当前位置:文档之家› 现在分子生物学(笔记)_朱玉贤_第三版

现在分子生物学(笔记)_朱玉贤_第三版

现在分子生物学(笔记)_朱玉贤_第三版
现在分子生物学(笔记)_朱玉贤_第三版

第一章绪论

分子生物学

分子生物学的基本含义 (p8)

分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。

分子生物学与其它学科的关系

分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以至信息科学等多学科相互渗透、综合融会而产生并发展起来的,凝聚了不同学科专长的科学家的共同努力。它虽产生于上述各个学科,但已形成它独特的理论体系和研究手段,成为一个独立的学科。

生物化学与分子生物学关系最为密切 :

生物化学是从化学角度研究生命现象的科学,它着重研究生物体内各种生物分子的结构、转变与新陈代谢。传统生物化学的中心内容是代谢,包括糖、脂类、氨基酸、核苷酸、以及能量代谢等与生理功能的联系。

分子生物学则着重阐明生命的本质----主要研究生物大分子核酸与蛋白质的结构与功能、生命信息的传递和调控。

细胞生物学与分子生物学关系也十分密切:

传统的细胞生物学主要研究细胞和亚细胞器的形态、结构与功能。探讨组成细胞的分子结构比单纯观察大体结构能更加深入认识细胞的结构与功能,因此现代细胞生物学的发展越来越多地应用分子生物学的理论和方法。

分子生物学则是从研究各个生物大分子的结构入手,但各个分子不能孤立发挥作用,生命绝非组成成分的随意加和或混合,分子生物学还需要进一步研究各生物分子间的高层次组织和相互作用,尤其是细胞整体反应的分子机理,这在某种程度上是向细胞生物学的靠拢。

第一章序论

1859年发表了《物种起源》,用事实证明“物竞天择,适者生存”的进化论思想。

指出:物种的变异是由于大自然的环境和生物群体的生存竞争造成的,彻底否定了“创世说”。达尔文第一个认识到生物世界的不连续性。

意义:达尔文关于生物进化的学说及其唯物主义的物种起源理论,是生物科学史上最伟大的创举之一,具有不可磨灭的贡献。

细胞学说

细胞学说的建立及其意义

德国植物学家施莱登和德国动物学家施旺共同提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位。

经典遗传学

两条基本规律:

统一律:当两种不同植物杂交时,它们的下一代可能与亲本之一完全相同;

分离规律:将不同植物品种杂交后的F1代种子再进行杂交或自交时,下一代就会按照一定的比例分离,因而具有不同的形式。

1865年发表《植物杂交试验》,直到1900年才被人们重新发现。孟德尔被公认为经典遗传学的奠基人。

现代遗传学

Morgan及其助手第一次将代表某一特性的基因同染色体联系起来,使科学界普遍认识了染色体的重要性并接受了孟德尔的遗传学原理。

Morgan特别指出:种质必须由某些独立的要素组成,我们把这些要素称为遗传因子或基因。

第二节分子生物学发展简史

准备和酝酿阶段(19世纪后期到20世纪50年代初)

对生命本质的认识上的两点重大突破:

1.确定了蛋白质是生命的主要基础物质

2.确定了生物遗传的物质基础是DNA

现代分子生物学的建立和发展阶段(20世纪50年代初到70年代初)

这一阶段以1953年Watson和Crick提出的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑开创了分子遗传学基本理论建立和发展的黄金时代。在此期间的主要进展包括:

遗传信息传递中心法则的建立

对蛋白质结构与功能的进一步认识

DNA双螺旋发现的意义:

确立了核酸作为信息分子的结构基础;

提出了碱基配对是核酸复制、遗传信息传递的基本方式;

从而最后确定了核酸是遗传的物质基础,为认识核酸与蛋白质的关系及其在生命中的作用打下了最重要的基础。

Crick于1954年所提出遗传信息传递的中心法则(Central Dogma ):

初步认识生命本质并开始改造生命的深入发展阶段(20世纪70年代后至今)

基因工程技术的出现作为标志。其间的重大成就包括:

重组DNA技术的建立和发展

基因组研究的发展

单克隆抗体及基因工程抗体的建立和发展

基因表达调控机理

细胞信号转导机理研究成为新的前沿领域

第三节分子生物学的主要研究内容

一.DNA重组技术(recombinant DNA technology)

定义:又称为基因工程,根据分子生物学和遗传学的原理,将一种生物的遗传物质DNA转移到另一生物体中,使后者获得新的遗传性状或表达出所需要的产物。

DNA重组技术的应用:

利用微生物基因工程生产重组基因工程药物

转基因植物和动物体细胞克隆

基因表达与调控的基础研究

二.生物大分子的结构功能研究

三.基因组、功能基因组与生物信息学的研究

基因组、蛋白质组与生物信息学

基因组(Genome):细胞或生物体一条完整单体的全部染色体遗传物质的总和。

人类基因组计划(Human Genome Project, HGP):测定出人基因组全部DNA3109硷基对的序列、确定人类约5-10万个基因的一级结构。

基因组、蛋白质组与生物信息学

蛋白组计划(Proteome project):又称为后基因组计划或功能基因组计划,用于揭示并阐明细胞、组织乃至整个生物个体全部蛋白质及其功能。

生物信息学(Bioinformatics):是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。

四.基因表达调控研究

第二章染色体与DNA

本章内容

1. 染色体

2. DNA的结构

3. DNA的复制

4. 原核生物和真核生物DNA复制特点

5. DNA的修复

6. DNA的转座

第一节染色体(chromosome)

概念:

染色体(chromosome):原指真核生物细胞分裂中期具有一定形态特征的染色质。现在这一概念已扩大为包括原核生物及细胞器在内的基因载体的总称。

染色质(chromatin):由DNA和蛋白质构成,在分裂间期染色体结构疏松,称为染色质。其实染色质与染色体只是同一物质在不同细胞周期的表现。

常染色质(euchromatin):是进行活跃转录的部位,呈疏松的环状,电镜下表现为浅染,易被核酸酶在一些敏感的位点(hypersensitive sites)降解。

异染色质(heterochromatin):在间期核中处于凝缩状态,无转录活性,也叫非活动染色质(inactive chromatin),是遗传惰性区。在细胞周期中表现为晚复制,早凝缩,即异固缩现象(heteropycnosis)。

原核细胞与真核细胞特征分析

染色体特性:

分子结构相对稳定

能够自我复制,使亲、子代之间保持连续性

能够指导蛋白质的合成,从而控制整个生命过程

能够产生可遗传的变异

真核细胞染色体的组成

DNA 30%--40%

组蛋白(histone) 30%--40%

非组蛋白(NHP) 变化很大

少量RNA

染色体中的蛋白质

组蛋白(histone):一类小的带有丰富正电荷(富含Lys、Arg)的核蛋白,与DNA有高亲和力。

组蛋白是染色体的结构蛋白,它与DNA组成核小体。组蛋白分为H1、H2A、H2B、H3及H4。

非组蛋白(non-histone protein):是染色体上与特异DNA序列结合的蛋白质,所以又称为

序列特异性DNA结合蛋白。

组蛋白具有如下特性:

1、进化上的极端保守性。

2、无组织特异性。

3、肽链上氨基酸分布的不对称性。

4、组蛋白的修饰作用。

5、富含赖氨酸的组蛋白H5。

非组蛋白:

非组蛋白大约占组蛋白总量的60-70%,种类很多。

(1)HMG蛋白(high mobility group protein) ,能与DNA结合(不牢固),也能与H1作用,可能与DNA的超螺旋结构有关。

(2)DNA结合蛋白:可能是一些与DNA的复制或转录有关的酶或调节物质。

(3)A24非组蛋白:与H2A差不多,位于核小体内,功能不祥。

非组蛋白的一般特性:

1.非组蛋白的多样性;

非组蛋白的量大约是组蛋白的60%~70%,但它的种类却很多,约在20-100种之间,其中常见的有15-20种。

2.非组蛋白的组织专一性和种属专一性。

DNA

C值:通常指一种生物单倍体基因组DNA的总量。

C值反常现象:真核细胞基因组的最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能DNA所隔开,这就是著名的“C值反常现象”。

染色体中的DNA

根据DNA的动力学研究,真核细胞DNA可分为:

高度重复序列:几百→几万 copy。如:卫星DNA和微卫星DNA。

中度重复序列:10 →几百 copy。如:各种rDNA、tDNA及组蛋白基因。

低度重复序列:2 →10 copy。如:血红蛋白。

单拷贝序列:大多数编码蛋白质的结构基因和基因间间隔序列。只有一个拷贝。如:蛋清蛋白。

染色体折叠

DNA

核小体

螺线管

圆筒

超螺旋

(1)核小体

染色质纤维细丝是许多核小体连成的念珠状结构。核小体(nucleosome):DNA绕在组蛋白八聚体(H2A、H2B、H3、H4各一对)核心外1.8周(146bp),形成核小体核心颗粒。

(2)螺线管

10nm的染色质细丝盘绕成螺旋管状的30nm纤维粗丝,

通称螺线管(solenoid)。螺线管的每一螺旋包含6个核小体,其压缩比为6。这种螺线管是分裂间期染色质和分裂中期染色体的基本组分。

(3)上述螺线管可进一步压缩形成超螺旋。由30nm螺线管缠绕而成一细长、中空的圆筒,直径为4 000nm,压缩比是40。

(4)超螺旋进一步压缩1/5便成为染色体单体,总压缩比是7×6×40×5,将近一万倍。原核生物基因组

特点:

1、结构简练

2、存在转录单元多顺反子mRNA

3、有重叠基因

Sanger1977在《Nature》上发表了ΦX174 DNA的全部核苷酸序列,正式发现了重叠基因。

第二节 DNA的结构

一、DNA的一级结构

所谓DNA的一级结构,就是指4种核苷酸的连接及其排列顺序,表示了该DNA分子的化学构成。

基本特点

①DNA分子是由两条互相平行的脱氧核苷酸长链盘绕而成的。

②DNA分子中的脱氧核糖和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在内侧。

③两条链上的碱基通过氢键相结合,形成碱基对,它的组成有一定的规律。这就是嘌呤与嘧啶配对,而且腺嘌呤(A)只能与胸腺嘧啶(T)配对,鸟嘌呤(G)只能与胞嘧啶(C)配对。

2、DNA的二级结构

DNA的二级结构是指两条多核苷酸链反向平行盘绕所生成的双螺旋结构。

通常情况下,DNA的二级结构分两大类:一类是右手螺旋,如A-DNA和B-DNA;另一类是左手螺旋,即Z-DNA。

3、DNA的高级结构

DNA的高级结构是指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构。超螺旋结构是DNA高级结构的主要形式,可分为正超螺旋与负超螺旋两大类。

DNA分子的超螺旋化可以用一个数学公式来表示:

L=T+W其中L为连接数(linking number),是指环形DNA分子两条链间交叉的次数。只要不发生链的断裂,L是个常量。T为双螺旋的盘绕数(twisting number),W为超螺旋数(writhing number),它们是变量。

2.3DNA的复制

2.3.1 DNA的半保留复制机理

2.3.2 复制的起点、方向和速度

2.3.3 复制的几种主要方式

一、DNA的复制

1、DNA的半保留复制

每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,所以这种复制方式被称为DNA的半保留复制(semiconservative replication)。DNA的这种半保留复制保证了DNA 在代谢上的稳定性。

2、复制的起点与方向

一般把生物体的复制单位称为复制子(replicon)。一个复制子只含一个复制起点。

多复制子:DNA复制时,原核生物一般只有一个起始位点,而真核生物则有多个起始位点,因而在复制时呈现多复制泡,也称为多复制子。

DNA的复制主要是从固定的起始点以双向等速复制方式进行的(图2-18)。复制叉以DNA 分子上某一特定顺序为起点,向两个方向等速生长前进。

拓扑异构酶I

拓扑异构酶I解开负超螺旋,并与解链酶共同作用,在复制起点处解开双链。参与解链的除一组解链酶外,还有Dna蛋白等。

DNA解链酶(DNA helicase)

DNA解链酶能通过水解ATP获得能量来解开双链DNA。

单链结合蛋白(SSB蛋白)

SSB蛋白的作用是保证被解链酶解开的单链在复制完成前能保持单链结构,它以四聚体形式存在于复制叉处,待单链复制后才掉下,重新循环。所以,SSB蛋白只保持单链的存在,并不能起解链的作用。

3、DNA的半不连续复制与冈崎片段

DNA复制时,短时间内合成的约1000个核苷酸左右的小片段,称之为冈崎片段(Okazaki fragment)

DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶连成大分子DNA。现在已知一般原核生物的冈崎片段要长些,真核生物中的要短些。进一步研究还证明,这种前导链的连续复制和滞后链的不连续复制在生物界是有普遍性的,因而称之为双螺旋的半不连续复制。

DNA链的延伸:

DNA复制体(replisome):在复制叉附近,形成了以两套DNA聚合酶Ⅲ全酶分子、引发体和解链酶构成的类似核糖体大小的复合体,称为DNA复制体。

4、滞后链的引发

DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由DNA聚合酶从RNA引物3' 端开始合成新的DNA链。滞后链的引发过程往往由引发体(primosome)来完成。引发体由6种蛋白质n、n'、n''、Dna B、C和I共同组成,只有当引发前体(preprimosome)把这6种蛋白质合在一起并与引发酶(primase)进一步组装后形成引发体,才能发挥其功效。

5、链的终止

当复制叉前移,遇到20bp重复性终止子序列(Ter)时,Ter-Tus复合物能阻挡复制叉的继续前移,等到相反方向的复制叉到达后在DNA拓扑异构酶IV的作用下使复制叉解体,释放子链DNA。

6、复制的几种方式

(1)环状DNA双链的复制

环状双链DNA的复制可分为θ型、滚环型和D-环型几种类型。

(a) θ型

复制的起始点涉及到DNA双链的解旋和松开,形成两个方向相反的复制叉。前导链DNA

开始复制前,复制原点的核酸序列被转录生成短RNA链,作为起始DNA复制的引物。

(b) 滚环型(rolling circle)

这是单向复制的特殊方式。如ΦX174的双链环状DNA复制型(RF)就是以这种方式复制的。DNA的合成由对正链原点的专一性切割开始,所形成的自由5‘端被从双链环中置换出来并为单链DNA结合蛋白所覆盖,使其3’—OH端在DNA聚合酶的作用下不断延伸。在这个过程中,单链尾巴的延伸与双链DNA的绕轴旋转同步。

(c) D-环型(D-loop)

这也是一种单向复制的特殊方式。这种方式首先在动物线粒体DNA的复制中被发现。双链环在固定点解开进行复制。但两条链的合成是高度不对称的,一条链上迅速合成出互补链,另一条链则成为游离的单链环(即D-环)。

(2)线性DNA双链的复制

线性DNA复制中RNA引物被切除后,留下5'端部分单链DNA,不能为DNA聚合酶所作用,使子链短于母链。T4和T7噬菌体DNA通过其末端的简并性使不同链的3'端因互补而结合,其缺口被聚合酶作用填满,再经DNA连接酶作用生成二联体。这个过程可重复进行直到生成原长20多倍的多联体,并由噬菌体DNA编码的核酸酶特异切割形成单位长度的DNA 分子。

二、原核和真核生物DNA的复制特点

1、原核生物DNA的复制特点

大肠杆菌DNA聚合酶I、II和III的性质比较

原核生物的DNA聚合酶

DNA聚合酶Ⅰ:有3’→5’外切酶活性和5’→3’外切酶活性。保证DNA复制的准确性。

DNA聚合酶Ⅱ:活性低,其3’→5’核酸外切酶活性可起校正作用。主要起修复DNA的作用。

DNA聚合酶Ⅲ:7种亚单位9个亚基。只具3’→5’外切酶活性,主导聚合酶。

Klenow fragment:用枯草杆菌蛋白酶处理大肠杆菌DNA聚合酶,获得两个片段,大片段分子量76000U,称为Klenow 片段。它保留着聚合酶和3’→5’外切酶的活性,广泛使用于DNA序列分析中。

三、真核生物DNA的复制特点

真核生物DNA复制的起始需要起始原点识别复合物(ORC)参与。

真核生物DNA复制叉的移动速度大约只有50bp秒,还不到大肠杆菌的120。

真核生物的染色体在全部完成复制之前,各个起始点上DNA的复制不能再开始。真核生物DNA聚合酶的特性比较

2.4.3 DNA复制的调控

原核细胞DNA的复制调控:复制叉的多少决定了复制频率的高低。

真核细胞DNA的复制调控:

1.细胞生活周期水平调控

2.染色体水平调控

3.复制子水平调控

真核和原核生物DNA复制的比较

相同:

1.半保留复制

2.都有引发、延长、终止三个阶段

3.都必须有相应功能的蛋白质和DNA聚合酶参与

区别:

1.真:多个复制起始点;原:一个复制起始点

2.真:所有复制受一种调控;原:一个复制子上有多个复制叉

2.5 DNA的修复

DNA修复系统功能

错配修复恢复错配

碱基切除修复切除突变的碱基

核苷酸切除修复修复被破坏的DNA

DNA直接修复修复嘧啶二体或甲基化DNA

2.6 DNA的转座

2.6.1 转座子的分类和结构特征

2.6.2 转座作用的机制

2.6.3 转座作用的遗传学效应

2.6.4 真核生物中的转座子

移动基因(Movable gene):又称为转位因子(Transposable elements),是存在于染色体DNA 上可自主复制和位移的基本单位。由于它可以从染色体基因组上的一个位置转移到另一位置,甚至在不同染色体之间跃迁,因此有时也称为跳跃基因(Jumping gene)。

原核生物的转座因子可分为:

插入序列(insertion sequence,IS):最简单的不含有任何宿主基因的转位因子。片段长度700—2500bp。

复合转座子(transposon,Tn):是一类携带某些与转座无关的抗性基因(或其它宿主基因)的转座子。分子量>2000bp。

转座噬菌体(Mu,D108):具有转座功能的一类可引起突变的溶源性噬菌体。

插入序列的结构特点:

1.在IS两端含有长度为10—40bp反向重叠序列

2.含有一个编码转座酶的长编码区。

3.插入时在DNA位点产生一个短的(3—9bp)正向重复序列。

复合转座子的结构特点:

1.两翼为两个相同或相似的IS序列。

2.中部为某种抗性基因。

3.IS序列一般不能单独移动。

Conclusion

a) 转座过程是由Donor 提供Tn copy到 target site,涉及酶切、复制、重组的遗传学过程。

b) 转座完成后,在Tn的两端出现target site序列的正向重复,其长度取决于staggered cutting的长度。

c) 转座因子的 IR 序列是转座酶的重要识别位点,与转座,切除有关

d) Cointegrater 是转座过程的中间体 (具有两个 Tn 和两个 replicon), 其稳定性依Tn不同而异,或 resolution 完成转座过程.

e) Cointegrater 可能导致 Tn 和抗性的积累。

转座作用的遗传学效应

1. 诱变效应(提高重组频率、形成易变基因…)

2. 切除效应 (倒位、缺失、重复、footprinting)

3. 双转座效应(外显子改组 exon shuffling )

4. 位置效应(启动表达、增强表达…)

5. 转座爆炸(激活表达、基因内重排突变基因形成)

转位作用的机制:靶序列的复制。

转位作用的遗传学效应:引起插入突变;产生新基因;产生染色体畸变;引起生物进化。

转座因子的应用:利用转座子分离、克隆基因;利用Tn进行基因定位;作为基因转移载体。

真核生物中的转座子

1、玉米中的控制因子

自主性因子:具有自主剪接和转座的功能;

非自主性因子:单独存在时是稳定的,不能转座,当基因组中存在与非自主性因子同家族的自主性因子时,它才具备转座功能,成为与自主性因子相同的转座子。

Ac-Ds体系、Spm, En转座子。

2、果蝇中的转座子

Copia类、P转座子等。

本章重点

染色体及DNA结构 DNA复制

习题

1.DNA以半保留方式进行复制,若一完全被标记的DNA分子,置于无放射标记的溶液中复制两代,所产生的4个DNA分子中放射性状况如何

A.两个分子有放射性,两个分子无放射性

B.均有放射性

C.两条链中的半条具有放射性

D.两条链中的一条具有放射性

E.均无放射性

2.DNA复制时哪种酶不需要

A.DNA指导的DNA聚合酶

B.DNA指导的RNA聚合酶

C.连接酶

D.RNA指导的DNA聚合酶

E.拓扑异构酶

3.原核生物的DNA聚合酶

A.DNA聚合酶Ⅰ有7种、9个亚单位

B.DNA聚合酶Ⅱ有最强的外切核酸酶的活性

C.DNA 聚合酶Ⅲ是真正的起复制作用的酶

D.催化过程产生的焦磷酸是主要底物

E.用4种脱氧核苷作底物

生物信息的传递(上)—从DNA到RNA

基因表达:是基因经过转录、翻译、产生有生物活性的蛋白质的整个过程。

转录(transcription):以DNA为模板,按照碱基互补原则合成一条单链RNA,从而将DNA 中的遗传信息转移到RNA中去的过程称为转录。

编码链(coding strand)=有意义链

模板链(template strand)=反义链

不对称转录(asymmetric transcription):转录仅发生在DNA的一条链上。

启动子(promoter):是DNA转录起始信号的一段序列,它能指导全酶与模板正确的结合,并活化酶使之具有起始特异性转录形式。

终止子(terminator):转录终止的信号,其作用是在DNA模板特异位置处终止RNA的合成。

转录单位:DNA链上从启动子直到终止子为止的长度称为一个转录单位。

3.1 RNA的转录

转录的基本过程都包括:模板识别、转录起始、通过启动子及转录的延伸和终止。

1、模板识别阶段主要指RNA聚合酶与启动子DNA双链相互作用并与之相结合的过程。转录起始前,启动子附近的DNA双链分开形成转录泡以促使底物核糖核苷酸与模板DNA的碱基配对。

2、转录起始就是RNA链上第一个核苷酸键的产生。

3、转录起始后直到形成9个核苷酸短链是通过启动子阶段,通过启动子的时间越短,该基因转录起始的频率也越高。

4、RNA聚合酶离开启动子,沿DNA链移动并使新生RNA链不断伸长的过程就是转录的延伸。

5、当RNA链延伸到转录终止位点时,RNA聚合酶不再形成新的磷酸二酯键,RNA-DNA杂合物分离,这就是转录的终止。

3.1.1 转录的基本过程

RNA合成的基本特点:

1.底物是:ATP、GTP、CTP、UTP

2.在聚合酶作用下形成磷酸酯键

3.RNA的碱基顺序由DNA的顺序决定

4.仅以一条DNA链作为模板

5.合成方向为5’→3’

6.合成中不需要引物

3.1.2 转录机器的主要成分

原核生物RNA聚合酶:

亚基基因相对分子量亚基数组分功能

α rpoA 3.65×10 4 2 核心酶核心酶组装,

启动子识别

β rpoB 1.51×10 5 1 核心酶β和β’共同形成

RNA合成的活性中心

β’ rpoC 1.55×10 5 1 核心酶

? 11×10 4 1 核心酶未知

σ rpoD 7.0×10 4 1 σ因子存在多种σ因子,用

于识别不同的启动子

1、RNA聚合酶

大多数原核生物RNA聚合酶的组成是相同的,大肠杆菌RNA聚合酶由2个α亚基、一个β亚基、一个β’亚基和一个ω亚基组成,称为核心酶。加上一个σ亚基后则成为聚合酶全酶(holoenzyme),相对分子质量为4.65×105。研究发现,由β和β’亚基组成了聚合酶的催化中心,它们在序列上与真核生物RNA聚合酶的两个大亚基有同源性。β亚基能与模板DNA、新生RNA链及核苷酸底物相结合。

σ因子可以极大地提高RNA聚合酶对启动子区DNA序列的亲和力,加入σ因子以后,RNA聚

合酶全酶识别启动子序列的特异性总共提高了107倍。

σ因子的作用是负责模板链的选择和转录的起始,

转录的起始从化学过程来看是单个核苷酸与开链启动子-酶复合物相结合构成新生RNA的5’端,再以磷酸二酯键的形式与第二个核苷酸相结合,起始的终止反映在σ因子的释放。过去认为二核苷酸的形成就是转录起始的终止,实际上,只有当新生RNA链达到6-9个核苷酸时才能形成稳定的酶-DNA-RNA三元复合物,才释放σ因子,转录进入延伸期。

真核生物RNA聚合酶

真核生物中共有3类RNA聚合酶。真核生物RNA聚合酶一般有8-14个亚基所组成,相对分子质量超过5×105。

除了细胞核中的RNA聚合酶之外,真核生物线粒体和叶绿体中还存在着不同的RNA聚合酶。线粒体RNA聚合酶只有一条多肽链,相对分子质量小于7×104,是已知最小的RNA聚合酶之一,与T7噬菌体RNA聚合酶有同源性。叶绿体RNA聚合酶比较大,结构上与细菌中的聚合酶相似,由多个亚基组成,部分亚基由叶绿体基因组编码。线粒体和叶绿体RNA聚合酶活性不受α-鹅膏覃碱所抑制。

常用的转录抑制剂及其作用:

抑制剂靶酶抑制作用

利福霉素细菌的全酶与β亚基结合,阻止起始

链霉溶菌素细菌的核心酶与β亚基结合,阻止延长

放线菌素D 真核RNA聚合酶Ⅰ与DNA结合,并阻止延长

α-鹅膏蕈碱真核RNA聚合酶Ⅱ与RNA聚合酶Ⅱ结合

起始复合物的形成

转录可被分为4个阶段,即启动子的选择、转录起始、RNA链的延伸和终止。

原核生物中:启动子选择阶段包括RNA聚合酶全酶对启动子的识别,聚合酶与启动子可逆性结合形成封闭复合物(closed complex)。

真核生物RNA聚合酶Ⅱ所形成的转录起始复合物:除了RNA聚合酶之外,真核生物转录起始过程中至少还需要7种辅助因子参与

一般情况下,该复合物可以进入两条不同的反应途径,

一是合成并释放2-9个核苷酸的短RNA转录物,即所谓的流产式起始;

二是尽快释放σ亚基,转录起始复合物通过上游启动子区并生成由核心酶、DNA和新生RNA 所组成的转录延伸复合物。

RNA聚合酶的核心酶虽可合成RNA,但不能找到模板DNA上的起始位点。

只有带б因子的全酶才能专一地与DNA上的启动子结合,选择其中一条链作为模板,合成均一的产物。б因子的作用只是起始而已,一旦转录开始,它就脱离了起始复合物,而由核心酶负责RNA链的延伸。因此,聚合酶全酶的作用是启动子的选择和转录的起始,而核心酶的作用是链的延伸。

真核生物RNA Pol II的转录起始复合物

真核生物转录起始除RNA聚合酶外,至少还需要7种辅助因子参与,如TBP,TFIIA,TFIIB,TFIID,TFIIE,TFIIF和TFIIH。

3.2 启动子与转录起始

2、启动子与转录起始

启动子是一段位于结构基因5’端上游区的DNA序列,能活化RNA聚合酶,使之与范本DNA准确地相结合并具有转录起始的特异性。

转录的起始是基因表达的关键阶段,而这一阶段的重要问题是RNA聚合酶与启动子的相互作用。

3.2.1 启动子区的基本结构

转录单元(transcription unit):是一段从启动子开始至终止子结束的DNA序列,RNA聚合酶从转录起点开始沿着模板前进,直到终止子为止,转录出一条RNA链。

转录起点是指与新生RNA链第一个核苷酸相对应DNA链上的碱基,研究证实通常为一个嘌呤。

常把起点前面,即5’末端的序列称为上游(upstream),而把其后面即3’末端的序列称为下游(downstream)。

在启动子区内有一个由5个核苷酸组成的共同序列,是RNA聚合酶的紧密结合点,现在称为Pribnow区(Pribnow box),这个区的中央大约位于起点上游10bp处,所以又称为-10区。

绝大部分启动子都存在位于-10bp处的TATA区和-35bp处的TTGACA区。这两段共同序列是RNA聚合酶与启动子的结合位点,能与σ因子相互识别而具有很高的亲和力。

Pribnow区(Pribnow box)这个区的中央大约位于起点上游10bp处,所以又称为–10区。

TTGACA。这个区的中央大约位于起点上游35bp处,所以又称为–35区。

–10位的TATA区和–35位的TTGACA区是RNA聚合酶与启动子的结合位点,能与σ因子相互识别而具有很高的亲和力。

在真核生物基因中,Hogness等先在珠蛋白基因中发现了类似Pribnow区的Hogness区(Hogness box),这是位于转录起始点上游–25~–30 bp处的共同序列TATAAA,也称为TATA区(图3-7)。

另外,在起始位点上游–70~–78 bp处还有另一段共同序列CCAAT,这是与原核生物中–35 bp区相对应的序列,称为CAAT区(CAAT box)。

在–70~–80区含有CCAAT序列(CAAT box),在–80~–110含有GCCACACCC或GGGCGGG 序列(GC box)。

3.2.2 启动子区的识别

氢键互补学说:RNA聚合酶并不直接识别碱基对本身,而是通过氢键互补的方式加以识别。

这种氢键互补学说较为圆满地解释了启动子功能既受DNA序列影响,又受其构象影响这一事实。

3.2.3 酶与启动子区的结合

在RNA聚合酶与启动子相互作用的过程中,聚合酶首先与启动子区闭合双链DNA相结合,形成二元闭合复合物,然后经过解链得到二元开链复合物。

DNA开链是按照DNA模板序列正确引入核苷酸底物的必要条件。

RNA聚合酶既是双链DNA结合蛋白,又是单链DNA结合蛋白。

3.2.4 -10区和-35区的最佳间距

在原核生物中,-35区与-10区之间的距离大约是16~19bp,小于15bp或大于20bp都会降

分子生物学与基因工程主要知识点

分子生物学与基因工程复习重点 第一讲绪论 1、分子生物学与基因工程的含义 从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA的结构及其复制、转录、表达和调节控制等过程的科学。 基因工程是一项将生物的某个基因通过载体运送到另一种生物的活体细胞中,并使之无性繁殖和行使正常功能,从而创造生物新品种或新物种的遗传学技术。 2、分子生物学与基因工程的发展简史,特别是里程碑事件,要求掌握其必要的理由 上个世纪50年代,Watson和Crick提出了的DNA双螺旋模型; 60年代,法国科学家Jacob和Monod提出了的乳糖操纵子模型; 70年代,Berg首先发现了DNA连接酶,并构建了世界上第一个重组DNA分子; 80年代,Mullis发明了聚合酶链式反应(Polymerase Chain Reaction,PCR)技术; 90年代,开展了“人类基因组计划”和模式生物的基因组测序,分子生物学进入“基因组时代”; 目前,分子生物学进入了“后基因组时代”或“蛋白质组时代”。 3、分子生物学与基因工程的专业地位与作用:从专业基础课角度阐述对专业课程的支 撑作用 第二讲核酸概述 1、核酸的化学组成(图画说明) 2、核酸的种类与特点:DNA和RNA的区别 (1)DNA含的糖分子是脱氧核糖,RNA含的是核糖; (2)DNA含有的碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T),RNA含有的碱基前3个与DNA完全相同,只有最后一个胸腺嘧啶被尿嘧啶(U)所代替; (3)DNA通常是双链,而RNA主要为单链;

(4)DNA的分子链一般较长,而RNA分子链较短。 3、DNA作为遗传物质的直接和间接证据; 间接: (1)一种生物不同组织的细胞,不论年龄大小,功能如何,它的DNA含量是恒定的,而生殖细胞精子的DNA含量则刚好是体细胞的一半。多倍体生物细胞的DNA含量是按其染色体倍数性的增加而递增的,但细胞核里的蛋白质并没有相似的分布规律。 (2)DNA在代谢上较稳定。 (3)DNA是所有生物的染色体所共有的,而某些生物的染色体上则没有蛋白质。(4)DNA通常只存在于细胞核染色体上,但某些能自体复制的细胞器,如线粒体、叶绿体有其自己的DNA。 (5)在各类生物中能引起DNA结构改变的化学物质都可引起基因突变。 直接:肺炎链球菌试验、噬菌体侵染实验 4、DNA的变性与复性:两者的含义与特点及应用 变性:它是指当双螺旋DNA加热至生理温度以上(接近100oC)时,它就失去生理活性。这时DNA双股链间的氢键断裂,最后双股链完全分开并成为无规则线团的过程。简而言之,就是DNA从双链变成单链的过程。增色效应:它是指在DNA的变性过程中,它在260 nm的吸收值先是缓慢上升,到达某一温度后即骤然上升的效应。 复性:它是指热变性的DNA如缓慢冷却,已分开的互补链又可能重新缔合成双螺旋的过程。复性的速度与DNA的浓度有关,因为两互补序列间的配对决定于它们碰撞频率。DNA复性的应用-分子杂交:由DNA复性研究发展成的一种实验技术是分子杂交技术。杂交可发生在DNA和DNA或DNA与RNA间。 5、Tm的含义与影响因素 Tm的含义:是指吸收值增加的中点。 影响因素: 1)DNA序列中G + C的含量或比例含量越高,Tm值也越大(决定性因素);2)溶液的离子强度 3)核酸分子的长度有关:核酸分子越长,Tm值越大

分子生物学总结(朱玉贤版)(2020年10月整理).pdf

结合着下载的资料复习吧~~~~ 绪论 分子生物学的发展简史 Schleiden和Schwann提出“细胞学说” 孟德尔提出了“遗传因子”的概念、分离定律、独立分配规律 Miescher首次从莱茵河鲑鱼精子中分离出DNA Morgan基因存在于染色体上、连锁遗传规律 Avery证明基因就是DNA分子,提出DNA是遗传信息的载体 McClintock首次提出转座子或跳跃基因概念 Watson和Crick提出DNA双螺旋模型 Crick提出了“中心法则” Meselson与Stah用N重同位素证明了DNA复制是一种半保留复制 Jacob和Monod提出了著名的乳糖操纵子模型 Arber首次发现DNA限制性内切酶的存在 Temin和Baltimore发现在病毒中存在以RNA为模板,逆转录成DNA的逆转录酶 哪几种经典实验证明了DNA是遗传物质? (Avery等进行的肺炎双球菌转化实验、Hershey 利用放射性同位素35S和32P分别标记T2噬菌体的蛋白质外壳和DNA) 第二章染色体与DNA 第一节染色体 一、真核细胞染色体的组成 DNA:组蛋白:非组蛋白:RNA = 1:1:(1-1.5):0.05 (一)蛋白质(组蛋白、非组蛋白) (1)组蛋白:H1、H2A、H2B、H3、H4 功能:①核小体组蛋白(H2A、H2B、H3、H4)作用是将DNA分子盘绕成核小体

②不参加核小体组建的组蛋白H1,在构成核小体时起连接作用 (2)非组蛋白:包括以DNA为底物的酶、作用于组蛋白的酶、RNA聚合酶等。常见的有(HMG蛋白、DNA结合蛋白) 二、染色质 染色体:分裂期由染色质聚缩形成。 染色质:线性复合结构,间期遗传物质存在形式。 常染色质(着色浅) 具间期染色质形态特征和着色特征染色质 异染色质(着色深) 结构性异染色质兼性异染色质 (在整个细胞周期内都处于凝集状态)(特定时期处于凝集状态)三、核小体 由H2A、H2B、H3、H4各2 分子组成的八聚体和绕在八聚体外的DNA、一分 子H1组成。八聚体在中央,DNA分子盘绕在外,由此形成核心颗粒。,H1结合在核心颗粒外侧DNA双链的进出口端,如搭扣将绕在八聚体外DNA链固定,核心颗粒之间的连接部分为连接DNA。 核小体的定位对转录有促进作用

现代分子生物学_复习笔记完整版.doc

现代分子生物学 复习提纲 第一章绪论 第一节分子生物学的基本含义及主要研究内容 1 分子生物学Molecular Biology的基本含义 ?广义的分子生物学:以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究 对象,从分子水平阐明生命现象和生物学规律。 ?狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调控 等过程,也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 1.1 分子生物学的三大原则 1) 构成生物大分子的单体是相同的 2) 生物遗传信息表达的中心法则相同 3) 生物大分子单体的排列(核苷酸、氨基酸)的不同 1.3 分子生物学的研究内容 ●DNA重组技术(基因工程) ●基因的表达调控 ●生物大分子的结构和功能研究(结构分子生物学) ●基因组、功能基因组与生物信息学研究 第二节分子生物学发展简史 1 准备和酝酿阶段 ?时间:19世纪后期到20世纪50年代初。 ?确定了生物遗传的物质基础是DNA。 DNA是遗传物质的证明实验一:肺炎双球菌转化实验 DNA是遗传物质的证明实验二:噬菌体感染大肠杆菌实验 RNA也是重要的遗传物质-----烟草花叶病毒的感染和繁殖过程 2 建立和发展阶段 ?1953年Watson和Crick的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑。 ?主要进展包括: ?遗传信息传递中心法则的建立 3 发展阶段 ?基因工程技术作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。 ? 第三节分子生物学与其他学科的关系 思考 ?证明DNA是遗传物质的实验有哪些? ?分子生物学的主要研究内容。 ?列举5~10位获诺贝尔奖的科学家,简要说明其贡献。

分子生物学复习题(有详细标准答案)

分子生物学复习题(有详细答案)

————————————————————————————————作者:————————————————————————————————日期:

绪论 思考题:(P9) 1.从广义和狭义上写出分子生物学的定义? 广义上讲的分子生物学包括对蛋白质和核酸等生物大分子结构与功能的研究,以及从分子水平上阐明生命的现象和生物学规律。 狭义的概念,即将分子生物学的范畴偏重于核酸(基因)的分子生物学,主要研究基因或DNA结构与功能、复制、转录、表达和调节控制等过程。其中也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 2、现代分子生物学研究的主要内容有哪几个方面?什么是反向生物学?什么是 后基因组时代? 研究内容: DNA的复制、转录和翻译;基因表达调控的研究;DNA重组技术和结构分子生物学。 反向生物学:是指利用重组DNA技术和离体定向诱变的方法研究已知结构的基因相应的功能,在体外使基因突变,再导入体内,检测突变的遗传效应,即以表型来探索基因结构。 后基因组时代:研究细胞全部基因的表达图式和全部蛋白质图式,人类基因组研究由结构向功能转移。 3、写出三个分子生物写学展的主要大事件(年代、发明者、简要内容) 1953年Watson和Click发表了“脱氧核糖核苷酸的结构”的著名论文,提出了DNA的双螺旋结构模型。 1972~1973年,重组DNA时代的到来。H.Boyer和P.Berg等发展了重组DNA 技术,并完成了第一个细菌基因的克隆,开创了基因工程新纪元。 1990~2003年美、日、英、法、俄、中六国完成人类基因组计划。解读人类遗传密码。 4、21世纪分子生物学的发展趋势是怎样的? 随着基因组计划的完成,人类已经掌握了模式生物的所有遗传密码。又迎来了后基因组时代,人类基因组的研究重点由结构向功能转移。相关学说理论相应诞生,如功能基因组学、蛋白质组学和生物信息学。生命科学又进入了一个全新的时代。 第四章 思考题:(P130) 1、基因的概念如何?基因的研究分为几个发展阶段? 概念:基因是原核、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是遗传的基本单位和突变单位以及控制形状的功能单位。 发展阶段:○120世纪50年代以前,主要从细胞的染色体水平上进行研究,属于基因的染色体遗传学阶段。 ○220世纪50年代以后,主要从DNA大分子水平上进行研究,属于分

现代分子生物学总结(朱玉贤、最新版)

现代分子生物学总结(朱玉贤、最新版)

一、绪论 两个经典实验 1、肺炎球菌在老鼠体内的毒性实验:先将光滑型致病菌(S型)烧煮杀活性以后、以及活的粗糙型细菌(R型)分别侵染小鼠发现这些细菌自然丧失了治病能力;当他们将经烧煮杀死的S型细菌和活的R型细菌混合再感染小鼠时,实验小鼠每次都死亡。解剖死鼠,发现有大量活的S型细菌。实验表明,死细菌DNA 进行了可遗传的转化,从而导致小鼠死亡。 2、T2噬菌体感染大肠杆菌:当细菌培养基中分别带有35S或32P标记的氨基酸或核苷酸,子代噬菌体就相应含有35S标记的蛋白质或32P标记的核酸。分别用这些噬菌体感染没有放射性标记的细菌,经过1~2个噬菌体DNA 复制周期后进行检测,子代噬菌体中几乎不含带35S标记的蛋白质,但含30%以上的32P 标记。说明在噬菌体传代过程中发挥作用的可能是DNA而不是蛋白质。 基因的概念:基因是产生一条多肽链或功能RNA分子所必需的全部核苷酸序列。

二、染色体与DNA 嘌呤嘧啶 腺嘌呤鸟嘌呤胞嘧啶尿嘧啶胸腺嘧啶 染色体 性质:1、分子结构相对稳定;2、能够自我复制,使亲、子代之间保持连续性;3、能指导蛋白质的合成,从而控制生命过程;4、能产生可遗传的变异。 组蛋白一般特性:1、进化上极端保守,特别是H3、H4;2、无组织特异性;3、肽链上氨基酸分布的不对称性;4、存在较普遍的修饰作用;5、富含赖氨酸的组蛋白H5 非组蛋白:HMG蛋白;DNA结合蛋白;A24非组蛋白

真核生物基因组DNA 真核细胞基因组最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能蛋白质所隔开。人们把一种生物单倍体基因组DNA的总量称为C值,在真核生物中C 值一般是随着生物进化而增加的,高等生物的C 值一般大于低等动物,但某些两栖类的C值甚至比哺乳动物还大,这就是著名的C值反常现象。真核细胞DNA序列可被分为3类:不重复序列、中度重复序列、高度重复序列。 真核生物基因组的特点:1、真核生物基因组庞大,一般都远大于原核生物的基因组;2、真核基因组存在大量的的重复序列;3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,这是真核生物与细菌和病毒之间的最主要的区别;4、真核基因组的转录产物为单顺反之;5、真核基因组是断裂基因,有内含子结构;6、真核基因组存在大量的顺式元件,包括启动子、增强子、沉默子等;7、真核基因组中存在大量的DNA多态性;8、真核基因组具有端粒结构。

现代分子生物学重点

现代分子生物学 第一章 DNA的发现: 1928年,英国Griffith的体内转化实验 1944年,Avery的体外转化实验 1952年,Hershey和Chase的噬菌体转导实验 分子生物学主要研究内容(p11) DNA的重组技术 基因表达调控研究 生物大分子的结构功能研究——结构分子生物学 基因组,功能基因组与生物信息学研究 第二章 DNA RNA组成 脱氧核糖核酸 A T G C 核糖核酸 A U G C 原核生物DNA的主要特征 ①一般只有一条染色体且带有单拷贝基因; ②整个染色体DNA几乎全部由功能基因与调控序列组成; ③几乎每个基因序列都与它所编码的蛋白质序列呈线性对应状态。 染色体作为遗传物质的特点: (1)分子结构相对稳定(贮存遗传信息) (2)通过自我复制使前后代保持连续性(传递遗传信息) (3)通过指导蛋白质合成控制生物状态(表达遗传信息) (4)引起生物遗传的变异(改变遗传信息) C值以及C值反常 C值单倍体基因组DNA的总量 C值反常C值往往与种系进化的复杂程度不一致,某些低等生物却有较大的C值。如果这些DNA 都是编码蛋白质的功能基因,那么,很难想象在两个相近的物种中,他们的基因数目会 相差100倍,由此推断,许多DNA序列可能不编码蛋白质,是没有生理功能的。 DNA的中度重复序列,高度重复序列 中度各种rRNA,tRNA以及某些结构基因如组蛋白基因都属于这一类 高度卫星DNA 核小体 是由H2A H2B H3 H4 各2分子生成的八聚体和约200bp的DNA构成的,H1在核小体外面。 真核生物基因组的结构特点 ①基因组庞大; ②大量重复序列; ③大部分为非编码序列,90%以上; ④转录产物为单顺反子; ⑤断裂基因; ⑥大量的顺式作用元件; ⑦DNA多态性:SNP和串联重复序列多态性; ⑧端粒(telomere)结构。

分子生物学课件整理朱玉贤

1、广义分子生物学:在分子水平上研究生命本质的科学,其研究对象是生物大分子的结构和功能。2 2、狭义分子生物学:即核酸(基因)的分子生物学,研究基因的结构和功能、复制、转录、翻译、表达调控、重组、修复等过程,以及其中涉及到与过程相关的蛋白质和 酶的结构与功能 3、基因:遗传信息的基本单位。编码蛋白质或RNA等具有特定功能产物的遗传信息 的基本单位,是染色体或基因组的一段DNA序列(对以RNA作为遗传信息载体的 RNA病毒而言则是RNA序列)。 4、基因:基因是含有特定遗传信息的一段核苷酸序列,包含产生一条多肽链或功能RNA所必需的全部核苷酸序列。 5、功能基因组学:是依附于对DNA序列的了解,应用基因组学的知识和工具去了解 影响发育和整个生物体的特定序列表达谱。 6、蛋白质组学:是以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学。 7、生物信息学:对DNA和蛋白质序列资料中各种类型信息进行识别、存储、分析、模拟和转输 8、蛋白质组:指的是由一个基因组表达的全部蛋白质 9、功能蛋白质组学:是指研究在特定时间、特定环境和实验条件下细胞内表达的全部蛋白质。 10、单细胞蛋白:也叫微生物蛋白,它是用许多工农业废料及石油废料人工培养的微 生物菌体。因而,单细胞蛋白不是一种纯蛋白质,而是由蛋白质、脂肪、碳水化合物、核酸及不是蛋白质的含氮化合物、维生素和无机化合物等混合物组成的细胞质团。 11、基因组:指生物体或细胞一套完整单倍体的遗传物质总和。 12、C值:指生物单倍体基因组的全部DNA的含量,单位以pg或Mb表示。 13、C值矛盾:C值和生物结构或组成的复杂性不一致的现象。 14、重叠基因:共有同一段DNA序列的两个或多个基因。 15、基因重叠:同一段核酸序列参与了不同基因编 码的现象。 16、单拷贝序列:单拷贝顺序在单倍体基因组中只出现一次,因而复性速度很慢。单 拷贝顺序中储存了巨大的遗传信息,编码各种不同功能的蛋白质。 17、低度重复序列:低度重复序列是指在基因组中含有2~10个拷贝的序列 18、中度重复序列:中度重复序列大致指在真核基因组中重复数十至数万(<105)次的重复顺序。其复性速度快于单拷贝顺序,但慢于高度重复顺序。 19、高度重复序列:基因组中有数千个到几百万个拷贝的DNA序列。这些重复序列 的长度为6~200碱基对。

现代分子生物学课后答案(朱玉贤_第三版)上

第一章绪论 2.写出DNA和RNA的英文全称。 答:脱氧核糖核酸(DNA, Deoxyribonucleic acid),核糖核酸(RNA, Ribonucleic acid)4.早期主要有哪些实验证实DNA是遗传物质?写出这些实验的主要步骤。 答:一,肺炎双球菌感染实验,1,R型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。2,S型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。3,用加热的方法杀死S型细菌后注入到小鼠体内,小鼠不死亡; 二,噬菌体侵染细菌的实验:1,噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。2,DNA中P的含量多,蛋白质中P的含量少;蛋白质中有S而DNA中没有S,所以用放射性同位素35S标记一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。用35P标记蛋白质的噬菌体侵染后,细菌体内无放射性,即表明噬菌体的蛋白质没有进入细菌内部;而用32P标记DNA的噬菌体侵染细菌后,细菌体内有放射性,即表明噬菌体的DNA进入了细菌体内。 三,烟草TMV的重建实验:1957年,Fraenkel-Conrat等人,将两个不同的TMV株系(S株系和HR株系)的蛋白质和RNA分别提取出来,然后相互对换,将S株系的蛋白质和HR株系的RNA,或反过来将HR株系的蛋白质和S株系的RNA放在一起,重建形成两种杂种病毒,去感染烟草叶片。 6.说出分子生物学的主要研究内容。 答:1,DNA重组技术;2,基因表达调控研究;3,生物大分子的结构功能研究----结构分子生物学;4,基因组、功能基因组与生物信息学研究。 第二章染色体与DNA 3.简述真核生物染色体的组成及组装过程 真核生物染色体除了性细胞外全是二倍体,DNA以及大量蛋白质及核膜构成的核小体是染色体结构的最基本单位。核小体的核心是由4种组蛋白(H2A、H2B、H3和H4)构成的扁球状8聚体。 蛋白质包括组蛋白与非组蛋白。组蛋白是染色体的结构蛋白,它与DNA组成核小体,含有大量赖氨酸核精氨酸。非组蛋白包括酶类与细胞分裂有关的蛋白等,他们也有可能是染色体的结构成分 由DNA和组蛋白组成的染色体纤维细丝是许多核小体连成的念珠状结构。 1.由DNA与组蛋白包装成核小体,在组蛋白H1的介导下核小体彼此连接形成直径约10nm的核小体串珠结构,这是染色质包装的一级结构。 2.在有组蛋白H1存在的情况下,由直径10nm的核小体串珠结构螺旋盘绕,每圈6个核小体,形成外径为30nm,内径10nm,螺距11nm的螺线管,这是染色质包装的二级结构。 3.由螺线管进一步螺旋化形成直径为0.4μm的圆筒状结构,称为超螺线管,这是染色

分子生物学简介

分子生物学(molecular biology )从分子水平研究作为生命活动主要物质基础的生物大分子结构与功能,从而阐明生命现象本质的科学。 重点研究下述领域: (1)蛋白质(包括酶)的结构和功能。 (2)核酸的结构和功能,包括遗传信息的传递。 (3)生物膜的结构和功能。 (4)生物调控的分子基础。 (5)生物进化。 分子生物学是第二次世界大战后,由生物化学,`遗传学,微生物学,病毒学,结构分析及高分子化学等不同研究领域结合而形成的一门交叉科学。目前分子生物学已发展成生命科学中的带头学科。 随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA 重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。 这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。 生物学的研究可以说长期以来都是科研的重点,惟其所涉及的方方面面与人类生活紧密相连。本世纪50年代以前的生物学研究,虽然有些已进入了微观领域,但总的来说,主要是研究生物个体组织、器官、细胞或是亚细胞这些东西之间的相互关系。50年代中期,随着沃森和克里克揭示出DNA分子的空间结构,生物学才真正开始了其揭开分子水平生命秘密的研究历程。到70年代,重组DNA技术的发展又给人们提供了研究DNA的强有力的手段,于是分子生物学就逐渐形成了。顾名思义,分子生物学就是研究生物大分子之间相互关系和作用的一门学科,而生物大分子主要是指基因和蛋白质两大类;分子生物学以遗传学、生物化学、细胞生物学等学科为基础,从分子水平上对生物体的多种生命现象进行研究;分子生物学在理论和实践中的发展也为基因工程的出现和发展打下了良好的基础,因此可以说基因工程就是分子生物学的工程应用。现在基因工程所展现出的强大生命力和巨大的经济发展潜力完全得益于分子生物学的迅猛发展,而且有证据表明,基因工程的进一步发展仍然要依赖于分子生物学研究的发展。 分子生物学是从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学。自20世纪50年代以来,分子生物学一直是生物学的前沿与生长点,其主要研究领域包括蛋白质体系、蛋白质-核酸体系和蛋白质-脂质体系。 生物大分子,特别是蛋白质和核酸结构功能的研究,是分子生物学的基础。现代化学和物理

现代分子生物学朱玉贤课后习题答案

现代分子生物学(第3版)朱玉坚第二章染色体与DNA课后思考 题答案 1 染色体具有哪些作为遗传物质的特征? 1 分子结构相对稳定 2 能够自我复制,使亲子代之间保持连续性 3 能够指导蛋白质的合成,从而控制整个生命过程 4 能够产生可遗传的变异 2.什么是核小体?简述其形成过程。 由DNA和组蛋白组成的染色质纤维细丝是许多核小体连成的念珠状结构。核小体是由H2A,H2B,H3,H4各两个分子生成的八聚体和由大约200bp的DNA组成的。八聚体在中间,DNA分子盘绕在外,而H1则在核小体外面。每个核小体只有一个H1。所以,核小体中组蛋白和DNA的比例是每200bpDNA有H2A,H2B,H3,H4各两个,H1一个。用核酸酶水解核小体后产生只含146bp核心颗粒,包括组蛋白八聚体及与其结合的146bpDNA,该序列绕在核心外面形成1.75圈,每圈约80bp。由许多核小体构成了连续的染色质DNA细丝。 核小体的形成是染色体中DNA压缩的第一阶段。在核小体中DNA盘绕组蛋白八聚体核心,从而使分子收缩至原尺寸的1/7。200bpDNA完全舒展时长约68nm,却被压缩在10nm的核小体中。核小体只是DNA压缩的第一步。 核小体长链200bp→核酸酶初步处理→核小体单体200bp→核酸酶继续处理→核心颗粒146bp 3简述真核生物染色体的组成及组装过程 除了性细胞外全是二倍体是有DNA以及大量蛋白质及核膜构成核小体是染色体结构的最基本单位。核小体的核心是由4种组蛋白(H2A、H2B、H3和H4)各两个分子构成的扁球状8聚体。 蛋白质包括组蛋白与非组蛋白。组蛋白是染色体的结构蛋白,它与DNA组成核小体,含有大量赖氨酸核精氨酸。非组蛋白包括酶类与细胞分裂有关的蛋白等,他们也有可能是染色体的结构成分 由DNA和组蛋白组成的染色体纤维细丝是许多核小体连成的念珠状结构---- 1.由DNA与组蛋白包装成核小体,在组蛋白H1的介导下核小体彼此连接形成直径约10nm的核小体串珠结构,这是染色质包装的一级结构。 2.在有组蛋白H1存在的情况下,由直径10nm的核小体串珠结构螺旋盘绕,每圈6个核小体,形成外径为30nm,内径10nm,螺距11nm的螺线管,这是染色质包装的二级结构。 3.由螺线管进一步螺旋化形成直径为0.4μm的圆筒状结构,称为超螺线管,这是染色质包装的三级结构。 4.这种超螺线管进一步螺旋折叠,形成长2-10μm的染色单体,即染色质包装的四级结构。 4. 简述DNA的一,二,三级结构的特征 DNA一级结构:4种核苷酸的的连接及排列顺序,表示了该DNA分子的化学结构 DNA二级结构:指两条多核苷酸链反向平行盘绕所生成的双螺旋结构 DNA三级结构:指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构 5.原核生物DNA具有哪些不同于真核生物DNA的特征? 1, 结构简练原核DNA分子的绝大部分是用来编码蛋白质,只有非常小的一部分不转录,这与真核DNA的冗余现象不同。 2, 存在转录单元原核生物DNA序列中功能相关的RNA和蛋白质基因,往往丛集在基因组的一个或几个特定部位,形成功能单元或转录单元,它们可被一起转录为含多个mRNA的分子,称为多顺反子mRNA。 3, 有重叠基因重叠基因,即同一段DNA能携带两种不同蛋白质信息。主要有以下几种情况①一个基因完全在另一个基因里面②部分重叠③两个基因只有一个碱基对是重叠的 6简述DNA双螺旋结构及其在现代分子生物学发展中的意义 DNA的双螺旋结构分为右手螺旋A-DNA B-DNA 左手螺旋Z-DNA DNA的二级结构是指两条都核苷酸链反向平行

-朱玉贤分子生物学习题题库

第一章绪论练习题 请就你感兴趣的分子生物学发展史上的重大事件或重要人物或重要理论作以相关论述? 第二章染色体和DNA练习题1 一、【单选题】 1.生物遗传信息传递中心法则是【】 A.DNA→RNA→蛋白质 B.RNA→DNA→蛋白质 C.DNA→蛋白质→RNA D.RNA→蛋白质→DNA 2.关于DNA复制的叙述,下列哪项是错误的【】 A.为半保留复制 B.为不对称复制 C.为半不连续复制 D.新链合成的方向均为3'→5' 3.合成DNA的原料有【】 A.dAMP dGMP dCMP dTMP B.dADP dGDP dCDP dTDP C.dA TP dGTP dCTP dTTP D.AMP UMP CMP GMP 4.DNA合成时碱基互补规律是【】 A.A-UC-G B.T-AC-G C.A-GC-U D.A-GC-T 5.关于DNA的复制错误的【】: A包括一个双螺旋中两条子链的合成 B遵循新的子链和其亲本链相配对的原则 C依赖于物种特异的遗传密码 D是碱基错配最主要的来源 6.一个复制子是:【】 A细胞分裂期间复制产物被分离之后的DNA片段 B复制的DNA片段和在此过程中所需的酶和蛋白 C任何自发复制的DNA序列(它和复制起始点相连) D任何给定的复制机制的产物(如:单环) E复制起点和复制叉之间的DNA片段 7.真核生物复制子有下列特征,它们:【】 A比原核生物复制子短得多,因为有末端序列的存在 B比原核生物复制子长得多,因为有较大的基因组 C通常是双向复制且能融合 D全部立即启动,以确保染色体在S期完成复制 E不是全部立即启动,在任何给定的时间只有大约15%是有活性的 8.下述特征是所有(原核生物、真核生物和病毒)复制起始位点都共有的是:【】 A起始位点是包括多个短重复序列的独特DNA片段 B起始位点是形成稳定二级结构的回文序列 C多聚体DNA结合蛋白专一性识别这些短的重复序列 D起始位点旁侧序列是A-T丰富的,能使DNA螺旋解开 E起始位点旁侧序列是G-C丰富的,能稳定起始复合物 9.下列关于DNA复制的说法是正确的有:【】 A按全保留机制进行 B接3’→5’方向进行 C需要4种dNMP的参和 D需要DNA连接酶的作用 E涉及RNA引物的形成 F需要DNA聚合酶Ⅰ 10.在原核生物复制子中以下哪种酶除去RNA引发体并加入脱氧核糖核苷酸? 【】 A DNA聚合酶III B DNA聚合酶II C DNA聚合酶I D外切核酸酶MFl E DNA连接酶 【参考答案】1.A2.D3.C4.B5.C6.C7.C8.D9.D10.C 二、【多项选择题】 1.DNA聚合酶I的作用有【】 A.3’-5’外切酶的活性 B.修复酶的功能 C.在细菌中5’-3’外切酶活性是必要的 D.外切酶活性,可以降解RNA/DNA杂交体中的RNA引物 E.5’-3’聚合酶活性 2.下列关于大肠杆菌DNA聚合酶I的叙述哪些是正确的?【】 A.该酶能从3’羟基端逐步水解单链DNA B.该酶在双螺旋区具有5’-3’外切酶活性 C.该酶在DNA中需要游离的3’-OH D.该酶在DNA中需要游离的5’-OH E.有校对功能 3.下列有关DNA聚合酶I的描述,哪些是正确的?【】 A.催化形成3’-5’-磷酸二酯键 B.有3’-5’核酸外切酶作用 C.有5‘-3’核酸外切酶作用 D.是原核细胞DNA复制时的主要合成酶 E.是多功能酶 4.有关DNA复制时的引物的说法下列正确的有【】 A.一般引物是RNA B.催化引物合成的酶称引发酶 C.哺乳动物的引物是DNA D.引物有游离的3‘-OH,成为合成DNA的起点 E.引物有游离的5‘-OH 5.DNA聚合酶I的作用是【】 A.修复DNA的损伤和变异 B.去除复制过程中的引物 C.填补合成DNA片段间的空隙 D.将DNA片段连接起来 E.合成RNA片段 6.下列关于DNA复制的叙述哪些是正确的? A.每条互补链的合成方向是5‘-3’ B.DNA聚合酶沿母链滑动方向从3‘-5’ C.两条链同时复制只有一个起点 D.真核细胞的每个染色体的复制合成原料是dNMP 7.下列有关DNA聚合酶作用的叙述哪些是正确的? A.酶I在DNA损伤的修复中发挥作用 B.酶II是DNA复制的主要酶 C.酶III是DNA复制的主要酶 D.酶IV在DNA复制时有切除引物的作用 E.酶I切除RNA引物 8.DNA聚合酶I具有的酶活性包括 A.5’-3’外切酶活性 B.3’-5’外切酶活性 C.5’-3’聚合酶活性 D.3’-5’聚合酶活性 E.内切酶活性 9.下列有关大肠杆菌DNA复制的叙述哪些是正确的? A.双螺旋中一条链进行不连续合成 B.生成冈崎片断 C.需要RNA引物 D.单链结合蛋白可防止复制期间的螺旋解链 E.DNA聚合酶I是DNA复制最主要酶 10.DNA复制的特点是 A.半保留复制 B.半不连续 C.一般是定点开始,双向等速进行 D.复制的方向是沿模板链的5‘-3’方向 E. 一般需要RNA引物

现代分子生物学要点总结(朱玉贤版)

现代分子生物学要点总结(朱玉贤版) 一、绪论 两个经典实验 1、肺炎球菌在老鼠体内的毒性实验:先将光滑型致病菌(S型)烧煮杀活性以后、以及活 的粗糙型细菌(R型)分别侵染小鼠发现这些细菌自然丧失了治病能力;当他们将经烧煮杀死的S型细菌和活的R型细菌混合再感染小鼠时,实验小鼠每次都死亡。解剖死鼠,发现有大量活的S型细菌。实验表明,死细菌DNA进行了可遗传的转化,从而导致小鼠死亡。 2、T2噬菌体感染大肠杆菌:当细菌培养基中分别带有35S或32P标记的氨基酸或核苷酸, 子代噬菌体就相应含有35S标记的蛋白质或32P标记的核酸。分别用这些噬菌体感染没有放射性标记的细菌,经过1~2个噬菌体DNA复制周期后进行检测,子代噬菌体中几乎不含带35S标记的蛋白质,但含30%以上的32P标记。说明在噬菌体传代过程中发挥作用的可能是DNA而不是蛋白质。 基因的概念:基因是产生一条多肽链或功能RNA分子所必需的全部核苷酸序列。 二、染色体与DNA 嘌呤嘧啶 腺嘌呤鸟嘌呤胞嘧啶尿嘧啶胸腺嘧啶 染色体 性质:1、分子结构相对稳定;2、能够自我复制,使亲、子代之间保持连续性;3、能指导蛋白质的合成,从而控制生命过程;4、能产生可遗传的变异。 组蛋白一般特性:1、进化上极端保守,特别是H3、H4;2、无组织特异性;3、肽链上氨基酸分布的不对称性;4、存在较普遍的修饰作用;5、富含赖氨酸的组蛋白H5 非组蛋白:HMG蛋白;DNA结合蛋白;A24非组蛋白 真核生物基因组DNA 真核细胞基因组最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白

质的非功能蛋白质所隔开。人们把一种生物单倍体基因组DNA的总量称为C值,在真核生物中C值一般是随着生物进化而增加的,高等生物的C值一般大于低等动物,但某些两栖类的C值甚至比哺乳动物还大,这就是著名的C值反常现象。真核细胞DNA序列可被分为3类:不重复序列、中度重复序列、高度重复序列。 真核生物基因组的特点:1、真核生物基因组庞大,一般都远大于原核生物的基因组;2、真核基因组存在大量的的重复序列;3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,这是真核生物与细菌和病毒之间的最主要的区别;4、真核基因组的转录产物为单顺反之;5、真核基因组是断裂基因,有内含子结构;6、真核基因组存在大量的顺式元件,包括启动子、增强子、沉默子等;7、真核基因组中存在大量的DNA多态性;8、真核基因组具有端粒结构。 原核生物基因组的特点:1、结构简练,绝大部分用来编码蛋白质,只有很少一部分控制基因表达的序列不转录;2、存在转录单元,原核生物DNA序列中功能相关的RNA和蛋白质基因,往往丛集在基因组的一个或者几个特定部位,形成功能单位或转录单元,可以被一起转录为含多个mRNA的分子;3、有重叠基因,所谓重叠基因就是同一段DNA携带两种或以上不同的蛋白质的编码信息。 DNA的结构 DNA又称脱氧核糖核酸,是deoxyribonucleic acid的简称。 L=T+W,L指环形DNA分子两条链间交叉的次数,只要不发生断裂,L是一个常量。T为双螺旋的盘绕数,W为超螺旋数。双螺旋DNA的松开导致负超螺旋,而拧紧则导致正超螺旋。 双螺旋碱基间距(nm)螺旋直径(nm)每轮碱基数螺旋方向 A-DNA0.26 2.611右 B-DNA0.34 2.010右 Z-DNA0.37 1.812左 DNA的复制 半保留复制:Semi-conservative replication;半不连续复制:Semi-discontinuous replication 把生物体的复制单位称为复制子,一个复制子只含一个复制起始点。 归纳起来,无论是原核生物还是真核生物,复制起点是固定的,表现为固定的序列,并识别参与复制起始的特殊蛋白质。复制叉移动的方向和速度虽是多种多样的,但以双向等速方式为主。 复制的几种主要方式 双链DNA的复制大都以半包六复制方式进行的,通过“眼”型、θ型、滚环型或D-环型等以复制叉的形式进行。 1、线性DNA双链进行双向复制时,由于已知的DNA聚合酶和RNA聚合酶都只能从5’ 到3’移动,所以,复制叉呈眼型; 2、环状双链DNA复制可分为θ型、滚环型和D-环形几种类型 Ⅰ、θ型,大肠杆菌染色体DNA是环状双链DNA,它的复制是典型的θ型复制,从一个起点开始,同时向两个方向进行复制,当两个复制叉相遇时,复制就停止 Ⅱ、滚环型,是单向复制的一种特殊方式,在噬菌体中很常见。DNA的合成由对正链原点的专一切割开始,所形成的自由5’端被从双链环中置换出来并为单链DNA结合蛋白所覆盖,

现代分子生物学考研复习重点

现代分子生物学考研复习资料整理 第一章绪论 分子生物学:是研究核酸、蛋白质等所有生物大分子的形态、结构及其重要性、规律性和相互关系的科学 分子生物学的主要研究内容 1、DNA重组技术 2、基因表达调控研究 3、生物大分子的结构功能研究——结构分子生物学 4、基因组、功能基因组与生物信息学研究 5、DNA的复制转录和翻译 第二章染色体与DNA 半保留复制:DNA在复制过程中碱基间的氢键首先断裂,双螺旋解旋并被分开,每条链分别作为模板合成新链,产生互补的两条链。这样新形成的两个DNA分子与原来DNA分子的碱基顺序完全一样,因此,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,所以这种复制方式被称为DNA半保留复制 DNA半不连续复制:DNA双螺旋的两条链反向平行,复制时,前导链DNA的合成以5′-3′方向,随着亲本双链体的解开而连续进行复制;后随链在合成过程中,一段亲本DNA单链首先暴露出来,然后以与复制叉移动相反的方向、按照5′-3′方向合成一系列的冈崎片段,然后再把它们连接成完整的后随链,这种前导链的连续复制和后随链的不连续复制称为DNA 的半不连续复制 原核生物基因组结构特点:1、基因组很小,大多只有一条染色体2、结构简练3、存在转录单元,多顺反子4、有重叠基因 真核生物基因组的结构特点:1、真核基因组庞大,一般都远大于原核生物的基因组2、真核基因组存在大量的重复序列3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,该特点是真核生物与细菌和病毒之间最主要区别4、真核基因组的转录产物为单顺反子5、真核基因是断裂基因,有内含子结构6、真核基因组存在大量的顺式作用元件,包括启动子、增强子,沉默子等7、真核基因组中存在大量的DNA多态性8、真核基因组具有端粒结构 DNA转座(移位)是由可移位因子介导的遗传物质重排现象 DNA转座的遗传学效应:1、转座引入插入突变2、转座产生新的基因3、转座产生的染色体畸变4、转座引起生物进化 转座子分为插入序列和复合型转座子两大类 环状DNA复制方式:θ型、滚环型和D-环型 第三章生物信息的传递(上)从DNA到RNA 转录:指拷贝出一条与DNA链序列完全相同的RNA单链的过程 启动子:是一段位于结构基因5′段上游区的DNA序列,能活化RNA聚合酶,使之与模板DNA准确地结合并具有转录起始的特异性 原核生物启动子结构:存在位于-10bp处的TATA区和-35bp处的TTGACA区,其是RNA聚合酶与启动子的结合位点,能与σ因子相互识别而具有很高的亲和力 终止子:是给予RNA聚合酶转录终止信号的DNA序列(促进转录终止的DNA序列) 终止子的类型:不依赖于ρ因子和依赖于ρ因子 增强子:能增强或促进转录起始的序列 增强子的特点:1、远距离效应2、无方向性3、顺式调节4、无物种和基因的特异性5、具

分子生物学课件重点整理__朱玉贤

1、错配修复(mismatch repair) ●Dam甲基化酶使母链位于5’GATC序列中腺甘酸甲基化 ●甲基化紧随在DNA复制之后进行(几秒种后至几分钟内) ●根据复制叉上DNA甲基化程度,切除尚未甲基化的子链上的错配碱基 2、碱基切除修复 excision repair 所有细胞中都带有不同类型、能识别受损核苷酸位点的糖苷水解酶,它能特意切除受损核苷酸上的N-β-糖苷键,在DNA链上形成去嘌呤或去嘧啶位点,统称为AP位点。一些碱基在自发或诱变下会发生脱酰胺,然后改变配对性质,造成氨基转换突变*腺嘌呤变为次黄嘌呤与胞嘧啶配对 *鸟嘌呤变为黄嘌呤与胞嘧啶配对 *胞嘧啶变为尿嘧啶与腺嘌呤配对 3、核苷酸切除修复 1)通过特异的核酸内切酶识别损伤部位 2)由酶的复合物在损伤的两边切除几个核苷酸 3) DNA 聚合酶以母链为模板复制合成新子链 4)DNA连接酶将切口补平 4 、DNA的直接修复 在DNA光解酶的作用下将环丁烷胸腺嘧啶二体和6-4光化物还原成为单体 甲基转移酶使O6-甲基鸟嘌呤脱甲基生成鸟嘌呤,防止G-T配对 SOS反应 (SOS response):是细胞DNA受到损伤或复制系统受到抑制的紧急情况下,细胞为求生存而产生的一种应急措施。 *包括诱导DNA损伤修复、诱变效应、细胞分裂的抑制以及溶原性细菌释放噬菌体等。细胞癌变也与SOS反应有关。两个作用(1)DNA的修复;(2)产生变异 五、 DNA的转座 DNA的转座或叫移位(transposition):由可移位因子(transposable element) 介导的遗传物质重排现象。 转座子(transposon Tn):存在于染色体DNA上可自主复制和位移的基本单位。 已经发现“转座”这一命名并不十分准确,因为在转座过程中,可移位因子的一个拷贝常常留在原来位置上,在新位点上出现的仅仅是它的拷贝。因此,转座有别于同源

现代分子生物学(第3版)-朱玉贤-课后答案(全)上课讲义

现代分子生物学(第3版)-朱玉贤-课后答 案(全)

第一章 1 简述孟德尔、摩尔根和沃森等人对分子生物学发展的主要贡献 答:孟德尔的对分子生物学的发展的主要贡献在于他通过豌豆实验,发现了遗传规律、分离规律及自由组合规律;摩尔根的主要贡献在于发现染色体的遗传机制,创立染色体遗传理论,成为现代实验生物学奠基人;沃森和克里克在1953年提出DAN反向双平行双螺旋模型。 2写出DNARNA的英文全称 答:脱氧核糖核酸(DNA, Deoxyribonucleic acid),核糖核酸(RNA, Ribonucleic acid) 3试述“有其父必有其子”的生物学本质 答:其生物学本质是基因遗传。子代的性质由遗传所得的基因决定,而基因由于遗传的作用,其基因的一半来自于父方,一般来自于母方。 4早期主要有哪些实验证实DNA是遗传物质?写出这些实验的主要步骤 答:一,肺炎双球菌感染实验,1,R型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。2,S型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。3,用加热的方法杀死S型细菌后注入到小鼠体内,小鼠不死亡;二,噬菌体侵染细菌的实验:1,噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。 2,DNA中P的含量多,蛋白质中P 的含量少;蛋白质中有S而DNA中没有S,所以用放射性同位素35S标记一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。用35P 标记蛋白质的噬菌体侵染后,细菌体内无放射性,即表明噬菌体的蛋白质没有进入细菌内部;而用32P标记DNA的噬菌体侵染细菌后,细菌体内有放射

现代分子生物学重点【分子生物学重点】

现代分子生物学重点【分子生物学重点】 名词解释1.Molecularbiology:在分子水平上研究生命现象的科学。通过研究生物大分子的结构、功能和生物合成等方面来阐明各 种生命现象的本质,其主要研究领域包括蛋白质体系、蛋白质-核酸 体系(中心是分子遗传学)和蛋白质-脂质体系(即生物膜)。 2.DenaturationofproteinandDNA:蛋白质变性(proteindenaturation)指蛋白质在某些物理和化学因素作用下其 特定的空间构象被改变,从而导致其理化性质的改变和生物活性的 丧失,这种现象称为蛋白质变性。 3.DNA变性(DNAdenaturation)又称DNA融化(DNAmelting),是DNA双螺旋解开成为两条单股长链的过程。在过程中,使两股长 链上的碱基相连的氢键会断裂。DNA的变性可以是温度升高而产生 的作用,也可能是其他化学物质如尿素的诱导。视DNA解开的融化 温度(Tm)是依DNA链的长度,以及特定核苷酸序列的组成形式而定。 3.Southernblotting:Southern印迹杂交是进行基因组DNA特定 序列定位的通用方法。一般利用琼脂糖凝胶电泳分离经限制性内切 酶消化的DNA片段,将胶上的DNA变性并在原位将单链DNA片段转 移至尼龙膜或其他固相支持物上,经干烤或者紫外线照射固定,再 与相对应结构的标记探针进行杂交,用放射自显影或酶反应显色, 从而检测特定DNA分子的含量。 4.Genecloning:基因克隆技术包括把来自不同生物的基因同有自主复制能力的载体DNA在体外人工连接,构建成新的重组DNA,然 后送入受体生物中去表达,从而产生遗传物质和状态的转移和重新 组合。因此基因克隆技术又称为分子克隆、基因的无性繁殖、基因 操作、重组DNA技术以及基因工程等。 5.Nicktranslation:缺口翻译法或切口平移法是实验室最常用的一种脱氧核糖核酸探针标记法。利用E.coliDNA多聚酶I的多种酶

相关主题
文本预览
相关文档 最新文档