当前位置:文档之家› 化工原理实验-流体流动阻力系数的测定实验报告

化工原理实验-流体流动阻力系数的测定实验报告

化工原理实验-流体流动阻力系数的测定实验报告
化工原理实验-流体流动阻力系数的测定实验报告

流体流动阻力系数的测定实验报告

一、实验目的:

1、掌握测定流体流动阻力实验的一般实验方法。

2、测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。

3、验证湍流区内摩擦阻力系数λ为雷诺系数Re和相对粗糙度的函数。

4、将所得光滑管的λ—Re方程与Blasius方程相比较。

二、实验器材:

流体阻力实验装置一套

三、实验原理:

1、直管摩擦阻力

不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性和涡流的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运动的速度和方向突然

变化,产生局部阻力。影响流体阻力的因素较多,在工程上通常采用量纲分析方法简

化实验,得到在一定条件下具有普遍意义的结果,其方法如下。

流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为

△P=f (d, l, u,ρ,μ,ε)

引入下列无量纲数群。

雷诺数Re=duρ/μ

相对粗糙度ε/ d

管子长径比l / d

从而得到

△P/(ρu2)=ψ(duρ/μ,ε/ d,l / d)

令λ=φ(Re,ε/ d)

△P/ρ=(l / d)φ(Re,ε/ d)u2/2

可得摩擦阻力系数与压头损失之间的关系,这种关系可用试验方法直接测定。

h f=△P/ρ=λ(l / d)u2/2

——直管阻力,J/kg

式中,h

f

l——被测管长,m

d——被测管内径,m

u——平均流速,m/s

λ——摩擦阻力系数。

当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。根据伯努利方程找出静压

强差和摩擦阻力系数的关系式,即可求出摩擦阻力系数。改变流速可测出不同Re下

的摩擦阻力系数,这样就可得出某一相对粗糙度下管子的λ—Re关系。

(1)、湍流区的摩擦阻力系数

在湍流区内λ=f(Re,ε/ d)。对于光滑管,大量实验证明,当Re在3×10~10 范围内,λ和Re的关系遵循Blasius关系式,即λ= / Re

对于粗糙管,λ和Re的关系均以图来表示。

2、局部阻力

h f=ξu2/2

式中,ξ为局部阻力系数,其与流体流过的管件的几何形状及流体的Re有关,当Re达到一定值后,ξ与Re无关,成为定值。

四、实验步骤:

1、启动离心泵,打开被测管线上的开关阀及面板上与其相应的切换阀,关闭其他的开关

阀和切换阀,保证测压点一一对应。

2、排净系统中的气体以便使液体能连续流动。设备和测压管线中的气体都要排净,观察

U形压差计中两液面是否水平,如果水平说明系统中气体已经排净。

3、测定光滑管和粗糙管摩擦阻力,先将流量从小到大慢慢增加,并观察U形压差计中两

液面差,当液面差达到最大并等数据稳定后记录第一组数据,即此时的液体流量和压

差。接着将流量由大到小,每相差h左右侧一组数据。充分利用面板量程测取10组

数据,然后再由小到大测取几组数据,以检查数据的重复性(不记录数据)。测定突

然扩大管、球阀和截止阀的局部阻力时,各测取3组数据,具体步骤与侧量光滑管和

粗糙管相同。注意在记录整个实验的第一组数据时记录一次液体温度,记录最后一组

数据时记录一次温度。

4、测完一根管的数据后,应将流量调节阀关闭,观察压差计的两液面是否水平,水平时

才能更换另一条管路,否则全部数据无效。同时要了解各种阀门的特点,学会使用阀

门,注意阀门的切换,同时要关严,防止内漏。

五、实验数据处理:

在整个实验过程中,液体温度可由始末温度值之和的平均值代替,则有

t=(t+t)/2= +/2=24℃

此温度对应水的密度可由相关表查得,

ρ=m

μ=·S

1、求光滑管、粗糙管摩擦阻力系数λ和雷诺系数Re

由公式u=Q/A=×10 Q/d得到流速,由公式Re=duρ/μ可求得雷诺数,由式

h f=△P/ρ=λ(l / d)u2/2可求得真实的λ,由Blasius关系式λ’= / Re可求得理论λ’。

光滑管几何尺寸为d=21mm,l=,相对粗糙度ε/ d=21=

所求光滑管在不同流量下的u、Re、λ、λ’如下表:

光滑管的相关数据如下表:

粗糙管几何尺寸为d=22mm,l=,相对粗糙度ε/ d=22=

所求粗糙管在不同流量下的u、Re、λ、λ’如下表:

粗糙管的相关数据表如下:

2、求局部阻力系数ξ

由公式u=Q/A=×10 Q/d得到流速,由式h f=△P/ρ=ξu2/2可得到ξ。

其中,扩大管的管径取d=16mm,球阀和截止阀的管径取d=20mm。

所求得各数据如下表:

扩大管、球阀管、截止阀管的相关数据表如下:

3、所得湍流时λ—Re—ε/ d关系图如下:

六、思考题:

(1)、在测量前为什么要将设备中的空气排净怎样才能迅速地排净

设备中要是还有空气未排净将使设备中液体不能连续地流动,势必影响实验结果。在接通水泵电源以后,再打开流量调节阀门,使之大流量输出便可迅速有效地排净设备中的空气。

(2)、在不同设备(包括相对粗糙度相同而管径不同)、不同温度下测定的λ—Re数据能否关联在一条曲线上

不能关联到一条曲线上。

(3)、测出的直管摩擦阻力与设备的放置状态有关吗为什么

有关系。由h f=(P/ρ+zg)-( P/ρ+ zg) =△P/ρ可知,阻力损失均主要表现为流体势能的降低,即△P/ρ,只有当管道水平放置时,才能用△P代替△P。当不是水平管时△P还包含了高度差所产生的势能差,所以如果不是水平管,则所求的摩擦阻力值要比实际的摩擦阻力要大。

(4)、如果要增加雷诺数的范围,可采取哪些措施

可以同时增大管径和管内水的流量,或者用密度大、黏度小的液体进行试验。

流体流动阻力测定实验

实验报告 项目名称:流体流动阻力测定实验 学院: 专业年级: 学号: 姓名: 指导老师: 实验组员: 一、实验目的 1、学习管路阻力损失h f和直管摩擦系数λ的测定方法。 2、掌握不同流量下摩擦系数λ与雷诺数Re之间的关系及其变化规律。 3、学习压差测量、流量测量的方法。了解压差传感器和各种流量计的结构、使用方法 及性能。 4、掌握对数坐标系的使用方法。

二、实验原理 流体在管道内流动时,由于黏性剪应力和涡流的存在,会产生摩擦阻力。这种阻力包括流体流经直管的沿程阻力以及因流体运动方向改变或管子大小形状改变所引起的局部阻力。 流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系: h f = ρf P ?=2 2 u d l λ (4-1) 式中: -f h 直管阻力,J/kg ; -d 直管管径,m ; -?p 直管阻力引起的压强降,Pa ; -l 直管管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -λ摩擦系数。 滞流时,λ= Re 64 ;湍流时,λ与Re 的关系受管壁相对粗糙度d ε?的影响,即λ= )(Re,d f ε。 当相对粗糙度一定时,λ仅与Re 有关,即λ=(Re)f ,由实验可求得。 由式(4—1),得 λ= 2 2u P l d f ???ρ (4-2) 雷诺数 Re =μ ρ ??u d (4-3) 式中-μ流体的黏度,Pa*s 测量直管两端的压力差p ?和流体在管内的流速u ,查出流体的物理性质,即可分别计算出对应的λ和Re 。 三、实验装置 1、本实验共有两套装置,实验装置用图4-2所示的实验装置流程图。每套装置中被测光滑直管段为管内径d=8mm ,管长L=1.6m 的不锈钢管;被测粗糙直管段为管内径d=10mm ,管长L=1.6m 的不锈钢管 2、 流量测量:在图1-2中由大小两个转子流量计测量。 3、 直管段压强降的测量:差压变送器或倒置U 形管直接测取压差值。

流体阻力实验报告

. 北京化工大学化工原理实验报告 实验名称:流体阻力实验 班级:化工11 姓名: 学号:2011011 序号: 同组人: 设备型号:流体阻力-泵联合实验装置UPRSⅢ型-第套实验日期:2013-11-4

一、实验摘要 本实验使用104实验室UPRS Ⅲ型第7套实验设备,测量了水流经不锈钢管、镀锌管、突扩管、阀门、层流管的阻力损失。确定了摩擦系数和局部阻力系数的变化规律和影响因素。该实验提供了一种测量实际管路阻力系数的方法,其结果可为管路实际应用和工艺设计提供重要的参考。 关键词:流量,压降,雷诺数,摩擦系数,局部阻力系数 二、实验目的 1、测量湍流直管道的阻力,确定摩擦阻力系数。 2、测量湍流局部管道的阻力,确定局部阻力系数。 3、测量层流直管道的阻力,确定摩擦阻力系数。 三、实验原理 1、直管道和局部管道阻力损失e f h u p gZ u p gZ h +++-++=)2()2(2 2 22211 1ρρ (1) 其中h e =0,z 1=z 2,所以测出管道上下游截面的静压能、动能,代入方程即可求得阻力。 2、根据因次分析法可得: (1)直管道阻力损失2 2 u d l h f ?=λ……(2)。其中,l 为管道长度,d 为管道内 径,u 为管内平均流速。只要测定l ,d ,u ,和λ,代入方程即可求得阻力h f 。

其中,λ的理论值计算方法为:25 .0Re 3163.0=湍流λ ; Re 64 = 层流λ。 对于水平无变径直管道,根据式(1)、(2)可得到摩擦系数的计算方法 为221) (2u l p p d ??-=ρλ测量。 (2)管道局部阻力损失2 2 1 u h f ?=ζ……(3)。其中,ζ为管道局部阻力系数, u 为平均流速(突扩管对应细管流速u 1)。将ζ和u 代入方程即可求得局部阻力h f 。 其中,ζ的理论值计算方法为:2 2 1)1(A A - =突扩管ζ ;常数截止阀=ζ;常数球阀=ζ。 对于水平放置的管件,根据式(1)、(3)可得到局部阻力系数的计算方 法为2 21) 2u p p ?-=ρζ(阀门;2 1 122 2) (2-1u p p u ρ ζ-+ =突扩管。 四、实验流程和设备

流体流动阻力的测定化工原理实验报告

北 京 化 工 大 学 实 验 报 告 课程名称: 化工原理实验 实验日期: 2008.10.29 班 级: 化工0602 姓 名:许兵兵 学 号: 200611048 同 组 人 :汤全鑫 阮大江 阳笑天 流体流动阻力的测定 摘要 ● 测定层流状态下直管段的摩擦阻力系数(光滑管、粗糙管和层流管)。 ● 测定湍流状态不同(ε/d)条件下直管段的摩擦阻力系数(突然扩大管)。 ● 测定湍流状态下管道局部的阻力系数的局部阻力损失。 ● 本次实验数据的处理与图形的拟合利用Matlab 完成。 关键词 流体流动阻力 雷诺数 阻力系数 实验数据 Matlab 一、实验目的 1、掌握直管摩擦阻力系数的测量的一般方法; 2、测定直管的摩擦阻力系数λ以及突扩管的局部阻力系数ζ; 3、测定层流管的摩擦阻力 4、验证湍流区内λ、Re 和相对粗糙度的函数关系 5、将所得光滑管的Re -λ方程与Blasius 方程相比较。 二、实验原理 不可压缩流体(如水),在圆形直管中作稳定流动时,由于粘性和涡流的作用产生摩擦阻力;流体在流过突然扩大和弯头等管件时,由于流体运动的速度和方向突然发生变化,产生局部阻力。影响流体流动阻力的因素较多,在工程研究中,利用因次分析法简化实验,引入无因此数群 雷 诺 数: μρ du = Re 相对粗糙度: d ε 管路长径比: d l 可导出: 2)(Re,2u d d l p ??=?εφρ 这样,可通过实验方法直接测定直管摩擦阻力系数与压头损失之间的关系: 22u d l p H f ? ?=?=λρ

因此,通过改变流体的流速可测定出不同Re 下的摩擦阻力系数,即可得出一定相对粗糙度的管子的λ—Re 关系。 在湍流区内,λ = f(Re ,ε/ d ),对于光滑管大量实验证明,当Re 在3×103至105的范围内,λ与Re 的关系遵循Blasius 关系式,即: 25 .0Re 3163.0=λ 对于层流时的摩擦阻力系数,由哈根—泊谡叶公式和范宁公式,对比可得: Re 64=λ 局部阻力: f H =2 2 u ?ξ [J/kg] 三、装置和流程 四、操作步骤 1、启动水泵,打开光滑管路的开关阀及压降的切换阀,关闭其它管路的开关阀和切换阀; 2、排尽体系空气,使流体在管中连续流动。检验空气是否排尽的方法是看当流量为零时候U 形压差计的两液面是否水平; 3、调节倒U 型压差计阀门1、2、3、 4、5的开关,使引压管线内流体连续、液柱等高; 4、打开流量调节阀,由大到小改变10次流量(Re min >4000),记录光滑管压降、孔板压降数据; 5、完成10组数据测量后,验证其中两组数据,确保无误后,关闭该组阀门; 6、测量粗糙管(10组)、突然扩大管(6组)数据时,方法及操作同上; 7、测量层流管压降时,首先连通阀门6、7、8、9、10所在任意一条回流管线,其次打开进入高位水灌的上水阀门11,关闭出口流量调节阀16; 8、当高位水灌有溢流时,打开层流管的压降切换阀,对引压管线进行排气操作; 9、打开倒U 型压差计阀门5,使液柱上升到n 型压差计示数为0的位置附近,然后关闭该阀门,检 图1 流体阻力实验装置流程图 1. 水箱 2.离心泵 3.孔板流量计 4.管路切换阀 5.测量管路 6.稳流罐 7.流量调节阀

化工原理实验

《化工原理实验》 讲稿 二0一四年二月

1.雷诺实验 一、实验目的 1.观察层流、湍流的流态及其转化特征; 2.测定临街雷诺准数,掌握圆管流动形态的判别准则; 3.观察紊流(或湍流)产生过程,理解紊流产生机理。 二、实验原理 1. 液体在运动时,存在着两种根本不同的流动状态。当液体流速较小时,惯性力较小,粘滞力对质点起控制作用,使各流层的液体质点互不混杂,液流呈层流运动。当液体流速逐渐增大,质点惯性力也逐渐增大,粘滞力对质点的控制逐渐减弱,当流速达到一定程度时,各流层的液体形成涡体并能脱离原流层,液流质点即互相混杂,液流呈紊流运动。这种从层流到紊流的运动状态,反应了液流内部结构从量变到质变的一个变化过程。 2.当初始状态流速较大时,从紊流到层流的过渡流速为下临界流速,对应的雷诺准数为下临界雷诺数,反之为上临界流速和上临界雷诺数。 μ ρu d = Re (1) 式中 d ——导管直径,m ; ρ——流体密度,kg ·m 3-; μ——流体粘度,Pa ·s ; u ——流体流速,m ·s 1-; 大量实验测得:当雷诺准数小于某一下临界值时,流体流动型态恒为层流;当雷诺数大于某一上临界值时,流体流型恒为湍流。在上临界值与下临界值之间,则为不稳定的过渡区域。对于圆形导管,下临界雷诺数为2000,上临界雷诺数为10000。一般情况下,上临界雷诺数为4000时,即可形成湍流。 应当指出,层流与湍流之间并非是突然的转变,而是两者之间相隔一个不稳定过渡区域,因此,临界雷诺数测定值和流型的转变,在一定程度上受一些不稳定的其他因素的影响。 三、实验装置 (雷诺实验仪CEA —F01型) 雷诺试验装置主要由稳压溢流水槽、试验导管和转子流量计等部分组成,如图1所示。自来水不断注入并稳压溢流水槽。稳压溢流水槽的水流经试验导管和流量计,最后排入下水道。稳压溢流水槽的溢流水,也直接排入下水道。

流体流动阻力实验

实验一 流体流动阻力实验 一、实验目的 1、学习直管摩擦阻力f P ?、直管摩擦系数λ的实验方法; 2、掌握不同流量下摩擦系数λ与雷诺数Re 之间的关系及其变化规律; 3、学习局部阻力的测定方法; 4、学习压强差的几种测量方法和技巧; 5、掌握坐标系的选用方法和对数坐标系的使用方法。 二、实验原理 1. 直管摩擦系数 与雷诺数Re 的测定 直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。 流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: ρ ρf f P P P h ?=-= 2 1 (1) 又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式) 2 2 u d l P h f f λρ=?= (2) 整理(1)(2)两式得 2 2u P l d f ???=ρλ (3) μ ρ ??= u d Re (4) 式中:-d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ;

-ρ流体的密度,kg / m 3 ; -μ流体的粘度,N ·s / m 2。 在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降 f P ?与流速u (流量V )之间的关系。 测得一系列流量下的f P ?后,根据实验数据和式(3)可计算出不同流速下的直管摩擦系数λ;用式(4)计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。 2. 局部阻力系数ζ的测定 2 2 'u P h f f ζρ =?= ' (5) 2'2u P f ?????? ??=ρζ (6) 式中:-ζ局部阻力系数,无因次; -?'f P 局部阻力引起的压强降,Pa ; -'f h 局部阻力引起的能量损失,J /kg 。 图3 局部阻力测量取压口布置图 局部阻力引起的压强降'f P ? 可用下面的方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在其上、下游开两对测压口a-a ’和b-b ',见图3,使 ab =bc ; a 'b '=b 'c ' 则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c '

沿程阻力 中国石油大学(华东)流体力学实验报告

实验七、沿程阻力实验 一、实验目的填空 1.掌握测定镀锌铁管管道沿程阻力系数的方法; 2.在双对数坐标纸上绘制λ-Re的关系曲线; 3.进一步理解沿程阻力系数随雷诺数的变化规律。 二、实验装置 在图1-7-1下方的横线上正确填写实验装置各部分的名称 本实验采用管流实验装置中的第1根管路,即实验装置中最细的管路。在测量较大压差时,采用两用式压差计中的汞-水压差计;压差较小时换用水-气压差计。 另外,还需要的测量工具有量水箱、量筒、秒表、温度计、水的粘温表。 F1——文秋利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力实验管路 图1-7-1 管流综合实验装置流程图 三、实验原理在横线正确写出以下公式 本实验所用的管路是水平放置且等直径,因此利用能量方程式可推得管路两点间的沿程水头

损失计算公式: 2 2f L v h D g λ = (1-7-1) 式中: λ——沿程阻力系数; L ——实验管段两端面之间的距离,m ; D ——实验管内径,m ; g ——重力加速度(g=9.8 m/s 2); v ——管内平均流速,m/s ; h f ——沿程水头损失,由压差计测定。 由式(1-7-1)可以得到沿程阻力系数λ的表达式: 2 2f h D g L v λ= (1-7-2) 沿程阻力系数λ在层流时只与雷诺数有关,而在紊流时则与雷诺数、管壁粗糙度有关。 当实验管路粗糙度保持不变时,可得出该管的λ-Re 的关系曲线。 四、实验要求 填空 1.有关常数 实验装置编号:No. 7 管路直径:D = 1.58 cm ; 水的温度:T = 13.4 ℃; 水的密度:ρ= 0.999348g/cm 3; 动力粘度系数:μ= 1.19004 mPa ?s ; 运动粘度系数:ν= 0.011908 cm 2/s ; 两测点之间的距离:L = 500 cm

实验一流体流动阻力的测定

. 化学实验教学中心 实验报告 化学测量与计算实验Ⅱ 实验名称:流体流动阻力的测定 学生姓名:学号: 院(系):年级:级班 指导教师:研究生助教: 实验日期: 2017.05.26 交报告日期: 2017.06.02

一、实验目的 1.学习直管摩擦阻力、直管摩擦系数的测定方法; 2.掌握直管摩擦阻力系数与雷诺数和相对粗糙度之间的关系及其变化规律; 3.掌握局部阻力的测量方法; 4.学习压强差的几种测量方法和技巧; 5.掌握坐标系的选用方法和对数坐标系的使用方法。 二、实验原理 化工管路是由直管和各种管阀件组合构成的,流体通过管内流动必定存在阻力。因此,在进行管路设计和流体机械造型时,阻力大小是一个十分重要的参数。流体流经直管时所造成机械能损失称为直管阻力损失。流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。 1.直管摩擦阻力系数与雷诺数的测定 流体在管道内流动时,由于流体的粘性作用和涡流的影响会产生阻力。流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,对水平等径管道,它们之间存在如下关系: (1-1) (1-2) (1-3) 式中,为直管阻力引起的压头损失,;为管径,;为直管阻力引起的压强降,; 为管长,;为流速,;为流体密度,;为流体的粘度,。 直管摩擦阻力系数与雷诺数之间的关系,一般可以用曲线来表示。在实验装置中,直管段长度与管径都已经固定。若水温一定,则水的密度和粘度也是定值。所以本实验实质上是测定直 管段流体阻力引起的压强降与流速(流量V)之间的关系。根据实验数据以及式(1-2)可以计算出不同流速下的直管摩擦系数,用式(1-3)计算对应的,从而整理出直管摩擦系数和雷诺数的关系,绘出两者的关系曲线。

流体阻力实验报告

化工原理实验报告 实验名称:流体流动阻力测定 班级: 学号: 姓名: 同组人: 实验日期:

流体阻力实验 一、摘要 通过测定不同阀门开度下的流体流量v q ,以及测定已知长度l 和管径d 的光滑直管和粗糙直管间的压差p ?,根据公式22u l p d ρλ?=,其中ρ为实验温度下流体的密度;流 体流速2 4d q u v π= ,以及雷诺数μ ρdu =Re (μ为实验温度下流体粘度),得出湍流区光滑直管和粗糙直管在不同Re 下的λ值,通过作Re -λ双对数坐标图,可以得出两者的关系曲线,以及和光滑管遵循的Blasius 关系式比较关系,并验证了湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数。由公式2 22 1 21p u u ρζ ?+ =- 可求出突然扩大管的局 部阻力系数,以及由Re 64=λ求出层流时的摩擦阻力系数λ,再和雷诺数Re 作图得出层 流管Re -λ关系曲线。 关键词:摩擦阻力系数 局部阻力系数 雷诺数Re 相对粗糙度ε/d 二、实验目的 1、掌握测定流体流动阻力实验的一般试验方法; 2、测定直管的摩擦阻力系数λ及突然扩大管的局部阻力系数ζ; 3、测定层流管的摩擦阻力系数λ; 4、验证湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数; 5、将所得光滑管的λ-Re 方程与Blasius 方程相比较。 三、实验原理 1、直管阻力损失函数:f (h f ,ρ,μ, l ,d ,ε, u )=0 应用量纲分析法寻找hf (ΔP /ρ)与各影响因素间的关系 1)影响因素 物性:ρ,μ 设备:l ,d ,ε 操作:u (p,Z ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1],l [L] ,d [L],ε[L],u [LT -1],h f [L 2 T -2] 3)选基本变量(独立,含M ,L ,T ) d ,u ,ρ(l ,u ,ρ等组合也可以) 4)无量纲化非基本变量 μ:π1=μρa u b d c [M 0L 0T 0] =[ML -1 T -1][ML -3]a [LT -1]b [L]c ? a=-1,b=-1,c=-1 变换形式后得:π1=ρud /μ l:π2=l/d ε:π3=ε/dh f :π4=h f /u 2 5)原函数无量纲化

化工原理实验答案

实验四 1.实验中冷流体和蒸汽的流向,对传热效果有何影响? 无影响。因为Q=αA△t m,不论冷流体和蒸汽是迸流还是逆流流动,由 于蒸汽的温度不变,故△t m不变,而α和A不受冷流体和蒸汽的流向的影响, 所以传热效果不变。 2.蒸汽冷凝过程中,若存在不冷凝气体,对传热有何影响、应采取什么 措施? 不冷凝气体的存在相当于增加了一项热阻,降低了传热速率。冷凝器 必须设置排气口,以排除不冷凝气体。 3.实验过程中,冷凝水不及时排走,会产生什么影响?如何及时排走冷 凝水? 冷凝水不及时排走,附着在管外壁上,增加了一项热阻,降低了传热速 率。在外管最低处设置排水口,及时排走冷凝水。 4.实验中,所测定的壁温是靠近蒸汽侧还是冷流体侧温度?为什么?传热系数k 接近于哪种流体的 壁温是靠近蒸汽侧温度。因为蒸汽的给热系数远大于冷流体的给热系 数,而壁温接近于给热系数大的一侧流体的温度,所以壁温是靠近蒸汽侧温度。而总传热系数K接近于空气侧的对流传热系数 5.如果采用不同压强的蒸汽进行实验,对α关联式有何影响? 基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t 均增加,其它参数不变,故(ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强 对α关联式无影响。

实验五固体流态化实验 1.从观察到的现象,判断属于何种流化? 2.实际流化时,p为什么会波动? 3.由小到大改变流量与由大到小改变流量测定的流化曲线是否重合,为什么? 4流体分布板的作用是什么? 实验六精馏 1.精馏塔操作中,塔釜压力为什么是一个重要操作参数,塔釜压力与哪些因素有关? 答(1)因为塔釜压力与塔板压力降有关。塔板压力降由气体通过板上孔口或通道时为克服局部阻力和通过板上液层时为克服该液层的静压力而引起,因而塔板压力降与气体流量(即塔内蒸汽量)有很大关系。气体流量过大时,会造成过量液沫夹带以致产生液泛,这时塔板压力降会急剧加大,塔釜压力随之升高,因此本实验中塔釜压力可作为调节塔釜加热状况的重要参考依据。(2)塔釜温度、流体的粘度、进料组成、回流量。 2.板式塔气液两相的流动特点是什么? 答:液相为连续相,气相为分散相。 3.操作中增加回流比的方法是什么,能否采用减少塔顶出料量D的方法? 答:(1)减少成品酒精的采出量或增大进料量,以增大回流比;(2)加大蒸气量,增加塔顶冷凝水量,以提高凝液量,增大回流比。 5.本实验中进料状态为冷态进料,当进料量太大时,为什么会出现精馏段干板,甚至出现塔顶既没有回流也没有出料的现象,应如何调节?

流体阻力实验报告

北京化工大学化工原理实验报告 实验名称:流体流动阻力测定 班级:化工10 学号:2010 姓名: 同组人: 实验日期:2012.10.10

流体阻力实验 一、摘要 通过测定不同阀门开度下的流体流量v q ,以及测定已知长度l 和管径d 的光滑直管和粗糙直管间的压差p ?,根据公式2 2u l p d ρλ?=,其中ρ为实验温度下流体的密度;流体流速 24d q u v π= ,以及雷诺数μ ρdu =Re (μ为实验温度下流体粘度),得出湍流区光滑直管和粗糙直管在不同Re 下的λ值,通过作Re -λ双对数坐标图,可以得出两者的关系曲线,以及和光滑管遵循的Blasius 关系式比较关系,并验证了湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数。由公式2 22 1 21p u u ρζ?+ =- 可求出突然扩大管的局部阻力系数,以及由 Re 64= λ求出层流时的摩擦阻力系数λ,再和雷诺数Re 作图得出层流管Re -λ关系曲线。 关键词:摩擦阻力系数 局部阻力系数 雷诺数Re 相对粗糙度ε/d 二、实验目的 1、掌握测定流体流动阻力实验的一般试验方法; 2、测定直管的摩擦阻力系数λ及突然扩大管的局部阻力系数ζ; 3、测定层流管的摩擦阻力系数λ; 4、验证湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数; 5、将所得光滑管的λ-Re 方程与Blasius 方程相比较。 三、实验原理 1、直管阻力损失函数:f (h f ,ρ,μ, l ,d ,ε, u )=0 应用量纲分析法寻找hf (ΔP /ρ)与各影响因素间的关系 1)影响因素 物性:ρ,μ 设备:l ,d ,ε 操作:u (p,Z )

流体流动阻力的测定

实验名称:流体流动阻力的测定 一、实验目的及任务: 1.掌握测定流体流动阻力实验的一般方法。 2.测定直管的摩擦阻力系数及突然扩大管的局部阻力系数。 3.验证湍流区内摩擦阻力系数为雷诺数和相对粗糙度的函数。 4.将所得光滑管的方程与Blasius方程相比较。 二、实验原理: 流体输送的管路由直管和阀门、弯头、流量计等部件组成。由于粘性和涡流作用,流体在输送过程中会有机械能损失。这些能量损失包括流体流经直管时的直管阻力和流经管道部件时的局部阻力,统称为流体流动阻力。 1.根据机械能衡算方程,测量不可压缩流体直管或局部的阻力 如果管道无变径,没有外加能量,无论水平或倾斜放置,上式可简化为: Δp为截面1到2之间直管段的虚拟压强差,即单位体积流体的总势能差,通过压差传感器直接测量得到。 2.流体流动阻力与流体性质、流道的几何尺寸以及流动状态有关,可表示为: 由量纲分析可以得到四个无量纲数群: 欧拉数,雷诺数,相对粗糙度和长径比

从而有 取,可得摩擦系数与阻力损失之间的关系: 从而得到实验中摩擦系数的计算式 当流体在管径为d的圆形管中流动时,选取两个截面,用压差传感器测出两个截面的静压差,即可求出流体的流动阻力。根据伯努利方程摩擦系数与静压差的关系,可以求出摩擦系数。改变流速可测得不同Re下的λ,可以求出某一相对粗糙度下的λ-Re关系。 在湍流区内摩擦系数,对于光滑管(水力学光滑),大量实验证明,Re 在氛围内,λ与Re的关系遵循Blasius关系式,即 对于粗糙管,λ与Re的关系以图来表示。 3.对局部阻力,可用局部阻力系数法表示: 对于扩大和缩小的直管,式中的流速按照细管的流速来计算。 对一段突然扩大的圆直管,局部阻力远大于其直管阻力。由忽略直管阻力时的伯努利方程 可以得到局部阻力系数的计算式: 式中,、分别为细管和粗管中的平均流速,为2,1截面的压差。 突然扩大管的理论计算式为:ζ(),、分别为细管和粗管的流通

化工原理实验思考题答案汇总

流体流动阻力的测定 1.在测量前为什么要将设备中的空气排尽?怎样才能迅速地排尽?为什么?如何检验管路中的空气已经被排除干净? 答:启动离心泵用大流量水循环把残留在系统内的空气带走。关闭出口阀后,打开U 形管顶部的阀门,利用空气压强使U 形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。 2.以水为介质所测得的?~Re关系能否适用于其他流体? 答:能用,因为雷诺准数是一个无因次数群,它允许d、u、、变化 3?在不同的设备上(包括不同管径),不同水温下测定的?~Re数据能否关联在同一条曲线上? 答:不能,因为Re二du p仏与管的直径有关 离心泵特性曲线的测定 1.试从所测实验数据分析,离心泵在启动时为什么要关闭出口阀门?本实验中,为了得到较好的实验效果,实验流量范围下限应小到零,上限应到最大,为什么? 答:关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机 (2)启动离心泵之前为什么要引水灌泵?如果灌泵后依然启动不起来,你认为可能的原因是什么? 答:离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。 (3)泵启动后,出口阀如果不开,压力表读数是否会逐渐上升?随着流量的增大,泵进、出口压力表分别有什么变化?为什么? 答:当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受

外网特性曲线影响造成的 恒压过滤常数的测定 1.为什么过滤开始时,滤液常常有混浊,而过段时间后才变清? 答:开始过滤时,滤饼还未形成,空隙较大的滤布使较小的颗粒得以漏过,使滤液浑浊,但当形成较密的滤饼后,颗粒无法通过,滤液变清。? 2.实验数据中第一点有无偏低或偏高现象?怎样解释?如何对待第一点数据? 答:一般来说,第一组实验的第一点△ A A q会偏高。因为我们是从看到计量桶出现第一滴滤液时开始计时,在计量桶上升1cm 时停止计时,但是在有液体流出前管道里还会产生少量滤液,而试验中管道里的液体体积产生所需要的时间并没有进入计算,从而造成所得曲线第一点往往有较大偏差。 3?当操作压力增加一倍,其K值是否也增加一倍?要得到同样重量的过滤液,其过滤时间是否缩短了一半? 答:影响过滤速率的主要因素有过滤压差、过滤介质的性质、构成滤饼的 颗粒特性,滤饼的厚度。由公式K=2I A P1-s, T=qe/K可知,当过滤压强提高一倍时,K增大,T减小,qe是由介质决定,与压强无关。 传热膜系数的测定 1.将实验得到的半经验特征数关联式和公认式进行比较,分析造成偏差的原因。 答:答:壁温接近于蒸气的温度。 可推出此次实验中总的传热系数方程为 其中K是总的传热系数,a是空气的传热系数,02是水蒸气的传热系数,3是铜管的厚度,入是铜的导热系数,R1、R2为污垢热阻。因R1、R2和金属壁的热阻较小,可忽略不计,则Tw- tw,于是可推导出,显然,壁温Tw接近于给热系数较大一侧的流体温度,对于此实验,可知壁温接近于水蒸气的温度。

化工原理实验~流体流动阻力系数的测定实验报告

流体流动阻力系数的测定实验报告 一、实验目的: 1、掌握测定流体流动阻力实验的一般实验方法。 2、测定直管的摩擦阻力系数λ及突然扩大管与阀门的局部阻力系数ξ。 3、验证湍流区内摩擦阻力系数λ为雷诺系数Re与相对粗糙度的函数。 4、将所得光滑管的λ—Re方程与Blasius方程相比较。 二、实验器材: 流体阻力实验装置一套 三、实验原理: 1、直管摩擦阻力 不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性与涡流的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运动的速度与方向突然变化,产 生局部阻力。影响流体阻力的因素较多,在工程上通常采用量纲分析方法简化实验,得 到在一定条件下具有普遍意义的结果,其方法如下。 流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为 △P=f (d, l, u,ρ,μ,ε) 引入下列无量纲数群。 雷诺数Re=duρ/μ 相对粗糙度ε/ d 管子长径比l / d 从而得到 △P/(ρu2)=ψ(duρ/μ,ε/ d, l / d) 令λ=φ(Re,ε/ d) △P/ρ=(l / d)φ(Re,ε/ d)u2/2 可得摩擦阻力系数与压头损失之间的关系,这种关系可用试验方法直接测定。 h f=△P/ρ=λ(l / d)u2/2 ——直管阻力,J/kg 式中,h f l——被测管长,m d——被测管内径,m u——平均流速,m/s λ——摩擦阻力系数。 当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。根据伯努利方程找出静压强差 与摩擦阻力系数的关系式,即可求出摩擦阻力系数。改变流速可测出不同Re下的摩擦 阻力系数,这样就可得出某一相对粗糙度下管子的λ—Re关系。 (1)、湍流区的摩擦阻力系数 在湍流区内λ=f(Re,ε/d)。对于光滑管,大量实验证明,当Re在3×103~105范围内,λ与Re的关系遵循Blasius关系式,即λ=0、3163 / Re0、25 对于粗糙管,λ与Re的关系均以图来表示。 2、局部阻力

化工原理实验三单相流体阻力测定实验

实验三 单相流体阻力测定实验 一、实验目的 ⒈ 学习直管摩擦阻力△P f 、直管摩擦系数的测定方法。 ⒉ 掌握不同流量下摩擦系数 与雷诺数Re 之间关系及其变化规律。 ⒊ 学习压差传感器测量压差,流量计测量流量的方法。 ⒋ 掌握对数坐标系的使用方法。 二、实验内容 ⒈ 测定既定管路内流体流动的摩擦阻力和直管摩擦系数。 ⒉ 测定既定管路内流体流动的直管摩擦系数与雷诺数Re 之间关系曲线和关系式。 三、实验原理 流体在圆直管内流动时,由于流体的具有粘性和涡流的影响会产生摩擦阻力。流体在管内流动阻力的大小与管长、管径、流体流速和摩擦系数有关,它们之间存在如下关系。 h f = ρf P ?=2 2 u d l λ (3-1) λ= 22u P l d f ?? ?ρ (3-2) Re = μ ρ ??u d (3-3) 式中:-d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 管内平均流速,m / s ; -ρ流体的密度,kg / m 3 ; -μ流体的粘度,N ·s / m 2 。 摩擦系数λ与雷诺数Re 之间有一定的关系,这个关系一般用曲线来表示。在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。 根据实验数据和式3-2可以计算出不同流速(流量V )下的直管摩擦系数λ,用式3-3计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。

四、实验流程及主要设备参数: 1.实验流程图:见图1 水泵8将储水槽9中的水抽出,送入实验系统,首先经玻璃转子流量计2测量流量,然后送入被测直管段5或6测量流体流动的光滑管或粗糙管的阻力,或经7测量局部阻力后回到储水槽, 水循环使用。被测直管段流体流动阻力△p可根据其数值大小分别采用变送器18或空气—水倒置∪型管10来测量。

流体流动阻力测定实验报告

《实践创新基础》报告 姓名: 班级学号: 指导教师: 日期: 成绩: 南京工业大学化学工程与工艺专业

实验名称:流体流动阻力测定实验 一、实验目的 1 测定流体在圆直等径管内流动时的摩擦系数λ与雷诺数Re的关系,将测得的λ~Re曲线与由经验公式描出的曲线比较; 2 测定流体在不同流量流经全开闸阀时的局部阻力系数ξ 3 掌握流体流经直管和阀门时阻力损失的测定方法,通过实验了解流体流动中能量损失的变化规律 4 学会倒U形差压计 1151差压传感器 Pt温度传感器和转子流量计的使用方法 5 观察组成管路的各种管件阀门,并了解其作用。 6 掌握化工原理实验软件库的使用 二、实验装置流程示意图及实验流程简述 来自高位水槽的水从进水阀1首先流经光滑管11上游的均压环,均压环分别与光滑管的倒U形压差计和1151压差传感器15的一端相连,光滑管11下游的均压环也分别与倒U 形压差计和1151压差传感器的另一端相连。 当球阀3关闭且球阀2开启时,光滑管的水进入粗糙管12,粗糙管上下游的均压环分别同时与粗糙管的倒U形压差计和1151压差传感器的两端相连。当球阀5关闭时,从粗糙管下来的水流经铂电阻温度传感器18,然后经流量调节阀6及流量计16后,排入地沟。 当球阀2关闭且球阀3打开时,从光滑管来的水就流入装有闸阀4的不锈钢管13,闸阀两端的均压环分别与一倒U形压差计的两端相连,最后水流经流量计,再排入地沟。

三、简述实验操作步骤及安全注意事项 1 操作步骤 (1)排管路中的气泡。 打开阀1、2、3、6,排除管路中的气泡,直至流量计中的水不含气泡为至,然后关闭阀6。 (2)1151压差传感器排气及调零。 排除两个1151压差传感器内气泡时,只要打开压差传感器下面的考克7、8、9、10,当软管内水无气泡时,排气结束,此过程可反复多次,直至无气泡为至。 压差传感器排气结束后,用螺丝刀调节压差传感器背后Z旋扭,使相应的仪表数字显示在0左右,压差传感器即可进入实验状态。 (3)U形压差计内及它们连接管内的气泡的排除。 关闭倒U形压差计上方的放空阀,打开U形压差计下方的排水考克,再打开U形压差计下方与软管相连的左右阀,关闭左右阀中间的平衡阀,直到玻璃管中水不出现气泡,然后关闭U形压差计下方与软管相连的左右阀,打开上方的放空阀和下方的排水考克,令玻璃管内水位下降到适当高度,再打开左右阀中间的平衡阀,倒U形压差计两玻璃管内的水位会相平,否则重复上过排汽过程,直至两玻璃管内的水位相平。 测定光滑管直管阻力、粗糙管直管阻力、局部阻力的三个倒U形压差计的排气方法相同,再此不再一一介绍。特别注意的是,实验过程不能碰撞玻璃管,以免断裂。 (4)直管阻力的测定。 打开阀2,关闭阀3,调节阀6,流量从2m3 /h开始,分别记录相应的光滑管及粗糙管的倒U形压差计两玻璃管内的指示剂高度差,流量每次增加1 m3/h, 直至最大流量。在测量过程应密切注意转子流量计中的流量变化,因为四套实验装置的水流量会相互干扰。(5)局部阻力的测定。 关闭阀2,排开阀3,调即阀6,取三个不同的流量,如2、3、4m3/h,记录相应指示剂高度差。水温可在最后测,测一次即可。 2 注意事项 开关阀门时,一定要缓慢开关,以防止仪表受损。 四、实验装置的主要设备仪器一览表

实验一 流体流动阻力测定实验

4.1 流体流动阻力测定实验 一、实验目的 ⒈学习直管摩擦阻力△P f 、直管摩擦系数λ的测定方法。 ⒉掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及其变化规律。 ⒊掌握局部阻力的测量方法。 ⒋学习压强差的几种测量方法和技巧。 ⒌掌握双对数坐标系的使用方法。 二、实验内容 ⒈测定实验管路(光滑管和粗糙管)内流体流动的阻力和直管摩擦系数λ。 ⒉测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。 ⒊在本实验压差测量范围内,测量阀门的局部阻力系数。 三、实验原理 ⒈直管摩擦系数λ与雷诺数Re 的测定 流体在管道内流动时,由于流体的粘性作用和涡流的影响会产生阻力。流体在直管内 流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系: h f = ρf P ?=22 u d l λ (4-1) λ=22u P l d f ???ρ (4-2) Re = μρ??u d (4-3) 式中:-d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -μ流体的粘度,N ·s / m 2。 直管摩擦系数λ与雷诺数Re 之间有一定的关系,这个关系一般用曲线来表示。在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。 根据实验数据和式(1-2)可计算出不同流速下的直管摩擦系数λ,用式(1-3)计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。 ⒉局部阻力系数ζ的测定 22 'u P h f f ζρ=?=' (4-4)

化工原理实验流体流动阻力系数的测定实验报告

化工原理实验-流体流动阻力系数的测定实验报告

————————————————————————————————作者: ————————————————————————————————日期:

流体流动阻力系数的测定实验报告 一、实验目的: 1、掌握测定流体流动阻力实验的一般实验方法。 2、测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。 3、验证湍流区内摩擦阻力系数λ为雷诺系数Re和相对粗糙度的函数。 4、将所得光滑管的λ—Re方程与Blasius方程相比较。 二、实验器材: 流体阻力实验装置一套 三、实验原理: 1、直管摩擦阻力 不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性和涡流 的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运 动的速度和方向突然变化,产生局部阻力。影响流体阻力的因素较多,在 工程上通常采用量纲分析方法简化实验,得到在一定条件下具有普遍意 义的结果,其方法如下。 流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为 △P=f (d, l, u,ρ,μ,ε) 引入下列无量纲数群。 雷诺数Re=duρ/μ 相对粗糙度ε/ d 管子长径比l / d 从而得到 △P/(ρu2)=ψ(duρ/μ,ε/d, l / d) 令λ=φ(Re,ε/ d) △P/ρ=(l/ d)φ(Re,ε/ d)u2/2 可得摩擦阻力系数与压头损失之间的关系,这种关系可用试验方法 =△P/ρ=λ(l /d)u2/2 直接测定。h f ——直管阻力,J/kg 式中,h f l——被测管长,m d——被测管内径,m u——平均流速,m/s λ——摩擦阻力系数。 当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差 计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。根 据伯努利方程找出静压强差和摩擦阻力系数的关系式,即可求出摩擦阻 力系数。改变流速可测出不同Re下的摩擦阻力系数,这样就可得出某一 相对粗糙度下管子的λ—Re关系。 (1)、湍流区的摩擦阻力系数

流体流动阻力的测定实验

流体流动阻力的测定实验 一、实验内容 1.测定流体在特定的材质和ξ/d 的直管中流动时的阻力摩擦系数λ,并确定λ和Re 之间的关系。 2.测定流体通过阀门时的局部阻力系数。 二、实验目的 1.解测定流体流动阻力摩擦系数的工程定义,掌握测定流体阻力的实验组织方法。 2.测定流体流经直管的摩擦阻力和流经管件或阀门的局部阻力,确定直管阻力摩擦系数与雷诺数之间的关系。 3.熟悉压差计和流量计的使用方法。 4.认识组成管路系统的各部件、阀门并了解其作用。 三、实验原理 流体通过由直管和阀门组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。流体流经直管时所造成机械能损失称为直管阻力损失。流体通过阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。 1.直管阻力 流体流动过程是一个多参数过程,)(ερμ、、、、、u l d f h f =。由因次分析法,从诸多影响流体流动的因素中组合流体流经管件时的阻力损失可用下式表示: ?? ????ξμρ=ρ?d ,du ,d l F u P 2 λ=Ψ(Re ,ε/d ) 雷诺准数μ ρdu e = R ;2 2 u d l P h f ??=?=λρ 只要找出λ、ξ就可计算出流体在管道内流动时的能量损失。 g P Hg )R(ρρ-=?

易知,直管摩擦系数λ仅与Re 和 d ε 有关。因此,只要在实验室规模的装置 上,用水做实验物系,进行试验,确定λ与Re 和 d ε 的关系,然后计算画图即可。 2.局部阻力 局部阻力可以用当量长度法或局部阻力系数法来表示,本实验用局部阻力系数法来表示,即流体通过某一管件或阀门的阻力损失用流体在管路中的动能系数 来表示,用公式表示: 2 2 u P h f ξρ=?= 一般情况下,由于管件和阀门的材料及加工精度不完全相同,每一制造厂及每一批产品的阻力系数是不尽相同的。 四、实验设计 由 22 u d l h f ??=λ和2 2u h f ξ=知,当实验装置确定后,只要改变管路中流体流速u 及流量V ,测定相应的直管阻力压差ΔP 1和局部阻力压差ΔP 2,就能通过计算得到一系列的λ和ξ的值以及相应的Re 的值, 【原始数据】在实验中,我们要测的原始数据有流量V ,用来计算直管阻力压差ΔP 1和局部阻力压差ΔP 2的U 型压差计的左右两边水银柱高度,流体的温度t (据此确定ρ和μ),还有管路的直径d 和直管长度l 。 【测量点】在直管段两端和局部两端各设一对测压点,分别测定ΔP 1 和ΔP 2 ,还要在管路中配置一个流量和温度测试点。 【测试方法】温度用温度计测定,流量我们用涡轮流量计来测定,则 Q=f/ξ 其中,f 表示涡轮流量计的转子频率,其值由数显仪表显示;ξ为涡轮流量计的仪表系数;Q 为流量,单位L/s 。 五、实验装置流程及说明 主要设备和部件:离心泵,循环水箱,涡轮流量计,阀门,直管及管件,玻

流体流动阻力的测定实验报告

银纳米粒子制备及光谱和电化学性能表征 - 1 - 流体流动阻力的测定 王晓鸽 一、实验目的 1. 掌握测定流体流经直管、管件和阀门时阻力损失的实验方法。 2. 测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区λ与Re 的关系曲线。 3. 测定流体流经管件、阀门时的局部阻力系数ξ。 4. 学会流量计和压差计的使用方法。 5. 识辨组成管路的各种管件、阀门,并了解其作用。 二、实验原理 流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。流体流经直管时所造成机械能损失称为直管阻力损失。流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。 1.直管阻力摩擦系数 的测定 流体在水平等径直管中稳定流动时,阻力损失为: 即, 式中: —直管阻力摩擦系数,无因次; —直管内径, ; —流体流经 米直管的压力降, ; —单位质量流体流经 米直管的机械能损失, ;

—流体密度,; —直管长度,; —流体在管内流动的平均流速,。 层流流时, 湍流时是雷诺准数和相对粗糙度的函数,须由实验确定。 欲测定,需确定、,测定、、、等参数。、为装置参数(装置参数表格中给出),、通过测定流体温度,再查有关手册而得,通过测定流体流量,再由管径计算得到。可用型管、倒置型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。求取和后,再将和标绘在双对数坐标图上。 2.局部阻力系数的测定 局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。本实验采用阻力系数法。 流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。即: 因此, 式中:—局部阻力系数,无因次; -局部阻力压强降,;(本装置中,所测得的压降应扣除两测压口间直管段的压降,直管段的压降由直管阻力实验结果求取。)—流体密度,; —流体在管内流动的平均流速,。 根据连接阀门两端管径,流体密度,流体温度(查流体物性、),

相关主题
文本预览
相关文档 最新文档