当前位置:文档之家› 基于多传感器信息融合的目标跟踪与防撞决策

基于多传感器信息融合的目标跟踪与防撞决策

基于多传感器信息融合的目标跟踪与防撞决策
基于多传感器信息融合的目标跟踪与防撞决策

多目标跟踪

多目标跟踪的基本理论 所谓多目标跟踪,就是为了维持对多个目标当前状态的估计而对所接收到的量测信息进行处理的过程。 目标模型不确定性 是指目标在未知的时间段内可能作己知的或未知的机动。一般情况下,目标的 非机动方式及目标发生机动时的不同的机动形式都可以通过不同的数学模型来加 以描述。在进行目标跟踪过程中,采用不正确的目标运动模型会导致跟踪系统跟踪 性能的严重下降。因而在目标跟踪过程中,运动模型采用的正确与否对目标的跟踪 性能是至关重要的。 观测不确定性 是指由传感器系统提供的量测数据可能是外部的干扰数据,它有可能是由杂波、虚警和相邻的目标所引起的,也可能是由被跟踪目标的对抗系统所主动发出来的虚假信息。这种不确定性在本质上显然是离散的,给目标跟踪问题提出了极大的挑战,相应地也就产生了数据关联的问题。 数据关联 数据关联的作用主要有:航迹保持、航迹建立和航迹终结。 数据关联算法主要有:“最近邻”方法,“全邻”最优滤波器方法、概率数据关联滤波器方法、多模型方法、相互作用多模型一概率数据关联滤波器方法、联合概率数据关联滤波器方法、多假设方法、航迹分裂方法。 1.“最近邻”方法的思想是:在落入跟踪波门中的所有量测中,离目标跟踪预测位置最近的量测认为是有效量测。“最近邻”方法的好处是算法最简单,但是精度差,抗杂波干扰的能力差。“最近邻”方法因为简单,算法易实现,因此也是目前广泛采用的一种数据关联算法. 2 .“全邻”最优滤波器 Singer,Sea和Housewright发展了一类“全邻”滤波器,这种滤波器不仅考虑了所有候选回波(空间累积信息),而且考虑了跟踪历史,即多扫描相关(时间累积信息)假定多余回波互不相关并且均匀分布于跟踪门内,则任何跟踪门的体积V内多余回波的数目Cx服从均值为βV的泊松分布。假定在K-1时刻,轨迹a′正确的概率为Pa(k-1)。关键问题是计算k时刻轨迹的正确概率Pa(k)。

基于多模态数据融合的视觉目标跟踪算法研究

基于多模态数据融合的视觉目标跟踪算法研究计算机科学技术的高速发展带动了计算机视觉领域的革新,人类对机器学习和人工智能的需求日益增加,这使得视觉目标跟踪成为了当前研究的热门课题。在无人驾驶、安防、人机交互、导航和制导等民事和军事应用领域,视觉目标跟踪扮演着举足轻重的角色。 经过了几十年的发展,当前的目标跟踪算法依然面临着来自外部环境和目标自身的具有挑战性的干扰因素,如背景杂乱、遮挡、低照度、尺度变化、形变、运动模糊和快速运动等,它们严重制约着其发展。本文通过研究不同模态的数据之间的互补特性,结合不同跟踪方法的优缺点分析,提出了一种基于“检测跟踪模型”的多模态数据融合跟踪算法。 该算法采用红外和可见光图像中目标的全局/局部的多种特征,能够应对当前目标跟踪领域所面临的多种复杂干扰。首先,本文算法设计了两个跟踪模块:基于统计模型的跟踪模块(HIST模块)和基于相关滤波的跟踪模块(CFT模块)。 其中,HIST模块采用具有全局统计特性的RGB颜色直方图作为跟踪特征,结合贝叶斯准则设计了一种目标/背景区分算子用于区分目标和干扰物,是一种生成式和判别式的混合跟踪模块。该模块引入了积分图策略,以实现基于检测跟踪模型的改进,得到可与CFT模块的跟踪结果相融合的改进模块。 而CFT模块基于KCF跟踪原理,采用了多种特征(HOG、CN、图像强度)进行跟踪任务,是一种判别式跟踪模型,本文基于检测跟踪模型对该模块进行了改进,并设计了一种去噪融合规则来融合由多种特征得到的响应函数。其次,本文基于KL 距离提出了一种可靠性度量规则来度量上述两个跟踪模块的输出结果的可靠性。 根据度量结果,本文还设计了一种决策级的自适应融合策略来融合上述跟踪

多传感器目标跟踪

Multi-sensor Track-to-Track Fusion Using Simplified Maximum Likelihood Estimator for Maneuvering Target Tracking Li-Wei Fong Department of Information Management Yu-Da College of Business Miaoli, Taiwan ROC Email: fongliwei@https://www.doczj.com/doc/3716985850.html,.tw Abstract—The focus of this paper is to present the distributed architecture of track-to-track fusion for computing the fused estimate from multiple filters tracking a maneuvering target with the simplified maximum likelihood estimator. The architecture consists of sensor-based Kalman filters, local processors and global fuser. Each sensor tracker utilized in the reference Cartesian coordinate system is described for target tracking when the radar measures range, bearing and elevation angle in the spherical coordinate system. The Bar-Shalom track-to-track fusion algorithm is used in each local processor to merge two tracks representing the same target. The decoupled process is adopted to simplify the batch form of the maximum likelihood estimator due to the block-diagonal covariance matrix. The resulting global fuser can be implemented in a parallel structure to facilitate estimation fusion calculation. Simulation results show that the proposed fusion estimator has computational advantages over the maximum likelihood estimator with similar performance. I.I NTRODUCTION Modern engineering applications utilize a great variety of sensors to monitor and control dynamic systems in order to obtain a satisfactory control performance of the certain processes, and thus some appropriate methods are required. Multi-sensor data fusion is defined as the process of integrating information from multiple sources to produce the most specific and comprehensive unified data about an entity, activity or event [1]. In tracking multiple objects environment, multi-sensor fusion algorithms have been applications in air traffic control, tactical defense, robotics, computer vision, industry and other systems where measurements from multiple sensors are used to estimate the states (position, velocity, etc.) of multiple objects [2]. Currently there exist two commonly used architectures for Kalman-filter-based multi-sensor data fusion, including measurement fusion (called centralized architecture) and state-vector fusion (called distributed architecture) [3]. Measurement fusion methods directly fuse the sensor measurements to obtain a weighted or combined measurement and then use a single Kalman filter to obtain the final state estimate based upon the fused observation. State-vector fusion methods use a group of Kalman filters to obtain individual sensor-based state estimates which are then fused to obtain an improved joint state estimate. Points cited in favor of state-vector fusion methods have a lower computation and communication loading and have parallel implementation and fault-tolerance. In distributed fusion architecture, each local sensor sends linearly or nonlinearly processed data to the fusion center. Although, measurement errors due to one sensor are independent from those due to other sensors, the track estimates corresponding to the same target that are computed by the different local processors are correlated due to the common process noises affecting the target dynamics. Track-to-track fusion is an important issue in multi-sensor data fusion which has been widely studied for more than two decades [4-8]. In a distributed multi-sensor environment, there are still several issues of interest in the data fusion tracking algorithm study: 1)How to optimally combine the state estimates from multiple local trackers, namely, the track-to-track fusion with an arbitrary number of sensors. 2)How to fast search the fusion weights to yield near optimal or optimal estimate performance for the real time applications. The goal of this work is to construct a specific processing architecture, shown in Fig. 1, for track formation against a single maneuvering target. In distributed fusion architecture, each sensor-based tracker processes its observation locally to produce sensor tracks, and then communicates to the assigned local processors, the local processors correlate and compute track-to-track estimates and transmit results to the global fuser, and the global fuser merges the local estimates to provide a single global estimate of the targets to be tracked. Each sensor tracker utilized in the Reference Cartesian Coordinate System (RCCS) is described for target tracking when the radar measures range, bearing and elevation angle in the Spherical Coordinate System (SCS). The Bar-Shalom track-to-track fusion algorithm [4] is used in each local processor to merge two tracks representing the same target. The number of the local processors is chosen by 2-combinations of a set with N distinct sensor trackers, called decoupled process, which simplifies the computational structure of the original batch form of the Maximum Likelihood (ML) estimator [6, 7] due to

目标跟踪信息融合及仿真程序

目标跟踪信息融合及仿真程序 质心算法是最简单的定位算法,如图2-1所示,四个小圆为观测站,实线三角形是目标真实的位置,假设四个圆形观测站都探测到目标的存在,则根据质心定位算法,目标的位置(x,y )可以表示为:4 4 321x x x x x +++= , 4 4 321y y y y y +++= ,这里观测站得位置为),(i i y x ,同理,当观测站数目为N 时,这时候的质心定位算法可以表示为: ???? ? ? ??????=??????∑∑==N i i N i i y N x N y x 11 11 图1 质心定位 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 质心定位算法Matlab 程序 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function main % 定位初始化 Length=100; % 场地空间,单位:米 Width=100; % 场地空间,单位:米 d=50; % 目标离观测站50米以内都能探测到,反之则不能 Node_number=6; % 观测站的个数 for i=1:Node_number % 观测站的位置初始化,这里位置是随机给定的 Node(i).x=Width*rand; Node(i).y=Length*rand; end % 目标的真实位置,这里也随机给定 Target.x=Width*rand; Target.y=Length*rand; % 观测站探测目标 X=[]; for i=1:Node_number

静止背景下的多目标追踪(附matlab程序)

静止背景下的多目标追踪 随着计算机技术以及智能汽车行业的发展,多目标的检测与追踪的实用性与研究价值逐渐提高。在计算机视觉的三层结构中,目标跟踪属于中间层,是其他高层任务,例如动作识别以及行为分析等的基础。其主要应用可包括视频监控,检测异常行为人机交互,对复杂场景中目标交互的识别与处理,以及虚拟现实及医学图像。 目标跟踪又包括单目标跟踪和多目标跟踪。单目标跟踪可以通过目标的表观建模或者运动建模,以处理光照、形变、遮挡等问题,而多目标跟踪问题则更加复杂,除了单目标跟踪回遇到的问题外,还需要目标间的关联匹配。另外在多目标跟踪任务中经常会碰到 目标的频繁遮挡、轨迹开始终止时刻未知、目标太小、表观相似、目标间交互、低帧率等等问题。 静止背景下的多目标追踪可分为两步来实现,第一步是在视频文件的每帧中检测出移动的目标,第二步是将检测到的目标与跟踪轨迹实时匹配。在本次实验中,利用混合高斯模型进行背景减除,使用形态学操作消除噪声,通过卡尔曼滤波预测目标位置,最后利用匈牙利算法进行匹配,实现静止背景下的多目标追踪。 1 实验原理 1.1 混合高斯模型 单高斯模型是利用高维高斯分布概率来进行模式分类: 11()exp[(x )(x )] 2T x N C μσμ-=--- 其中μ用训练样本均值代替,σ用样本方差代替,X 为d 维的样本向量。通过高斯概率公式就可以得出类别C 属于正(负)样本的概率。 而混合高斯模型就是数据从多个高斯分布中产生,每个GMM 由k 个单高斯分布线性叠加而成。相当于对各个高斯分布进行加权,权系数越大,那么这个数据属于这个高斯分布的可能性越大。 (x)(k)*p(x |k)P p =∑ 利用混合高斯模型(GMM)可以进行背景减除,将前后景分离,得到移动的目标。对每个像素点建立由k 个单高斯模型线性叠加而成的模型,在这些混合高斯背景模型中,认为像素之间的颜色信息互不相关,对各像素点的处理都是相互独立的。单个像素点在t 时刻服从混合高斯分布概率密度函数: ,,,1 (x )(x ,,)k t i t t i t i t i p w ημτ==∑ 其中k 为分布模式总数, ,,(x ,,)t i t i t ημτ为t 时刻第i 个高斯分布,,i t μ为其均值,,i t τ为其协方差矩阵。 在获得新一帧图像后更新混合高斯模型。用图像中的每个像素点与混合高斯模型匹配,如果成功则判定该点为背景点, 否则为前景点。当背景更新完成后,高

信息融合技术

信息融合技术 1引言 融合(Fusion)的概念开始出现于70年代初期,当时称之为多源相关、多源合成、多传感器混合或数据融合(Data Fusion),现在多称之为信息融合(Information Fusion)或数据融合。 融合就是指采集并集成各种信息源、多媒体与多格式信息,从而生成完整、准确、及时与有效的综合信息过程。数据融合技术结合多传感器的数据与辅助数据库的相关信息以 获得比单个传感器更精确、更明确的推理结果。经过融合的多传感器信息具有以下特征:信息的冗余性、互补性、协同性、实时性以及低成本性。 多传感器信息融合与经典信号处理方法之间存在本质 的区别,其关键在于信息融合所处理的多传感器信息具有更 为复杂的形式,而且可以在不同的信息层次上出现。 2信息融合的结构模型 由于信息融合研究内容的广泛性与多样性,目前还没有 统一的关于融合过程的分类。 2、1按照信息表征层次的分类系统的信息融合相对于信息表征的层次相应分为三类:数据层融合、特征层融合与决策层融合。 数据层融合通常用于多源图像复合、图像分折与理解等方面,采用经典的检测与估计方法。特征层融合可划分为两大

类:一类就是目标状态信息融合,目标跟踪领域的大体方法都可以修改为多传感器目标跟踪方法;另一类就是目标特性融合,它实质上就是模式识别问题,具体的融合方法仍就是模式识别的相应技术。 决策层融合就是指不同类型的传感器观测同一个目标,每个传感器在本地完成处理,其中包括顶处理、特征抽取、识别或判决,以建立对所观察目标的初步结论。然后通过关联处理、决策层触合判决,最终获得联合推断结果。 2、2JDL模型(Joint Directors of Laboratories, JDL)与λ-JDL模型该模型将融合过程分为四个阶段:信源处理,第一层处理(即目标提取)、第二层处理(即态势提取)、第三层提取(即威胁提取)与第四层提取(即过程提取)。模型中的每一个模块都可以有层次地进一步分割,并且可以采用不同的方法来实现它们。 λ-JDL模型为JDL模型的简化,把0层包含进了1层, 4层融入其她各层中。 2、3按照数据流融合的位置进行分类多传感器融合系统中的一个关键问题就是在何处对数据流进行融合。按照融合位置的不同可以将融合结构分为以下三种类型:集中式融合、分布式多传感器融合与无中心融合结构。对于特定的信息融合应用不可能找到一种最优的融合结构,结构的选择必须综合考虑计算资源、可用的通信带宽、精度要求、传感器能力

一种基于多传感器多目标跟踪数据的时间对准方法

万方数据

万方数据

万方数据

一种基于多传感器多目标跟踪数据的时间对准方法 作者:李政, 谭伟, 马红江, 杜营营, 陆百川, LI Zheng, TAN Wei, MA Hongjiang, DU Yingying, LU Baichuan 作者单位:重庆交通大学交通运输学院,重庆,400074 刊名: 交通信息与安全 英文刊名:COMPUTER AND COMMUNICATIONS 年,卷(期):2011,29(1) 被引用次数:1次 参考文献(10条) 1.梁凯;潘泉;宋国明多传感器时间对准方法的研究[期刊论文]-陕西科技大学学报(自然科学版) 2006(03) 2.严朝系统误差校正中的时间对准问题研究 2009(05) 3.罗素云AIS与雷达目标位置数据融合方法的研究[学位论文] 2003 4.张震龙不确定性推理与时空对准技术研究[学位论文] 2005 5.Baichuan L U;Meiling H Traffic flow predict-ion based on wavelet analysis,genetic algorithm and artificial neural network Proceedings 2009 6.夏伟;李朝辉;常春藤MATLAB控制系统仿真与实例详解 2008 7.Jun M A;Li Xiaodong;Meng Ying Research of urban traffic flow forecasting based on neural network [期刊论文]-Acta Electronica Sinica 2009(05) 8.郝勇;范君晖系统工程方法与应用 2007 9.陈杰MATLAB宝典 2006 10.Shen Ying;Xue An-ke;WANG Rui-rong Application of curve-fitting in evaluation for information fusion system[期刊论文]-Journal of Hangzhou Institute of Electronic Engineering 2005(02) 本文读者也读过(10条) 1.魏武.张起森.黄心汉.WEI Wu.ZHANG Qi-sen.HUANG Xin-han一种基于多传感器的交通监控系统智能接口[期刊论文]-长沙交通学院学报2000,16(3) 2.李兆展.林艳红.李若仲.Li Zhaozhan.Lin Yanhong.Li Ruozhong制导雷达组网多站数据的时间对准问题研究[期刊论文]-战术导弹技术2010(1) 3.万琦AIS在广州交管系统中的应用分析[会议论文]-2002 4.李云.郝钢.张玉茹.LI Yun.HAO Gang.ZHANG Yu-ru自校正分布式观测融合Kalman估值器[期刊论文]-哈尔滨商业大学学报(自然科学版)2011,27(1) 5.李政.谭伟.马红江.杜营营.陆百川一种基于多传感器多目标跟踪数据的时间对准方法[会议论文]-2010 6.刘利频.温慧英.徐建闽.Liu Lipin.Wen Huiying.Xu Jianmin多类型传感器实时交通数据采集和车型自动分类系统设计[期刊论文]-交通与计算机2005,23(1) 7.孙为民.周永丰.Sun Weimin.Zhou Yongfeng时间对准误差分析实验[期刊论文]-舰船电子工程2006,26(3) 8.郝钢.叶秀芬.HAO Gang.YE Xiu-fen多传感器加权观测融合自适应UKF滤波器[期刊论文]-宇航学报2011,32(6) 9.杜磊.王党卫.姚迪多源目标数据融合方法设计与实现[期刊论文]-科技信息2011(13) 10.李莉.LI Li时间配准在多传感器数据处理中的应用[期刊论文]-仪器仪表用户2011,18(3) 引证文献(1条) 1.斯海林.李标.邓天民城市3D GIS实景采集中多传感器的时空配准研究[期刊论文]-公路与汽运 2013(4)

多目标跟踪算法

多目标跟踪算法 先来回顾下卡尔曼滤波器: 假定k k x |表示当前k 时刻目标的状态,k 1k x |+表示下一个时刻目标的状态,k z 则表示k 时刻的实际观测。一般地模型都假定为线性的: 这里的1k x +为k+1时刻目标的状态,k x 为k 时刻的状态,为状态转移矩阵,而是服从均值为0方差为的正态分布,表示由噪声等引起的干扰。卡尔曼滤波采取初步估 计: 这里的估计只是初步的估计,状态估计与实际状态的误差矩阵等于状态1k x +的的方差,即: 更新(修正): 这里已知了实际观察,同样是假定观测与状态的似然关系是线性的,即满足: 服从一个均值为0方差为 的正态分布。 卡尔曼滤波器给出了经过更新后得到的比较合理的k+1时刻的估计为: 相应地得到了更新后方差的估计: 这里: 其实这些都是通过最小二乘法推出来的,即使得误差: 最小,而初步估计也是通过最小二乘法获得,即使得: 最小。有了上述估计方程后,便可以获得一个估计流程:

下面再介绍下贝叶斯公式 先看一个定义 马氏链: 设{} ,,,k j i E =为有限集或可列集,称()0n n X ≥为定义在概率空间()P F,,Ω上,取值于空间E 的马氏链,如果满足下面的马氏性:对一切n 10i i i ,,, 有 [][]1n 1n n n 1n 1n 00n n i X i X P i X i X i X P ----======|,,| 若左边的条件概率有定义,则称[]i X j X P 1n n ==-|为在n-1时刻状态为i,在n 时刻在j 的转移概率函数,若它与n 无关,则记为ij p ,并称为时齐的或齐次的。显然这里的马氏性接近于独立性,在一定程度上可以称为无记忆性或无后效性。 下面我们来推导贝叶斯公式: 容易由条件概率公式定义知 而 ()()()()()()( ) ()() ()( ) ()() ( )() ()()() 1 k 1 k 1k k k 1 k k 1k k k 1k k 1k k k 1k k k k k 1k 1k 1k k k 1k k k k k 1k 1k 1k k k 1k 1k 1k k k 1k 1k 1k 1k 1k z x f dx x f x z f x f x z f z f dx x f x z f x z f z f x f x z f x z f dx z x f x z f z x f x z f x f +++++++++++++++++++++++== ? == ?? ?||||||||||||||||||||||||| 就得到了更新后的公式如下: 这里记 于是就可以得到贝叶斯滤波器跟踪流程如下: 实际上可以证明,卡尔曼滤波器是贝叶斯滤波器的一种特殊形式,由于假定噪声服从正态分布,同样地观测与状态估计的误差也是服从正态分布,那么不难得:

多目标跟踪方法研究综述

经过近40多年的深入研究和发展,多目标跟踪技术在许多方面都有着广泛应用和发展前景,如军事视觉制导、机器人视觉导航、交通管 制、 医疗诊断等[1-2]。目前,虽然基于视频的多运动目标跟踪技术已取得了很大的成就,但由于视频中图像的变化和物体运动的复杂性,使得对多运动目标的检测与跟踪变得异常困难,如多目标在运动过程中互遮挡、监控场景的复杂性等问题,解决上述难题一直是该领域所面临的一个巨大挑战,因此,对视频中多目标跟踪技术研究仍然是近年来一个热门的研究课题[3-5]。 1、多目标跟踪的一般步骤 基于视频的多目标跟踪技术融合了图像处理、模式识别、人工智能、 自动控制以及计算机视觉等众多领域中的先进技术和核心思想。不同的多目标跟踪方法其实现步骤有一定的差异,但多目标跟踪的主要 流程是相同的,如图1所示,其主要包括图像预处理、 运动目标检测、多目标标记与分离、多目标跟踪四个步骤。 图1多目标跟踪基本流程图 2、多目标跟踪方法 多目标跟踪方法可以根据处理图像或视频获取视点的多少分为两大类,一类是单视点的多目标跟踪,另一类就是多视点的多目标跟踪。 2.1单视点的方法 单视点方法是针对单一相机获取的图像进行多目标的检测和跟踪。该方法好处在于简单且易于开发,但由于有限的视觉信息的获取,很难处理几个目标被遮挡的情况。 块跟踪(Blob-tracking)是一种流行的低成本的跟踪方法[6-7]。这种方法需要首先在每一帧中提取块,然后逐帧寻找相关联的块,从而实现跟 踪。 例如BraMBLe系统[8]就是一个基于已知的背景模型和被跟踪的人的外表模型计算出块的似然性的多块跟踪器。这种方法最大的不足之处在于:当由于相似性或者遮挡,多个目标合并在一起时,跟踪将导致失败。因此,可以取而代之的方法是通过位置、外观和形状保留清晰目标的状态。文献[9]利用组合椭圆模拟人的形状,用颜色直方图模拟不同人的外观,用一个增强高斯分布模拟背景以便分割目标,一旦场景中发现对应于运动头部的像素,一个MCMC方法就被用于获取多个人的轮廓的最大后验概率,在单相机的多人跟踪应用中取得了非常有意义的结果。Okuma等人提出了一种将Adaboost算法和粒子滤波相结合的方法[10]。该方法由于充分利用了两种方法的优点,相比于单独使用这两种方法本身,大大降低了跟踪失败的情形,同时也解决了在同一框架下检测和一致跟踪的问题。Brostow等人提出了一个用于在人群中检测单个行人的特征点轨迹聚类的概率框架[11]。这个框架有一个基本假设是一起运动的点对可能是同一个个体的一部分,并且把它用于检测和最终的跟踪。对于完全和部分遮挡目标以及外观变化,这些方法和另外一些相似的方法都有很大的局限性。 为了解决遮挡问题,一系列单视点跟踪技术应运而生。典型的方法 是利用块合并来检测遮挡的发生[12]。当被跟踪的点消失, 跟踪特征点的方法就简单的将其作为一个被遮挡特征点。近年来,基于目标轮廓和外观的跟踪技术利用隐含的目标到相机的深度变化来表示和估计目标间的遮挡关系。但大多数方法都只能解决部分遮挡,不能解决完全被遮挡 的情况。 另外,小的一致运动被假设为是可以从遮挡视点中可以预测运动模式的,这些给没有预测运动的较长时间的遮挡的处理带来问题。尽管这些单视点的方法有较长的研究历史,但这些方法由于不能明锐的 观察目标的隐藏部分,因此不能很好地解决有2或3个目标的遮挡问题。 2.2多视点的方法 随着复杂环境中对检测和跟踪多个被遮挡的人和计算他们的精确 位置的需要,多视点的方法成为研究的热点。 多视点跟踪技术的目的就是利用不同视点的冗余信息,减少被遮挡的区域,并提供目标和场景的3D信息。尽管通过相机不能很好地解决目标跟踪问题,但却提出了一些很好的想法,如选择最佳视点,但这些方法都以实际环境模型和相机校正为特征。 90年代后半期,在很多文献中给出了多视点相关的多目标跟踪方法。 比如利用一个或多个相机与观察区域相连的状态变化映射,同时给出一系列的行为规则去整合不同相机间的信息。利用颜色在多个视点中进行多目标的跟踪的方法,该方法模拟了从基于颜色直方图技术的 背景提取中获得的连接块并应用其去匹配和跟踪目标。 除此之外,也有在原来的单视点跟踪系统进行扩展的多视点跟踪方法。该方法主要是通过一个预测,当预测当前的相机不在有一个好的视点时,跟踪就从原来凯斯的那个单相机视点的跟踪转换到另外一个相机,从而实现多视点的跟踪。基于点与它对应的极线的欧氏距离的空间匹配方法、贝叶斯网络和立体相对合并的方法都是多目标多视点跟踪的常见方法。尽管这些方法都试图去解决遮挡问题,但由于遮挡的存在,基于特征的方法都不能根本解决,其次,这些方法中的遮挡关系的推理一般都是根据运动模型,卡尔曼滤波或者更普遍的马尔科夫模型的时间一致性来进行的。因此,当这个过程开始发散,这些方法也不能恢复遮挡关系。 最近一种基于几何结构融合多个视点信息的Homegraphicoccupancyconsrraint(HOC)[12]方法,可以通过在多场景平台对人的定位来解决遮挡问题。仅采用随时间变化的外表信息用于从背景中检测前景,这使得在拥挤人流的场景中的外表遮挡的解决更健壮。利用多视点中的前景信息,主要是试图找到被人遮挡的场景点的图像位置,然后这些被遮挡的信息用于解决场景中多个人的的遮挡和跟踪问题。在这种思想指导下,Mittal,Leibe,Franco等的研究工作和机器人导航中基于遮挡网格的距离传感器的并行工作是相似的,这些方法在融合3D空间信息的时候需要进行校正相机。但HOC方法是完全基于图像的,仅需要2D结构信息进行图像平面的融合。当然也有另外一些不需要进行相机校正的算法被提出,但需要学习一个与相机最小相关的信息。在目标跟踪过程中,由于这些方法依赖于单个相机的场景,对于拥挤场景中目标分布密度增加九无能为力了。在HOC的多视点的目标跟踪中,对于任何单一相机的场景,或者相机对的场景,都不需要进行定位和跟踪目标,而是从所有相机的场景中收集证据,形成一个统一的框架,由于该方法能够从多个时间帧的场景中进行场景被遮挡概率的全局轨迹优化,因此可以同时进行检测和跟踪。 3、总结 动态目标检测与跟踪是智能监控系统的重要组成部分,它融合了图像处理、模式识别、自动控制及计算机应用等相关领域的先进技术和研究成果,是计算机视觉和图像编码研究领域的一个重要课题,在军事武器、工业监控、交通管理等领域都有广泛的应用。尤其是对于多目标检测与跟踪中的遮挡与被遮挡的处理,对提高智能监控中目标的行为分析有着重要的意义。随着监控设备的发展和设施的铺设,多视点的场景图像是很容易得到的,因此借助信息融合的思想,充分利用不同角度对目标的描述信息,可以很大地改进目前基于单视点的多目标检测和跟踪的精度,能够很好地解决单视点方法中不能很好解决的遮挡问题。参考文献 [1]胡斌,何克忠.计算机视觉在室外移动机器人中的应用.自动化学报,2006,32(5):774-784. [2]A.Ottlik,H.-H.Nagel.InitializationofModel-BasedVehicleTrackinginVideoSequencesofInner-CityIntersections.InternationalJournalofComputerVision,2008,80(2):211-225.多目标跟踪方法研究综述 苏州联讯图创软件有限责任公司 陈宁强 [摘要]文章对目前现有的多目标跟踪方法从信息获取的不同角度进行了综述。主要分析比较了目前单视点和多视点目标跟踪方 法对于目标遮挡问题的处理性能,并指出多视点的基于多源信息融合的思想,可以较好地解决场景中目标的遮挡问题。[关键词]单视点多视点目标跟踪信息融合基金项目:本文系江苏省自然科学基金(BK2009593)。 作者简介:陈宁强(1973-),男,江苏苏州人,工程师,主要研究方向:GIS、模式识别和图像处理与分析。 目标跟踪多目标标记与分离 匹配 目标模型 运动检测当前帧图像 背景提取 去噪 ROI 预处理 视频序列 (下转第26页)

多目标跟踪雷达

多目标跟踪雷达 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

多目标跟踪雷达 路口存在检测方案 采用多维式扫描雷达天线和先进DSP跟踪算法,对路口单方面向最少四车道、最多八车道的车辆进行精准的存在检测或感应检测,同时还能提供精准的单车及时测度、车辆位置信息以及停止线的车流量、平均速度和占有率等交通刘统计数据。路段多功能检测,能对横向四车道八车道、纵向160米范围的大视域内车辆进行实时检测。跟踪区域内所有车辆的行为轨迹、真实量化还原路况状态,提供精准的单车即时时速度、车辆位置、车型信息,同时提供精准的断面的车流量平均车速和占有率等交通流统计数据,以及对区域内多种异常事件及时报警,为交通诱导系统和交通事件检测系统提供数据支撑,

随着城市车辆快速增长,路口的管理压力越来越大,配套的信号控制系统、交通诱导、交通仿真系统等对数据的要求也越来越高。而路口车辆存在信息是实现高效、稳定信号控制的基本要求,也是现阶段国内外主流交通信号控制系统应用最为成熟的数据模型之一。因此,交叉路口的车辆存在信息就显的尤为重要。 城市路口车辆存在检测系统通过建立覆盖路口特定位置的采集点位,配备前端感知检测,实时吧存在信息传送之信号机控制及系统,对路口信号配时,优化提供支撑。同时,公安交通管理部门可以根据车流量历史统计数据、分析路口车辆运行规律,针对性制定控制管理策略。 需求说明: 城市路口存在检测系统,主要完成路口停车线、或特定断面的车辆存在信息采集,可以及时掌握路口特定位置车流量状态,为信号机控制、交通诱导等系统提供数据支撑。 1、在城市重要路口设立和完善的存在检测点、检测各方的车流量信息。 2、建立城市的数据传输、应用接口模块。实现无缝对接信号机控制系统。 3、用户可以通过实时数据库、以及客户端管理进行查看每个路口车辆存在信息、车流量、占有率等,可以连续24时实时检测。 4、具备数据存储功能。可以作为路口管理的数据支撑。 系统说明:

相关主题
文本预览
相关文档 最新文档