当前位置:文档之家› 先进控制技术及应用

先进控制技术及应用

先进控制技术及应用
先进控制技术及应用

先进控制技术及应用

1.前言

工业生产的过程是复杂的,建立起来的模型也是不完善的。即使是理论非常复杂的现代控制理论,其效果也往往不尽人意,甚至在一些方面还不及传统的PID控制。20世纪70年代,人们除了加强对生产过程的建模、系统辨识、自适应控制等方面的研究外,开始打破传统的控制思想,试图面向工业开发出一种对各种模型要求低、在线计算方便、控制综合效果好的新型算法。在这样的背景下,预测控制的一种,也就是动态矩阵控制(DMC)首先在法国的工业控制中得到应用。因此预测控制不是某种统一理论的产物,而是在工业实践中逐渐发展起来的。预测控制中比较常见的三种算法是模型算法控制(MAC),动态矩阵控制(DMC)以及广义预测控制。本篇分别采用动态矩阵控制(DMC)、模型算法控制(MAC)进行仿真,算法稳定在消除稳态余差方面非常有效。

2、控制系统设计方案

2.1 动态矩阵控制(DMC)方案设计图

动态矩阵控制是基于系统阶跃响应模型的算法,隶属于预测控制的范畴。它的原理结构图如下图2-1所示:

图2-1 动态矩阵控制原理结构图

2.2 模型算法控制(MAC)方案设计图

模型算法控制(MAC)由称模型预测启发控制(MPHC),与MAC相同也适用于渐进

稳定的线性对象,但其设计前提不是对象的阶跃响应而是其脉冲响应。它的原理结构图如下图2-2所示:

图2-2 模型算法控制原理结构图

3、模型建立

3.1被控对象模型及其稳定性分析

被控对象模型为

(1)

化成s 域,g (s )=0.2713/(s+0.9),很显然,这个系统是渐进稳定的系统。因此该对象

适用于DMC 算法和MAC 算法。

3.2 MAC 算法仿真

3.2.1 预测模型

该被控对象是一个渐近稳定的对象,预测模型表示为:

)()1()(?)(?1j k j k u z g j k y

m ++-+=+-ε, j=1, 2, 3,……,P . (2) 这一模型可用来预测对象在未来时刻的输出值,其中y 的下标m 表示模型,也称为内

部模型。(2)式也可写成矩阵形式为:

)1()()1(?-+=+k FU k GU k Y m

4

1

11

8351.012713.0)(-----=z z z z G

???

?????????-+-+-????????????+???

???

??????-++????????????=????????????++++--)1()2()1(????0

?0??)1()1()(???0??00?)(?)2(?)1(?132111121k u N k u N k u g

g g

g

g g g P k u k u k u g g g g g g P k y

k y k y P N N N N P P m m m M M L L L L L

L L M M L L L L M

L M L M M L L M

预测误差为)(?)()(k y

k y k e m -=。 3.2.2 参考轨迹

在k 时刻的参考轨迹可由其在未来采样时刻的值来描述,取一阶指数变化的形式,可写作:

)()1()(k y y j k w j sp j αα+-=+ j=1,2,3 (3)

3.2.3 MATLAB 编程实现

MATLAB 代码见<附1> 3.2.3 程序流程图及仿真结果

其程序的流程框图如图3-1所示:

图3-1 程序流程图

仿真结果如图3-2所示:

图3-2 仿真结果

3.3 DMC算法仿真

3.3.1 预测模型

在k时刻,假定控制作用保持不变时对未来个时刻输出的初始预测值为

(3-1)M个连续控制增量△u(k), △u(k+1),…, △u(k+M-1)作用时,未来时刻输出值:

(3-2)3.3.2 滚动优化

在每一时刻k,要确定从该时刻起的M个控制作用增量使被控对象在起作用下未来P 个时刻的输出预测值尽可能接近给定的期望值w(k+i)(i=1,2,。。。,P).k时刻优化性能指标可取为

(3-3)式中,qi,rj是加权系数,它们分别表示对跟踪误差及控制量变化的抑制。

3.3.3 反馈校正

当k时刻把控制量u(k)施加给对象时,相当于在对象输入端加上了一个幅值为△u(k)的阶跃,利用预测模型式可算出在去作用下未来时刻的输出预测值

(3-4) 下一时刻检测对象的实际输出与模型预测算出的输出相比较,构成输出误差:

(3-5)整个控制就是以结合反馈校正的滚动优化反复地在线进行,其算法结构如图3-3所示:

图3-3 DMC算法结构示意图

3.3.4 MATLAB编程实现

MATLAB代码见<附2>

3.3.5 仿真结果

结合matlab中simulink仿真框图如图3-4和程序对对象进行仿真,得出的结果图3-5所示:

图3-4 simulink仿真框图

图3-4 仿真结果

4、总结

本文主要工作是利用DMC算法和MAC算法对被控对象进行控制并采用MATLAB编程仿真。本次任务涉及的内容包括了先进控制理论、预测控制理论、预测控制算法的仿真、控制算法在MATLAB中的实现等。

给定的被控对象在利用DMC算法和MAC算法的预测控制方式下都取得了良好的控制效果、鲁棒性,有效地克服了系统的非线性。

参考文献

【1】方康玲.过程控制技术及其MATLAB实现(第2版) [M].北京:电子工业出版社,2013 【2】俞金寿.工业过程先进控制技术[M].上海:华东理工大学出版社,2008

【3】齐蒙,石红瑞.预测控制及其应用研究[D].2013(1).

附1:MAC程序代码

clc

clear

num=[0.2713];

den=[1 0.9];

numm=[0.2713];

denm=[1 1]; %定义对象及模型的传递函数n=40;

t1=0:0.1:n/10;

g=1*impulse(num,den,t1)';

gm=1*impulse(numm,denm,t1)';

for i=1:n

g(i)=g(i+1);

end

for i=1:n

gm(i)=gm(i+1);

end

a=g;am=gm;

N=40;

p=15;

M=1;

m=M;

G=zeros(p,m);

for i=1:p

for j=1:m

if i==j

G(i,j)=g(1);

else if i>j

G(i,j)=g(1+i-j);

else G(i,j)=0;

end

end

end

if i>m

s=0;

for k=1:(i-m+1)

s=s+g(k);

G(i,m)=s;

end

end

end

F=zeros(p,n-1);

for i=1:p

k=1;

for j=(n-1):-1:1

if i==j

F(i,j)=g(n);

else if i>j

F(i,j)=0;

else F(i,j)=g(i+k);

end

end

k=k+1;

end

end

R=1.0*eye(m);

Q=0.9*eye(p);

H=0.3*ones(p,1); %定义各系数矩阵

e=zeros(4*N,4);

y=e;ym=y;

U=zeros(4*N,4);

w=1;

Yr=zeros(4*N,4);

b=[0.1;0.4;0.6;0.9];

for i=1:4

for k=N+1:4*N

y(k,i)=a(1:N)*U(k-1:-1:k-N,i); %求解对象输出ym(k,i)=am(1:N)*U(k-1:-1:k-N,i); %求解模型输出e(k)=y(k)-ym(k);

for j=1:p

Yr(k+j,i)=b(i)^(j)*y(k)+(1-b(i)^(j))*w;

end

dt=[1 zeros(1,m-1)]*inv(G'*Q*G+R)*G'*Q;

U(k,i)=dt*(Yr(k+1:k+p,i)-F*U(k-N+1:k-1,i)-H*e(k));

end

end

t=0:0.1:11.9;

subplot(2,1,1);

plot(t,y(N:N+119,1))

hold on;

plot(t,y(N:N+119,2))

hold on

plot(t,y(N:N+119,3))

hold on;

plot(t,y(N:N+119,4))

%t,y(N:N+119,3),t,y(N:N+119,4),t,Yr(N:N+119,1),t,w*ones(1,120)); %grid on

%legend('输出1','输出2','输出3','输出4','柔化曲线','期望曲线');

%title('Plot of MAC');

%plot(U);

%grid on;

附2 DMC程序代码

%DMC控制算法

% DMC.m 动态矩阵控制(DMC)

num=0.2713;

den=[1 -0.8351 0 0 0 0];

G=tf(num,den,’Ts’.0.4); %连续系统

Ts=0.4; %采样时间 Ts

G=c2d(G,Ts); %被控对象离散化

[num,den,]=tfdata(G,'v');

N=60; %建模时域 N

[a]=step(G,1*Ts:Ts:N*Ts); %计算模型向量 a

M=2; %控制时域

P=15; %优化时域

for j=1:M

for i=1:P-j+1

A(i+j-1,j)=a(i,1);

end

end%动态矩阵 A

Q=1*eye(P); %误差权矩阵 Q

R=1*eye(M); %控制权矩阵 R

C=[1,zeros(1,M-1)]; %取首元素向量 C 1*M

E=[1,zeros(1,N-1)]; %取首元素向量 E 1*N

d=C*(A'*Q*A+R)^(-1)*A'*Q; %控制向量 d=[d1 d2 ...dp]

h=1*ones(1,N); %校正向量 h(N维列向量)

I=[eye(P,P),zeros(P,N-P)]; %Yp0=I*YNo

S=[[zeros(N-1,1) eye(N-1)];[zeros(1,N-1),1]]; %N*N移位阵 S

sim('DMCsimulink') %运行siumlink文件

subplot(2,1,1); %图形显示

plot(y,'LineWidth',2);

hold on;

plot(w,':r','LineWidth',2);

xlabel('\fontsize{15}k');

ylabel('\fontsize{15}y,w');

legend('输出值','设定值')

grid on;

subplot(2,1,2);

plot(u,'g','LineWidth',2); xlabel('\fontsize{15}k'); ylabel('\fontsize{15}u'); grid on;

自主访问控制综述

自主访问控制综述 摘要:访问控制是安全操作系统必备的功能之一,它的作用主要是决定谁能够访问系统,能访问系统的何种资源以及如何使用这些资源。而自主访问控制(Discretionary Access Control, DAC)则是最早的访问控制策略之一,至今已发展出多种改进的访问控制策略。本文首先从一般访问控制技术入手,介绍访问控制的基本要素和模型,以及自主访问控制的主要过程;然后介绍了包括传统DAC 策略在内的多种自主访问控制策略;接下来列举了四种自主访问控制的实现技术和他们的优劣之处;最后对自主访问控制的现状进行总结并简略介绍其发展趋势。 1自主访问控制基本概念 访问控制是指控制系统中主体(例如进程)对客体(例如文件目录等)的访问(例如读、写和执行等)。自主访问控制中主体对客体的访问权限是由客体的属主决定的,也就是说系统允许主体(客体的拥有者)可以按照自己的意愿去制定谁以何种访问模式去访问该客体。 1.1访问控制基本要素 访问控制由最基本的三要素组成: ●主体(Subject):可以对其他实体施加动作的主动实体,如用户、进程、 I/O设备等。 ●客体(Object):接受其他实体访问的被动实体,如文件、共享内存、管 道等。 ●控制策略(Control Strategy):主体对客体的操作行为集和约束条件集, 如访问矩阵、访问控制表等。 1.2访问控制基本模型 自从1969年,B. W. Lampson通过形式化表示方法运用主体、客体和访问矩阵(Access Matrix)的思想第一次对访问控制问题进行了抽象,经过多年的扩充和改造,现在已有多种访问控制模型及其变种。本文介绍的是访问控制研究中的两个基本理论模型:一是引用监控器,这是安全操作系统的基本模型,进而介绍了访问控制在安全操作系统中的地位及其与其他安全技术的关系;二是访问矩阵,这是访问控制技术最基本的抽象模型。

计算机控制技术及应用论文

浅谈计算机控制技术及应用 摘要:随着科学技术的发展,人们越来越多的用计算机来实现控制。近年来,计算机技术、自动控制技术、检测与传感器技术、CRT显示技术、通信与网络技术和微电子技术的高速发展,给计算机控制技术带来了巨大的发展。然而,设计一个性能好的计算机控制系统是非常重要的。计算机控制系统主要由硬件和软件两大部分组成,一个完整的控制系统还需要考虑系统的抗干扰性能,系统的抗干扰性能力是关系到整个系统可靠运行的关键。 关键词:计算机控制技术、系统、应用 Chat computer control technology and its application Abstract:With the development of science and technology, more and more people use computers to achieve control. In recent years, computer technology, automation technology, detection and sensor technology, CRT display technology, communications and network technology and the rapid development of microelectronic technology, a computer control technology has brought great development. However, the design of a computer control system for good performance is very important. Computer control system is mainly composed of two major components of hardware and software, a complete control system also need to consider the anti-interference performance of the system, the system is related to the anti-jamming capabilities and reliable operation of the system key. Key words:computer control technology、system、apply 正文: 一、计算机控制技术的概述 1、计算机控制的概念 (1)开环控制系统 若系统的输出量对系统的控制作用没有影响,则称该系统为开环控制系统。在开环 控制系统中,既不需要对系统的输出量进行测量,也不需要将它反馈到输入端与输入量 进行比较。 (2)闭环控制系统 凡是系统的输出信号对控制作用能有直接影响的系统都叫作闭环控制系统,即闭环 系统是一个反馈系统。闭环控制系统中系统的稳定性是一个重要问题。

电气控制技术论文5000字

word文档整理分享 电气控制技术在工业生产中的应用 班级:机制091 姓名:柳有伟 学号:3090101132 指导老师:周力

word文档整理分享 前言 通过三十个学时的学习,我们初步了解了电气控制技术的一点基本知识和组成,从中也知道了电气控制技术在机械行业的重要性,三十个学时的学习远远不是我们需要完成的任务,为 了更好的掌握机电一体化,我们应该更深入的学习电气控制技术的知识,以满足综合型人才的 培养要求,在本学期的学习主要包括两大部分: (1),继电器控制系统 (2),可编程控制器及应用 在学习中我们了解到,可编程系统的可靠性等方面都优于继电器的传统控制技术,我们应该在继电器的基础上加强可编程控制技术的学习.可编程控制器是在继电器控制和计算机控制的基础上发展而来的新型工业自动控制装置。早期的可编程控制器在功能上只能实现逻辑控制,因而被称为可编程逻辑控制器 (ProgrammableLogicController),简称PLC。随着微电子技术和微型计算机的发展,微 处理器用于PLC,使其不仅可以实现逻辑控制,还可以进行数字 运算和处理、模拟量调节和联网通信等,因此美国电气制造协会于1980年将它正式命名为可编程控制器(ProgrammableController),简称PC。但近年来 PC又成为个人计算机(PersonalComputer)的简称,为避免发生混淆,我们仍把可编程控 制器简称为PLC。

word文档整理分享 PLC简介及在常用电气控制线路中的应用 [摘要]电气控制技术是一门多学科交叉的技术,是实现工业生产自动化的重要技术手段。随着科学技术的不断发展,PLC技术越来越多的应用于机床电气,本文简述了PLC的发展和几种常用电气控制线路的PLC控制。关键词::继电器控制系统;基本电气控制线路;PLC控制 1引言 近年来,PLC正越来越多地用于电动机的运行控制,为了便于采用PLC对继电器控制系统进行改造和设计新的控制系统,本文以OMRON公司的SYSMAC—C系列P型机为例,介绍其在电动机基本控制线路中的应用。这些程序通常是整个控制系统的一个模块。 2PLC简介 2.1PLC由来 PLC即可编程控制器(ProgrammablelogicController ,是指以计算机技 术为基础的新型工业控制装置。在1987年国际电工委员会(International ElectricalCommittee )颁布的PLC标准草案中对PLC做了如下定义:PLC 英文全称ProgrammableLogicController, 中文全称为可编程逻辑控 制器,定义是:一种数字运算操作的电子系统,专为在工业环境应用而设计的。 它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程.PLC是可编程逻辑电路,也是一种和硬件结合很紧 密的语言,在半导体方面有很重要的应用,可以说有半导体的地方就有PLC “PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。 它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计参考资料

先进过程控制及其应用期末课程总结论文

先进控制技术及其应用 随着工业生产过程控制系统日趋复杂化和大型化,以及对生产过程的产品质量、生产效率、安全性等的控制要求越来越严格,常规的PID控制已经很难解决这些具有多变量、强非线性、高耦合性、时变和大时滞等特性的复杂生产过程的控制问题[]。 自上世纪50年代逐渐发展起来的先进控制技术解决了常规PID控制效果不佳或无法控制的复杂工业过程的控制问题。它的设计思想是以多变量预估为核心,采用过程模型预测未来时刻的输出,用实际对象输出与模型预测输出的差值来修正过程模型,从而把若干个控制变量控制在期望的工控点上,使系统达到最佳运行状态。目前先进控制技术不但在理论上不断创新,在实际生产中也取得了令人瞩目的成就。下面就软测量技术、内模控制和预测控制做简要阐述。 1.软测量技术 在生产过程中,为了确保生产装置安全、高效的运行,需要对与系统的稳定及产品质量密切相关的重要过程变量进行实时控制。然而在许多生产过程中,出于技术或经济上的原因,存在着很多无法通过传感器测量的变量,如石油产品中的组分、聚合反应中分子量和熔融指数、化学反应器反应物浓度以及结晶过程中晶体粒直径等。 在实际生产过程中,为了对这类变了进行实施监控,通常运用两种方法: 1).质量指标控制方法:对与质量变量相关的其他可测的变量进行控制,以达到间接控制质量的目的,但是控制精度很难保证。 2).直接测量法:利用在线分析仪表直接测量所需要的参数并对其进行控制。缺点是在线仪表价格昂贵,维护成本高,测量延迟大,从而使得调节品质不理想。 软测量的提出正是为了解决上述矛盾。 软测量技术的理论根源是20世纪70年代Brosilow提出的推断控制,其基本思想是采集过程中比较容易测量的辅助变量(也称二次变量),通过构造推断器来估计并克服扰动和测量噪声对主导过程主导变量的影响。因此,推断估计器的设计是设计整个控制系统的关键。 软测量器的设计主要包括以下几个方面: 1)机理分析和辅助变量的选择。 首先是明确软测量的任务,确定主导变量。在此基础上深入了解和熟悉软测量对象及有关装置的工艺流程,通过分析确定辅助变量。 2)数据采集和预处理 采集被估计变量和原始辅助变量的历史数据包含了工业对象的大量相关信息,因此数据采集越多越好。但是为了保证软测量精度和数据的正确性以及可靠性,采集的数据必须进行处理,包括显著误差检测和数据协调,及时剔除无效的数据。 3)软测量建模 软测量模型是建立是软测量技术的核心。软测量建模的方法多种多样,一般可分为:机理建模、回归分析、状态估计、模式识别、人工神经网络、模糊数学和现代非线性系统信息处理技术等。 此外还有混合模型,如图1所示的软测量模型就是结合了BP网络、RBF网络和部分最小二乘法建立的混合模型[5]。 4)软测量模型的在线校正 图1 软测量模型

计算机控制技术论文

摘要 干扰问题是机电一体化系统设计和使用过程中必须考虑的重要问题。在机电一体化系统的工作环境中,存在大量的电磁信号,如电网的波动、强电设备的启停、高压设备和开关的电磁辐射等,当它们在系统中产生电磁感应和干扰冲击时,往往就会扰乱系统的正常运行,轻者造成系统的不稳定,降低了系统的精度;重者会引起控制系统死机或误动作,造成设备损坏或人身伤亡。 抗干扰技术就是研究干扰的产生根源、干扰的传播方式和避免被干扰的措施(对抗)等问题。机电一体化系统的设计中,既要避免被外界干扰,也要考虑系统自身的内部相互干扰,同时还要防止对环境的干扰污染。国家标准中规定了电子产品的电磁辐射参数指标。 由于工业现场的工作环境往往十分恶劣,计算机控制系统不可避免地受到各种各样的干扰。这些干扰可能会影响到测控系统的精度,使系统的性能指标下降,降低系统的可靠性,甚至导致系统运行混乱或故障,进而造成生产事故。干扰可能来自外部,也可能来自内部;它可通过不同的途径作用于控制系统,且其作用程度及引起的后果与干扰的性质及干扰的强度等因素有关。干扰是客观存在的,研究抗干扰技术就是要分清干扰的来源,探索抑制或消除干扰的措施,以提高计算机控制系统的可靠性和稳定性。本章首先介绍干扰的种类及传播途径,然后根据硬件和软件抗干扰措施的不同,分别加以论述。 关键词:干扰的因素干扰源屏蔽滤波

目录 摘要................................................ I 1产生干扰的因素.. (1) 1.1干扰的定义 (1) 1.2形成干扰的三个要素 (1) 1.3干扰来源 (2) 2干扰存在的形式 (3) 2.1串模信号 (3) 2.2共模信号 (3) 3抗干扰的措施 (4) 3.1抗干扰方法 (4) 3.2屏蔽 (4) 3.3隔离 (5) 3.3.1光电隔离 (5) 3.3.2变压器隔离 (5) 3.3.3继电器隔离 (6) 4 系统接地 (7) 4.1一点接地 (7) 4.2多点接地 (8) 5软件抗干扰设计 (9) 5.1滤波简介 (9) 5.2低通滤波器 (9) 6提高系统抗干扰的措施 (11) 6.1逻辑设计力求简单可靠 (11) 6.2硬件自检测和软件自恢复的设计 (11) 6.3从安装和工艺等方面采取措施以消除干扰 (11) 6.3.1合理选择接地 (11) 6.3.2合理选择电源 (12) 6.3.3合理布局 (12) 结论 (14) 致谢 (15) 参考文献 (16)

电气控制技术论文

电气控制技术论文 电气控制技术及其发展 【摘要】近些年来,我国的社会发展水平不断提高,对科学技术的要求也上了一个新 的层次。其中电气控制技术是科学技术的一个重要组成部分,它现在已经人们的日常生产 和生活融为一体,它的水平高低直接决定着我们国家综合国力的强弱。本文旨在通过讨论 电气控制技术,对它以后的发展历程和发展趋势进行分析,以提高我国电气控制技术的质 量和水平,为国家和人民谋福祉。 【关键词】电气控制;控制技术;发展方向 进入21世纪以后,我国的科技水平实现了重大的飞跃,涌现出了一批新工艺,尤其 是互联网技术的不断创新为电气控制技术的革新和发展提供了很好的经验和动力支持,使 得电气控制技术成为与人们的日常生活密不可分的部分,使得电气控制技术与计算机技术 和电子技术不断交错融合。为了实现电气控制技术在各行各业更广泛的应用,有必要对电 气控制技术的概念、发展方向等内容进行进一步分析。一开始电气技术是靠强电、弱电两 个方向传播,后来改变了弱电和强电的并行状态,实现了弱点控制强电的突破。电气控制 技术经历了从手动化到自动化、从简单化到智能化、从逻辑化到网络化这三个发展阶段, 逐步实现了自动化仪表检测和电气传动控制这两类生产过程的融合。 1.电气控制技术的含义 电气控制技术是运用于电气工程中的一种科学技术,它是计算机技术的一部分,涵盖 了与电气相关的所有领域,如电子电力、电子通讯、电子电气、数字电子、模拟电子、船 舶电站等,与各行各业都有错综复杂的联系,信息含量巨大。电气控制技术在电气控制系 统中得到体现和应用,有利于实现电气技术的自动化目标。 2.电气控制技术的现状 进入21世纪以来我国的科学技术实现了长足发展,为电气控制技术的改进和创新提 供了很大的技术支持,使电气技术实现了自动控制和智能控制,不断与计算机技术相融合。不可否认,与许多国外国家的先进电气控制技术相比,我国目前还存在着巨大的差距,但 我国电气控制技术已经取得的长足进步不容忽视,我国不仅实现了从简单化到自动化的变革,而且开始追求更高层次的智能化技术发展,如何让电气控制技术更加智能是摆在技术 专家面前的一个重大研究课题。之所以智能化成为研究焦点,是因为智能化应用于电气控 制技术中所带来的巨大改变:人为失误大大降低,机器能够实现智能纠错,这可以大大提 高工作效率,减少资源浪费,使我国电气工程的工作理念和工作经验得到不断的积累和创新,不断优化自动化程序,创新和改革我国电气自动化技术的发展。 电气控制技术已广泛应用于高炉鼓风机、环保行业和电力行业之中。随着我国经济的 不断发展和社会水平的提高,企业对这些行业的要求也在不断提高,因此如何使电气控制

自动化在日常生活中的应用与展望

自动化在日常生活中的应用与展望 一、摘要:本文简要介绍自动化技术的基本概念、发展、应用和未来展望。随着信息技术的发展,特别是网络技术的发展,正在改变着人类若干世纪以来形成的信息传递及生活方式,是现代人们的生活得到了很大的便利。而且我相信,随着我们勤劳智慧的地球人的不断努力和奋斗,自动化控制技术在不久的将来将会得到更加广泛的应用。 二、关键词:自动化控制技术概念现代应用未来发展 三、内容: 1、概念:所谓自动化(Automation),是指机器或装置在无人干预的情况下,按规定的程序或指令自动的进行操作或运行。广义地讲,自动化还包括模拟或在现人的智力活动。自动化主要是人造系统的问题,如工厂中的机床、飞行器的飞行姿态控制等。而相比之下自动控制的概念就要广泛一些,它不仅设计人造系统问题,还涉及社会的方方面面,如环境的控制、人口的控制、经济的控制。以上是对自动化及自动化控制技术的简单认识。 2、应用:自动化技术的发展历史,大致可以划分为自动化技术的形成、局部自动化和综合自动化三个时期。 1788年英国机械师J.瓦特发明离心式调速器(又称飞球调速器),代表着自动化技术的形成时期。第二次世界大战时期的经典控制理论对战后发展局部自动化起了重要的促进作用。而20世纪50年代末空间技术迅速发展,迫切需要解决多变量系统的最优控制问题,于是综合自动化技术应运而生。 现在自动化技术应用于很多方面,例如,机械加工、采矿冶炼、交通系统、军事技术、航空航天、农业生产、环境保护、科学研究、办公服务等领域。其中汽车工业的工厂自动化控制,采用一贯作业的生产方式,借着整条生产线的分工装配,没几分钟即可生产一部汽车。纺织工业的工厂自动化控制,亦采用一贯作业的生产方,没几分钟即可高速生产一批布料。塑料工业的工厂自动化控制,亦采用一贯作业的生产方式,产出塑料原料后,在经过射出成型机器,产出各种所料模型。机械制造的工厂自动化控制,通过柔性制造系统,是一台机器能生产符合要求的不同的零件,由数控机床、材料和工具自动运输设备产品,自动检测等实验设备真正实现“无人工厂”。 不仅在机械生产中,自动控制系统还大量出现在飞行器和交通设备的控制上,如导弹、航天飞机、火车等。由于技术的发展,如今飞行器的速度已远远不能靠人类的大脑反应来控制,这就需要自动控制系统。 在工业上,计算机集成制造系统使自动化无人工厂成为现实。 自动化正在与其它学科相互交融,朝着更多的应用领域延伸,例如:经济控制论的形成直接推动了国民经济的发展;人口控制论的研究,为计划生育工作决策起到很大作用;环境系统工程已经成为世界性的大课题,人类为了生存与发展,必须采取各种措施来改变环境,自动化理论与技术在这方面大有作为;另外在国际关系领域、军事领域以及社会治安综合治理等领域,均离不开自动化学科的介入及其研究成果的应用。 3、展望:自动化技术发展日新月异,特别是随着现代计算机技术的发展,自动化及自动化控制技术有了更广阔的前景。例如,在交通方面,现在汽车的普及速度之快,已经接近了平民化,它不再是一种奢侈的享受,但是由此而引发的

过程装备控制技术及应用习题参考答案

过程装备控制技术 及应用习题及参考答案 第一章控制系统的基本概念 1?什么叫生产过程自动化?生产过程自动化主要包含了哪些内容? 答:利用自动化装置来管理生产过程的方法称为生产过程自动化。主要包含: ①自动检测系统②信号联锁系统③自动操纵系统④自动控制系统。 2. 自动控制系统主要由哪几个环节组成?自动控制系统常用的术语有哪些?答:一个自动控制系统主要有两大部分组成:一部分是起控制作用的全套自动控制装置,包括测量仪表,变送器,控制仪表以及执行器等;另一部分是自动控制装置控制下的生产设备,即被控对象。 自动控制系统常用的术语有: 被控变量y――被控对象内要求保持设定数值的工艺参数,即需要控制的工艺参数,如锅炉汽包的水位,反应温度; 给定值(或设定值)y s――对应于生产过程中被控变量的期望值; 测量值y m 由检测原件得到的被控变量的实际值; 操纵变量(或控制变量)m――受控于调节阀,用以克服干扰影响,具体实现控制作用的变量称为操纵变量,是调节阀的输出信号; 干扰f――引起被控变量偏离给定值的,除操纵变量以外的各种因素;偏差信号(e) 被控变量的实际值与给定值之差,即e=y m - y s 控制信号u――控制器将偏差按一定规律计算得到的量。 3. 什么是自动控制系统的方框图?它与工艺流程图有什么不同? 答:自动控制系统的方框图上是由传递方块、信号线(带有箭头的线段)、综合点、分支点构成的表示控制系统组成和作用的图形。其中每一个分块代表系统中的一个组成部分,方块内填入表示其自身特性的数学表达式;方块间用带有箭头的线段表示相互间的关系及信号的流向。采用方块图可直观地显示出系统中各组成部分以及它们之间的相互影响和信号的联系,以便对系统特性进行分析和研究。而工艺流程图则是以形象的图

通用运动控制技术现状、发展及其应用

作者:蒋仕龙吴宏吕恕龚小云(固高科技(深圳)有限公司深圳518057 )摘要:运动控制技术的发展是制造自动化前进的旋律,是推动新的产业革命的关键技术。运动控制器已经从以单片机或微处理器作为核心的运动控制器和以专用芯片(ASIC)作为核心处理器的运动控制器,发展到了基于PC 总线的以DSP 和FPGA 作为核心处理器的开放式运动控制器。运动控制技术也由面向传统的数控加工行业专用运动控制技术而发展为具有开放结构、能结合具体应用要求而快速重组的先进运动控制技术。基于网络的开放式结构和嵌入式结构的通用运动控制器逐步成为自动化控制领域里的主导产品之一。高速、高精度始终是运动控制技术追求的目标。充分利用DSP 的计算能力,进行复杂的运动规划、高速实时多轴插补、误差补偿和更复杂的运动学、动力学计算,使得运动控制精度更高、速度更快、运动更加平稳;充分利用DSP 和FPGA 技术,使系统的结构更加开放,根据用户的应用要求进行客制化的重组,设计出个性化的运动控制器将成为市场应用的两大方向。关键词:运动控制技术,运动控制器,点位控制,连续轨迹控制,同步控制 1 通用运动控制技术的发展现状运动控制起源于早期的伺服控制(Servomechanism)。简单地说,运动控制就是对机械运动部件的位置、速度等进行实时的控制管理,使其按照预期的运动轨迹和规定的运动参数进行运动。早期的运动控制技术主要是伴随着数控(CNC)技术、机器人技术(Robotics)和工厂自动化技术的发展而发展的。早期的运动控制器实际上是可以独立运行的专用的控制器,往往无需另外的处理器和操作系统支持,可以独立完成运动控制功能、工艺技术要求的其他功能和人机交互功能。这类控制器可以成为独立运行(Stand-alone)的运动控制器。这类控制器主要针对专门的数控机械和其他自动化设备而设计,往往已根据应用行业的工艺要求设计了相关的功能,用户只需要按照其协议要求编写应用加工代码文件,利用RS232或者DNC 方式传输到控制器,控制器即可完成相关的动作。这类控制器往往不能离开其特定的工艺要求而跨行业应用,控制器的开放性仅仅依赖于控制器的加工代码协议,用户不能根据应用要求而重组自己的运动控制系统。通用运动控制器的发展成为市场的必然需求。由国家组织的开放式运动控制系统的研究始于1987 年,美国空军在美国政府资助下发表了著名的“NGC(下一代控制器)研究计划”,该计划首先提出了开放体系结构控制器的概念,这个计划的重要内容之一便是提出了“开放系统体系结构标准规格(OSACA)”。自1996年开始,美国几个大的科研机构对NGC 计划分别发表了相应的研究内容[3],如在美国海军支持下,美国国际标准研究院提出了“EMC(增强型机床控制器)”;由美国通用、福特和克莱斯勒三大汽车公司提出和研制了“O MAC(开放式、模块化体系结构控制器)”,其目的是用更开放、更加模块化的控制结构使制造系统更加具有柔性、更加敏捷。该计划启动后不久便公布了一个名为“OMAC APT”的规范,并促成了一系列相关研究项目的运行。通用运动控制技术作为自动化技术的一个重要分支,在20 世纪90 年代,国际上发达国家,例如美国进入快速发展的阶段。由于有强劲市场需求的推动,通用运动控制技术发展迅速,应用广泛。近年来,随着通用运动控制技术的不断进步和完善,通用运动控制器作为一个独立的工业自动化控制类产品,已经被越来越多的产业领域接受,并且它已经达到一个引人瞩目的市场规模。根据ARC 近期的一份研究,世界通用运动控制(General MotionControl GMC)市场已超过40 亿美元,并且有望在未来5 年内综合增长率达到6.3%。目前,通用运动控制器从结构上主要分为如下三大类:⑴基于计算机标准总线的运动控制器,它是把具有开放体系结构,独立于计算机的运动控制器与计算机相结合构成。这种运动控制器大都采用DSP 或微机芯片作为CPU,可完成运动规划、高速实时插补、伺服滤波控制和伺服驱动、外部I/O 之间的标准化通用接口功能,它开放的函数库可供用户根据不同的需求,在DOS 或WINDOWS 等平台下自行开发应用软件,组成各种控制系统。如美国Deltatau 公司的PMAC 多轴运动控制器和固高科技(深圳)有限公司的GT 系列运动控制器产品等。目前这种运动控制器是市场上的主流产品。⑵Soft 型开放式运动控制器,它提供给用户最大的灵活性,它的运动控制软件全部装在计算机中,而硬件部分仅是计算机与伺服驱动和外部I/O 之间的标准化通用接口。就像计算机中可以安装各种品牌的声

计算机控制技术论文 -

浅谈计算机控制技术 引言: 计算机控制系统是自动控制技术和计算机技术相结合的产物,利用计算机(通常称为工业控制计算机,简称工控机)来实现生产过程自动控制的系统,它由控制计算机本体(包括硬件、软件和网络结构)和受控对象两大部分组成。随着计算机技术和现代控制理论的快速发展,计算机控制技术诞生并迅速蓬勃发展起来,其应用遍及国防、航空航天、工业、农业、医学等多种领域。本文将主要针对计算机控制技术的发展历史、当今现状以及计算机控制技术的发展趋势做一介绍,并结合它的具体实例介绍计算机控制技术的一些主要应用领域。 正文: 一、计算机控制技术的概述 1、计算机控制的定义: 计算机控制是自动理论和计算机技术相结合而产生的一门新兴学科,计算机控制技术是随着计算机技术的发展而发展起来的。 2、计算机控制的发展历史: 计算机控制技术的思想始于上世纪五十年代中期,美国TRW航空公司与美国德克萨斯州的一个炼油厂合作,进行计算机控制的研究,他们设计出了一个利用计算机控制实现反应器供料最佳分配,根据催化剂活性测量结果来控制热水的流量以及确定最优循环的系统。这项具有跨时代意义的工作为计算机控制技术的发展奠定了基础,从此,计算机控制技术迅速发展,并被各行各业广泛应用。 伴随着计算机技术的飞速发展,计算机控制技术也紧随其后,迅猛的发展起来。现如今,微型计算机的出现和发展使计算机控制技术又进入了一个崭新的阶段。 二、计算机控制技术的应用领域 1、计算机控制技术在农业领域的应用实例 在农业日趋机械化及自动化的今天,自动控制技术在农业中的应用也越来越广泛,利用计算机控制技术管理控制农业生产已成为目前研究的一个重点。农业大棚、智能化养殖场等等都是计算机控制技术在农业生产领域应用的鲜明例子。 智能温室大棚中利用计算机进行远程监控和操作,还可设计自动控制无人管理温室大棚。根据远程传感器搜集来的温度、湿度、光照等模拟信息,经输入通道进行AD转换,传入计算机,计算机既可以利用这些数据进行监控,同时又可以利用这些数据对大棚进行控制,进行加湿、加温、增加光照等控制,从而实现温室大棚的自动化智能控制。 2、计算机控制技术在工业领域的应用实例

电气控制技术论文5000字

电气控制技术在工业生产中的应用 班级:机制091 姓名:柳有伟 学号:3090101132 指导老师:周力

前言 通过三十个学时的学习,我们初步了解了电气控制技术的一点基本知识和组成,从中也知道了电气控制技术在机械行业的重要性,三十个学时的学习远远不是我们需要完成的任务,为了更好的掌握机电一体化,我们应该更深入的学习电气控制技术的知识,以满足综合型人才的培养要求,在本学期的学习主要包括两大部分: (1),继电器控制系统 (2),可编程控制器及应用 在学习中我们了解到,可编程系统的可靠性等方面都优于继电器的传统控制技术,我们应该在继电器的基础上加强可编程控制技术的学习. 可编程控制器是在继电器控制和计算机控制的基础上发展而来的新型工业自动控制装置。早期的可编程控制器在功能上只能实现逻辑控制,因而被称为可编程逻辑控制器(Programmable Logic Controller),简称PLC。随着微电子技术和微型计算机的发展,微处理器用于PLC,使其不仅可以实现逻辑控制,还可以进行数字运算和处理、模拟量调节和联网通信等,因此美国电气制造协会于1980年将它正式命名为可编程控制器(Programmable Controller),简称PC。但近年来PC又成为个人计算机(Personal Computer)的简称,为避免发生混淆,我们仍把可编程控制器简称为PLC。

PLC简介及在常用电气控制线路中的应用 [摘要]电气控制技术是一门多学科交叉的技术,是实现工业生产自动化的重要技术手段。随着科学技术的不断发展, PLC技术越来越多的应用于机床电气,本文简述了PLC的发展和几种常用电气控制线路的PLC控制。 关键词: :继电器控制系统;基本电气控制线路;PLC控制 1 引言 近年来,PLC正越来越多地用于电动机的运行控制,为了便于采用PLC对继电器控制系统进行改造和设计新的控制系统,本文以OMRON公司的SYSMAC— C系列P 型机为例,介绍其在电动机基本控制线路中的应用。这些程序通常是整个控制系统的一个模块。 2 PLC简介 2.1 PLC由来 PLC即可编程控制器(Programmable logic Controller,是指以计算机技术为基础的新型工业控制装置。在1987年国际电工委员会(International Electrical Committee)颁布的PLC标准草案中对PLC做了如下定义: PLC英文全称Programmable Logic Controller ,中文全称为可编程逻辑控制器,定义是:一种数字运算操作的电子系统,专为在工业环境应用而设计的。它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程.PLC是可编程逻辑电路,也是一种和硬件结合很紧密的语言,在半导体方面有很重要的应用,可以说有半导体的地方就有PLC “PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计

过程装备与来控制技术及应用复习资料概要

1. 什么是被控对象的控制通道?什么是干扰通道? 答:对一个被控对象来说,输入量是扰动量和操纵变量,而输出是被控变量。由对象的输入变量至输出变量的信号联系称为通道。操纵变量至被控变量的信号联系称为控制通道;扰动量至被控变量的信号联系称为扰动通道 2. 被控对象的特性是由生产工艺过程和工艺设备决定的,在控制系统的设计中是无法改变的。 3. 被控对象数学描述推导依据的:物料平衡和力学平衡. 4. 传感器的主要组成部分:敏感元件、转换元件、测量电路与其他辅助部件组成. 5. 力平衡式压差变送器主要组成部分:测量部分、放大器和反馈部分。 6,. 温度变送器类型:直流毫伏、电阻体温度和热电偶温度变送器. 7.试分析四线制变送器与两线制变送器与电源的连接方式并画出示意图。 答:电动变送器输出信号与电源的连接方式有两种:四线制和两线制,四线制中, 供电电源通过两根导线接入,另两根导线与负载电阻R2相连,输出0~10mA DC 信号。这种连线方式中,同变送器连接的导线共有4根,成为四线制,如图(a所示。如图b中所示,同变送器连接的导线只有两根,同时传送变送器所需的电源电压和4~20mA DC输出电流,称为两线制。 8.何为基型调节器?它具有哪些主要特点? 答:基型调节器是一种具有PID运算功能,并能对被调参数,给定值及阀门位置进行显示的调节器。 特点:①采用了高增益、高阻抗线性集成电路组件,提高万仪表的精度,稳定性和可靠性,降低了能耗。

②有软、硬两种手动操作方式,软手动与自动之间由于有保持状态而使调节器输出能够长期保持,因而在互相切换时具有双向无平衡无抗扰特性,提高了操作性能。 ③采用集成电路便于各种功能的扩展。 ④采用标准信号制,接受1-5V DC测量信号,输出4~20mA DC信号,由于空气受点不是从零点开始的,故容易识别断电、断线等故障 ⑤能与计算机联用。 9.什么是自动控制系统的方框图?它与工艺流程图有什么不同? 答:自动控制系统的方框图上是由传递方块、信号线(带有箭头的线段、综合点、分支点构成的表示控制系统组成和作用的图形。其中每一个分块代表系统中的一个组成部分,方块内填入表示其自身特性的数学表达式;方块间用带有箭头的线段表示相互间的关系及信号的流向。采用方块图可直观地显示出系统中各组成部分以及它们之间的相互影响和信号的联系,以便对系统特性进行分析和研究。而工艺流程图则是以形象的图形、符号、代号,表示出工艺过程选用的化工设备、管路、附件和仪表自控等的排列及连接,借以表达在一个化工生产中物料和能量的变化过程,即原料→成品全过程中物料和能量发生的变化及其流向。10.在自动控制系统中,什么是干扰作用?什么是控制作用?两者有什么关系?答:干扰作用是由干扰因素施加于被控对象并引起被控变量偏离给定值的作用;控制作用是由控制器或执行器作用于被控对象,通过改变操纵变量克服干扰作用,使被控变量保持在给定值,两者的相同之处在于都是施加于被控对象的作用,不同之处在于干扰作用是使被控变量偏离给定值,而控制作用是使被控变量接近给定值。 11.什么是自动控制系统的过度过程?在阶跃干扰作用下有哪几种基本形式? 其中哪些能满足自动控制的要求,哪些不能,为什么?

先进控制技术及应用

先进控制技术及应用 1.前言 工业生产的过程是复杂的,建立起来的模型也是不完善的。即使是理论非常复杂的现代控制理论,其效果也往往不尽人意,甚至在一些方面还不及传统的PID控制。20世纪70年代,人们除了加强对生产过程的建模、系统辨识、自适应控制等方面的研究外,开始打破传统的控制思想,试图面向工业开发出一种对各种模型要求低、在线计算方便、控制综合效果好的新型算法。在这样的背景下,预测控制的一种,也就是动态矩阵控制(DMC)首先在法国的工业控制中得到应用。因此预测控制不是某种统一理论的产物,而是在工业实践中逐渐发展起来的。预测控制中比较常见的三种算法是模型算法控制(MAC),动态矩阵控制(DMC)以及广义预测控制。本篇分别采用动态矩阵控制(DMC)、模型算法控制(MAC)进行仿真,算法稳定在消除稳态余差方面非常有效。 2、控制系统设计方案 2.1 动态矩阵控制(DMC)方案设计图 动态矩阵控制是基于系统阶跃响应模型的算法,隶属于预测控制的范畴。它的原理结构图如下图2-1所示: 图2-1 动态矩阵控制原理结构图 2.2 模型算法控制(MAC)方案设计图 模型算法控制(MAC)由称模型预测启发控制(MPHC),与MAC相同也适用于渐进

稳定的线性对象,但其设计前提不是对象的阶跃响应而是其脉冲响应。它的原理结构图如下图2-2所示: 图2-2 模型算法控制原理结构图 3、模型建立 3.1被控对象模型及其稳定性分析 被控对象模型为 (1) 化成s 域,g (s )=0.2713/(s+0.9),很显然,这个系统是渐进稳定的系统。因此该对象 适用于DMC 算法和MAC 算法。 3.2 MAC 算法仿真 3.2.1 预测模型 该被控对象是一个渐近稳定的对象,预测模型表示为: )()1()(?)(?1j k j k u z g j k y m ++-+=+-ε, j=1, 2, 3,……,P . (2) 这一模型可用来预测对象在未来时刻的输出值,其中y 的下标m 表示模型,也称为内 部模型。(2)式也可写成矩阵形式为: )1()()1(?-+=+k FU k GU k Y m 4 1 11 8351.012713.0)(-----=z z z z G

访问控制模型综述

访问控制模型研究综述 沈海波1,2,洪帆1 (1.华中科技大学计算机学院,湖北武汉430074; 2.湖北教育学院计算机科学系,湖北武汉430205) 摘要:访问控制是一种重要的信息安全技术。为了提高效益和增强竞争力,许多现代企业采用了此技术来保障其信息管理系统的安全。对传统的访问控制模型、基于角色的访问控制模型、基于任务和工作流的访问控制模型、基于任务和角色的访问控制模型等几种主流模型进行了比较详尽地论述和比较,并简介了有望成为下一代访问控制模型的UCON模型。 关键词:角色;任务;访问控制;工作流 中图法分类号:TP309 文献标识码: A 文章编号:1001-3695(2005)06-0009-03 Su rvey of Resea rch on Access Con tr ol M odel S HE N Hai-bo1,2,HONG Fa n1 (1.C ollege of Computer,H uazhong Univer sity of Science&Technology,W uhan H ubei430074,China;2.Dept.of C omputer Science,H ubei College of Education,Wuhan H ubei430205,China) Abst ract:Access control is an im port ant inform a tion s ecurity t echnolog y.T o enha nce benefit s and increa se com petitive pow er,m a ny m odern enterprises hav e used this t echnology t o secure their inform ation m ana ge s yst em s.In t his paper,s ev eral m a in acces s cont rol m odels,such as tra dit iona l access control m odels,role-bas ed acces s cont rol m odels,ta sk-ba sed acces s control m odels,t as k-role-based access cont rol m odels,a nd s o on,are discus sed a nd com pa red in deta il.In addit ion,we introduce a new m odel called U CON,w hich m ay be a prom ising m odel for the nex t generation of a ccess control. Key words:Role;Ta sk;Access Cont rol;Workflow 访问控制是通过某种途径显式地准许或限制主体对客体访问能力及范围的一种方法。它是针对越权使用系统资源的防御措施,通过限制对关键资源的访问,防止非法用户的侵入或因为合法用户的不慎操作而造成的破坏,从而保证系统资源受控地、合法地使用。访问控制的目的在于限制系统内用户的行为和操作,包括用户能做什么和系统程序根据用户的行为应该做什么两个方面。 访问控制的核心是授权策略。授权策略是用于确定一个主体是否能对客体拥有访问能力的一套规则。在统一的授权策略下,得到授权的用户就是合法用户,否则就是非法用户。访问控制模型定义了主体、客体、访问是如何表示和操作的,它决定了授权策略的表达能力和灵活性。 若以授权策略来划分,访问控制模型可分为:传统的访问控制模型、基于角色的访问控制(RBAC)模型、基于任务和工作流的访问控制(TBAC)模型、基于任务和角色的访问控制(T-RBAC)模型等。 1 传统的访问控制模型 传统的访问控制一般被分为两类[1]:自主访问控制DAC (Discret iona ry Acces s Control)和强制访问控制MAC(Mandat ory Acces s C ontrol)。 自主访问控制DAC是在确认主体身份以及它们所属组的基础上对访问进行限制的一种方法。自主访问的含义是指访问许可的主体能够向其他主体转让访问权。在基于DAC的系统中,主体的拥有者负责设置访问权限。而作为许多操作系统的副作用,一个或多个特权用户也可以改变主体的控制权限。自主访问控制的一个最大问题是主体的权限太大,无意间就可能泄露信息,而且不能防备特洛伊木马的攻击。访问控制表(ACL)是DAC中常用的一种安全机制,系统安全管理员通过维护AC L来控制用户访问有关数据。ACL的优点在于它的表述直观、易于理解,而且比较容易查出对某一特定资源拥有访问权限的所有用户,有效地实施授权管理。但当用户数量多、管理数据量大时,AC L就会很庞大。当组织内的人员发生变化、工作职能发生变化时,AC L的维护就变得非常困难。另外,对分布式网络系统,DAC不利于实现统一的全局访问控制。 强制访问控制MAC是一种强加给访问主体(即系统强制主体服从访问控制策略)的一种访问方式,它利用上读/下写来保证数据的完整性,利用下读/上写来保证数据的保密性。MAC主要用于多层次安全级别的军事系统中,它通过梯度安全标签实现信息的单向流通,可以有效地阻止特洛伊木马的泄露;其缺陷主要在于实现工作量较大,管理不便,不够灵活,而且它过重强调保密性,对系统连续工作能力、授权的可管理性方面考虑不足。 2基于角色的访问控制模型RBAC 为了克服标准矩阵模型中将访问权直接分配给主体,引起管理困难的缺陷,在访问控制中引进了聚合体(Agg rega tion)概念,如组、角色等。在RBAC(Role-Ba sed Access C ontrol)模型[2]中,就引进了“角色”概念。所谓角色,就是一个或一群用户在组织内可执行的操作的集合。角色意味着用户在组织内的责 ? 9 ? 第6期沈海波等:访问控制模型研究综述 收稿日期:2004-04-17;修返日期:2004-06-28

机器人控制技术论文

摘要 为使机器人完成各种任务和动作所执行的各种控制手段。作为计算机系统中的关键技术,计算机控制技术包括范围十分广泛,从机器人智能、任务描述到运动控制和伺服控制等技术。既包括实现控制所需的各种硬件系统,又包括各种软件系统。最早的机器人采用顺序控制方式,随着计算机的发展,机器人采用计算机系统来综合实现机电装置的功能,并采用示教再现的控制方式。随着信息技术和控制技术的发展,以及机器人应用范围的扩大,机器人控制技术正朝着智能化的方向发展,出现了离线编程、任务级语言、多传感器信息融合、智能行为控制等新技术。多种技术的发展将促进智能机器人的实现。 当今的自动控制技术都是基于反馈的概念。反馈理论的要素包括三个部分:测量、比较和执行。测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。这个理论和应用自动控制的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。 PID(比例-积分-微分)控制器作为最早实用化的控制器已有50多年历史,现在仍然是应用最广泛的工业控制器。PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。 它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp,Ti 和Td)即可。在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。 关键词:机器人,机器人控制,PID,自动控制

目录 摘要.......................................................... I 第1章绪论................................................ - 1 - 1.1机器人控制系统 (1) 1.2机器人控制的关键技术 (1) 第2章机器人PID控制...................................... - 2 - 2.1PID控制器的组成 (2) 2.2PID控制器的研究现状 (2) 2.3PID控制器的不足 (3) 第3章 PID控制的原理和特点 ................................ - 4 - 3.1PID控制的原理 (4) 3.2PID控制的特点 (5) 第4章 PID控制器的参数整定 ................................ - 5 -后记...................................................... - 6 -

相关主题
文本预览
相关文档 最新文档