当前位置:文档之家› 第5章 回溯法(1-例子)

第5章 回溯法(1-例子)

(完整版)分支限界算法作业分配问题

分支限界法的研究与应用 摘要: 分支限界法与回溯法的不同:首先,回溯法的求解目标是找出解空间树中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。其次,回溯法以深度优先的方式搜索解空间树,而分支限界法则一般以广度优先或以最小耗费优先的方式搜索解空间树。再者,回溯法空间效率高;分支限界法往往更“快”。 分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。 常见的分支限界法有:队列式分支限界法,按照队列先进先出原则选取下一个结点为扩展结点。栈式分支限界法,按照栈后进先出原则选取下一个结点为扩展结点。优先队列式分支限界法,按照规定的结点费用最小原则选取下一个结点为扩展结点(最采用优先队列实现)。 分支搜索法是一种在问题解空间上进行搜索尝试的算法。所谓分支是采用广度优先的策略国,依次搜索E-结点的所有分支,也就是所有的相邻结点。和回溯法一样,在生成的结点中,抛弃那些不满足约束条件的结点,其余结点加入活结点表。然后从表中选择一个结点作为下一个E-结点,断续搜索。 关键词: 分支限界法回溯法广度优先分支搜索法

目录 第1章绪论 (3) 1.1 分支限界法的背景知识 (3) 1.2 分支限界法的前景意义 (3) 第2章分支限界法的理论知识.................. 错误!未定义书签。 2.1 问题的解空间树 ............................................... 错误!未定义书签。 2.2 分支限界法的一般性描述 (6) 第3章作业分配问题 (7) 3.1 问题描述 (7) 3.2 问题分析 (7) 3.3 算法设计 (8) 3.4 算法实现 (10) 3.5 测试结果与分析 (12) 第4章结论 (13) 参考文献 (14)

动态规划法,回溯法,分支限界法求解TSP问题实验报告

TSP问题算法实验报告 指导教师:季晓慧 姓名:辛瑞乾 学号:1004131114 提交日期:2015年11月

目录 总述 (2) 动态规划法 (3) 算法问题分析 (3) 算法设计 (3) 实现代码 (3) 输入输出截图 (6) OJ提交截图 (6) 算法优化分析 (6) 回溯法 (6) 算法问题分析 (6) 算法设计 (7) 实现代码 (7) 输入输出截图 (9) OJ提交截图 (9) 算法优化分析 (10) 分支限界法 (10) 算法问题分析 (10) 算法设计 (10) 实现代码 (10) 输入输出截图 (15) OJ提交截图 (15) 算法优化分析 (15) 总结 (16) 总述 TSP问题又称为旅行商问题,是指一个旅行商要历经所有城市一次最后又回到原来的城

市,求最短路程或最小花费,解决TSP可以用好多算法,比如蛮力法,动态规划法…具体的时间复杂的也各有差异,本次实验报告包含动态规划法,回溯法以及分支限界法。 动态规划法 算法问题分析 假设n个顶点分别用0~n-1的数字编号,顶点之间的代价存放在数组mp[n][n]中,下面考虑从顶点0出发求解TSP问题的填表形式。首先,按个数为1、2、…、n-1的顺序生成1~n-1个元素的子集存放在数组x[2^n-1]中,例如当n=4时,x[1]={1},x[2]={2},x[3]={3},x[4]={1,2},x[5]={1,3},x[6]={2,3},x[7]={1,2,3}。设数组dp[n][2^n-1]存放迭代结果,其中dp[i][j]表示从顶点i经过子集x[j]中的顶点一次且一次,最后回到出发点0的最短路径长度,动态规划法求解TSP问题的算法如下。 算法设计 输入:图的代价矩阵mp[n][n] 输出:从顶点0出发经过所有顶点一次且仅一次再回到顶点0的最短路径长度 1.初始化第0列(动态规划的边界问题) for(i=1;i #include #include #include #include #include #include #include #include #include #include

回溯法实验(0-1背包问题)

算法分析与设计实验报告第五次附加实验

附录: 完整代码(回溯法) //0-1背包问题回溯法求解 #include using namespace std; template class Knap //Knap类记录解空间树的结点信息 { template friend Typep Knapsack(Typep [],Typew [],Typew,int); private: Typep Bound(int i); //计算上界的函数 void Backtrack(int i); //回溯求最优解函数

Typew c; //背包容量 int n; //物品数 Typew *w; //物品重量数组| Typep *p; //物品价值数组 Typew cw; //当前重量 Typep cp; //当前价值 Typep bestp; //当前最后价值 }; template Typep Knapsack(Typep p[],Typew w[],Typew c,int n); //声明背包问题求解函数template inline void Swap(Type &a,Type &b); //声明交换函数 template void BubbleSort(Type a[],int n); //声明冒泡排序函数 int main() { int n ;//物品数 int c ;//背包容量 cout<<"物品个数为:"; cin>>n; cout<<"背包容量为:"; cin>>c; int *p = new int[n];//物品价值下标从1开始 int *w = new int[n];//物品重量下标从1开始 cout<<"物品重量分别为:"<>w[i]; } cout<<"物品价值分别为:"<>p[i]; } cout<<"物品重量和价值分别为:"<

回溯法与分支限界法的分析与比较

回溯法与分支限界法的分析与比较 摘要:通过对回溯法与分支限界法的简要介绍,进一步分析和比较这两种算法在求解问题时的差异,并通过具体的应用来说明两种算法的应用场景及侧重点。 关键词:回溯法分支限界法n后问题布线问题 1、引言 1.1回溯法 回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解。如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。这种以深度优先方式系统搜索问题解的算法称为回溯法。 1.2分支限界法 分支限界法是以广度优先或以最小耗费优先的方式搜索解空间树,在每一个活结点处,计算一个函数值,并根据函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间上有最优解的分支推进,以便尽快地找出一个最优解,这种方法称为分支限界法。 2、回溯法的基本思想 用回溯法解问题时,应明确定义问题的解空间。问题的解空间至少应包含问题的一个解。之后还应将解空间很好的组织起来,使得能用回溯法方便的搜索整个解空间。在组织解空间时常用到两种典型的解空间树,即子集树和排列树。确定了解空间的组织结构后,回溯法从开始结点出发,以深度优先方式搜索整个解空间。这个开始结点成为活结点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。这个新结点就成为新的活结点,并成为当前扩展结点。如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。此时,应往回移动至最近的一个活结点处,并使这个活结点成为当前的扩展结点。回溯法以这种工作方式递归的在解空间中搜索,直至找到所要求的解或解空间中已无活结点时为止。 3、分支限界法的基本思想 用分支限界法解问题时,同样也应明确定义问题的解空间。之后还应将解空间很好的组织起来。分支限界法也有两种组织解空间的方法,即队列式分支限界法和优先队列式分支限界法。两者的区别在于:队列式分支限界法按照队列先进先出的原则选取下一个节点为扩展节点,而优先队列式分支限界法按照优先队列

实验6 子集和问题的回溯算法设计与实现(报告)

实验6 子集和问题的回溯算法设计与实现 一、实验目的 1、掌握回溯法解题的基本思想; 2、掌握回溯算法的设计方法; 3、针对子集和数问题,熟练掌握回溯递归算法、迭代算法的设计与实现。 二、实验内容 1、认真阅读教材或参考书, 掌握回溯法解题的基本思想, 算法的抽象控制策略; 2、了解子集和数问题及解向量的定长和变长状态空间表示; 3、针对解向量的定长表示, 设计状态空间树节点扩展的规范(限界)函数及实现方法; 4、分析深度优先扩展状态空间树节点或回溯的条件; 5、分析和设计生成解向量各分量可选值的实现方法; 6、设计和编制回溯算法的递归和迭代程序。 【实验题】: 组合数问题:找出从自然数1,2,…,n中任取r个数的所有组合。 三、算法的原理方法 回溯法也称为试探法,该方法首先暂时放弃关于问题规模大小的限制,并将问题的候选解按某种顺序逐一枚举和检验。 当发现当前候选解不可能是解时,就选择下一个候选解;倘若当前候选解除了还不满足问题规模要求外,满足所有其他要求时,继续扩大当前候选解的规模,并继续试探。 如果当前候选解满足包括问题规模在内的所有要求时,该候选解就是问题的一个解。 在回溯法中,放弃当前候选解,寻找下一个候选解的过程称为回溯。扩大当前候选解的规模,以继续试探的过程称为向前试探。 可以采用回溯法找问题的解,将找到的组合以从小到大顺序存于a[0],a[1],…,a[r-1]中,组合的元素满足以下性质: (1)a[i+1]>a[i],后一个数字比前一个大; (2)a[i]-i<=n-r+1。 按回溯法的思想,找解过程可以叙述如下: 首先放弃组合数个数为r的条件,候选组合从只有一个数字1开始。因该候选解满足除问题规模之外的全部条件,扩大其规模,并使其满足上述条件(1),候选组合改为1,2。继续这一过程,得到候选组合1,2,3。该候选解满足包括问题规模在内的全部条件,因而是一

回溯法实验(最大团问题)

算法分析与设计实验报告第七次附加实验

} } 测试结果 当输入图如下时: 当输入图如下时: 1 2 3 4 5 1 2 3 4 5

当输入图如下时: 1 2 3 4 5

附录: 完整代码(回溯法) //最大团问题回溯法求解 #include using namespace std; class Clique { friend void MaxClique(int **,int *,int ); private: void Backtrack(int i); int **a; //图的邻接矩阵 int n; //图的顶点数 int *x; //当前解 int *bestx; //当前最优解 int cn; //当前顶点数 int bestn; //当前最大顶点数 }; void Clique::Backtrack(int i) { //计算最大团 if(i>n) //到达叶子节点 { for(int j=1;j<=n;j++) bestx[j]=x[j]; bestn=cn;

cout<<"最大团:("; for(int i=1;i=bestn) { //修改一下上界函数的条件,可以得到 x[i]=0; //相同点数时的解 Backtrack(i+1); } } void MaxClique(int **a,int *v,int n) { //初始化Y Clique Y; Y.x=new int[n+1]; Y.a=a; Y.n=n; https://www.doczj.com/doc/3c3483674.html,=0; Y.bestn=0; Y.bestx=v; Y.Backtrack(1); delete [] Y.x; cout<<"最大团的顶点数:"<

回溯法和分支限界法解决背包题

0-1背包问题 计科1班朱润华 32 方法1:回溯法 一、回溯法描述: 用回溯法解问题时,应明确定义问题的解空间。问题的解空间至少包含问题的一个(最优)解。对于0-1背包问题,解空间由长度为n的0-1向量组成。该解空间包含对变量的所有0-1赋值。例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大 形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。 二、回溯法步骤思想描述: 0-1背包问题是子集选取问题。0-1 背包问题的解空间可以用子集树表示。在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。当右子树中有可能含有最优解时,才进入右子树搜索。否则,将右子树剪去。设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。当cp+r<=bestp时,可剪去右子树。计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至

装不下时,再装入物品一部分而装满背包。 例如:对于0-1背包问题的一个实例, n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。这4个物品的单位重量价值分别为[3,2,3,5,4]。以物品单位重量价值的递减序装入物品。先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装的物品2。由此得一个解为[1,,1,1],其相应价值为22。尽管这不是一个可行解,但可以证明其价值是最优值的上界。因此,对于这个实例,最优值不超过22。 在实现时,由Bound计算当前节点处的上界。类Knap的数据成员记录解空间树中的节点信息,以减少参数传递调用所需要的栈空间。在解空间树的当前扩展节点处,仅要进入右子树时才计算上界Bound,以判断是否可将右子树剪去。进入左子树时不需要计算上界,因为上界预期父节点的上界相同。 三、回溯法实现代码: #include "" #include using namespace std; template class Knap { template friend Typep Knapsack(Typep [],Typew [],Typew,int);

回溯法实验报告

实验04 回溯法 班级:0920561 姓名:宋建俭学号:20 一、实验目的 1.掌握回溯法的基本思想。 2.掌握回溯法中问题的解空间、解向量、显式约束条件、隐式约束条件以及子 集树与排列树的递归算法结构等内容。 3.掌握回溯法求解具体问题的方法。 二、实验要求 1.认真阅读算法设计教材,了解回溯法思想及方法; 2.设计用回溯算法求解装载问题、n后问题、图的m着色问题的java程序 三、实验内容 1.有一批共n个集装箱要装上2艘载重量分别为C1和C2的轮船,其中集装箱 i的重量为wi,且∑wi≤C1+C2。装载问题要求确定是否有一个合理的装载方案可将这个集装箱装上这2艘轮船。如果有,找出一种装载方案。 2.在n×n格的棋盘上放置彼此不受攻击的n个皇后。按照国际象棋的规则, 皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n后问题等价于在n×n格的棋盘上放置n个皇后,任何2个皇后不放在同一行或同一列或同一斜线上。 3.给定无向连通图G和m种不同的颜色。用这些颜色为图G的各顶点着色,每 个顶点着一种颜色。是否有一种着色法使G中每条边的2个顶点着不同颜色。 这个问题是图的m可着色判定问题。 四、算法原理 1、装载问题 用回溯法解装载问题时,用子集树表示其解空间是最合适的。可行性约束可剪去不满足约束条件(w1x1+w2x2+…+wnxn)<=c1的子树。在子集树的第j+1层结点Z处,用cw记当前的装载重量,即cw=(w1x1+w2x2+…+wjxj),当cw>c1时,以结点Z为根的子树中所有结点都不满足约束条件,因而该子树中的解均为不可行解,故可将该子树剪去。 解装载问题的回溯法中,方法maxLoading返回不超过c的最大子集和,但未给出达到这个最大子集和的相应子集。 算法maxLoading调用递归方法backtrack(1)实现回溯搜索。Backtrack(i)搜索

回溯法和分支限界法解决0-1背包题

0-1背包问题 计科1班朱润华2012040732 方法1:回溯法 一、回溯法描述: 用回溯法解问题时, 应明确定义问题的解空间。 问题的解空间至少包含问题的一个 (最 优)解。对于0-1背包问题,解空间由长度为 n 的0-1向量组成。该解空间包含对变量的所 有 0-1 赋值。例如 n=3 时,解空间为: {(0, 0, 0), (0, 1, 0), (0, 0, 1) , (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1 , 1, 1) 然后可将解空间组织成树或图的形式, 0-1背包则可用完全二叉树表示其解空间给定 n 种物品和一背包。物品i 的重量是wi ,其价 值为vi ,背包的容量为 C 。问:应如何选择装入背包的物品,使得装入背包中物品的总价值 最大? 形式化描述:给定 c >0, wi >0, vi >0 , 1 w i < n.要求找一 n 元向量(x1,x2,…,xn,), xi € {0,1}, ? 刀wi xi w c,且刀vi xi 达最大.即一个特殊的整数规划问题。 二、回溯法步骤思想描述: 0-1背包问题是子集选取问题。0-1背包问题的解空间可以用子集树表示。在搜索解空 间树时,只要其 左儿子节点是一个可行节点, 搜索就进入左子树。当右子树中有可能含有最 优解时,才进入右子树搜索。否则,将右子树剪去。设 r 是当前剩余物品价值总和, cp 是 当前价值;bestp 是当前最优价值。当 cp+r<=bestp 时,可剪去右子树。计算右子树上界的 更好的方法是将剩余物品依次按其单位价值排序, 然后依次装入物品, 直至装不下时,再装 入物品一部分而装满背包。 例如:对于 0-1 背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1] 品的单位重量价值分别为[3,2,3,5,4]。以物品单位重量价值的递减序装入物品。 品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装 由此得一个解为[1,0.2,1,1],其相应价值为22。尽管这不是一个可行解,但可以证明其价 值是最优值的上界。因此,对于这个实例,最优值不超过 在实现时,由 Bound 计算当前节点处的上界。类 Knap 的数据成员记录解空间树中的节 点信息,以减少参数传递调用所需要的栈空间。 在解空间树的当前扩展节点处, 仅要进入右 子树时才计算上界 Bound,以判断是否可将右子树剪去。进入左子树时不需要计算上界,因 为上界预期父节点的上界相同。 三、回溯法实现代码: #i nclude "stdafx.h" #in clude using n ames pace std; temp late class Knap { temp latevciass Typ ew,class Typep> friend Typep Knap sack(T ypep [],T ypew [],T yp ew,i nt); private: Typep Boun d(i nt i); 。这4个物 先装入物 0.2的物品2。 22。

回溯法实验报告

数学与计算机学院实验报告 一、实验项目信息 项目名称:回溯法 实验时间: 2016/06/08 实验学时: 03 学时 实验地点:工科楼503 二、实验目的及要求 理解回溯法的深度优先搜索策略、 掌握用回溯法解题的算法框架、 掌握回溯法的设计策略 三、实验环境 计算机Ubuntu Kylin14.04 CodeBlock软件四、实验内容及实验步骤 排兵布阵问题 某游戏中,不同的兵种处在不同的地形上其攻击能力不一样,现有n个不同兵种的角色{1,2,...,n},需安排在某战区n个点上,角色i在j点上的攻击力为A ij。试设计一个布阵方案,使总的攻击力最大。 数据: 防卫点 角 色 1 2 3 4 5 1 2 3 4 5 回溯法: 程序: #include int position[10]; int a[10][10]; int check(int k){//每个节点检查的函数 int i; for(i=0;i=0) { sum=0; position[k]=position[k]+1; while(position[k]<=n)

if(check(k))break; else position[k]=position[k]+1; if(position[k]<=n && k==n-1) { for(i=0;i

用回溯法和队列式分支限界算法求解0-1背包问题

华北水利水电学院数据结构与算法分析实验报告2009 ~2010 学年第 1 学期2009 级计算机专业 班级:200915326 学号:200915326 姓名:郜莉洁 一、实验题目: 分别用回溯法和分支限界法求解0-1背包问题 二、实验内容: 0-1背包问题:给定n种物品和一个背包。物品i的重量是Wi,其价值为Vi,背包的容量为C。应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分的物品i。 三、程序源代码: A:回溯法: // bag1.cpp : Defines the entry point for the console application. // #include "stdafx.h" #include #define MaxSize 100 //最多物品数 int limitw; //限制的总重量 int maxwv=0; //存放最优解的总价值 int maxw; int n; //实际物品数 int option[MaxSize]; // 存放最终解 int op[MaxSize]; //存放临时解 struct { int weight; int value; }a[MaxSize]; //存放物品数组 void Knap( int i, int tw, int tv) //考虑第i个物品 { int j; if(i>=n) //找到一个叶子结点 { if (tw<=limitw && tv>maxwv) //找到一个满足条件地更优解,保存它 { maxwv=tv; maxw=tw; for(j=0;j

算法设计与分析:回溯法-实验报告

应用数学学院信息安全专业班学号姓名 实验题目回溯算法 实验评分表

实验报告 一、实验目的与要求 1、理解回溯算法的基本思想; 2、掌握回溯算法求解问题的基本步骤; 3、了解回溯算法效率的分析方法。 二、实验内容 【实验内容】 最小重量机器设计问题:设某一个机器有n个部件组成,每个部件都可以m个不同供应商处购买,假设已知表示从j个供应商购买第i个部件的重量,表示从j个供应商购买第i个部件的价格,试用回溯法求出一个或多个总价格不超过c且重量最小的机器部件购买方案。 【回溯法解题步骤】 1、确定该问题的解向量及解空间树; 2、对解空间树进行深度优先搜索; 3、再根据约束条件(总价格不能超过c)和目标函数(机器重量最小)在搜索过程中剪去多余的分支。 4、达到叶结点时记录下当前最优解。 5、实验数据n,m, ] ][ [j i w,] ][ [j i c的值由自己假设。 三、算法思想和实现【实现代码】

【实验数据】 假设机器有3个部件,每个部件可由3个供应商提供(n=3,m=3)。总价不超过7(c<=7)。 部件重量表: 部件价格表: 【运行结果】

实验结果:选择供应商1的部件1、供应商1的部件2、供应商3的部件3,有最小重量机器的重量为4,总价钱为6。 四、问题与讨论 影响回溯法效率的因素有哪些? 答:影响回溯法效率的因素主要有以下这五点: 1、产生x[k]的时间; 2、满足显约束得x[k]值的个数; 3、计算约束函数constraint的时间; 4、计算上界函数bound的时间; 5、满足约束函数和上界函数约束的所有x[k]的个数。 五、总结 这次实验的内容都很有代表性,通过上机操作实践与对问题的思考,让我更深层地领悟到了回溯算法的思想。 回溯算法的基本思路并不难理解,简单来说就是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。回溯法的基本做法是深度优先搜索,是一种组织得井井

回溯法和分支限界法解决0-1背包题

0-1背包问题 计科1班朱润华 2012040732 方法1:回溯法 一、回溯法描述: 用回溯法解问题时,应明确定义问题的解空间。问题的解空间至少包含问题的一个(最优)解。对于0-1背包问题,解空间由长度为n的0-1向量组成。该解空间包含对变量的所有0-1赋值。例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。 二、回溯法步骤思想描述: 0-1背包问题是子集选取问题。0-1 背包问题的解空间可以用子集树表示。在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。当右子树中有可能含有最优解时,才进入右子树搜索。否则,将右子树剪去。设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。当cp+r<=bestp时,可剪去右子树。计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。 例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。这4个物品的单位重量价值分别为[3,2,3,5,4]。以物品单位重量价值的递减序装入物品。先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。由此得一个解为[1,0.2,1,1],其相应价值为22。尽管这不是一个可行解,但可以证明其价值是最优值的上界。因此,对于这个实例,最优值不超过22。 在实现时,由Bound计算当前节点处的上界。类Knap的数据成员记录解空间树中的节点信息,以减少参数传递调用所需要的栈空间。在解空间树的当前扩展节点处,仅要进入右子树时才计算上界Bound,以判断是否可将右子树剪去。进入左子树时不需要计算上界,因为上界预期父节点的上界相同。 三、回溯法实现代码: #include "stdafx.h" #include using namespace std; template class Knap { template friend Typep Knapsack(Typep [],Typew [],Typew,int); private: Typep Bound(int i);

回溯法实验(n皇后问题)(迭代法)

算法分析与设计实验报告第三次附加实验

附录: 完整代码(回溯法) //回溯算法递归回溯n皇后问题#include #include #include #include"math.h" using namespace std; class Queen

{ friend int nQueen(int); //定义友元函数,可以访问私有数据 private: bool Place(int k); //判断该位置是否可用的函数 void Backtrack(int t); //定义回溯函数 int n; //皇后个数 int *x; //当前解 long sum; //当前已找到的可行方案数 }; int main() { int m,n; for(int i=1;i<=1;i++) { cout<<"请输入皇后的个数:"; //输入皇后个数 cin>>n; cout<<"皇后问题的解为:"<

算法分析与设计实验四回溯法

实验四 回溯法 实验目的 1. 掌握回溯法的基本思想方法; 2. 了解适用于用回溯法求解的问题类型,并能设计相应回溯法算法; 3. 掌握回溯法算法复杂性分析方法,分析问题复杂性。 预习与实验要求 1. 预习实验指导书及教材的有关内容,掌握回溯法的基本思想; 2. 严格按照实验内容进行实验,培养良好的算法设计和编程的习惯; 3. 认真听讲,服从安排,独立思考并完成实验。 实验设备与器材 硬件:PC 机 软件:C++或Java 等编程环境 实验原理 回溯法是最常用的解题方法,有“通用的解题法”之称。当要解决的问题有若干可行解时,则可以在包含问题所有解的空间树中,按深度优先的策略,从根节点出发搜索解空间树。算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。如果肯定不包含,则跳过对以该结点为根的子树的搜索,继续查找该结点的兄弟结点,若它的兄弟结点都不包含问题的解,则返回其父结点——这个步骤称为回溯。否则进入一个可能包含解的子树,继续按深度优先的策略进行搜索。这种以深度优先的方式搜索问题的解的算法称为回溯法。它本质上是一种穷举法,但由于在搜索过程中不断略过某些显然不合适的子树,所以搜索的空间大大少于一般的穷举,故它适用于解一些组合数较大的问题。 回溯法也可以形式化地描述如下:假设能够用n 元组()n i x x x x ,,,,,21 表示一个给定问题P 的解,其中i i S x ∈。如果n 元组的子组()i x x x ,,,21 ()n i <满足一定的约束条件,则称为部分解。如果它已经是满足约束条件的部分解,则添加11++∈i i S x 形成新的子组()121,,,,+i i x x x x ,并检查它是否满足约束条件,若仍满足则继续添加22++∈i i S x ,并以此类推。如果所有的11++∈i i S x 都不满足约束条件,那么去掉1+i x ,回溯到i x 的位置,并去掉当前的i x ,另选一个i i S x ∈',组成新的子组()i x x x ',,,21 ,并判断其是否满足约束条件。如此反复下去,直到得到解或者证明无解为止。

实验报告:回溯法求解N皇后问题(Java实现)

实验报告 一、实验名称:回溯法求解N皇后问题(Java实现) 二、学习知识: 回溯法:也称为试探法,它并不考虑问题规模的大小,而是从问题的最明显的最小规模开始逐步求解出可能的答案,并以此慢慢地扩大问题规模,迭代地逼近最终问题的解。这种迭代类似于穷举并且是试探性的,因为当目前的可能答案被测试出不可能可以获得最终解时,则撤销当前的这一步求解过程,回溯到上一步寻找其他求解路径。 为了能够撤销当前的求解过程,必须保存上一步以来的求解路径,这一点相当重要。 三、问题描述 N皇后问题:在一个 N * N 的国际象棋棋盘中,怎样放置 N 个皇后才能使 N 个皇后之间不会互相有威胁而共同存在于棋局中,即在 N * N 个格子的棋盘中没有任何两个皇后是在同一行、同一列、同一斜线上。 深度优先遍历的典型案例。 四、求解思路 1、求解思路:最容易想到的方法就是有序地从第 1 列的第 1 行开始,尝试放上一个皇后,然后再尝试第 2 列的第几行能够放上一个皇后,如果第 2 列也放置成功,那么就继续放置第 3 列,如果此时第 3 列没有一行可以放置一个皇后,说明目前为止的尝试是无效的(即不可能得到最终解),那么此时就应该回溯到上一步(即第 2 步),将上一步(第 2 步)所放置的皇后的位置再重新取走放在另一个符合要求的地方…如此尝试性地遍历加上回溯,就可以慢慢地逼近最终解了。 2、需要解决的问题:如何表示一个 N * N 方格棋盘能够更有效?怎样测试当前所走的试探路径是否符合要求?这两个问题都需要考虑到使用怎样的数据结构,使用恰当的数据结构有利于简化编程求解问题的难度。 3、我们使用以下的数据结构: int column[col] = row 表示第 col 列的第 row 行放置一个皇后 boolean rowExists[i] = true 表示第 i 行有皇后 boolean a[i] = true 表示右高左低的第 i 条斜线有皇后(按→↓顺序从1~ 2*N -1 依次编号) boolean b[i] = true 表示左高右低的第 i 条斜线有皇后(按→↑顺序从1~ 2*N -1 依次编号) 五、算法实现 对应这个数据结构的算法实现如下:

回溯法解0 1背包问题实验报告

实验4 回溯法解0-1背包问题 一、实验要求 1.要求用回溯法求解0-1背包问题; 要求交互输入背包容量,物品重量数组,物品价值数组;2.要求显示结果。3. 二、实验仪器和软件平台 仪器:带usb接口微机 软件平台:WIN-XP + VC++ 三、实验源码 #include \ #include #include #include<> #include using namespace std; template class Knap { public: friend void Init(); friend void Knapsack(); friend void Backtrack(int i); friend float Bound(int i); bool operator<(Knap a)const { if(fl< return true; else return false; } private: ty w; ; cout<>bag[i].v; for(i=0;i

{ bag[i].flag=0; bag[i].kk=i; bag[i].fl=*bag[i].v/bag[i].w; } }void Backtrack(int i){cw+=bag[i].w;if(i>=n) <=c) lag=1; cp+=bag[i].v; Backtrack(i+1); cw-=bag[i].w; cp-=bag[i].v; } if(Bound(i+1)>bestp)lag=0; Backtrack(i+1); }}<=cleft){; b+=bag[i].v; i++; } /bag[i].w * cleft; return b; } void Knapsack() k]=bag[k].flag; lag*bag[k].v; //价值累加 } cout<

回溯法实验(最优装载)

算法分析与设计实验报告第二次附加实验 )用可行性约束函数可剪去不满足约束条件

附录: 完整代码(贪心法) //回溯法递归求最优装载问题#include #include #include using namespace std; template class Loading { public: void Backtrack(int i);

int n, //集装箱数 *x, //当前解 *bestx; //当前最优解 Type *w, //集装箱重量数组 c, //第一艘轮船的载重量 cw, //当前载重量 bestw, //当前最优载重量 r; //剩余集装箱重量 }; template void Loading::Backtrack(int i); template //参数为:w[]各物品重量数组,c为第一艘轮船的载重量,n为物品数量,bestx[]数组为最优解 Type MaxLoading(Type w[],Type c,int n,int bestx[]); int main() { int n=3,m; int c=50,c2=50; int w[4]={0,10,40,40}; int bestx[4]; clock_t start,end,over; //计算程序运行时间的算法 start=clock(); end=clock(); over=end-start; start=clock(); m=MaxLoading(w,c,n,bestx); //调用MaxLoading函数 cout<<"轮船的载重量分别是:"<

文本预览
相关文档 最新文档