当前位置:文档之家› 第3章一元函数积分学11-12(定积分的几何应用(2)和物理应用)

第3章一元函数积分学11-12(定积分的几何应用(2)和物理应用)

定积分在几何学上的应用(比赛课教案)

教学题目: 选修2-2 1.7.1定积分在几何中的应用 教学目标: 一、知识与技能: 1.让学生深刻理解定积分的几何意义以及微积分的基本定理; 2.通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法 3.初步掌握利用定积分求曲边梯形的几种常见题型及方法 二、过程与方法: 1. 探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思路和方法。 三、情感态度与价值观: 探究式的学习方法能够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神; 教学重点: 应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的价值。 教学难点: 如何恰当选择积分变量和确定被积函数。 课型、课时: 新课,一课时 教学工具: 常用教具,多媒体,PPT课件 教学方法: 引导法,探究法,启示法 教学过程

积分?b a f (x )dx 在几何上表示 x =a 、x =b 与x 轴所围成的曲边梯形 的面积。 当f (x )≤0时由y =f (x )、x =a 、x =b 与 x 轴所围成的曲边梯形面积的负值 类型1.求由一条曲线y=f(x)和直线x=a,x=b(a

定积分的几何应用例题与习题.doc

定积分的几何应用例题与习题 、曲线 的极坐标方程 1 cos ,(0 ), 求该曲线在 所对应的点处的切线 的 1 4 L 2 直角坐标方程,并求曲线 、切线 L 与x 轴所围图形的面积。 2、设直线 y ax 与抛物线 y x 2 所围成的面积为 S 1,它们与直线 x 1所围成的 面积为 S 2 ,并且 a 1 (1)试确定 a 的值,使 S 1 S 2达到最小,并求出最小值; (2)求该最小值所对应的平面图形绕 x 轴旋转一周所得旋转体的体积。 、设 平面上有正方形 D ( x, y) 0 x 1,0 y 1 及直线 L : x y t (t 0) 3 xoy x 若 S(t)表示正方形 D 位于直线 l 左下部分的面积 ,试求 S(t )dt (x 0) 4、 求由曲线 x sin ( 0) 与 轴所围图形绕 轴旋转所得旋转体的体积 y e x x x x V x 5、求由曲线 x a cos 3 t 与直线 y=x 及 y 轴所围成的图形 y asin 3 t ( a 0, 4 t 2 ) 绕 x 轴旋转所得立体的全表面积。 ( S=( 11 2 ) a 2 ) 5 40 6. 曲线 y e x e x 与直线 x 0, x t(t 0)及 y 0围成一曲边梯形,该曲边梯 2 形绕 x 轴旋转一周得一旋转体,其体积为 V (t), 侧面积为 S(t),在 x t 处的底面积为 F (t ) 求 S(t) 的值; 计算极限 S(t ) (1) (2) lim V (t) t F (t ) S(t ) 2, lim S(t ) 1 V (t ) F (t) t 7、求由摆线 x= a(t sin t) ,y= 的一拱 (0 t 2 ) 与横轴所围成的平面图形的面积, a(1 cost) 及该平面图形分别绕 x 轴、 y 轴旋转而成的旋转体的体积。 (1)A 3 a 2 , (2)V x 5 2 a 3 , (3)V y 6 3 a 3 8、设平面图形 由 x 2 y 2 2 x 及 y 所确定,求图形 绕直线 x 2 旋转一周所得 A x A 旋转体的体积。 2 V 2 2 3

定积分在物理学中的应用

数学与计算科学学院 学年论文 题目定积分在物理学中的应用 姓名邓花蝶 学号 1209403047 专业年级 2012级数学与应用数学 指导教师耿平 2015年 9 月 1 日

定积分在物理学中的应用 ——求刚体的转动惯量 摘要 众所周知,物理学是一门综合性极高的学科,我们在学习的过程常都 会将课堂理论知识和实践活动有机的结合在一起,然而,在物理学中,我 们通常都会遇到很多难题,比如解积分困难等。因此当前我们在对物理学 的学习中,就要将定积分应用到其中。定积分是高等数学的重要组成部分, 在物理学中也有广泛的应用。微元法是将物理问题抽象成定积分非常实用 的方法。本文主要利用"微元法"的思想求物理学中几种常见均匀刚体的 转动惯量。 关键词 定积分;物理应用;微元法; 转动惯量;均匀刚体 The application of definite integral in physics ——For the moment of inertia of rigid body Abstract As we all know, physics is a comprehensive high discipline, in the learning process We will usually make the classroom theoretical knowledge and practical activity of organic unifies in together, however, in physics, we often encounter some problems, such as the difficulty of solving integral. So in physics learning, we should apply definite integral to it. The integral is an important part of higher mathematics, they are widely used in physics. The differential method is a practical method that physical problems are abstracted integral.In this paper, using the ideas of "micro element method" to solve inertia of several common uniform rigid body in physics.

定积分在物理中的应用

定积分在物理中的应用 目录: 一.摘要 二.变力沿直线所作的功 三.液体的侧压力 四.引力问题 五.转动惯量

摘要: 伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分。 微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。 微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。 微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分堪称是人类智慧最伟大的成就之一。在高中物理中,微积分思想多次发挥了作用。

定义: 设函数f(x)在[a,b]上有界,在[a ,b]中任意插入若干个分点 a=X0

定积分的几何应用例题与习题

定积分的几何应用例题与习题 11cos ,(0),2 4 L π π ρθθθΓ=+≤≤ = Γ、曲线的极坐标方程求该曲线在所对应的点处的切线的 直角坐标方程,并求曲线、切线L 与x 轴所围图形的面积。212122,1,1 (1)2y ax y x S x S a a S S x ===<+、设直线与抛物线所围成的面积为它们与直线所围成的 面积为并且试确定的值,使达到最小,并求出最小值; ()求该最小值所对应的平面图形绕轴旋转一周所得旋转体的体积。 {}0 3(,)01,01:(0) (),()(0) x xoy D x y x y L x y t t S t D l S t dt x =≤≤≤≤+=≥≥?、设平面上有正方形及直线若表示正方形位于直线左下部分的面积试求 4 、0)x y e x x -=≥求由曲线与轴所围图形绕x 轴旋转所得旋转体的体积V 3 3 2cos (0,)42sin 11)5x a t a t y a t a πππ?=?>≤≤?=??5、求由曲线与直线y=x 及y 轴所围成的图形绕x 轴旋转所得立体的全表面积。(S=( 6.0,(0)02 (),()() ()()(1)(2)lim () ()()() 2,lim 1 () ()x x t t e e y x x t t y x V t S t x t F t S t S t V t F t S t S t V t F t -→+∞→+∞+===>=====曲线与直线及围成一曲边梯形,该曲边梯 形绕轴旋转一周得一旋转体,其体积为侧面积为,在处的底面积为求的值;计算极限22333 (sin )(1cos )3, (2)5, (3)6x y a t t a t a V a V a ππππ--≤≤===7、求由摆线x=,y=的一拱(0t 2)与横轴所围成的平面图形的面积,及该平面图形分别绕x 轴、y 轴旋转而成的旋转体的体积。(1)A 222 222 23 A x y x y x A x V ππ+≤≥== -8、设平面图形由及所确定,求图形绕直线旋转一周所得旋转体的体积。

《定积分在几何中的应用》教学教案

1.7.1定积分在几何中的应用 学习目标: 1.体会“分割、以直代曲、求和、逼近”求曲边梯形面积的思想方法; 2.初步掌握利用定积分求曲边梯形的几种常见题型及方法; 3.理解定积分的几何意义以及微积分的基本定理。 学习方法: 情境一:展示精美的赵州桥图片,讲述古代数学家的故事及伟大发现:拱形的面积 问题1:桥拱与水面之间的切面的面积如何求解呢? 问题2:需要用到哪些知识?(定积分) 问题3:求曲边梯形的思想方法是什么? 问题4:定积分的几何意义是什么? 问题5:微积分基本定理是什么? 情境二:利用定积分求平面图形的面积 例1. 计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 问题1:你能在平面直角坐标系内画出两条抛物线吗? 问题2:能在图中找出所要求的图形吗?(用阴影部分表示出来) (如右图) 问题3:这个图形以前见过吗?有没有直接的公式求它的面积吗? 问题4:既然没有直接的公式求其面积,那能不能转化成我们学过的曲边梯形的面积来间接求解呢?(可看做两个曲边梯形的面积之差,进而可以用定积分来解决) 解:解方程组?????==2 2x y x y 得到交点横坐标为0=x 或1=x x y O A B C D 2 x y =x y =2 1 1 -1 -1 4 x y O 8 4 2 2

∴ OABD OABC S S S 曲边梯形曲边梯形-=dx x ? = 1 dx x ?-1 2 1031 0233132x x -=313132=-= 情境三 学生探究: 例2.计算由直线4y x =-,曲线y =x 轴所围图形的面积S. 分析:模仿例1,先画出草图(左图),并设法把所求图形的面积问题转化为求曲边梯形的面积问题. 问题1:阴影部分图形是曲边梯形吗? 问题2:不是曲边梯形怎么办?能否构造出曲边梯形来呢? 问题3:如果转化成两部分的面积和,应该怎样作辅助线?(过点(4,0)作x 轴的垂线将阴影部分分为两部分) 问题4:两部分面积用定积分分别应该怎样表示?(注意积分上下限的确定) 问题5:做辅助线时应该注意什么?(尽量将曲边图形转化成我们熟悉的平面图形,如三角形、矩形、梯形和曲边梯形组合成的图形.) 规范的解题过程此处略去 思考:1.本题还有没有其它的解决方案?(可以将此阴影部分看做一个曲边梯形和一个三角形的面积之差) 2.上面的解法是将x 看作积分变量,能不能将y 看作积分变量?尝试解决之。 情境四:结合以上两个例题,总结利用定积分求平面图形面积的基本步骤。 解由曲线所围的平面图形面积的解题步骤: 1.画草图,求出曲线的交点坐标 2.将曲边形面积转化为曲边梯形面积 3.根据图形特点选择适当的积分变量 4.确定被积函数和积分区间 5.计算定积分,求出面积.

定积分在物理上的应用(学习资料)

授课题目定积分在物理上的应用 课时数1课时 教学目标用定积分解决物理学上的变力做功以及液体压力问题。 重点与难点教学重点:定积分方法分析变力做功和液体压力。教学难点:定积分的元素法以及物理量的计算公式。 学情分析我所教授的学生从知识结构上来说属于好坏差别很大,有的接受新知识很快,有的很慢,有的根本听不懂,基 于这些特点,结合教学内容,我以板书教学为主,多媒 体教学为辅,把概念较强的课本知识直观化、形象化, 引导学生探索性学习。 教材分析本次课是学生学习完定积分的概念和计算方法以及定积分在几何上的应用后的学习,定积分的元素法在几何和 物理上的应用为学生尝试解决各种实际问题做了很好的 铺垫。将来把元素法的思想推广到多元函数后,其应用 范围将会更宽更广。所以无论从内容还是数学思想方面, 本次课在教材中都处于重要的地位。 教学方法根据对学生的学情分析,本次课主要采用案例教学法,问题驱动教学法,讲与练互相结合,以教师的引导和讲 解为主,同时充分调动学生学习的主动性和思考问题的 积极性。 教学手段传统教学与多媒体资源相结合。

课程资源 同济大学《高等数学》(第七版)上册 教学内容与过程 一、 变力沿直线所作的功 dx x F dW )(= ?=b a dx x F W )( ,求电场力所做的功。 处处移动到从距离点电荷直线下,一个单位正电荷沿电荷所产生的电场作用、在一个带例)(1b a b a q <+为时,由库仑定律电场力原点解:当单位正电荷距离r 2r q k F = dr r kq dW 2=则功的元素为: 所求功为 )11(]1[2b a kq r kq dr r kq W b a b a -=-==? 例2、在底面积为S 的圆柱形容器中盛有一定量的气体,由于气体的膨胀,把容器中的一个面积为S 的活塞a 移动到b 处(如图),求移动过程中气体压力所做的功。 解:建立坐标系如图. 由波义耳---马略特定律知压强p 与体积V 成反比,即xS k V k p == ,故作用在活塞上的力为 x k S p F =?= x a b x x x d +q +o r a b r r d r +1+S o x a b x x d x +

定积分在几何学上的应用(比赛课教案).doc

定积分在几何学上的应用 ( 比赛课教案 )

教学题目: 选修 2-2 1.7.1定积分在几何中的应用 教学目标: 一、知识与技能: 1.让学生深刻理解定积分的几何意义以及微 积分的基本定理; 2.通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法 3.初步掌握利用定积分求曲边梯形的几种常见题型及方法 二、过程与方法: 1.探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思路和方法。 三、情感态度与价值观: 探究式的学习方法能够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神; 教学重点: 应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的 价值。 教学难点: 如何恰当选择积分变量和确定被积函数。 课型、课时:

新课,一课时 教学工具: 常用教具,多媒体, PPT课件 教学方法: 引导法,探究法,启示法 教学过程 当 f(x) 0 时,积分 b y=f (x)、 f (x)dx 在几何上表示由x a a、x b 与 x 轴所围成的曲边梯形的面积。 y f (x) O a b x O a b x y f (x) 当 f ( x) b f (x)dx 在几何上表示y f ( x)、x a、x b 与 x 轴 0时由积分 a b f ( x ) dx c f ( x ) dx b f ( x ) dx 。 所围成的曲边梯形面积的负值 a S a c 类型 1. 求由一条曲线 y=f(x) 和直线 x=a,x=b(a

定积分在物理中的应用 说课稿 教案 教学设计

定积分的简单应用 一:教学目标 知识与技能目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 过程与方法 情感态度与价值观 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、(1,1),面积S=1 1 20 xdx x dx = -? ?,所以 ?1 20S =(x -x )dx 32 1 3023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 巩固练习 计算由曲线3 6y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =-,曲线2y x =以及x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯 2 x y =y x A B C D O

1.7.2定积分在物理中的应用(学、教案)

1. 7.2定积分在物理中的应用 课前预习学案 【预习目标】 能熟练利用定积分求变速直线运动的路程.会用定积分求变力所做的功. 【预习内容】 一、知识要点:作变速直线运动的物体在时间区间[]b a ,上所经过的路程S ,等于其速度函数)0)()((≥=t v t v v 在时间区间[]b a ,上的 ,即 . 例1已知一辆汽车的速度——时间的函数关系为:(单位:).(),/(s t s m v ) ??? ????≤≤+-≤≤≤≤=.6040,905.1;4010,30;100, 103)(2t t t t t t v 求(1)汽车s 10行驶的路程;(2)汽车s 50行驶的路程;(3)汽车min 1行驶的路程. 变式1:变速直线运动的物体速度为,1)(2t t v -=初始位置为,10=x 求它在前s 2内所走的路程及s 2末所在的位置. 二、要点:如果物体在变力)(x F 的作用下做直线运动,并且物体沿着与)(x F 相同方向从a x =移动到),(b a b x <=则变力)(x F 所作的功W = . 例2 在弹性限度内,将一弹簧从平衡位置拉到离平衡位置lm 处,求克服弹力所作的功. 变式2:一物体在变力25)(x x F -=作用下,沿与)(x F 成?30方向作直线运动,则由1=x 运动到2 =x 时)(x F 作的功为 .

课内探究学案 一、学习目标: 1. 了解定积分的几何意义及微积分的基本定理. 2.掌握利用定积分求变速直线运动的路程、变力做功等物理问题。 二、学习重点与难点: 1. 定积分的概念及几何意义 2. 定积分的基本性质及运算的应用 三、学习过程 (一)变速直线运动的路程 1.物本做变速度直线运动经过的路程s ,等于其速度函数v = v (t ) (v (t )≥0 )在时间区间[a ,b ]上的 定积分 ,即?=b a dt t v s )(. 2.质点直线运动瞬时速度的变化为v (t ) = – 3sin t ,则 t 1 = 3至t 2 = 5时间内的位移是 ()dt t ?-5 3sin 3.(只列式子) 3.变速直线运动的物体的速度v (t ) = 5 – t 2,初始位置v (0) = 1,前2s 所走过的路程为 325 . 例1.教材P58面例3。 练习:P59面1。 (二)变力作功 1.如果物体沿恒力F (x )相同的方向移动,那么从位置x = a 到x = b 变力所做的功W = F (b —a ). 2.如果物体沿与变力F (x )相同的方向移动,那么从位置x = a 到x = b 变力所做的 功W =?b a dx x F )(. 例2.教材例4。 课后练习与提高 1、 设物体以速度)/(3)(2s m t t t v +=作直线运动,则它在s 4~0内所走的路程为( ) m A 70. m B 72. m C 75. m D 80. 2、设列车从A 点以速度)/(2.124)(s m t t v -=开始拉闸减速,则拉闸后行驶m 105所需时间为( ) s A 5. s B 10. s C 20. s D 35. 3、以初速s m /40竖直向上抛一物体,ts 时刻的速度,10402 t v -=则此物体达到最高时的高度为( ) m A 3160. m B 380. m C 340. m D 3 20.

定积分在几何学上的应用比赛课教学教案.docx

教学题目: 选修 2-2 1.7.1定积分在几何中的应用 教学目标: 一、知识与技能: 1.让学生深刻理解定积分的几何意义以及微积分的基本定理; 2.通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法 3.初步掌握利用定积分求曲边梯形的几种常见题型及方法 二、过程与方法: 1.探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思 路和方法。 三、情感态度与价值观: 探究式的学习方法能够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神; 教学重点: 应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的价值。 教学难点: 如何恰当选择积分变量和确定被积函数。 课型、课时: 新课,一课时 教学工具: 常用教具,多媒体, PPT课件 教学方法: 引导法,探究法,启示法 教学过程

— b y=f (x) 、 x a 、 x b 与 x 轴所围成的曲边梯形 当 f(x) 0 时,积分 a f (x)dx 在几何上表示由 的面积。 y f (x) O a b x O a b x y f (x) 当 f ( x ) 0 时由 积分 b y f ( x ) 、x a 、x b 与 x 轴 f (x)dx 在几何上表示 a b c b f ( x ) dx 。 所围成的曲边梯形面积的负值 f ( x ) dx f ( x ) dx c a S a 类型 1. 求由一条曲线 y=f(x) 和直线 x=a,x=b(a

定积分的几何应用

定积分的几何应用

定积分的几何应用 内容摘要 自十七世纪下半叶牛顿和莱布尼茨确定了微积分的基础以来,微积分已经经历了近四百年的发展,微积分不仅在数学领域,在现代科学各个领域都发挥了巨大的作用,微积分的思想更是达到了哲学的高度。可以预见,微积分在将来的应用会越来越广泛,越来越深入,但微积分由于其思想的复杂性、系统性,给使用者带来了不便,本文就微积分在数学几何领域的应用做了一些总结和创新,得出了在直角坐标系和极坐标系情况下,平面图形的面积、旋转体体积、光滑曲线的弧长和旋转曲面的面积的求解方法,以方便相关领域的人士在工作和学习中参考使用。。 【关键词】定积分几何坐标系面积体积弧长

The application of definite integral geometry Abstract Since the second half of the seventeenth Century the Newtonian and Leibniz to determine the basis of calculus, calculus has experienced nearly four hundred years of development, not only in the field of mathematics calculus, in modern scientific fields have played an important role, the calculus idea is to achieve a high degree of philosophy. Can foreknow, calculus in the future will be more widely used, more and more deeply, but due to the complexity of ideas of calculus, system, users have inconvenience, the calculus in mathematics geometry application some summary and innovation, derived in Cartesian coordinate and polar coordinate conditions, planar graph area, the volume of body of rotation, smooth arc length of a curve and a rotating surface area method, so as to facilitate the related people in the working and learning reference. 【Key words】Integral geometry coordinates area volume arc length

最新定积分在几何中的应用

定积分在几何中的应 用

1.7定积分的简单应用1.7.1定积分在几何中的应用双基达标(限时20分钟) 1.由y=1 x,x=1,x=2,y=0所围成的平面图形的面积为 (). A.ln 2 B.ln 2-1 C.1+ln 2 D.2ln 2 解析画出曲线y=1 x(x>0)及直线x=1,x=2,y=0, 则所求面积S为如图所示阴影部分面积. =ln 2-ln 1=ln 2.故选A. 答案 A 2.在下面所给图形的面积S及相应表达式中,正确的有 ().

A .①③ B .②③ C .①④ D .③④ 答案 D 3.由曲线y =x 2与直线y =2x 所围成的平面图形的面积为 ( ). A.163 B.83 C.43 D.23 解析 画出曲线y =x 2和直线y =2x ,则所求面积S 为图中阴影部分的面积.

解方程组????? y =2x ,y =x 2,得????? x =0,y =0或????? x =2, y =4. ∴A (2,4),O (0,0). =4-? ????83-0=4 3.故选C. 答案 C 4.由曲线y =2x 2,及x =0,x =3,y =0所围成图形的面积为________. 解析 由题意画草图: 答案 18 5.直线x =π2,x =3π 2,y =0及曲线y =cos x 所围成图形的面积________. 解析 由题意画草图:

由图形面积为 答案 2 6.求由曲线y =x 3及直线y =2x 所围成的图形面积. 解 由??? y =x 3,y =2x , 解得x 1=0,x 2=2,x 3=- 2. 交点为(-2,-22),(0,0),(2,22). 所求面积S 为: 综合提高 (限时25分钟) 7.若y =f (x )与y =g (x )是[a ,b ]上的两条光滑曲线的方程,则这两条曲线及直线x =a ,x =b 所围成的平面区域的面积为 ( ).

1.7.1定积分在几何中的应用(教学设计)

1.7.1定积分在几何中的应用(教学设计) 教学目标: 知识与技能目标: 通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法。 过程与方法目标: 探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思路和方法。 情感、态度与价值观目标: 探究式的学习方法能够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神;探究过程中对学生进行数学美育的渗透,用哲学的观点指导学生自主探究。 教学重点:应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的价值。 教学难点:如何恰当选择积分变量和确定被积函数。 教学过程: 一、复习回顾: 复习定积分的概念、定积分的计算、定积分的几何意义. 二、师生互动,新课讲解: 问题1:(1).计算 dx x ? --2 2 2 4 (2).计算 s i n x d x π π -? 解:(1) 222 2 22 1 4?=-? -πdx x (2) 0sin =?- π πdx x 问题2:用定积分表示阴影部分面积

解:图1 选择X 为积分变量,曲边梯形面积为 图2 选择Y 为积分变量,曲边梯形面积为 问题3:探究由曲线所围平面图形的面积解答思路 例1(课本P56例1).计算由曲线2x y =与 x y =2 所围图形的面积. 分析:找到图形----画图得到曲边形. 1、曲边形面积解法----转化为曲边梯形,做出辅助线. 2、定积分表示曲边梯形面积----确定积分区间、被积函数. 3、计算定积分. 解:作出草图,所求面积为图中阴影部分的面积. 解方程组?? ???==22 x y x y 得到交点横坐标为 0=x 及1=x dx x f dx x f s b a b a ??-=)()(21dy y g b a ?)(1=s dy y g b a ? )(2 -

定积分在生活中地应用

PINGDINGSHAN UNIVERSITY 院系 : 经济与管理学院 题目 : 定积分在生活中的应用 年级专业: 11级市场营销班 学生姓名 : 孙天鹏

定积分在生活中的应用 定积分作为大学里很重要的一部分,在生活有广泛的应用。微积分是与应用联系发展起来的,最初牛顿应用微积分是为了从万有引力导出行星三定律,此后,微积分极大的推动了数学的发展,同时也极大的推动了天文学、物理学、化学、工程学、经济学等自然科学的发展,而且随着人类知识的不断发展,微积分正指引着人类走向认知的殿堂。 一、定积分的概述 1、定积分的定义: 设函数()f x 在区间[],a b 上有界. ①在[],a b 中任意插入若干个分点011n n a x x x x b -=<< <<=,把区间[],a b 分成 n 个小区间[][][]01121,,,, ,,,n n x x x x x x -且各个小区间的长度依次为110x x x ?=-, 221x x x ?=-,…,1n n n x x x -?=-。 ②在每个小区间[]1,i i x x -上任取一点i ξ,作函数()i f ξ与小区间长度i x ?的乘积 ()i i f x ξ?(1,2, ,i n =) , ③作出和 ()1 n i i i S f x ξ==?∑。记{}12max ,,,n P x x x =???作极限()0 1 lim n i i P i f x ξ→=?∑ 如果不论对[],a b 怎样分法,也不论在小区间[]1,i i x x -上点i ξ怎样取法,只要当 0P →时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数()f x 在 区间[],a b 上的定积分(简称积分),记作()b a f x dx ?,即 ()b a f x dx ?=I =()0 1 lim n i i P i f x ξ→=?∑, 其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,],a b ??叫做积分区间。

定积分在物理中的应用

定积分在物理中的应用 定积分在物理学中有重要的应用.用定积分解决物理问题的关键在于:首先对各种常用坐标系有个整体概念;其次理解各种常用坐标系下“数学微元”的意义;第三对被解决的问题本身有深刻的认识.掌握了这三个关键,可以针对被处理的具体问题选择合适的坐标系,确定积分上限,最后根据计算公式建立积分式来解决相关问题. 1、用定积分计算液体静压力 例 1 一管道的圆形闸门,半径为3米,问水平面齐及直径时,闸门所受到的水的静压力为多大? 解 为方便起见,取水平直径为y 轴,此时圆的方程为229x y +=.由于在相同深度处水的静压强相同,其值等于水的比重与深度的乘积,故当x ?很小时,闸门上从深度x 到x x +?这一狭条上所受的静压力为 dx x vx dP P 292-==?. 从而闸门上所受的总压力为 v dx x vx P 18923 02=-=?. 2、用定积分计算变力作功 由物理学知道,如果物体在直线运动的过程中有一个不变的力F 作用在这个物体上,且该力的方向与物体运动的方向一致,那么在物体移动距离S 时,力F 对物体所作的功S F W ?=.若物体在运动中所受到的力是变化的,则此情况下就是变力沿直线作功问题. 设物体在变力)(x F 作用下从a x =移动到b x =.取小区间],[dx x x +,在这段距离内物体受力可近似等于)(x F ,所以功元素为dx x F dW )(=,故 ?=b a dx x F W )(. 例2 把一个带电量为q +的点电荷放在r 轴的原点o 处,它产生一个电场,并对周围的电荷产生作用力.由物理学知道,如果有一个单位正电荷放在这个电场中距离原点o 为r 的地方,那么电场对它的作用力的大小为2 r q k F =(k 是常v x

定积分在几何上的应用教案(3)

定积分在几何上的应用教案(3) 目的要求 1.掌握定积分解决实际问题的基本思想方法:分割、近似代替、作和、求极限. 2.继续了解定积分表达式的几何意义,巩固运用定积分知识综合求解平面图形的面积和旋转体的体积. 内容分析 1.在数学中,应用可以分为不同的层次:①数学知识的直接应用,如由基本积分公式,利用直接积分法求不定积分,这是最低层次的一种应用;②运用数学知识解决由具体问题抽象出来的数学模型,如利用定积分解决平面图形的面积和旋转体的体积问题,这是高一级层次的应用;③运用数学知识直接解决现实问题,这时,需要对具体的问题进行抽象概括,抽象出具体的数学模型,而后进行解决,这是最高层次的一种应用.本章涉及的应用问题主要是第②种应用,即运用数学知识解决数学模型.为了使学生对定积分的应用有充分的认识,本课时安排为一节习题课,并从中挑选了一些从实际问题抽象出来的数学模型.学生通过解决这些问题的训练,认识到所学知识在实际问题中用处非常大,这对于培养他们应用数学的意识是非常有帮助的. 2.本节课的重点是训练学生运用定积分求平面图形的面积和旋转体的体积,难点是如何将具体问题转化为求定积分的问题.教学中要充分注意数形结合,即在运算过程中适当加强几何直观,不但能由定积分表达式知道其几何意义,也能由图形知道它所表达的定积分.另外,在本节教学时,一定要控制教学内容的深度,决不能按高等学校的内容任意延伸. 教学过程 (一)内容提要 多媒体显示图形,学生口答下列公式(略)及注意事项. 1.各种情形下的平面图形的面积公式. 2.各种情形下的旋转体的体积公式. (二)例题示范 例1 过曲线y=x2(x≥0)上某一点A作一切线l,使之与曲线 (1)切点A的坐标; (2)过切点A的切线l的方程; (3)上述所围成的平面图形绕x轴旋转一周所得旋转体的体积. 解:设点A的坐标为(a,a2),过点A的切线与曲线y=x2(x≥0)及x轴围成的图形如图1中的阴影部分. (1)由已知可得直线l的斜率为k=y′|x=a=2a,故过切点A的切线l的方程为y-a2=2a(x-a), 即y=2ax-a2. ∴切点A的坐标为(1,1). (2)∵l的斜率k=2, ∴l的方程为y-1=2(x-1),即y=2x-1. 变式题:过定点A(1,0)引抛物线y=x2+3的两条切线AP、AQ,试求: (1)抛物线与所引两条切线围成的平面图形的面积; (2)由两切点的连线与抛物线围成的图形绕x轴旋转一周产生的旋转体的体积. 略解:(1)先求得切点为P(-1,4)、Q(3,12),故切线AP的方程为:2x+y-2=0;切线AQ的方程为:6x-y-6=0. 过A点作AB⊥x轴,交抛物线于B(1,4),则所求图形面积为 (3)直线PQ的方程为:y=2x+6, 说明: 例1 及变式题主要训练定积分在几何上的应用,综合考查了运用数学知识分析问题和解决问题的能力. 例2 (1999年上海高考题)平地有一条水沟,沟沿是两条长100米的平行线段,沟宽AB为2米,与沟沿垂直的平面与沟的交线是一段抛物线,抛物线的顶点为O,对称轴与地面垂直,沟深1.5米,沟中水深1米.(1)求水面宽;(2)如图2所示形状的几何体称为柱体.已知柱体的体积为底面积乘以高,问沟中的水有多少立方米?(3)若要把这条水沟改挖(不准填土)成截面为等腰梯形的沟,使沟的底面与地面平行,则改挖后的沟底宽为多少米时,所挖的土最少? 解:(1)如图2,建立直角坐标系,设抛物线的方程为y=ax2. (2)水的体积

定积分的几何应用.

走积分在几何中的应用 一、定积分的微元法 二、平面图形的面积 三、旋转体的体积 —、定积分 用定积分表示一个量,如几何量.物理量或其他的量,一般分四步考虑,我们来回顾一下解决曲边梯形面积的过程. 第一步分割:将区间[偽刃任意分为n个子区间|七“,兀]= 2,…,旳),其中心二a9 x,= b?

第二步取近似:在子区间[£?1,七]上,任取一点不,作小曲边梯形面积44,的近似值, AA Z ?/(^)2Lr,?(i=l,2,...n) 第三步求和:曲边梯形面积A 1=1 第四步取极限:n-> oo, 2 = max{2\x r} -> 0, A = \im^ f(^i)Ax i =£/(xXlr. /=! 第二步取近似时其形式/(^Ar-,与第四步积分( f(x)dx中的被积分式f (x)dx具有类同的形武,如果把第二步中的$用X替代,W 用dx替代,那么它就是第四步积分中的被积分式,基于此,我们把上述四步简化为三步: 第一步选取积分变量,例如选取兀,并确定其范围,例如XG [a9b]9在其上任取一个子区间记作[x, x + dx]. 第二步取所求量I在子区间[x9 x + dx]上的部分量M的近似值 △/ ? f (x)dx9 第三步取定积分I = [7(x)dr?

▲ 几点说明: (1)取近似值时,得到的 是形如r (“)dx 的近似值, 并且要求A/ - / (x)dx 是dx 的高 阶无穷小量,关于 常能满足. (2)满足(1)的要求后,/(x)dx 是所求量I 的微分, 所以第二步中的近似式常用微分形式写出,即 61 = f(x)dx f df 称为量f 的微元. 上述简化了步骤的定积分方法称为定积分的微 元法. r 二.平面图形的面积 计算由区间⑷⑵上的两条连续曲线y = /(x)与〉,=g(x), 以及两条直线与所围成的平面图形的面积。 y O a xx + (lx X 由微元法,取x 为积分变量, 其变化范 为区间[a 9 b ],在 区间⑷刃的任意一个小区间 |x,x+dx ]上,相应的面积可 以用X 点处的函? 【值 后一个要求在实际问丿 中常

相关主题
文本预览
相关文档 最新文档