 7=29,a 8=47,a 9=76,a 10=123. 法二:由a +b =1,a 2 +b 2 =3,得ab =-1,代入后三个等式中符合,则a 10 +b 10 =(a 5 +b 5)2 -2a 5b 5 =123. 2.某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( ) A .21 B .34 C .52 D .55 解析:选D .因为2=1+1,3=2+1,5=3+2,即从第三项起每一项都等于前两项的和,所以第10年树的分枝数为21+34=55. 3.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( ) A .(7,5) B .(5,7) C .(2,10) D .(10,2) 解析:选B .依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有 n (n +1) 2 个“整 数对”,注意到10×(10+1)2<60<11×(11+1)2,因此第60个“整数对”处于第11组(每 个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7). 4.如图,在梯形ABCD 中,AB ∥CD ,AB =a ,CD =b (a >b ).若EF ∥AB ,EF 到CD 与AB

(整理)合情推理和演绎推理》.

第十七章推理与证明 ★知识网络★ 第1讲合情推理和演绎推理 ★知识梳理★ 1.推理 根据一个或几个事实(或假设)得出一个判断,这种思维方式叫推理. 从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫结论. 2、合情推理: 根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出的推理叫合情推理。 合情推理可分为归纳推理和类比推理两类: (1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特征的推理,或者由个别事实概括出一般结论的推理。简言之,归纳推理是由部分到整体、由个别到一般的推理 (2)类比推理:由两类对象具有某些类似特征和其中一类对象具有的某些已知特征,推出另一类对象也具有这些特征的推理,简言之,类比推理是由特殊到特殊的推理。 3.演绎推理: 从一般性的原理出发,推出某个特殊情况下的结论的推理叫演绎推理,简言之,演绎推理是由一般到特殊的推理。三段论是演绎推理的一般模式,它包括:(1)大前提---已知的一般原理;(2)小前提---所研究的特殊情况;(3)结论——根据一般原理,对特殊情况作出的判断。 ★重难点突破★ 重点:会用合情推理提出猜想,会用演绎推理进行推理论证,明确合情推理与演绎推理的区别与联系

难点:发现两类对象的类似特征、在部分对象中寻找共同特征或规律 重难点:利用合情推理的原理提出猜想,利用演绎推理的形式进行证明 1、归纳推理关键是要在部分对象中寻找共同特征或某种规律性 问题1<;…. 对于任意正实数,a b ≤成立的一个条件可以是 ____. 点拨:前面所列式子的共同特征特征是被开方数之和为22,故22=+b a 2、类比推理关键是要寻找两类对象的类似特征 问题2:已知抛物线有性质:过抛物线的焦点作一直线与抛物线交于A 、B 两点,则当AB 与抛物线的对称轴垂直时,AB 的长度最短;试将上述命题类比到其他曲线,写出相应的一个真命题为 . 点拨:圆锥曲线有很多类似性质,“通径”最短是其中之一,答案可以填:过椭圆的焦点作一 直线与椭圆交于A 、B 两点,则当AB 与椭圆的长轴垂直时,AB 的长度最短(22 2||a b AB ≥) 3、运用演绎推理的推理形式(三段论)进行推理 问题3:定义[x]为不超过x 的最大整数,则[-2.1]= 点拨:“大前提”是在],(x -∞找最大整数,所以[-2.1]=-3 ★热点考点题型探析★ 考点1 合情推理 题型1 用归纳推理发现规律 [例1 ] 通过观察下列等式,猜想出一个一般性的结论,并证明结论的真假。 2 3135sin 75sin 15sin 020202= ++;23150sin 90sin 30sin 0 20202=++; 23165sin 105sin 45sin 020202=++;23 180sin 120sin 60sin 020202=++ 【解题思路】注意观察四个式子的共同特征或规律(1)结构的一致性,(2)观察角的“共性” [解析]猜想:2 3 )60(sin sin )60(sin 0 2202= +++-ααα 证明:左边=2 00 2 2 00 )60sin cos 60cos (sin sin )60sin cos 60cos (sin ααααα+++- = 2 3 )cos (sin 2322=+αα=右边 【名师指引】(1)先猜后证是一种常见题型 (2)归纳推理的一些常见形式:一是“具有共同特征型”,二是“递推型”,三是“循环型”(周期性) [例2 ] (09深圳九校联考) 蜜蜂被认为是自然界中最杰出的建筑师,单个蜂 巢可以近似地看作是一个正六边形,如图为一组蜂 巢的截面图. 其中第一个图有1个蜂巢,第二个图

专题十二 推理与证明第三十二讲 推理与证明答案

专题十二 推理与证明 第三十二讲 推理与证明 答案部分 2019年 1.解析:由题意,可把三人的预测简写如下: 甲:甲乙. 乙:丙乙且丙甲. 丙:丙乙. 因为只有一个人预测正确, 如果乙预测正确,则丙预测正确,不符合题意. 如果丙预测正确,假设甲、乙预测不正确, 则有丙乙,乙甲, 因为乙预测不正确,而丙乙正确,所以只有丙甲不正确, 所以甲丙,这与丙乙,乙甲矛盾.不符合题意. 所以只有甲预测正确,乙、丙预测不正确, 甲乙,乙丙. 故选A . 2010-2018年 1.B 【解析】解法一 因为ln 1x x -≤(0x >),所以1234123ln()a a a a a a a +++=++ 1231a a a ++-≤,所以41a -≤,又11a >,所以等比数列的公比0q <. 若1q -≤,则2 12341(1)(10a a a a a q q +++=++) ≤, 而12311a a a a ++>≥,所以123ln()0a a a ++>, 与1231234ln()0a a a a a a a ++=+++≤矛盾, 所以10q -<<,所以2131(1)0a a a q -=->,2 241(1)0a a a q q -=-<, 所以13a a >,24a a <,故选B . 解法二 因为1x e x +≥,1234123ln()a a a a a a a +++=++,

所以1234 12312341a a a a e a a a a a a a +++=++++++≥,则41a -≤, 又11a >,所以等比数列的公比0q <. 若1q -≤,则2 12341(1)(10a a a a a q q +++=++) ≤, 而12311a a a a ++>≥,所以123ln()0a a a ++> 与1231234ln()0a a a a a a a ++=+++≤矛盾, 所以10q -<<,所以2131(1)0a a a q -=->,2 241(1)0a a a q q -=-<, 所以13a a >,24a a <,故选B . 2.D 【解析】解法一 点(2,1)在直线1x y -=上,4ax y +=表示过定点(0,4),斜率为a -的直线,当0a ≠时,2x ay -=表示过定点(2,0), 斜率为1 a 的直线,不等式2x ay -≤表示的区域包含原点,不等式4ax y +>表示的区域不包含原点.直线4ax y +=与直线2x ay -=互相垂直,显然当直线4ax y +=的斜率0a ->时,不等式4ax y +>表示的区域不包含点(2,1),故排除A ;点(2,1)与点(0,4)连线的斜率为3 2 - ,当32a -<-,即3 2 a >时,4ax y +>表示的区域包含点(2,1),此时2x ay -<表示的 区域也包含点(2,1),故排除B ;当直线4ax y +=的斜率32a -=-,即3 2 a =时, 4ax y +>表示的区域不包含点(2,1),故排除C ,故选D . 解法二 若(2,1)A ∈,则21422 a a +>?? -?≤,解得32a >,所以当且仅当3 2a ≤时, (2,1)A ?.故选D . 3.D 【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲、丁一人优秀一人良好,乙 看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果,故选D . 4.A 【解析】n S 表示点n A 到对面直线的距离(设为n h )乘以1n n B B +长度一半,即 11 2 n n n n S h B B += ,由题目中条件可知1n n B B +的长度为定值,那么我们需要知道n h 的关系式,过1A 作垂直得到初始距离1h ,那么1,n A A 和两个垂足构成了等腰梯形,那么

(完整版)推理与证明知识点

第十二讲推理与证明 数学推理与证明知识点总结: 推理与证明:①推理是中学的主要内容,是重点考察的内容之一,题型为选择题、填空题或解答题,难度为中、低档题。利用归纳和类比等方法进行简单的推理的选择题或填空题在近几年的中考中都有所体现。②推理论证能力是中考 考查的基本能力之一,它有机的渗透到初中课程的各个章节,对本节的学习,应先掌握其基本概念、基本原理,在此 基础上通过其他章节的学习,逐步提高自己的推理论证能力。第一讲推理与证明 一、考纲解读: 本部分内容主要包括:合情推理和演绎推理、直接证明与间接证明、数学归纳法等内容,其中推理中的合情推理、演 绎推理几乎涉及数学的方方面面的知识,代表研究性命题的发展趋势。新课标考试大纲将抽象概括作为一种能力提出,进一步强化了合情推理与演绎推理的要求,因此在复习中要重视合情推理与演绎推理。高考对直接证明与间接证明的 考查主要以直接证明中的综合法为主,结合不等式进行考查。 二、要点梳理: 1.归纳推理的一般步骤:(1)通过观察个别事物,发现某些相同的性质;(2)从已知的相同性质中推出一个明确表述的一 般性命题。 2.类比推理的一般步骤: (1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)。 3.演绎推理 三段论及其一般模式:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对 特殊情况作出判断。 4.直接证明与间接证明 ①综合法:利用某些已经证明过的不等式和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法。综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论。 ②分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定 这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法。分析法的思维特点是:执果索因。 ③反证法:要证明某一结论A是正确的,但不直接证明,而是先去证明A的反面(非A)是错误的,从而断定A是正确的,即为反证法。一般地,结论中出现“至多”“至少”“唯一”等词语,或结论以否定语句出现,或要讨论的情况复杂时,常考虑使用反证法。 主要三步是:否定结论→推导出矛盾→结论成立。 ?实施的具体步骤是:? 第一步,反设:作出与求证结论相反的假设;?第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;?第三步,结论:说明反设不成立,从而肯定原命题成立。 ④数学归纳法:一般地,证明一个与自然数n有关的命题P(n),有如下步骤: (1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况; (2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 1 / 1

第53讲 推理与证明(解析版)

简单已测:1994次正确率:87.2 % 1.下列表述正确的是( ) ①归纳推理是由部分到整体的推 理;②归纳推理是由?般到?般的推理;③演绎推理是由?般到特殊的推理;④类?推理是由特殊到?般的推理;⑤类?推理是由特殊到特殊的推理.A.①②③ B.②③④C.①③⑤ D.②④⑤ 考点:归纳推理的常??法、类?推理的常??法知识点:归纳推理、类?推理答案:C 解析:所谓归纳推理,就是从个别性知识推出?般性结论的推理. 故①对②错; ?所谓演绎推理是由?般到特殊的推理.故③对; 类?推理是根据两个或两类对象有部分属性相同,从?推出它们的其他属性也相同的推理.故④错⑤对.故选:. ?般已测:2488次正确率:82.5 % 2.图是“推理与证明”的知识结构图,如果要加?“归纳”,则应该放在( ) A.“合情推理”的下位 B.“演绎推理”的下位 C.“直接证明”的下位 D.“间接证明”的下位 考点:归纳推理的常??法、类?推理的常??法知识点:归纳推理、类?推理答案:A 解析:合情推理包括归纳推理与类?推理,因此答案为. C A

简单已测:1990次正确率:95.2 % 3.给出下列表述:①综合法是由因导果法;②综合法是顺推证法;③分析法是执果索因法;④分析法是间接证明法; ⑤分析法是逆推证法.其中正确的表述有( )A.个B.个C.个D. 个 考点:分析法的思考过程、特点及应?、综合法的思考过程、特点及应?知识点:综合法、分析法答案:C 解析:结合综合法和分析法的定义可知①②③⑤均正确,分析法和综合法均为直接证明法,故④不正确. ?般 已测:3748次 正确率:87.4 % 4.观察下列各式:,则的末四位数字为( ) A.B.C.D. 考点:有理数指数幂的运算性质、归纳推理的常??法知识点:有理数指数幂的运算法则、归纳推理答案:D 解析:, 可以看出这些幂的最后位是以为周期变化的, , 的末四位数字与的后四位数相同,是, 故选D ?般已测:1886次正确率:81.9 % 5.观察下列各式:,, ,,, ,则=( ) A.B.C. 23455=3125,5=15625,5=78125,?5 6 7520113125562506258125 ∵5=3125,5=15625,5=781255 675=390625,5=1953125,5=9765625,5=48828125? 89101144∵2011÷4=502?3∴52011578125a +b =1a +b =322a +b =433a +b =744a +b =1155…a +b 10102876123

合情推理与演绎推理的意义

合情推理与演绎推理的意义 (1)合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推导过程。演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等),按照严格的逻辑法则得到新结论的推理过程。 (2)在解决问题的过程中,合情推理具有猜测和发现结论,探索和提供思路的作用,有利于创新意识的培养。例如,在研究球体时,我们会自然地联想到圆。由于球与圆在形状上有类似的地方,即都具有完美的对称性,都是到定点的距离等于定长的点的集合,因此我们推测圆的一些特征,球也可能有。 圆的切线,切线与圆只交于一点,切点到圆心的距离等于圆的半径,类似地,我们推测可能存在这样的平面,与球只交于一点,该点到球心的距离等于球的半径。平面内不共线的3个点确定一个圆,类似地,我们猜想空间中不共面的4个点确定一个球等。 演绎推理是数学中严格证明的工具,在解决数学问题时起着重要的作用。“三段论”是演绎推理的一般模式,前提和结论之间存在必然的联系,只要前提是真实的,推理的形式是正确的,那么结论也必定是正确的。 例如,三角函数都是周期函数,sinx是三角函数,因此推导证明出该函数是周期函数。又如,这样一道问题“证明函数f(x)=-x+2x在(-0,1)上是增函数”。大前提是增函数的定义,小前提是推导函数f(x)在(-c,1)上满足增函数的定义,进而得出结论。 合情推理从推理形式上看,是由部分到整体、个别到一般、由特殊到特殊的推理;而演绎推理是由一般到特殊的推理。从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确。 就数学而言,演绎推理是证明数学结论、建立数学体系的重要思维过程。但数学结论、证明思路等的发现,主要靠合情推理。因此,合情推理与演绎推理是相辅相成的。

推理与证明

第3讲推理与证明 【知识要点】 1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理 2.类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质。类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。 3.类比推理的一般步骤: ①找出两类事物之间的相似性或者一致性。 ②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想) 【典型例题】 1、(2011?江西)观察下列各式:72=49,73=343,74=2401,…,则72011的末两位数字为() A、01 B、43 C、07 D、49 2、(2011?江西)观察下列各式:55=3125,56=15625,57=78125,…,则52011的末四位数字为() A、3125 B、5625 C、0625 D、8125 3、(2010?临颍县)平面内平行于同一条直线的两条直线平行,由此类比思维,我们可以得到() A、空间中平行于同一平面的两个平面平行 B、空间中平行于同一条直线的两条直线平行 C、空间中平行于同一条平面的两条直线平行 D、空间中平行于同一条直线的两个平面平行 4、(2007?广东)设S是至少含有两个元素的集合,在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素与之对应)有a*(b*a)=b,则对任意的a,b∈S,下列等式中不恒成立的是() A、(a*b)*a=a B、[a*(b*a)]*(a*b)=a C、b*(b*b)=b D、(a*b)*[b*(a*b)]=b 5、(2007?广东)如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A,B,C,D四个维修 点某种配件各50件.在使用前发现需将A,B,C,D四个维修点的这批配件 分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行,那么要 完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的 调动件次为n)为() A、15 B、16 C、17 D、18 6、(2006?陕西)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为() A、4,6,1,7 B、7,6,1,4 C、6,4,1,7 D、1,6,4,7 7、(2006?山东)定义集合运算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},设集合A={0,1},B={2,3},则 集合A⊙B的所有元素之和为() A、0 B、6 C、12 D、18

推理与证明经典练习题讲解学习

推理与证明经典练习 题

收集于网络,如有侵权请联系管理员删除 高二数学《推理与证明》练习题 一、选择题 1.在等差数列{}n a 中,有4857a a a a +=+,类比上述性质,在等比数列{}n b 中,有( ) A .4857b b b b +=+ B .4857b b b b ?=? C .4578b b b b ?=? D .4758b b b b ?=? 2.已知数列{}n a 的前n 项和为n S ,且n n a n S a 21,1== *N n ∈,试归纳猜想出n S 的表达式为( ) A 、12+n n B 、112+-n n C 、112++n n D 、2 2+n n 3.设)()(,sin )(' 010x f x f x x f ==,'21()(),,f x f x =???'1()()n n f x f x +=,n ∈N ,则2015()f x =( ) A.sin x B.-sin x C.cos x D.-cos x 4.平面内有n 个点(没有任何三点共线),连接两点所成的线段的条数为 ( ) A.()112n n + B.()1 12 n n - C.()1n n + D.()1n n - 5.已知2() (1),(1)1()2 f x f x f f x +==+,*x N ∈() ,猜想(f x )的表达式为 ( ) A .4()22x f x =+ B.2 ()1f x x =+ C.1()1f x x =+ D.2()21 f x x =+ 6.观察数列的特点1,2,2,3,3,3,4,4,4,4,…的特点中, 其中第100项是( ) A .10 B .13 C .14 D .100 7.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ?/平面α,直线a ?平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为 ( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 8. 分析法证明不等式的推理过程是寻求使不等式成立的( ) A .必要条件 B .充分条件 C .充要条件 D .必要条件或充分条件 9. 2+7与3+6的大小关系是( ) A.2+7≥3+6 B.2+7≤3+6 C.2+7>3+6 D.2+7<3+ 6 10.[2014·山东卷] 用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( )

合情推理演绎推理专题练习及答案

合情推理、演绎推理 一、考点梳理:(略) 二、命题预测: 归纳、类比和演绎推理是高考的热点,归纳与类比推理大多数出现在填空题中,为中、抵挡题,主要考察类比、归纳推理的能力;演绎推理大多出现在解答题中,为中、高档题,在知识的交汇点出命题,考察学生的分析问题,解决问题以及逻辑推理能力。预测2012年仍然如此,重点考察逻辑推理能力。 三、题型讲解: 1:与代数式有关的推理问题 例1、观察()()()() ()() 223 3 2 2 44 3 223, a b a b a b a b a b a ab b a b a b a a b ab b -=-+-=-++-=-+++进而猜想n n a b -= 例2、观察1=1,1-4=-(1+2),1-4+9=(1+2+3),1-4+9-16= -(1+2+3+4)…猜想第n 个等式是: 。 练习:观察下列等式:3 321 23+=,33321236++=,33332123410+++=,…,根据上述规律,第五个... 等式.. 为 。 。 练习:在计算“”时,某同学学到了如下一种方法:先改写第k 项: 由此得 … 相加,得 类比上述方法,请你计算“”,其结果为 . 2:与三角函数有关的推理问题 例1、观察下列等式,猜想一个一般性的结论,并证明结论的真假。 2020202020202020202020203 sin 30sin 90sin 150,23 sin 60sin 120sin 18023 sin 45sin 105sin 165, 23 sin 15sin 75sin 1352++= ++=++=++= 练习:观察下列等式: ① cos2α=2 cos 2 α-1; ② cos 4α=8 cos 4 α-8 cos 2 α+1; ③ cos 6α=32 cos 6 α-48 cos 4 α+18 cos 2 α-1; ④ cos 8α= 128 cos 8α-256cos 6 α+160 cos 4 α-32 cos 2 α+1; ⑤ cos 10α=mcos 10α-1280 cos 8α+1120cos 6 α+ncos 4 α+p cos 2 α-1; 可以推测,m -n+p= .

推理与证明经典练习题

高二数学《推理与证明》练习题 一、选择题 1.在等差数列{}n a 中,有4857a a a a +=+,类比上述性质,在等比数列{}n b 中,有( ) A .4857b b b b +=+ B .4857b b b b ?=? C .4578b b b b ?=? D .4758b b b b ?=? 2.已知数列{}n a 的前n 项和为n S ,且n n a n S a 21,1== * N n ∈,试归纳猜想出n S 的 表达式为( ) A 、 12+n n B 、112+-n n C 、112++n n D 、2 2+n n 3.设)()(,sin )('010x f x f x x f ==,'21()(),,f x f x =???' 1()()n n f x f x +=,n ∈N ,则2015()f x = ( ) A.sin x B.-sin x C.cos x D.-cos x 4.平面有n 个点(没有任何三点共线),连接两点所成的线段的条数为 ( ) A. ()112n n + B.()1 12 n n - C.()1n n + D.()1n n - 5.已知2() (1),(1)1()2 f x f x f f x +==+,*x N ∈() ,猜想(f x )的表达式为 ( ) A .4()22x f x =+ B.2()1f x x =+ C.1()1f x x =+ D.2 ()21 f x x =+ 6.观察数列的特点1,2,2,3,3,3,4,4,4,4,…的特点中, 其中第100项是( ) A .10 B .13 C .14 D .100 7.有一段演绎推理是这样的:“直线平行于平面,则平行于平面所有直线;已知直线b ?/平面α,直线a 平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为 ( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 8. 分析法证明不等式的推理过程是寻求使不等式成立的( ) A .必要条件 B .充分条件 C .充要条件 D .必要条件或充分条件 9. 2+7与3+6的大小关系是( ) A.2+7≥3+6 B.2+7≤3+6 C.2+7>3+6 D.2+7<3+ 6 10.[2014·卷] 用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( ) A. 方程x 2+ax +b =0没有实根 B. 方程x 2+ax +b =0至多有一个实根 C. 方程x 2+ax +b =0至多有两个实根 D. 方程x 2+ax +b =0恰好有两个实根 11.若f (n )=1+1 21 3121++ ???++n (n ∈N*),则当n =1时,f (n )为 (A )1 (B )31 (C )1+3 121+ (D )非以上答案

专题十三 推理与证明第三十八讲 推理与证明

5 - 1 专题十三推理与证明 2019 年第三十八讲推理与证明 2019 年 8.(2019 全国I 理 4)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底 的长度之比是( 2 ≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如2 此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5 -1 .若某人满2 足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是 A.165 cm B.175 cm C.185 cm D.190 cm 8 解析头顶至脖子下端的长度为26cm,说明头顶到咽喉的长度小于26cm, 由头顶至咽喉的长度与咽喉至肚脐的长度之比是5-1 ≈ 0.618 ,2 26 可得咽喉至肚脐的长度小于 0.618 ≈ 42 , 由头顶至肚脐的长度与肚脐至足底的长度之比是5-1 ,可得肚脐至足底的长度小2 42+26 =110 , 0.618 即有该人的身高小于110 + 68 = 178cm , 又肚脐至足底的长度大于105cm,可得头顶至肚脐的长度大于105×0.618≈65cm, 即该人的身高大于65+105=170cm.综上可得身高在170cm-178cm 之间.故选B. 9. (2019 全国II 理4)2019 年1 月3 日嫦娥四号探测器成功实现人类历史上首次月球背面 5 -1

3 M 2 = 3α + 3α + α ≈ α 3 1 软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿 着围绕地月拉格朗日 L 2 点的轨道运行. L 2 点是平衡点,位于地月连线的延长线上.设地球 质量为 M 1,月球质量为 M 2,地月距离为 R , L 2 点到月球的距离为 r ,根据牛顿运动定律和万有引力定律,r 满足方程: M 1 + M 2 = (R + r ) M 1 . (R + r )2 r 2 R 3 α = r α 3α 3 + 3α 4 + α 5 ≈ α 3 设 ,由于 R 的值很小,因此在近似计算中 (1+ α )2 B ,则 r 的近似值为 9 解析 解 法 一 ( 直 接 代 换 运 算 ) : 由 M 1 + M 2 = (R + r ) M 1 及 α = r 可得 M 1 + M 2 = (1+ α ) M 1 , (R + r ) 2 r 2 R 3 R (1+ α )2 R 2 r 2 R 2 M M M [(1+ α )3 -1]M (3α + 3α 2 + α 3 )M 2 = (1+ α ) 1 - ?1 = ?1 = ?1 . r 2 R 2 (1+ α )2 R 2 (1+ α )2 R 2 (1+ α )2 R 2 3α 3 + 3α 4 + α 5 M M 3r 3M r 3 M R 3 因为 ≈ 3α 3 ,所以 2 ≈ 1 ? = ?1 ,则r ≈ ?2 , r ≈ . (1+ α )2 r 2 R 2 R R 3 3M 1 故选 D. 解法二(由选项结构特征入手):因为α = r R ,所以r = R α , M 1 r 满足方程: + M 2 = (R + r ) M 1 . (R + r )2 r 2 R 3 3 4 5 3 所以 M (1+ α )2 , D C A

典型例题:推理与证明

第二章《推理与证明》章末复习习题 考试要求 1.了解合情推理的思维过程; 2.掌握演绎推理的一般模式; 3.会灵活运用直接证明和间接证明的方法,证明问题; 4.掌握数学归纳法的整体思想. 典例精析精讲 例1 、如图,已知□ABCD ,直线BC ⊥平面ABE ,F 为CE 的中点. (1)求证:直线AE ∥平面BDF ; (2)若90AEB ∠=,求证:平面BDF ⊥平面BCE . 证明:(1)设AC ∩BD =G ,连接FG . 由四边形ABCD 为平行四边形,得G 是AC 的中点. 又∵F 是EC 中点,∴在△ACE 中,FG ∥AE . ∵AE ?/平面BFD ,FG ?平面BFD ,∴AE ∥平面BFD ; (2)∵π2AEB ∠=,∴AE BE ⊥. 又∵直线BC ⊥平面ABE ,∴AE BC ⊥. 又BC BE B =,∴直线AE ⊥平面BCE . 由(1)知,FG ∥AE ,∴直线FG ⊥平面BCE . 例2 已知数列{}n a 的前n 项和11()22n n n S a -=--+(n 为正整数). (Ⅰ)令2n n n b a =,求证数列{}n b 是等差数列,并求数列{}n a 的通项公式; (Ⅱ)令1n n n c a n += ,12........n n T c c c =+++试比较n T 与521 n n +的大小,并予以证明. 解:(I )在11()22n n n S a -=--+中,令n =1,可得1112n S a a =--+=,即112a =. 例1图

当2n ≥时,21111111()2()22 n n n n n n n n n S a a S S a a ------=--+∴=-=-++,, 11n 1112a (),212 n n n n n a a a ----∴=+=+n 即2. 112,1,n 21n n n n n n b a b b b --=∴=+≥-=n 即当时,b . 又1121,b a ==∴数列}{n b 是首项和公差均为1的等差数列. 于是1(1)12,2n n n n n n b n n a a =+-?==∴= . (II)由(I )得11(1)()2 n n n n c a n n +==+,所以 23111123()4()(1)()2222n n T n =?+?+?+++, 2341111112()3()4()(1)()2222 2n n T n +=?+?+?+++. 由①-②得231111111()()()(1)()22222 n n n T n +=++++-+ 11111[1()]133421(1)()122212332 n n n n n n n n T -++-+=+-+=--+∴=- 535(3)(221)3212212(21)n n n n n n n n n T n n n ++---=--=+++. 于是确定521 n n T n +与的大小关系等价于比较221n n +与的大小. 由23 452211;2221;2231;2241;225; +时, 证明如下: 证法1:(1)当n=3时,由上验算显示成立. (2)假设1n k =+时, 12222(21)422(1)1(21)2(1)1k k k k k k k +=>+=+=+++->++. 所以当1n k =+时猜想也成立. 综合(1)(2)可知 ,对一切3n ≥的正整数,都有22 1.n n >+

相关主题
文本预览
相关文档 最新文档