当前位置:文档之家› 陶瓷基复合材料增强机制机理

陶瓷基复合材料增强机制机理

陶瓷基复合材料增强机制机理
陶瓷基复合材料增强机制机理

陶瓷基复合材料增强机制、机理的研究现状及展望

陶瓷基复合材料(CMC),一般是指相变增韧、颗粒增韧陶瓷和纤维及晶须增韧陶瓷材料。这是目前备受重视的新型耐高温结构材料。本文将介绍陶瓷基复合材料这种新型复合材料的机理和研究现状及展望。

与常规材料和非陶瓷复合材料相比,陶瓷材料具有耐高温、抗腐蚀、超硬度抗氧化和抗烧结等优异性能。作为高温结构材料,尤其作为航空航天飞行器需要承受极高温度的特殊部位结构用材料具有很大的潜力。因此世界各国都把结构陶瓷看作是对未来工业革命有重大作用的高技术新材料而给以重点研究和发展并相继开展了陶瓷汽车发动机、柴油机和航空发动机等大规模高温陶瓷热机研究计划,出现了陶瓷热,然而,常规结构陶瓷还存在缺陷和问题,主要是材料的脆性,可靠性不高等,应用于现在科技领域还有许多问题急需研究解决。陶瓷基复合材料引起人们关注的重要原因就在于他可以改善陶瓷基材料的力学性能,特别是脆性,因此陶瓷基复合材料的发展和研究将成为陶瓷大规模应用计划取得成功的关键。

陶瓷基复合材料是在陶瓷基体中引入第二相材料,使之增强、增韧的多相材料,又称为多相复合陶瓷或复相陶瓷。陶瓷基复合材料是2O世纪8O年代逐渐发展起来的新型陶瓷材料,包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料。其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的工况下可以得到广泛应用,成为理想的高温结构材料。

连续纤维增强复合材料是以连续长纤维为增强材料,金属、陶瓷等为基体材料制备而成。金属基复合材料是以陶瓷等为增强材料,金属、轻合金等为基体材料而制备的。从20世纪60年代起各国都相继对金属基复合材料开展了大量的研究,因其具有高比强度、高比模量和低热膨胀系数等特点而被应用于航天航空及汽车工业。陶瓷材料具有熔点高、密度低、耐腐蚀、抗氧化和抗烧蚀等优异性能,被广泛用于航天航空、军事工业等特殊领域。但是陶瓷材料的脆性大、塑韧性差导致了其在使用过程中可靠性差,制约了它的应用范围。而纤维增强陶瓷基复合材料方面克服了陶瓷材料脆性断裂的缺点,另一方面保持了陶瓷本身的优点。

1.材料的选择

基体选择

用于连续纤维增强陶瓷基复合材料的基体材料有很多种, 与纤维之间的面相容性是衡量其好坏的重要指标之一, 此外还应考虑其弹性模量、挥发性、抗蠕变和抗氧化等性能。基体材料主要有以下3类:

第1类是玻璃及玻璃陶瓷基体:此类基体的优点是可以在较低温度下制备纤维( 特别是N-icalon纤维) 不会受到热损伤, 因而具有较高的强度保留率; 同时, 在制备过程中可通过基体的粘性流动来进行致密化, 增韧效果好。但其致命的缺点是

由于玻璃相的存在容易产生高温蠕变, 同时玻璃相容易向晶态转化而发生析晶, 使其使用温度受到限制。目前, 此类基体主要有: CAS( 钙铝硅酸盐)玻璃、LAS( 锂铝硅酸盐) 玻璃、MAS( 镁铝硅酸盐)玻璃、BS( 硼硅酸盐) 玻璃及石英玻璃。

第2类是氧化物基体: 它是20世纪60年代以前应用最多的一类陶瓷材料, 主要

有Al

2O

3

、SiO

2

、ZrO

2

和莫来石等; 近年来, 又相继开发了钇铝石榴石、ZrO

2

-TiO

2

ZrO

2-Al

2

O

3

等。制备氧化物陶瓷基复合材料的最大问题是, 在高温氧化环境下, 纤

维容易发生热退化和化学退化, 并易与氧化物基体发生反应。因此, 这些材料均不宜用于高应力和高温环境中。

第3类是非氧化物基体, 主要指SiC陶瓷和Si

3N

4

陶瓷, 由于其具有较高的强度、

耐磨性和抗热震性及优异的高温性能, 与金属材料相比还具有密度较低等特点, 因此, 此类基体受到人们的广泛重视, 其中SiC基复合材料是研究得最早也是较成功的一种。如以化学气相渗透( CVI) 法制备的N-icalon纤维增韧碳化硅基复合材料, 其抗弯强度达600MPa, 断裂韧性达27. 7MPa。其它研究较成功的非氧化

物陶瓷基体有Si

3N

4

、BN等。

1. 2 纤维的选择

虽然用于纤维增强陶瓷基复合材料的纤维种类较多, 但迄今为止, 能够真正实用的纤维种类并不多。高温力学性能是其重要的决定因素, 同时纤维应具有密度低、直径小、比强度和比模量高等特点, 在氧化性气氛或其它有害气氛中有较高的强度保持率, 能满足加工性能和使用性能的要求。以下

对增强纤维进行简要介绍:

第1类为氧化铝系列( 包括莫来石) 纤维。这类纤维的高温抗氧化性能优良, 有可能用于1400℃以上的高温环境, 但目前作为FRCMC的增强材料主要存在以下2个问题: 一是高温下产生晶体相变、晶粒粗化, 以及由玻璃相的蠕变导致纤维的高温强度下降; 二是在高温成形和使用过程中, 氧化物纤维易与陶瓷基体( 尤其是氧化物陶瓷) 形成强结合的界面, 导致FRCMC的脆性破坏, 丧失了纤维的增韧作用。

第2类为碳化硅系列纤维。目前制备碳化硅纤维的方法主要有2种: 一是化学气相沉积法。用这种方法制备的碳化硅纤维, 其高温性能好, 但由于直径太大( 大于100Lm) , 不利于制备形状复杂的FRCMC构件, 且价格昂贵, 因而其应用受到很大限制。二是有机聚合物先驱体转化法。在这种方法制备的纤维中, 最典型的例子是日本碳公司生产的Nicalon和Tyranno等纤维。这类纤维的共同特点是, 纤维中不同程度地含有氧和游离碳杂质, 从而影响纤维的高温性能。最近, 日本碳公司生产的低含氧量碳化硅纤维( H-i Nicalon) 具有较好的高温稳定性, 其强度在1500~1600℃温度下变化不大。

第3类为氮化硅系列纤维。它们实际上是由Si、N、C和O等组成的复相陶瓷纤维, 现已有商品出售。这类纤维是通过有机聚合物先驱体转化法制备的, 目前也存在着与先驱体碳化硅纤维同样的问题, 因而其性能与先驱体碳化硅纤维相近。

第4类为碳纤维。这类纤维已有30余年的发展历史, 它是目前开发得最成功、性能最好的纤维之一, 已被广泛用作复合材料的增强材料。碳纤维的高温性能非常好, 在惰性气氛中, 在2000℃高温下其强度基本不下降, 是目前增强纤维中高温性能最佳的一类纤维。但是, 其最大的弱点是高温抗氧化性能差, 即在空气中360℃以上便出现明显的因氧化引起的质量耗损和强度下降, 如能解决这个问题( 如采用纤维表面涂层等方法) , 碳纤维仍不失为制备FRCMC的最佳候选材料。

C等复相纤维。

除上述系列纤维外, 目前正在开发的还有BN、TiC、B

4

2 FRCMC的增韧机理

陶瓷材料的脆性本质是在陶瓷材料断裂过程中, 除用增加新表面来增加表面能外, 几乎没有其它可以吸收外来能量的机制。因此, 为了提高陶瓷基复合材料的韧性, 必须尽可能提高材料断裂时消耗的能量。FRCMC断裂时纤维拔出、桥联、脱粘和断裂, 以及基体中裂纹的微化、弯曲、偏转等都是其新的能量吸收机制, 也都能使其韧性得到很大提高。下面介绍5种主要的增韧机制:

1)裂纹偏转: 由于纤维周围沿纤维/ 基体( F/M) 界面存在因弹性模量或热膨胀系数不匹配而引起的应力场, 从而使在基体中扩展的裂纹遇到纤维时发生偏转。由于纤维周围存在应力场, 陶瓷基体中的裂纹一般难以穿过纤维, 而更易绕过纤维并尽量贴近纤维表面扩展, 即裂纹发生偏转, 致使裂纹面不再垂直于外加应力。只有增加外加应力, 提高裂纹尖端应力强度因子, 才能使裂纹进一步扩展,因此, 裂纹偏转可以产生明显的增韧作用; 且随纤维长径比的增大和纤维体积分数的增加, 裂纹偏转的增韧效果增强。

2)微裂纹增韧: 在裂纹的扩展过程中, 残余应变场与裂纹在分散相周围发生反应, 导致主裂纹尖端产生微裂纹分支, 使裂纹扩展的路径和需要的能量增加, 从而使材料增韧。

3)纤维脱粘: 复合材料中纤维脱粘产生了新的表面, 因此需要能量。尽管单位面积的表面能很小, 但所有脱粘纤维总的表面能很大。若想通过纤维脱粘达到最大增韧效果, 须使高强度纤维的体积分数要大、临界纤维长度增加, 而纤维与基体的界面强度要弱。

4)纤维桥接: 纤维/ 基体界面的解离使裂纹扩展通过基体而在裂纹尖端后面存在一个纤维保持完整无损的区域成为可能。纤维与基体的弹性模量差别越大, 纤维与裂纹面夹角越小, 界面解离越容易发生。在此区域内, 纤维把裂纹桥接起来, 导致在裂纹表面产生一个压应力, 以抵消外加拉应力的作用, 使裂纹难以进一步扩展, 从而起到增韧作用。

5)纤维拔出: 纤维拔出是指靠近裂纹尖端的纤维在外应力作用下沿着它和基体的界面滑出的现象, 它要求纤维相对于界面断裂韧性具有高的横向断裂韧性。

纤维拔出需要消耗额外的应变能以促使裂纹扩展, 促使复合材料断裂韧性增加, 同时促使裂纹尖端应力松弛, 从而减缓裂纹的扩展。纤维的拔出需要外力做功, 因此可起到增韧作用。

以上5种增韧机理中, 最有发展前途的是裂纹偏转和纤维拔出, 因为它们很少受温度的限制, 尤其是裂纹偏转时, 其增韧效果仅取决于分散相的体积分数和形状, 而与粒子尺寸和温度无关, 这样对高温增韧无疑是十分有利的, 这一点在玻璃-陶瓷基体中得到了证实。但在实际增韧过程中往往是几种增韧机理同时起作用。

3 FRCMC的制备技术

自从最初用热压烧结法制备玻璃陶瓷基复合材料以来, 根据应用领域的需求, 研究者们迅速开发出了多种纤维增强陶瓷基复合材料的制备技术。归纳起来可分为以下4种: 1) 固相法, 即热压烧结法, 此法结合了浆料浸渍和高温高压烧结的工艺; 2) 气相法, 主要指化学气相渗透法; 3) 液相法, 包括反应熔渗法、先驱体转化法和溶胶-凝胶法;

3. 1 固相法

固相法( ceramic route) 即热压烧结法( hotpressuresintering, HP) , 又称为浆料浸渗热压法,是制备纤维增强玻璃和低熔点陶瓷基复合材料的传统方法( 一般温度在1300℃以下) , 也是最早用于制备FRCMC的方法。其主要工艺过程如下: 首先将纤维浸渍在含有基体粉料的浆料中, 然后将浸有浆料的纤维缠绕在轮毂上, 经烘干制成无纬布, 然后将无纬布切割成一定尺寸, 层叠在一起, 最后经热模压成形和热压烧结制得复合材料。热压烧结的目的是使陶瓷粉末颗粒在高温下重排, 通过烧结或玻璃相粘性流动充填于纤维之间的孔隙中。采用这种工艺已成功制备出, C/ LAS, SiC/ LAS, C/ BAS和SiC/ BAS等以玻璃相为基体的复合材料此C/ SiO

2

法的主要特点是基体软化温度较低, 可使热压温度接近或低于陶瓷软化温度, 利用某些陶瓷( 如玻璃) 的粘性流动来获得致密的复合材料。存在的问题是: 对于以难熔化合物为基体的复合材料体系, 因为基体缺乏流动性而很难有效; 同时在高温高压下会使纤维受到严重损伤。此外, 对于形状复杂, 由三维纤维预制体增强的C/ SiC复合材料, 采用热压烧结法更难以实现。

3. 2 气相法

气相法主要指化学气相渗透法( chemical vaporinfiltration, CVI) , CVI起源于20世纪60年代中期, 是在CVD( chemical vapour deposition) 基础上发展起来的。这种技术是将纤维预制体置于密闭的反应室内, 采用气相渗透的方法, 使气相物质在加热的纤维表面或附近产生化学反应, 并在纤维预制体中沉积, 从而形成致密的复合材料。其主要优点是:

1) 能在低温低压下进行基体的制备, 材料内部残余应力小, 沉积过程中对纤维基本无损伤, 从而保证了复合材料结构的完整性;

2) 能制备硅化物、碳化物、氮化物、硼化物和氧化物等多种陶瓷材料;

3) 能制备形状复杂、近净尺寸和纤维体积分数大的部件;

4) 在同一CVI反应室中, 可依次进行纤维/ 基体界面、中间相、基体以及部件外表涂层的沉积,可制备变组分或变密度的FRCMC, 有利于材料的优化设计与多功能

化。

其主要缺点有:

生产周期长( 300h以上) , 制造成本高; 材料的致密度低( 一般存在10%~ 15%的孔隙率) ; 预制体的孔隙入口附近气体浓度高,沉积速度大于内部沉积速度, 易导致入口处封闭( 即/ 瓶颈效应0) 而产生密度梯度, 不适合制备厚壁部件;FRCMC 的沉积速度主要取决于CVI 的沉积化学反应动力学与气体在预制体孔隙网络中的传输, 研究者为了克服CVI的缺点, 根据上述反应动力学及气体传输原理研究出了等温等压CVI 法( ICVI) 、热梯度CVI 法( TGCVI) 、等温强制对流CVI法( PGCVI) 、热梯度强制对流CVI 法( FC-VI) 、脉冲CVI法( PCVI) 和连续同步CVI法( CSC-VI) 等。

3. 3 液相法

3. 3. 1 反应熔体浸渗法

反应熔体浸渗法( reactive melt infiltration,RMI) 又称为熔融渗硅法( molten/ liquidsiliconin-filtration, MSI/ LSI)。该法是于20世纪50年代UKAEA( UnitedKingdomAtomicEnergyAuthor-ity) 用于粘结SiC颗粒而发展起来的, 也称为自粘结SiC或反应粘结SiC法。20世纪70年代, 美国通用电器公司( General Electric Company) 利用RMI工艺, 即着名的SILCOMP工艺, 研制出了一种Si/ SiC 材料。HUCKEEE在此基础上研究了由有机物裂解制备具有均一微孔的炭多孔体, 然后将液Si 渗入多孔体制得高强度的Si/ SiC复合材料。20世纪80年代, 德国材料科学家FIRZER首用液硅浸渗C/ C多孔体制备C/ C-SiC复合材料, 随后德国航空中心进一步发展了该工艺。当基体中的一种组元具有低熔点并且容易润湿纤维预制体

时, 就可采用RMI 法制备FRCMC, 例如Al

2O

3

或AlN中的Al ( Tm= 660℃) 、SiC

或Si

3N

4

中的Si( Tm= 1440 ℃) 都是这样的组元。RMI的工艺特点是基体可在没有

外加压力的条件下短时间内生成, 生成方式主要有熔体与纤维反应( 如SiC) 和熔

体与气相反应( 如Al

2O

3

, AlN,Si

3

N

4

) 两种。同时具有不需施加机械压力、制备周期

短、成本低、近净成形等优点。但是, RMI工艺也存在着不足: 制备过程中易造成增强纤维的退, 使复合材料力学性能偏低、断裂韧性差, 易出现灾难性断裂。

3. 3. 2 先驱体转化法

先驱体转化法又称聚合物浸渍裂解法( polymerimpregnation/ pyrolysis, PIP) 或先驱体裂解法, 是近年来发展迅速的一种复合材料制备工艺。该方法是在一定的

温度和压力下, 将适当理论比值的金属有机化合物( 如CH

3SiCl

3

, MTS) , 浸渗到

多孔纤维预制体中, 然后经过干燥和热处理, 使先驱体发生热解并得到所需的基

体。这种方法最先应用于C/ C复合材料的制备, 近年来在制备SiC,Si

3N

, BN和

SiBCN基复合材料中也得到广泛的应用。

其主要特点是:

1) 聚合物在较低温度下裂解, 无压烧成, 因而可减少纤维的损伤及纤维和基体之间的化学反应;

2) 可以对先驱体进行分子设计, 制备所期望的单相或多相陶瓷基体, 杂质元素容易控制;

3) 充分利用聚合物基体和C/ C复合材料的成形技术, 可制备出形状复杂、近净尺寸( near netshaped) 的复合材料部件。

其主要缺点是:

在无压( 或低压) 条件下, 由于溶剂和低分子量组元的挥发, 以及小结构基团的分解等因素的综合作用, 在干燥和热解过程中基体产生很大的收缩并出现裂纹。另外, 先驱体热解所得产物的产率很低。为了获得致密度较高的复合材料, 必须经过多次浸渗和高温处理( 典型的达6~10次) , 制备周期长。

3. 3. 3 溶胶-凝胶法

溶胶-凝胶( So-l Gel) 是用有机先驱体制成的溶胶浸渍纤维预制体, 然后水解、缩聚, 形成凝胶凝胶经干燥和热解后形成CMC。So-l Gel 法的优点是: 1) 热解温度不高( 低于1400℃) , 对纤维的损伤小; 2) 溶胶易润湿增强纤维, 所制得的复合材料较完整, 且基体化学均匀性高; 3) 在裂解前, 经过溶胶和凝胶2种状态, 容易对纤维及其编织物进行浸渗和赋形, 因而便于制备连续纤维增强复合材料。该工艺的主要缺点在于: 由于醇盐的转化率较低且收缩较大, 因而复合材料的致密周期较长, 且制品经热处理后收缩大、气孔率高、强度低; 同时,由于是利用醇盐水解而制得陶瓷基体, 因此此工艺仅限于氧化物陶瓷基体材料的制备。,

未来的发展及展望

纤维增韧陶瓷基复合材料的研究还处于起步阶段, 其制备技术还欠完善、性能数据也比较分散、使用的可靠性差且多限于用作结构材料, 为进入大规模实用阶段, 需要从工艺技术特别是从理论上对其进行更深入的研究, 近期的研究重点主要是:

1) 提高纤维在严酷环境下的使用性能。具有高的强度、良好的强度保持率和优良的抗蠕变性能的纤维是FRCMC能否应用于各种高温、恶劣环境中的决定因素。对氧化物纤维而言, 提高上述使用性能集中体现在提高高温抗蠕变性以及纯度, 也即减少纤维杂质含量和减少纤维内部缺陷, 从而提高纤维强度;

2) 强化理论研究。即加强对纤维增韧陶瓷基复合材料在接近使用条件下的纤维/ 基体的界面行为、材料增韧机理和失效过程等问题的研究;

3) 改善制备技术。目前的制备技术都存在各自的缺陷, 例如: 高温、高压制备技术尽管可以获得致密的复合材料, 但对纤维的损伤大; 低温、低压制备技术对纤维损伤小, 但基体孔隙率高, 不利于复合材料强度的提高。因此, 发展新的FRCMC制备工艺是今后的重要研究方向。

4) 推动FRCMC由结构复合向结构、功能一体化方向发展。到目前为止, 巳研究的纤维增韧陶瓷基复合材料基本上是结构复合材料, 以后应逐步向结构、功能一体化方向发展。

备注:以上相关资料感谢中国知网!

陶瓷基复合材料综述

浅论陶瓷复合材料的研究现状及应用前景 董超2009107219金属材料工程 摘要 本文主要对陶瓷复合材料的研究现状及应用前景进行了研究,并对当今陶瓷复合材料发展面临的问题进行了概括,希望对陶瓷复合材料的进一步发展起到一定的作用。 本文首先对Al2O3陶瓷复合材料和玻璃陶瓷复合材料的研究进展及发展前景进行了详细的研究。然后对整个陶瓷复合材料的发展趋势及存在的问题进行了分析,得出了在新的时期陶瓷复合材料主要向功能、多功能、机敏、智能复合材料、纳米复合材料、仿生复合材料方向发展;目前复合材料面临的主要问题是基础理论研究问题和新的设计和制备方法问题。 关键词:Al2O3陶瓷复合材料玻璃陶瓷复合材料研究现状应用前景 1. 前言 以粉体为原料,通过成型和烧结等所制得的无机非金属材料制品统称为陶瓷。陶瓷的种类繁多,根据陶瓷的化学组成、性能特点、用途等不同,可将陶瓷分为普通陶瓷和特殊陶瓷两大类。而在许多重要的应用及研究领域,特殊陶瓷是主要研究对象。 陶瓷复合材料是特殊陶瓷的一种。在高技术领域内,对结构材料要求具有轻质高强、耐高温、抗氧化、耐腐蚀和高韧性的特点。陶瓷具有优良的综合机械性能,耐磨性好、硬度高、以及耐热性和耐腐蚀性好等特点。但是它的最大缺点是脆性大。近年来,通过往陶瓷中加入或生成颗粒、晶须、纤维等增强材料,使陶瓷的韧性大大地改善,而且强度及模量也有一定提高。因此引起各国科学家的重视。本文主要介绍了各种陶瓷复合材料的研究现状及其应用前景,并对陶瓷复合材料近年来的发展进行综述。 2.研究现状 随着现代科学技术快速发展,新型陶瓷材料的开发与生产发展异常迅速,新理论、新工艺、新技术和新装备不断出现,形成了新兴的先进无机材料领域和新兴产业。科学技术的发展对材料的要求日益苛刻,先进复合材料已成为现代科学技术发展的关键,它的发展水平是衡量一个国家科学技术水平的一个重要指标,因此世界各国都高度重视其研究和发展。 复合材料的可设计性大,能满足某些对材料的特殊要求,特别是在航空航天技术领域的应用得到迅速发展。陶瓷复合材料的研究,根本目的在于提高陶瓷材料的韧性,提高其可靠性,发挥陶瓷材料的优势,扩大应用领域。本文就几类典型的陶瓷复合材料介绍其研究现状。 2.1Al2O3陶瓷复合材料的研究进展及发展前景 Al2O3陶瓷作为常见陶瓷材料,既具有普通陶瓷耐高温、耐磨损、耐腐蚀、

陶瓷基复合材料论文 (1)

陶瓷基复合材料在航天领域的应用 概念:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。 一、陶瓷基复合材料增强体 用于复合材料的增强体品种很多,根据复合材料的性能要求,主要分为以下几种 纤维类增强体 纤维类增强体有连续长纤维和短纤维。连续长纤维的连续长度均超过数百。纤维性能有方向性,一般沿轴向均有很高的强度和弹性模量。 颗粒类增强体 颗粒类增强体主要是一些具有高强度、高模量。耐热、耐磨。耐高温的陶瓷等无机非金属颗粒,主要有碳化硅、氧化铝、碳化钛、石墨。细金刚石、高岭土、滑石、碳酸钙等。主要还有一些金属和聚合物颗粒类增强体,后者主要有热塑性树脂粉末 晶须类增强体

晶须是在人工条件下制造出的细小单晶,一般呈棒状,其直径为~1微米,长度为几十微米,由于其具有细小组织结构,缺陷少,具有很高的强度和模量。 金属丝 用于复合材料的高强福、高模量金属丝增强物主要有铍丝、钢丝、不锈钢丝和钨丝等,金属丝一般用于金属基复合材料和水泥基复合材料的增强,但前者比较多见。 片状物增强体 用于复合材料的片状增强物主要是陶瓷薄片。将陶瓷薄片叠压起来形成的陶瓷复合材料具有很高的韧性。 二、陶瓷基的界面及强韧化理论 陶瓷基复合材料(CMC)具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,被认为是推重比10以上航空发动机的理想耐高温结构材料。界面作为陶瓷基复合材料重要的组成相,其细观结构、力学性能和失效规律直接影响到复合材料的整体力学性能,因此研究界面特性对陶瓷基复合材料力学性能 的影响具有重要的意义。 界面的粘结形式 (1)机械结合(2)化学结合 陶瓷基复合材料往往在高温下制备,由于增强体与基体的原子扩散,在界面上更易形成固溶体和化合物。此时其界面是具有一定厚度的反应区,它与基体和增强体都能较好的

生物科学文献综述

纳米光催化颗粒对病原菌的杀灭效果研究

【文献综述】 纳米光催化颗粒对病原菌的杀灭效果研究 摘要:纳米光催化颗粒在可见光下对病原菌微生物的繁殖具有很好的杀灭效果,本文对光催化抗菌材料的现状和前景,优点和不足,损伤机理分析进行综述。 关键词:纳米光催化颗粒;病原菌;杀灭效果;损伤机理 引言 纳米光催化颗粒是具有杀灭或抑制病原微生物繁殖能力的一类光催化剂,当用可见光照射纳米颗粒时,通过一系列的作用,可产生具有强氧化能力的氧负离子(.O2-)和氢氧根负离子(.OH)。由于.O2-,.OH具有强氧化能力,可以氧化分解构成细菌微生物的主要成分的各种有机物质,干扰细菌蛋白质的合成[1],从而有效的的抑制细菌的繁殖生长,可以引发绝大多数有机物分子发生氧化还原反应,因此具有很好的消毒杀菌功能[2]。 1光催化抗菌材料的现状和前景 光催化抗菌材料是近些年来专家研究的热门领域之一,近年来,以二氧化钛为代表的光催化抗菌材料因其稳定性好、成本低、催化效率高等突出优点而备受人们的关注[3,4]。但是 ,二氧化钛光催化抗菌剂对太阳能的利用率低相对比较低 ,且对紫外线的要求比较严格,,从而无法有效的利用廉价的太阳能源,以致于对太阳能的应用受到了很大的限制 ,因此是否能够开发出能在可见光照射下而具有高效抗菌性能的新型光催化抗菌剂越来越受到人们的关心和重视。 纳米( nm )为长度单位, 1 nm相当于十亿分之一米。而光催化抗菌材料的纳米微粒的直径在1 nm ~ 100 nm之间。微小的颗粒能使纳米材料拥有量子尺寸的表面效应和量子隧道效应, 从而展现出多种其独特的性质,,所以光催化抗菌材料在滤光、催化、光吸收以及抗菌消毒等方面都有很高的科技价值以及广泛的应用前景[5]。 2光催化抗菌材料的优点和不足 因为半导体光催化剂具有良好的禁带宽度、催活性、氧化能力、无毒以及稳定性高等诸

复合材料综述

金属基陶瓷复合材料制备技术研究进展与应用* 付鹏,郝旭暖,高亚红,谷玉丹,陈焕铭 (宁夏大学物理电气信息工程学院,银川750021) 摘要综述了国内外在金属基陶瓷复合材料制备技术方面的最新研究进展与应用现状,展望了 国内金属基陶瓷复合材料的未来发展。 关键词金属基陶瓷复合材料制备技术应用 Development and Future Applications of Metal Matrix Composites Fabrication Technique FU Peng, HAO Xunuan, GAO Yahong, GU Yudan, CHEN Huanming (School of Physics & Electrical Information Engineering, Ningxia University, Yinchuan 750021) Abstract Recent development and future applications of metal matrix compositesfabrication technique are reviewed and some prospects of the development in metal matrix composites at home are put forward. Key words metal-based ceramic composites, fabrication technique, applications 前言:现代高技术的发展对材料的性能日益提高,单料已很难满足对性能的综合要求,材料的复合化是材料发展的必然趋势之一。陶瓷的高强度、高硬度、高弹性模量以及热化学性稳定等优异性能是其主要特点,但陶瓷所固有的脆性限制着其应用范围及使用可靠性[1—3]。因此,改善陶瓷的室温韧性与断裂韧性,提高其在实际应用中的可靠性一直是现代陶瓷研究的热点。与陶瓷基复合材料相比,通常金属基复合材料兼有陶瓷的高强度、耐高温、抗氧化特性,又具有金属的塑性和抗冲击性能,应用范围更广,诸如摩擦磨损类材料、航空航天结构件、耐高温结构件、汽车构件、抗弹防护材料等。 1 金属基陶瓷复合材料的制备 金属基陶瓷复合材料是20世纪60年代末发展起来的,目前金属基陶瓷复合材料按增强体的形式可分为非连续体增强(如颗粒增强、短纤维与晶须增强)、连续纤维增强(如石墨纤维、碳化硅纤维、氧化铝纤维等)[4—6]。实际制备过程中除了要考虑基体金属与增强体陶瓷之间的物性参数匹配之外,液态金属与陶瓷间的浸润性能则往往限制了金属基陶瓷复合材料的品种。目前,金属基陶瓷复合材料的制备方法主要有以下几种。 1.1 粉末冶金法 粉末冶金法制备金属基陶瓷复合材料即把陶瓷增强体粉末与金属粉末充分混合均匀后进行冷压烧结、热压烧结或者热等静压,对于一些易于氧化的金属,烧结时通入惰性保护气体进行气氛烧结。颗粒增强、短纤维及晶须增强的金属基陶瓷复合材料通常采用此种方法,其主要优点是可以通过控制粉末颗粒的尺寸来实现相应的力学性能,而且,粉末冶金法制造机械零件是一种终成型工艺,可以大量减少机加工量,节约原材料,但粉末冶金法的生产成本并不比熔炼法低[7]。 1.2 熔体搅拌法 熔体搅拌法是将制备好的陶瓷增强体颗粒或晶须逐步混合入机械或电磁搅拌的液态或半

连续陶瓷基复合材料的研究现状及发展趋势

第27卷第2期 硅 酸 盐 通 报 Vo.l 27 No .2 2008年4月 BULLETI N OF T HE C H INESE CERA M IC S OC IET Y Apr i,l 2008 连续陶瓷基复合材料的研究现状及发展趋势 陈维平,黄 丹,何曾先,王 娟,梁泽钦 (华南理工大学机械工程学院,广州 510640) 摘要:连续陶瓷基复合材料(C4材料)是近年来出现的一种具有全新复合增强方式的陶瓷/金属复合材料。在这种 复合材料中,基体陶瓷增强相具有三维连通的内部结构,因而起增韧作用的金属填充在陶瓷骨架的空隙中,其在空 间上也是三维连通的。实现这种复合结构需要不同于传统的复合材料成型与制备技术。这种复合结构使得连续 陶瓷基复合材料能够将陶瓷与金属各自的性能特点与优点更多的保留在最终的复合材料中;同时,还表现出了与 传统复合材料(颗粒增强复合材料、纤维增强复合材料等)不同的性能特性,具有广泛的应用前景。 关键词:连续陶瓷基复合材料;C4材料;三维连通 中图分类号:TQ174.758.2 文献标识码:A 文章编号:100121625(2008)022******* R esearch and Developm en t Per spective of C o 2con ti nuous C era m ic C o m posites C HE N Wei 2ping,H U A NG Dan,HE Ce ng 2xian,W A NG Juan,LIA NG Z e 2qin (School ofM echan icalE ngi neeri ng ,Sou t h Ch i na Un i versit y ofT echndogy ,Guangzhou 510640,Ch i na) Abstr act :Co 2conti n uous cera m ic co mposites (C4materials )are a ne w class of cera m ic /meta l co mposites w it h ne w ly rei n f orce men t manner ,where the reinf orc i n g cera m ic phase ,as t h e base of the co mposite ,is characterized as the t h ree 2di m ensional i n terpenetrati n g str ucture ;and the m etallic phase is filled i n t h e i n terspaces of the cera m ic net w or k,as the ductile phase of the co mposite .So me untraditi o na l f or m i n g and fabricating technol o gies f or the co mposites are required due to the spec i a l co 2conti n uous i n ter nal structure .The i n terna l structure of i n ter penetrati o n deter m i n es co 2conti n uous cera m ic co mposites can retain more f eatures and advantages of cera m ic and meta l respectively in the fi n al co mposite ,and also ,perf o r m the diff erent characteristics f ro m the traditi o na l co mposites (such as particle re i n f orced co mposites and fi b er reinf orced co mposites)so that this class of co mposites gain the extensive app li c ation perspectives . K ey w ord s :co 2continuous cera m ic co mposite ;C4m aterials ;three 2di m ensional i n terpenetrating 基金项目:国家自然科学基金资助项目(50575076);广东省自然科学基金重点资助项目(粤科基办[2003]07号);教育部博士点基金资助 项目(20040510107) 作者简介:陈维平(19502),男,教授,博士生导师.主要从事高性能金属/陶瓷复合材料的研究.E 2m a i :l m e wpchen@sc u t .edu .cn 1 连续陶瓷基复合材料 连续陶瓷基复合材料(co 2continuous cera m ic co mposites),简称为C4材料,指的是陶瓷增强体具有三维连通骨架结构的陶瓷基复合材料。这种三维网络陶瓷(骨架)/铝合金复合材料由美国俄亥俄州大学的研究人员Bresli n 等发现,他们将这种复合类型的新材料称为连续陶瓷复合材料(co 2continuous cera m ic

陶瓷基复合材料(CMC).

第四节 陶瓷基复合材料(CMC) 1.1概述 工程中陶瓷以特种陶瓷应用为主,特种陶瓷由于具有优良的综合机械性能、耐磨性好、硬度高以及耐腐蚀件好等特点,已广泛用于制做剪刀、网球拍及工业上的切削刀具、耐磨件、 发动机部件、热交换器、轴承等。陶瓷最大的缺点是脆性大、抗热震性能差。与金属基和聚合物基复合材料有有所不同的,是制备陶瓷基复合材料的主要目的之一就是提高陶瓷的韧性。特别是纤维增强陶瓷复合材料在断裂前吸收了大量的断裂能量,使韧性得以大幅度提高。表6—1列出了由颗粒、纤维及晶须增强陶瓷复合材料的断裂韧性和临界裂纹尺寸大小的比较。很明显连续纤维的增韧效果最佳,其次为品须、相变增韧和颗粒增韧。无论是纤维、晶须还是颗粒增韧均使断裂韧性较整体陶瓷的有较大提高,而且也使临界裂纹尺寸增大。

陶瓷基复合材料的基体为陶瓷,这是一种包括范围很广的材料,属于无机化合物纳构远比金属与合金复杂得多。使用最多的是碳化硅、氮化硅、氧化铝等,它们普遍具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。陶瓷材料中的化学键往注是介于离子键与共价键之间的混合键。 陶瓷基复合材料中的增强体通常也称为增韧体。从几何尺寸上可分为纤维(长、短纤维)、晶须和颗粒三类。碳纤维是用来制造陶瓷基复合材料最常用的纤

维之一。碳纤维主要用在把强度、刚度、重量和抗化学性作为设计参数的构件,在1500霓的温度下,碳纤维仍能保持其性能不变,但对碳纤维必须进行有效的保护以防止它在空气中或氧化性气氛中被腐蚀,只有这样才能充分发挥它的优良性能。其它常用纤维是玻璃纤维和硼纤维。陶瓷材料中另一种增强体为晶须。晶须为具有一定长径比(直径o 3。1ym,长30—lMy”)的小单晶体。从结构上看,晶须的特点是没有微裂纹、位偌、孔洞和表面损伤等一类缺陷,而这些缺陷正是大块晶体中大量存在且促使强度下降的主要原因。在某些情况下,晶须的拉伸强度可达o.1Z(Z为杨氏模量),这已非常接近十理论上的理想拉伸强度o.2Z。而相比之下.多晶的金属纤维和块状金属的拉伸强度只有o.025和o.o01f。在陶瓷基复合材料使用得较为普遍的是SiC、Al2O3、以及Si3N4N晶须。颗粒也是陶瓷材料中常用的一种增强体,从几何尺寸上看、它在各个方向上的长度是大致相同的,—般为几个微米。通常用得较多的颗粒也是SiC、Al2O3、以及Si3N4N。颗粒的增韧效果虽不如纤维和晶须,但如恰当选择颗粒种类、粒径、含量及基体材料,仍可获得一定的韧化效果,同时还会带来高温强度,高温蠕变性能的改善。所以,颗粒增韧复合材料同样受到重视并对其进行了一定的研究。 在陶瓷材料中加入第二相纤维制成的复合材料是纤维增强陶瓷基复合材料,这是改善陶瓷材料韧性酌重要手段,按纤维排布方式的不同,又可将其分为单向排布长纤维复合材料和多向排布纤维复合材料。单向排布纤维增韧陶瓷基复合材料的显著特点是它具有各向异性,即沿纤维长度方向上的纵向性能要大大高于其横向性能。在这种材料中,当裂纹扩展遇到纤维时会受阻.这样要使裂纹进一步扩展就必须提高外加应力。图7—15为这一过程的示意图。当外加应力进一步提高时.由于基体与纤维间的界面的离解,同时又由于纤维的强度高于基体的强

陶瓷基复合材料的研究现状与发展前景

——碳化物陶瓷基复合材料课程名称:复合材料 学生姓名:舒顺启 学号:200910204123 班级:材料091班 日期:2012年12月22日

——碳化物陶瓷基复合材料 摘要:本文综述了陶瓷基复合材料的发展历史,介绍了陶瓷基复合材料的制备工艺,详细阐述了陶瓷基复合材料的性能与应用,分析了陶瓷基复合材料存在的问题,并展望了陶瓷基复合材料未来发展趋势。 关键词:陶瓷基复合材料、制备工艺、性能、应用 Ceramic matrix composites research present situation and the development prospect --Carbide ceramic matrix composites Abstract:This paper reviews the ceramic base composite material, the development history of ceramic matrix composites is introduced the preparation process, elaborated the ceramic matrix composites, the properties and the application of the analysis of the ceramic base composite material existing problems, and prospects the ceramic matrix composites future development trend. Key words:Ceramic matrix composites, preparation process, performance and application 1 引言 陶瓷基复合材料是近二十年来发展起来的新型材料,由于该类材料具有良好的高温性能。因此它作为耐高温结构材料在航空航天工业和能源工业等领域的应用具有巨大的潜力。如航空发动机的推重比为lO时,涡轮前进口温度达1650℃,在这样高的温度下,传统的高温合金材料已经无法满足要求【1】,因此国内外的材料研究者纷纷把研究的重点转向陶瓷基复合材料。研究者通过大量的实验发现,陶瓷基复合材料不仅具有良好的高温稳定性和高温抗氧化能力,而且材料在断裂

高温结构陶瓷基复合材料的研究现状与展望--...

高温结构陶瓷基复合材料的研究现状与展望 摘要概述了国外航空发动机用高温结构陶瓷基复合材料的研究与应用现状及发展趋势,分析了目前研究中存在的问题及其解决办法,确定了今后的研究目标与方向。 关键词陶瓷基复合材料高温结构材料力学性能应用 1 前言 为了提高航空发动机的推重比和降低燃料消耗,最根本的措施是提高发动机的涡轮进口温度,而涡轮进口温度与热端部件材料的最高允许工作温度直接相关。50 至60 年代,发动机热端部件材料主要是铸造高温合金,其使用温度为800~900 ℃;70 年代中期,定向凝固超合金开始推广,其使用温度提高到 接近1000 ℃; 进入80 年代以后,相继开发出了高温单晶合金、弥散强化超合金以及金属间化合物等,并且热障涂层技术得到了广泛的应用,使热端部件的使用温度提高到1200~1300 ℃,已接近这类合金 熔点的80 % ,虽然通过各种冷却技术可进一步提高涡轮进口温度,但作为代价降低了热效率,增加了结 构复杂性和制造难度,而且对小而薄型的热端部件难以进行冷却,因而再提高的潜力极其有限[1 ] 。陶瓷基复合材料正是人们预计在21 世纪中可替代金属及其合金的发动机热端结构首选材料。 近20 年来,世界各工业发达国家对于发动机用高温结构陶瓷基复合材料的研究与开发一直十分重视,相继制定了各自的国家发展计划,并投入了大量的人力、物力和财力,对这一新型材料寄予厚望。如美国NASA 制定的先进高温热机材料计划(HITEMP) 、DOE/ NASA 的先进涡轮技术应用计划(ATTAP) 、美国国家宇航计划(NASP) 、美国国防部关键技术计划以及日本的月光计划等都把高温结构陶瓷基复合材料作为重点研究对象,其研制目标是将发动机热端部件的使用温度提高到1650 ℃或更高[2 ,3 ] ,从而提高发动机涡轮进口温度,达到节能、减重、提高推重比和延长寿命的目的,满足军事和民用热机的需要。 2 国内外应用与研究现状 由于陶瓷材料具有高的耐磨性、耐高温和抗化学侵蚀能力,国外目前已将其应用于发动机高速轴承、活塞、密封环、阀门导轨等要求转速高和配合精度高的部件。在航空发动机高温构件的应用上,到目前为止已报道的有法国将CVI 法SiC/Cf 用于狂风战斗机M88 发动机的喷嘴瓣以及将SiC/ SiCf 用于幻影2000 战斗机涡轮风扇发动机的喷管内调节片[4 ] 。 此外,有许多陶瓷基复合材料的发动机高温构件正在研制之中。如美国格鲁曼公司正研究跨大气层高超音速飞机发动机的陶瓷材料进口、喷管和喷口等部件,美国碳化硅公司用Si3N4/ SiCW制造导弹发动机燃气喷管,杜邦公司研制出能承受1200~1300 ℃、使用寿命达2000h 的陶瓷基复合材料发动机部件等[5 ,6 ] 。目前导弹、无人驾驶飞机以及其它短寿命的陶瓷涡轮发动机正处在最后研制阶段,美国空军材料实验室的研究人员认为[7 ] ,1204~1371 ℃发动机用陶瓷基复合材料已__经研制成功。由于提高了燃烧温度,取消或减少了冷却系统,预计发动机热效率可从目前的26 %提高到46 %。英国罗—罗公司认为,未来航空发动机高压压气机叶片和机匣、高压与低压涡轮盘及叶片、燃烧室、加力燃烧室、火焰稳定器及排气喷管等都将采用陶瓷基复合材料。预计在21 世纪初, 陶瓷基复合材料的使用温度可提高到1650 ℃或更高。 3 研究方向与发展趋势 陶瓷虽然具有作为发动机热端结构材料的十分明显的优点,但其本质上的脆性却极大地限制了它的推广应用。为了克服单组分陶瓷材料缺陷敏感性高、韧性低、可靠性差的缺点,材料科学工作者进行了大量的研究以寻找切实可行的增韧方法[8 ,9 ] 。增韧的思路经历了从“消除缺陷”或减少缺陷尺寸、减少缺陷数量,发展到制备能够“容忍缺陷”,即对缺陷不敏感的材料。目前常见的几种增韧方式主要有相变增韧、颗粒(晶片) 弥散增韧、晶须(短切纤维) 复合增韧以及连续纤维增韧补强等。此外还可通过材料结构的改变来达到增韧的目的,如自增韧结构、仿生叠层结构以及梯度功能材料等。由于连续纤

生物陶瓷材料的研究及应用

生物陶瓷材料的研究及应用 张波化工07-3班 120073304069 摘要介绍了生物陶瓷的定义,对羟基磷灰石生物陶瓷材料、磷酸钙生物陶瓷材料、复合生物陶瓷材料、涂层生物陶瓷材料和氧化铝生物陶瓷的特性和制备方法进行了较为深入的分析,在现代医学中的应用及发展前景。 关键词生物陶瓷,磷酸钙,复合生物陶瓷材料,涂层生物陶瓷材料,氧化铝陶瓷,生物陶瓷应用。 Bioceramic Materials Research and Application Zhangbo Chemical Engineering and Technology 073 class 120073304069 Abstract This paper introduces the definition of bio-ceramics, bio-ceramic material of hydroxyapatite, calcium phosphate bio-ceramic materials, composite bio-ceramic materials, coating materials, bio-ceramics and alumina ceramics of biological characteristics and preparation methods for a more in-depth analysis In modern medicine the application and development prospects. Key words bio-ceramics, calcium phosphate, composite bio-ceramic materials, coating materials, bio-ceramic, alumina ceramic, bio-ceramic applications. 1 引言 生物陶瓷是指用作特定的生物或生理功能的一类陶瓷材料,即直接用于人体或与人体相关的生物、医用、生物化学等的陶瓷材料。做为生物陶瓷材料,需具备如下条件:生物相容性;力学相容性;与生物组织有优异的亲和性;抗血栓;灭菌性并具有很好的 物理、化学稳定性。生物陶瓷材料可分为生物惰性陶瓷(如Al 2O 3 、ZrO 2 等)、生物活性 陶瓷(如致密羟基磷灰石、生物活性微晶玻璃等)和生物复合材料三类。生物陶瓷材料因其与人的生活密切相关,故一直倍受材料科学工作者的重视。 2 生物陶瓷材料的发展 目前世界各国相继发展了生物陶瓷材料,它不仅具有不锈钢塑料所具有的特性,而且具有亲水性、能与细胞等生物组织表现出良好的亲和性。因此生物陶瓷具有广阔的发展前景。生物陶瓷的应用范围也正在逐步扩大,现可应用于人工骨、人

陶瓷基复合材料的研究进展及其在航空发动机上的应用

陶瓷基复合材料的研究进展及其在航空发动机上 的应用 摘要:综述了陶瓷基复合材料(CMCs) 的研究进展。就CMCs的增韧机理、制备工艺和其在航空发动机上的应用进展作了详细介绍。阐述了CMCs研究和应用中存在的问题。最后,指出了CMCs的发展目标和方向。 关键词:陶瓷基复合材料;航空发动机;增韧机理;制备工艺 The Research Development of Ceramic Matrix Compositesand Its Application on Aeroengine Abstract:The development and research status of ceramic matrix compositeswerereviewed in this paper. The main topics include the toughening mechanisms, the preparation progressand the application on aeroengine were introduced comprehensively. Also, the problems in the research and application of CMCswere presented. Finally, the future research aims and directions were proposed. Keywords: Ceramic matrix composites, Aeroengine, Fiber toughening,Preparation progress 1引言 推重比作为发动机的核心参数,其直接影响发动机的性能,进而直接影响飞机的各项性能指标。高推重比航空发动机是发展新一代战斗机的基础,提高发动机的工作温度和降低结构重量是提高推重比的有效途径[1]。现有推重比10一级的发动机涡轮进口温度达到了1500~1700℃,如M88-2型发动机涡轮进口温度达到1577℃,F119型发动机涡轮进口温度达到1700℃左右,而推重比15~20一级发动机涡轮进口温度将达到1800~2100℃,这远远超过了发动机中高温合金材料的熔点温度。目前,耐热性能最好的镍基高温合金材料工作温度达到1100℃左右,而且必须采用隔热涂层,同时设计先进的冷却结构。在此需求之下,迫切需要发展新一代耐高温、低密度、低膨胀、高性能的结构材料[2]。在各类型新型耐高温材料中,

陶瓷基复合材料

复合材料习题 第七章 一、如何改善陶瓷的强度? 减少陶瓷内部和表面的裂纹: 含有裂纹是材料微观结构的本征特性。微观夹杂、气孔、微 裂纹等都能成为裂纹源,材料对表面裂纹(划伤、擦伤)也 十分敏感。 提高断裂韧性(K IC): 采用复合化的途径,添加陶瓷粒子、纤维或晶须,引入各种 增韧机制(增加裂纹的扩散阻力及裂纹断裂过程消耗的能 量),可提高陶瓷的韧性。 二、简述氮化硅陶瓷的烧结方法及其特点。 氮化硅陶瓷中,Si-N是高强度共价键,难以烧结。氮化硅陶瓷有两种烧结方法:1、反应烧结: 硅粉、氮化硅粉混合预成型预氮化(1200℃)二次氮化(1350-1450℃)反应烧结氮化硅陶瓷。 Si3N4形成时伴随21.7%的体积膨胀,获得无收缩烧结氮化硅。 2、热压烧结: 粉末状Si3N4、烧结助剂MgO(1wt%)等,在石墨坩埚中,通过感应加热、单向加压烧结(1650-1850℃,15-30MPa,1-4h)。 MgO的作用:与SiO2膜作用生成熔融硅酸镁,使氮化硅高度致密化。 热压烧结氮化硅只能制备形状简单的(如圆柱形)实体坯件,其制品须经过机械加工才能达到要求的形状和尺寸。 三、简述陶瓷基复合材料的特点及制造步骤。 陶瓷基复合材料的特点:E f和E m的数量级相当;陶瓷基体的韧性有限;增强材 料与陶瓷基体之间的热膨胀系数不匹配、化学相容性问题突出。 陶瓷基复合材料的制造通常分为两个步骤:将增强材料掺入未固结(或粉末状) 的基体材料中排列整齐或均匀混合;运用各种加工条件在尽量不破坏增强材料和 基体性能的前提下制成复合材料制品。 四、简述连续纤维增强陶瓷基复合材料的料浆浸渍-热压烧结工艺及其优、缺点。料浆浸渍-热压烧结工艺:纤维通过含有超细陶瓷基体粉末的料浆使之浸渍,浸 挂料浆的纤维缠绕在卷筒上,烘干、切割,得到纤维无纬布;纤维无纬布裁剪、 铺层排列、热压烧结得到陶瓷基复合材料。

生物科技文献综述

生物科技文献综述江西师范大学生命科学学院

生物化学文献综述 引言: 生物化学是研究生命过程中化学基础的科学。疾病的发生发展是致病因子对生命过程的干扰和破坏;药物的防治是对病理过程的干预。生物化学通过用化学的理论和方法研究生命现象、生命过程的化学基础,通过探索干预和调整疾病发生发展的途径和机理,为新药发现中提供必不可少的理论依据。 生物化学是自90年代中期以来的新兴研究领域。哈佛大学的Schreiber博士和Scripps研究所的Schultz博士分别在东西海岸引领这个领域,他们的所在地所形成的重心地位甚至在加强。从源头来讲,化学是研究分子的科学,生物化学,分子生物学,还有生物学化学都是一样的。但是由于科学家们长期以来的习惯称谓,我们通常使用生物化学指蛋白质结构和活性的研究,用分子生物学指基因表达和控制的研究,用生物学化学指分子水平上的生物现象的研究。 三、关键词 化学生物学与分子生物学;临床医学;多学科融合;科研创新;虚拟实验;多方向研究;综合性实验四、主题综述: 化学生物学使用小分子作为工具解决生物学的问题或通过干扰、调节正常过程了解蛋白质的功能。在某种意义上,使用小分子调节目标蛋白质与制药公司发展新药类似。但是,当所有公司的目标蛋白质到目前为止仅是约450种的时候,人类基因组计划为我们带来了至少几万个目标蛋白质。最终的目标是寻找特异性调节素或寻找解开所有蛋白质之谜的钥匙,但这需要更系统和整体的方法而并非传统方法。化学生物学看起来是有希望的答案。系统的化学生物学仅仅诞生于90年代中期,部份是由于基础条件到那时才刚刚完备。代表性的技术进步包括机器人工程,高通量及高灵敏度的生物筛选,信息生物学,数据采集工具,组合化学和芯片技术例如DNA芯片。化学生物学更普遍的被叫做化学遗传学,而且它正在扩展到化学基因组学。和经典遗传学相比较,小分子并不是取代或超越基因表达,而是被用于抑制或活化翻译过程。 化学生物学、计算生物学与合成生物学,在生物芯片技术、计算模型方法与基因网络设计等方面构成了现代系统生物学与系统遗传学的重要技术基础。 五、研究法方向及方法 在进行研究的过程中,分为了正向研究和逆向研究。在正向法中,目标生物学现象第一次被定义,然后引起被寻找现象的分子选择自许多被应用的分子。被选择的分8子能被附到某些蛋白质上而且抑制/活化它们,引发重要的修饰,然后与分子相连的蛋白质被检查并研究。下面是使用正向法发现和发展肌基质蛋白的例子Nat。 首先,为了获得足量得化合物以引发要得到的现象,通过组合化学的合成方法制得嘌呤文库。多种化合物可与放射性研究引起的不同变异相比较。已经分化的神经原细胞和肌肉细胞很少被增殖。因此,一旦受伤,细胞长不好,恢复很难。这项研究的最初目的是为了找到一种化合物来引起改变肌肉细胞分化,达到再生目的。 分化的肌肉组织构成交织的管状结构。几百个嘌呤类化合物被在96孔圆片上植入潜伏肌肉组织中,找到了能够分离相连接的组织的化合物。这种化合物自肌管隔断嘌呤命名为肌基质

陶瓷基复合材料综述报告

陶瓷基复合材料综述报告 陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料,具有优异的耐高温性能,主要用作高温及耐磨制品。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。 迄今,陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。有些发达国家已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得了不错的使用效果[1]。 一、陶瓷基复合材料增强体 用于复合材料的增强体品种很多,根据复合材料的性能要求,主要分为以下几种[2-4] : 1.1纤维类增强体 纤维类增强体有连续长纤维和短纤维。连续长纤维的连续长度均超过数百。纤维性能有方向性,一般沿轴向均有很高的强度和弹性模量。 1.2颗粒类增强体 颗粒类增强体主要是一些具有高强度、高模量。耐热、耐磨。耐高温的陶瓷等无机非金属颗粒,主要有碳化硅、氧化铝、碳化钛、石墨。细金刚石、高岭土、滑石、碳酸钙等。主要还有一些金属和聚合物颗粒类增强体,后者主要有热塑性树脂粉末 1.3晶须类增强体 晶须是在人工条件下制造出的细小单晶,一般呈棒状,其直径为0.2~1微米,长度为几十微米,由于其具有细小组织结构,缺陷少,具有很高的强度和模量。 1.4金属丝 用于复合材料的高强福、高模量金属丝增强物主要有铍丝、钢丝、不锈钢丝和钨丝等,金属丝一般用于金属基复合材料和水泥基复合材料的增强,但前者比较多见。 1.5片状物增强体 用于复合材料的片状增强物主要是陶瓷薄片。将陶瓷薄片叠压起来形成的陶瓷复合材料具有很高的韧性。 二、陶瓷基的界面及强韧化理论 陶瓷基复合材料(CMC)具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,被认为是推重比10以上航空发动机的理想耐高温结构材料。界面作为陶瓷基复合材料重要的组成相,其细观结构、力学性能和失效规律直接影响到复合材料的整体力学性能,因此研究界面特性对陶瓷基复合材料力学性能的影响具有重要的意义。 2.1界面的粘结形式 (1)机械结合(2)化学结合 陶瓷基复合材料往往在高温下制备,由于增强体与基体的原子扩散,在界面上更易形成固溶体和化合物。此时其界面是具有一定厚度的反应区,它与基体和

生物陶瓷材料的分类

惰性生物陶瓷材料 生物惰性陶瓷主要是指化学性能稳定,生物相容性好的陶瓷材料。这类陶瓷材料的结构都比较稳定,分子中的键力较强,而且都具有较高的机械强度、耐磨性以及化学稳定性。主要由氧化物陶瓷、非氧化物陶瓷以及陶材组成。其中,以Al、Mg、Ti、Zr 的氧化物应用最为广泛。 早在1969 年,Talbert[2]就将不同孔隙率的颗粒状Al2O3 陶瓷作为永久性可移植骨假体,植入成年杂种狗的股骨中进行实验,发现多晶氧化铝陶瓷对包括生物环境在内的任何环境都呈现惰性及其优越的耐磨损性和高的抗压强度。使氧化铝陶瓷材料成为最早获得临床应用的生物惰性陶瓷材料。目前氧化铝陶瓷材料已经应用于人造骨、人工关节及人造齿根的制作方面。 氧化铝陶瓷植入人体后,体内软组织在其表面生成极薄的纤维组织包膜,在体内可见纤维细胞增生,界面无化学反应,多用于全臀复位修复术及股骨和髋骨部连接[3]。单晶氧化铝陶瓷的机械性能更优于多晶氧化铝,适用于负重大、耐磨要求高的部位。但是由于Al2O3 属脆性材料,冲击韧性较低,且弹性模量和人骨相差较大,可能引起骨组织的应力,从而引起骨组织的萎缩和关节松动,在使用过程中,常出现脆性破坏和骨损伤,且不能直接与骨结合。 目前,国外有关学者通过各种方法,使Al2O3 陶瓷在韧性和相容性方面取得了显著提高[4],如在陶瓷表面涂上骨亲和性高的陶瓷,特别是能和骨发生化学结合的磷灰石,已经制造出更加先进的人工关

节。通过相变或微裂等方法,使材料内部产生微裂纹,只要微裂纹的尺寸足够小,则均匀分布的微裂纹会起到应力分散的作用。也可以提高材料的韧性[5]。 近年,氧化锆陶瓷由于其优良的力学性能,尤其是其远高于氧化铝瓷的断裂韧性,使其作为增强增韧第二相材料在人体硬组织修复体方面取得了较大研究的进展。Hench[6]报道,部分稳定氧化锆陶瓷的抗弯强度可达100 MPa,断裂韧性可达15MPa·m- 1/2。 但惰性生物陶瓷在体内被纤维组织包裹或与骨组织之间形成纤维组织界面的特性影响了该材料在骨缺损修复中的应用,因为骨与材料之间存在纤维组织界面,阻碍了材料与骨的结合,也影响材料的骨传导性,长期滞留体内产生结构上的缺陷,使骨组织产生力学上的薄弱。 2 生物活性陶瓷材料 生物活性陶瓷包括表面生物活性陶瓷和生物吸收性陶瓷,又叫生物降解陶瓷。生物表面活性陶瓷通常含有羟基,还可做成多孔性,生物组织可长入并同其表面发生牢固的键合;生物吸收性陶瓷的特点是能部分吸收或者全部吸收,在生物体内能诱发新生骨的生长。生物活性陶瓷有生物活性玻璃(磷酸钙系),羟基磷灰石陶瓷,磷酸三钙陶瓷等几种。 2.1 羟基磷灰石陶瓷 羟基磷灰石(hydroxyapatite),简称HAp,化学式为Ca10(PO4)6(OH)2,属表面活性材料,由于生物体硬组织(牙齿、骨)

生物陶瓷英文文献

Fabrication and Mechanical Properties of Dense/Porous β-Tricalcium Phosphate Bioceramics Faming Zhang 1, a , Jiang Chang 1, b*, Jianxi Lu 1, 2, c , Kaili Lin 1, d 1 Biomaterials and Tissue Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China 2 Shanghai Bio-lu Biomaterials Company, Shanghai 200335, China a star.zhang@https://www.doczj.com/doc/3b10275772.html,, b* jchang@https://www.doczj.com/doc/3b10275772.html,,c ir2bberck@https://www.doczj.com/doc/3b10275772.html,,d lklsic@https://www.doczj.com/doc/3b10275772.html, Keywords: Bioceramics, calcium phosphate, bone regeneration, weight bearing sites Abstract: Attempt t o increase the mechanical properties of porous bioceramics, a dense/porous structured β-TCP bioceramics that mimic the characteristics of nature bone were fabricated. Experimental results show that the dense/porous structured β-TCP bioceramics demonstrated excellent mechanical properties with compressive strength up to 74 MPa and elastic modulus up to 960 MPa, which could be tailored by the dense/porous cross-sectional area ratio obeying the rule of exponential growth. The interface between the dense and porous bioceramics is connected compactly and tightly with some micropores distributed in the matrix of both porous and dense counterparts. The dense/porous structure of β-TCP bioceramics may provide an effective way to increase the mechanical properties of porous bioceramics for bone regeneration at weight bearing sites. Introduction Various methods for bone defect treatments have been developed using biological or synthetic grafts. The synthetic alternatives are promising grafts for their unlimited availability and without risk of disease transmission [1]. Calcium phosphate bioceramics, especially hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), have been extensively explored as bone grafts due to their compositions are similar to the inorganic components of nature bone [2]. The β-TCP bioceramics is well known as a biodegradable material demonstrated clinical efficacy. The porous β-TCP bioceramics is a structurally biomimetic of the cancellous bone, whose porous network could allow tissue to ingrowth exhibiting nicer osteoconductive properties. However, the porous β-TCP shows weak mechanical properties, which limit its application as bone grafts. The macrostructure feature of nature bone is porous cancellous bone inside with dense compact bone surrounding outside, which provides excellent biomechanical properties. Carotenuto et al [3] have prepared dense/porous layered HA bioceramic for orthopedic device coating by tape casting technique, whereas the bulk dense/porous bioceramics were rarely reported. Therefore in present study, a dense/porous structured β-TCP bioceramics that mimics the characteristics of nature bone were fabricated, and the microstructure and mechanical properties of such bioceramics were studied. Experimental The β-TCP powders were synthesized by chemical precipitation reaction. The dense/porous structured β-TCP bioceramics were prepared by injected molding and subsequently pressureless sintering. The shrinkage rate of both porous and dense parts during sintering process was measured at different temperatures. X-ray diffraction (XRD) with Cu K α radiation was used to characterize the phase composition of the ceramics. The microstructures observation of the bioceramic samples was performed on a scanning electron microscopy (SEM).The compressive strength was conducted with a mechanical tester at 0.5 mm/min crosshead speed. The elastic modules were reanalyzed from the slope of the compressive strength-strain curve. All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of the publisher: Trans Tech Publications Ltd, Switzerland, https://www.doczj.com/doc/3b10275772.html, . (ID: 159.226.129.129-19/09/06,02:35:46)

相关主题
文本预览
相关文档 最新文档