当前位置:文档之家› 低频电磁波的屏蔽

低频电磁波的屏蔽

低频电磁波的屏蔽
低频电磁波的屏蔽

低频电磁波的屏蔽一、前言

凡是有电源的地方、有用电设备的地方、几百米内有高压电线的地方、几十米内有地下电缆的地方,甚至只有金属管道和金属梁架的地方,都可能有高达数十以至数百毫高斯的低频电磁干扰。低频电磁干扰的强度变化常常无规律可循,短时间内就会有相当大的上下波动;低频电磁干扰的来源往往难以确定,这样就更增加了屏蔽设计的难度。

二、低频电磁屏蔽与其它屏蔽的差异比较

1、低频电磁场

根据电磁波传输的基本原理,在频率很低的时候良导体中的电磁波只存在于导体表面有“趋肤效应”(波从表面进入导电媒质越深,场的幅度就越小,能量就变得越小,这一效应就是趋肤效应)。

高频电路中,传导电流集中到导线表面附近的现象也有这样的问题又称“集肤效应”。交变电流通过导体时,由于感应作用引起导体截面上电流分布不均匀,愈近导体表面电流密度越大。这种“趋肤效应”使导体的有效电阻增加。频率越高,趋肤效应越显著。当频率很高的电流通过导线时,可以认为电流只在导线表面上很薄的一层中流过,这等效于导线的截面减小,电阻增大。既然导线的中心部分几乎没有电流通过,就可以把这中心部分除去以节约材料。因此,在高频电路中可以采用空心导线代替实心导线。此外,为了削弱趋肤效应,在高频电路中也往往使用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。在工业应用方面,利用趋肤效应可以对金属进行表面淬火。)、磁滞损耗(放在交变磁场中的铁磁体,因磁滞现象而产生一些功率损耗,从而使铁磁体发热,这种损耗叫磁滞损耗。铁磁材料在磁化过程中由磁滞现象引起的能量损耗。磁滞指铁磁材料的磁性状态变化时,磁化强度滞后于磁场强度,它的磁通密度B与磁场强度H之间呈现磁滞回线关系。经一次循环,每单位体积铁心中的磁滞损耗等于磁滞回线的面积。这部分能量转化为热能,使设备升温,效率降低,这在交流电机一类设备中是不希望的。软磁材料的磁滞回线狭窄,其磁滞损耗相对较小。硅钢片因此而广泛应用于电机、变压器、继电器等设备中。)以及反射损耗(反射损耗是指由于屏蔽的内部反射导致的能量损耗的数量,他随着波阻和屏蔽阻抗的比率而变化)都很小,低频电磁波的能量基本由磁场能量构成。所以这时我们所要屏蔽的应该是电磁波的磁场分量(电磁屏蔽的

原理是由金属屏蔽体通过对电磁波的反射和吸收来屏蔽辐射干扰源的远区场,即同时屏蔽场源所产生的电场和磁场分量。由于随着频率的增高,波长变得与屏蔽体上孔缝的尺寸相当,从而导致屏蔽体的孔缝泄漏成为电磁屏蔽最关键的控制要素;用钢制机柜进行屏蔽时,由于能为所有连接面提供一条由一个面至另一个面的高导电路径,所以电流仍保持在机箱外侧。这种导电路径是用特殊的衬垫和在连接表面进行导电涂敷而建立的,导电路径的任何中断都将使屏蔽效能降低,它取决于缝隙或孔洞尺寸与信号波长之间的关系。对于较低频率或较长波长来说,如果只有一个小孔则不会明显降低屏蔽效能;对于高频或较短波长来说,屏蔽效能的下降将是很剧烈的。

例如,屏蔽体上如果有一个直径为15mm的孔洞,对于10MHz信号(波长为30m)来说,将仍然能提供60dB屏蔽效能,但对于1GHz信号(波长为30mm)来说,若要保持同样的屏蔽效能,则孔径不能超过0.15mm。直径为15mm的孔对于1GHz信号只能提供20dB衰减。

如果不止一个孔洞,而且孔距小于信号半波长时,屏蔽效能将进一步降低。如果高频信号波长时,屏蔽效能将进一步降低。如果高频信号要求足够的衰减,则不应采用为了通风目的的孔洞。

屏蔽效能及其产生的衰减与频率、源与屏蔽体的距离、屏蔽体的厚度以及屏蔽材料等有关。由于增加了对RFI/EMI能量的反射和吸收的总和,使所传输的电磁能量减小。哪些材料能提供最好的屏蔽效能是一个相当复杂的问题。很明显这种材料必须具有良好的导导性,所以未处理过的塑料是无用的,因为电磁波能直接通过它。当然,可以采用金属。然而,应当记住,不能只考虑导电性,其理由就在于,电磁波不但有电场分量,还有磁场分量。要知道高导磁率和高导电率同样重要,高导磁率的意思就是磁力线的高导通性。钢是一种良导体,而磁导率的量级也会令人满意。它也是相对廉价并能提供很大机械强度的材料,所以有理由利用钢材,廉价的获得满意的屏蔽效能。应当注意,低频电磁波比高频电磁波有更高的磁场分量。因此,对于非常低的干扰频率,屏蔽材料的导磁率远比高频时更为重要。)

屏蔽低频(如工频)电磁干扰的基本原理是磁路并联旁路分流。通过使用导磁材料(如低碳钢、硅钢等)提供磁旁路来降低屏蔽体内部的磁通密度。同时尽量增大涡流损耗,使一部分能量转化为热能消耗掉。

导电率高而导磁率低的材料(如铜、铝等)对电磁波的磁场分量几乎没有屏蔽

作用。

屏蔽材料越厚则磁阻越小、涡流损耗越大,屏蔽效果越好。

2、直流磁场

当低频电磁场频率降低至0Hz时,低频电磁场转变为直流磁场。磁化、磁饱和、无磁滞损耗、无涡流损耗(铁磁材料置于交变磁场中时,磁畴相互间不停地摩擦、消耗能量、造成损耗,这种损耗称为磁滞损耗)等等,使直流磁场的屏蔽比低频电磁场屏蔽更加困难。一般选择尽量避开直流磁场干扰源。在条件允许的情况下,也可以用导磁材料把直流磁场干扰源包围,使它发散出来的磁力线在导磁材料内部形成一个闭环回路,减少它对外界的干扰。

导磁材料的结构和设备被磁化后也会产生直流磁场,现场实测时经常会发现这种情况,但是一般强度不大于0.5mGauss。同时这种磁场往往是长期稳定的,对仪器设备的干扰不大,所以有时可以忽略这种直流磁场的影响。

3、中高频电磁场

在这个范围里(一般是从1000Hz到1MHz),电磁波的能量比重逐渐由磁场分量向电场分量倾斜,趋肤效应、磁滞损耗还有反射损耗等逐渐显得不可继续忽略了,频率变化的影响也不像在低频范围里那样可以忽略不计了,屏蔽机理也随之逐渐由侧重屏蔽磁场分量转向侧重屏蔽电场分量。

4、高频电磁场

高频(1MHz以上)电磁波除了具有低频电磁波的电磁感应特性外,还具有低频电磁波很少具有的折射性和反射性。

根据电磁波传输的基本原理,在频率很高的时候,趋肤效应、涡流损耗以及反射损耗和折射损耗都将在屏蔽机理中有充分的表现。高频电磁波的能量基本由电场分量构成。所以这时我们所要屏蔽的是电磁波的电场分量。

屏蔽高频电场干扰的基本原理是容抗并联旁路。通过在干扰源与被屏蔽点之间加入一个屏蔽层,并使屏蔽层对地容抗无限小(等效屏蔽层接地),来保护被屏蔽点不受干扰源通过杂散分布电容而耦合过来的干扰。

屏蔽材料可以用导电性良好的铝、铜、锡、银等,材料厚度对屏效影响不大。

5、静电屏蔽

静电屏蔽比较简单。用金属板(或者箔、网)形成一个屏蔽腔体,腔体与被屏蔽设备的外壳共同接地。

静电屏蔽的基本原理是消除电势差,将所有的电荷泄放入地。

三、几种低频屏蔽方法综合评估

1、低导磁率材料(如低碳钢板等)屏蔽

低碳钢板的导磁率在4,000左右。低碳钢板机械性能好,可焊性好,易加工,价格便宜,购买方便。在不必考虑屏蔽体的厚度和重量时,绝对应该是低频电磁屏蔽材料的首选。

2、高导磁率材料(如硅钢板等)屏蔽

热轧硅钢板的导磁率为6,000~8,000,冷轧硅钢板的导磁率为12,000~20,000,选用冷轧硅钢板理论上屏蔽体厚度可以降低为低碳钢板的1/3到1/5。硅钢板价格昂贵,材质硬、脆,延展性差,可焊性可加工性远远不如低碳钢板。在敲击、折弯、开孔和焊接后,如果不进行热处理,导磁率将大大下降。现场施工一般不是焊接而是平铺搭接,但是即便搭接面很宽,因为空气隙的存在,也仍然会使整体的导磁率下降。

冷轧硅钢板还有晶向不一致的缺点,即钢板轧制方向上与侧面垂直方向上的导磁率不一样,一般用多层交叉重叠法来解决这个问题。但这又增加了施工难度,增加成本;同时增大空气间隙减少涡流损耗,降低屏蔽效果。

综上所述,在低频电磁屏蔽室的设计中,使用硅钢板往往是事倍功半的,一般不建议采用。

3、玻莫合金屏蔽

玻莫合金导磁率为80,000,为现有材料中最高的;但成本也是最高的,与此同时,由于现今加工技术所限,玻莫合金成品均为带状,宽度极小,而且极薄易碎、易裂,对大面积施工而言,如何解决工艺问题,是一个至今尚未完全解决的难题。

4、铁基合金和纳米晶合金屏蔽

铁基合金和纳米晶合金导磁率均为25,000--40,000,由于纳米晶合金冷材导磁率低、热材易碎,故在业界一般采用与之同基的延展性、可施工性均相对较好些的铁基合金;但同样由于现今加工技术所限,铁基合金成品也均为带状,最宽不超过50公分,如何紧密焊接达无缝或是如何叠加粘合,均有较大施工难度,且与玻莫合金一样,施工成品导磁率损耗过大(一般只能够达到理论指标30—50%),故除非超标极为严重或施工场地过小一般不建议采用。

5、有源消磁器消磁

有源消磁器由探测器、反相消磁线圈和控制器等几部分组成。探测器检测到磁场的三维场强,控制器根据得到的信息产生波形和幅度相同、相位相反的电流,反相消磁线圈产生波形和幅度相同、相位相反的磁场将原来的磁场抵消。有源消磁器安装简便灵活,但因其工作原理所限,在控制上有一定的滞后,调试工作有一定的难度,均匀性和稳定性等方面还有一些问题。

四、低频电磁屏蔽设计

屏蔽体的材料选择:

根据以上的讨论,如无特殊情况,一般选择低碳钢板。

因为整体材料的涡流损耗比几层叠加(厚度相同)的涡流损耗要大,所以如无特殊情况不选用薄的多层材料而选用厚的单层材料。

如果兼顾直流磁场屏蔽,可在低碳钢板内侧加冷轧硅钢板或其它高导磁材料(高导磁材料易饱和,放在内层);如果兼顾中频磁场屏蔽,可在低碳钢板外侧加冷轧硅钢板或其它高导磁材料(高导磁材料高频特性好,放在外层)。

屏蔽体厚度计算:

1、计算公式推导

因为低频电磁波的能量主要由磁场能量构成,所以我们可以使用高导磁材料来提供磁旁路通道以降低屏蔽体内部的磁通密度,并借用并联分流电路的分析方法来推导磁路并联旁路的计算公式。

同时有以下一些定义:

Ho:外磁场强度

Hi:屏蔽内空间的磁场强度

Hs:屏蔽体内磁场强度

A:磁力线穿过屏蔽体的面积A=L×W

Φo:空气导磁率

Φs:屏蔽材料导磁率

Ro: 屏蔽内空间的磁阻

Rs: 屏蔽材料的磁阻

L:屏蔽体长度

W:屏蔽体宽度

h:屏蔽体高度(亦即磁通道长度)

b:屏蔽体厚度

由示意图一可以得到以下二式

Ro=h/( A×Φo)=h/(L×W×Φo) (1)

Rs=h/(2b×W+2b×L)Φs (2)

由等效电路图二可以得到下式

Rs= Hi×Ro/(Ho- Hi)(3)

将(1)、(2)代入(3),整理后得到屏蔽体厚度b的计算式(4)

b=L×W×Φo(Ho-Hi)/ (W+L) 2Φs Hi (4)

注意:在(4) 式中磁通道长度h已在整理时约去,在实际计算中Φo、Φs 、Ho、Hi等物理单位也将约去,我们只需注意长度单位一致即可。

由(4) 式可以看出,屏蔽效果与屏蔽材料的导磁率、厚度以及屏蔽体的大小有关。屏蔽材料导磁率越高、屏蔽层越厚屏效越好;在导磁率、厚度等相同的情况下,屏蔽体积越大屏效越差。

2、计算式校验

我们用(4)式计算并取Φo=1, L=5m,W=4m,Φs=4000,计算结果与实测数据对照比较(参见表1),发现差别很大:

表1

注:1.外磁场强度为5~20mGaussp-p。

2.为便于比较将计算数值及实测数值都归算为百分数。

3.实测值系由不同条件下的多次测试折算而得。由于各次的测试条件不完全相同,所以只能取其大约平均数。

事实上,由于各种因素的影响,试图建立一个简单的数学模型直接去分析和计算低频电磁屏蔽的效果是相当困难的。

计算与实测相比偏差较大有两方面的原因。

并联分流电路的函数关系是线性的,而在磁路中,导磁率、磁通密度、涡流损耗等都不是线性关联,许多参数互为非线性函数(只是在某些区间线性度较好而已)。我们在推导磁路并联旁路的机理时,为避免繁杂的计算,忽略或近似了一些参数,简化了一些条件,把磁路线性化后计算。这些因素是造成计算精度差的主要原因。

另一方面,商品低碳钢板的规格一般为1.22m×2.44m,按一个长×宽×高为5×4×3m3的房间来算,焊接缝至少五六十条,即便是全部满焊,焊缝厚度也一定小于钢

板的厚度。另外屏蔽体上难免有开口和间隙,这些因素造成的共同结果就是:屏蔽体磁阻增大,整体导磁率下降。

(选用冷轧硅钢板时要更加注意,冷轧硅钢板的实测偏差往往更大。)用并联分流电路的分析方法推导出的磁路屏蔽计算式必须加以修正才能接近实际情况。

3、修正后的计算公式

在(4)式基础上,我们引入修正系数μ,且考虑到空气导磁率近似为1,得到(5)式

b=μ〔L×W(Ho-Hi)/ (W+L) 2Φs Hi 〕(5)

μ在3.2~4.0之间选取。屏蔽体体积小、工艺水平高可取小值,反之取较大值为好。我们用(5)式取μ=3.4计算出的结果与实测数据对照比较(参见表2),吻合度基本可以满意。

表2

注:其它情况与表1相同。

必须指出的是,多次的复测数据表明,(5)式计算结果与多次的现场实测结果吻合度较高,但也曾经发现个别相差较大的情况,究其原因是属于现场施工的问题。以下是在现场施工中可能发生的几种情况:

1、个别部位用了薄钢板;

2、硅钢板的搭接宽度不够;

3、多层冷轧硅钢板没有交叉重叠;

4、钢板没有连续焊接且拼接缝过大;

5、屏蔽体在设备基础部位有较大开口且处理不当;

6、随意缩短波导管的长度或加工时有偷工减料现象;

7、波导管壁厚过小;

8、屏蔽体多点接地致使屏蔽材料中有不均匀电流;

9、屏蔽体与电源中性线相连。

一两处小小疏忽就会造成屏蔽效果严重劣化。这有点类似于“水桶理论”:水桶的容量取决于最短的那块木板。对于这类隐蔽工程,在选择一个可靠的施工单位、严格遵照设计工艺要求、加强现场施工监理、实施分阶段验收等方面,都是一定要引起高度注意的。

屏蔽体的开口设计:

设计一个屏蔽体,一定会碰到开口问题。常见开口设计的理论方法大多难以在低频磁屏蔽设计中直接应用。下面以一个房间的屏蔽设计为例来讨论。

1、小型开口

房间内安装的被屏蔽设备,一般都需要供应动力、能源和冷却水等等。这些辅助设施大多位于屏蔽室之外,通过进出水管、进排气管和电缆连接进来。我们可以将这些管道和电缆适当集中,统一经由一个或数个小孔穿过屏蔽体。小孔可用与屏蔽体相同的材料作成所谓“波导口”,长径比为一般认为至少要达到3~4﹕1(现场条件允许的话长些更好)。例如小孔直径为80mm,则长度至少为240~320mm。

2、中型开口

空调的通风口、换气扇的进排气口等直径(或者正方形、长方形的边长)一般在400~600mm左右,这样算来波导口的长度将达到1200~2400mm,这在实际施工中几乎是无法承受的。这时可以用栅格将原来的开口分隔为几个同样大小的小口。例如将一个400×400mm的进风口分隔为九个等大的栅格,则长度由1200~1600mm减少为400~530mm(栅格增加的风阻很小,可以忽略不计)。

设计和加工时注意以下几点:

1)栅格的材料与屏蔽体相同,不要随意减小材料的厚度;

2)栅格的截面尽量接近正方形;

3)在长度可以接受的情况下,尽量减少栅格的数量,以减少加工难度和风阻;

4)栅格各处都要连续焊接,以免磁阻增大;

5)如果材料为硅钢,则必须经过回火处理。

3、可关闭的大型开口

一般房间的门窗等开口都在1m×2m以至更大,这时应该依照门窗(均为与屏蔽体同样的材料制成)关闭后的非导磁间隙来设计波导口。设门窗关闭后的非导磁间隙为5mm(这在技术上并不困难,个别难以处理的地方可以加道折边),则波导口的长度为15~20mm。考虑到间隙是狭长的,这个长度尽量长些为好。注意这里的波导口并不是只由门窗的框构成,在所有的非导磁间隙处都要有一定厚度的折边,保证波导口的长度。

为保证特殊情况下的安全撤离,屏蔽室的门框应特别加强,屏蔽门最好向外开启。

设计举例:

房间的长、宽、高分别为5米、3.3米和3米,原磁场强度x=10mGauss,y=8mGauss,z=12mGauss,试设计一低频电磁屏蔽,要求屏蔽体内任一方向的磁场强度小于2mGauss。

参见图三

1、选用商品低碳钢板,Φs=4000,规格为1.22m×2.44m;

2、按照(5)式分别从x、y、z三个方向来计算钢板厚度:

μ取3.8,L×W分别以条件所给的长、宽、高代入,且与x、y、z等方向的原磁场强度对应。

bx=3.8〔3.3m×4m×(10mGauss -2mGauss)/(4m+3.3m) 2×4000×2mGauss〕=3.43mm

by=3.8〔3.3m×5m×(8mGauss -2mGauss)/(5m+3.3m) 2×4000×2mGauss〕=2.83mm

bz=3.8〔5m×4m×(12mGauss -2mGauss)/(4m+5m) 2×4000×2mGauss〕

=5.28mm

全部钢板厚度至少为6mm(为防止外磁场变化亦可选用8~10mm),单层。

全部焊缝要求连续满焊。

3、波导口处理

(略。参见屏蔽体的开口设计)。

缝隙处理与设计:

搭接的处理与设计:

屏蔽电缆的接入设计:

五、低频电磁屏蔽实践中的几个误区

由于有关低频电磁屏蔽的介绍较少,而且从总体上来看,低频电磁屏蔽的应用不如中高频电磁屏蔽广泛,所以对低频电磁屏蔽理解的误区甚多:

1、收音机(或移动电话)没有信号,所以低频电磁屏蔽一定是好的。

收音机和移动电话的工作频率高达数百KHz以至数千MHz(调幅中波535-1605KHz;调频广播88-108MHz;移动电话900MHz或1800MHz)。高频电磁屏蔽只要屏蔽电磁波的电场分量就可以了,低频电磁屏蔽主要是屏蔽电磁波的磁场分量,而磁场分量的屏蔽实际上比电场分量要困难得多。收音机(或移动电话)没

有信号,并不能表明低频电磁屏蔽是好的。另一方面,如果收音机(或移动电话)有信号,也不能说明低频电磁屏蔽完全不合格。收音机和移动电话都有很强的AGC (自动增益控制)功能,在信号变化的很大范围内可以自动调节接收能力。屏蔽体上有必定有开口,高频信号在开口处通过反射还是可以达到收音机(或移动电话)的。

总之,不能用收音机(或移动电话)有无信号来证明或检验低频电磁屏蔽的效果。

2、屏蔽体接地有助于增进低频电磁屏蔽的效果。

这是套用高频电场屏蔽原理引出的错误结论。

高频电场屏蔽的基本原理是容抗并联旁路,屏蔽层良好接地是必要条件。但是低频电磁屏蔽主要屏蔽的是磁场而非电场,屏蔽体接地对于增加屏蔽体的导磁率无任何帮助。

那么,是不是无益亦无害呢?不是的。在电气施工中,施工者会习惯地把电源线护套管、开关箱外壳、各种管道都连到屏蔽体上(“反正它们都是接地的。”注意,这是符合低压电器安装规范的)。这样一来,屏蔽体中极可能有电流流过,必定产生额外的磁场。我们分析讨论屏蔽体时,为使问题简化,假设屏蔽体各处的导电率和导磁率都是均匀一致的,实际上远非如此。钢板后面一般会有钢结构支撑,各处钢板的焊接或搭接情况差异很大,这时屏蔽体内各处的磁场强度会有很大的不均匀性,在个别节点处甚至非常高。所以屏蔽体接地对于低频电磁屏蔽来说是有害无益。

3、屏蔽体与被屏蔽设备共地。

这是套用静电屏蔽的“等电位”而引出的错误结论。

屏蔽体与被屏蔽设备共地不会增加并联磁路的导磁率,不可能对增进低频电磁屏蔽的效果有任何帮助。

我们可以这样说,如果高频电磁屏蔽和静电屏蔽必须要“等电位”的话,那么低频电磁屏蔽的指导理念恰恰与之相反,尽量实现“零电流”。低频电磁场往往是工频电流所产生的,我们要尽最大努力避免产生那些本来可以没有的电流。

所以,屏蔽体与被屏蔽设备共地也是有害无益的。

4、附近没有电源线或用电设备就不可能有低频电磁场。

在水管、暖气管、大楼的环状地线等导体上,如果有电流流过,也会产生电磁场,其强度与电流强度成正比,与通电导体的距离的平方成反比。

笔者曾在北京某单位发现一楼地面下钢梁(起垫高作用)中有电流产生50Hz 低频磁场,用梯度法推算,该电流达8~10A。

5、设备关闭后就不会产生低频电磁干扰了。

许多设备和仪器,在执行了关闭操作后并没有完全断开自身的电源。就像家庭中使用的录音机和空调,只要还与电源相连,就不一定完全没有电流。

另一种情况是,设备自身配有变压器,而设备开关是设在变压器副边的。笔直多次见到,日本原产带有220V-110V电源变压器的设备,在设备关闭后,电源变压器附近仍然有很强的低频磁场(有时在距离1米处场强还可达20mGauss p-p)。这类情况下要想得到准确的结论,就必须去关断这些设备上游的控制开关,或者在配电室(柜)里关闭整条供电分路的供电。

还有一些设备经常处于备用状态(例如干燥箱、恒温箱等),随时可能会自动进入某种工作状态,切勿轻率断定它们是否会产生磁场。

6、在干扰源的来向设一面厚钢板墙就可以解决低频电磁干扰问题。

在干扰源与墙面的距离远大于墙面宽度和高度的情况下,这样做基本是无效的。

在干扰源距离墙面很近(几厘米到几十厘米)时,可以有限度地减小低频电磁干扰。

在极大多数的情况下,干扰源不止一个,测试点的干扰磁场往往由几个相位、强度、波形、频率特征等都不相同的磁场迭加而成。所以,除了极个别的特例以外,这个方法是不能够可靠地解决问题的。

7、铜的导电性比钢好,用铜板来屏蔽工频电磁场效果更好,只不过铜板太贵了所以一般才不用。

曾经见到某专业文章中的计算:“当我们要屏蔽的对象是电源变压器时,工作频率是50Hz,此时的铜材料:X0.1≈22mm,X0.01≈44mm;铁材料:X0.1≈32mm,X0.01≈65mm”(以上原文照抄,一字未改。原文说明X 0.1及X 0.01是达到原有场强的1/10及1/100时屏蔽材料的厚度)。

有实践经验的人都知道,用不导磁的铜板来屏蔽工频电源变压器是毫无用处的,更不可能比铁材料的屏蔽效果好。一次笔者在湖北某处实测,6mm厚的铜板屏蔽工频电磁干扰毫无效果。

因为电磁波具有波粒二象性,波长与光子能量成反比关系,当波长越短光子能量越大,则穿透力越强。如高能X射线几乎能穿透所有非金属物,甚至还可以穿透

薄铝;而伽马射线则能穿透大多数金属。某些重金属能够阻挡电磁波穿透,例如铅。电磁辐射分类的英文缩写如下:

伽马射线:

γ射线

X射线:

HX = 硬X射线

SX = 软X射线

紫外线:

EUV = 极端紫外线

NUV = 近紫外线

红外线:

NIR = 近红外线

MIR = 中红外线

FIR = 远红外线

微波:

EHF = 极高频

SHF = 超高频

UHF = 特高频

无线电波:

VHF = 甚高频

HF = 高频

MF = 中频

LF = 低频

VLF = 甚低频

ULF = 特低频

ELF = 极低频

表3

表4

DB和屏蔽率的换算率:3DB=50%;6DB=75%;9DB=87.5%;12DB=93.75%;

30DB=99.9%;70DB=99.9999%;80DB=99.99999%.

各波段电波传播

1中长波的电波传播

由于地面对中长波吸收较小,而电离层对中长波吸收很大,因此中、长波的电波传播主要以地波为主,在工作频率接近2MHz时,才有一部分以天波传播。长波的波长达1~10km,其天线的体积非常庞大。中波常用桅杆天线,容抗很高,而天线电阻很小只有2~10Ω,电波以垂直极化传播。

接收场强

P ——发射功率(瓦)

h1 ——发射天线有效高度(m)

h2 ——接收天线有效高度(m)

r ——与发射台站距离(m)

K ——视地面影响的系数

2短波电波传播

短波的电波传播有地波和天波传播,主要是天波传播,因此和电离层有紧密的联系。

2.1地波传播

地面对短波吸收较为严重,因此短波的地波传输距离都很短,而且工作频率在

短波的低频段(< 5MHz )。

如在平原地带,20瓦电台(4米鞭天线)地波通信距离只在25km 左右,100瓦电台地波通信距离约为40~50km ,200瓦电台约在50~60km 。

在海平面短波的地波传输可以远一些,如100瓦电台通信距离可达150km ~300km 。

2.2短波的天波传播

短波之所以可以远距离通信,得益于天波的传播。天波是靠电离层的反射而传播的。

a) 盲区

在短波传播中,在工作频率固定,发送波瓣固定时,会出现地波达不到,天波也达不到的地段,接收机在这段地区将无法接收,这个地段称为盲区。

b 要进行远距离通信一般选用高一些的频率,同时压低波瓣仰角。功作频率太高, 1E 、F 路径损耗要靠实验获得,20~35μV/m,农村5~15μV/m 。如北京到广州2450公里,白天路径损耗约280W ,夜间损耗约180~200W 。这样才能保证接收方有10dBSINAD 。 2)短波的多跳传输

在二十世纪七十年代以前,远程通信都是以短波为主.在洲际短波通信上就要考虑多跳传输。为减少损耗,地面反射点应选择在海面或湖泊。

如:

C F F f

f f f f f

发信台

在过去短波通信中,只规定了2~3个白天或夜间的工作频率,由于电离层经常在变化(浓度、高低),短波通信的可靠性非常低。近年来自适应通信技术的发展,可以自动寻找最佳频率工作,使短波可通率有很大的提高。

由于电离层不断的“运动”——电荷变化,使得某一频率传播路径中的吸收、散射情况也在不断变化。因此在某些时候,就会存在某段频率集所对应的传输路径上损耗最小,散射最小的情况,这一频率集就是这一传输路径的最佳信道。如天津到上海最佳频率上通信,只需10瓦功率,天津到乌鲁木齐最佳频率上通信只需60瓦功率。

d)电离层变化对电波传输的影响和对策

电离层变化对电波传输的影响主要有:

——衰落---几次~上百次/秒,变化100dB以上;

——散射---造成衰落;

——多径延时---造成码元模糊±2ms~4ms;

——多普勒效应---频率偏移±4Hz~8Hz;

——大气噪声干扰---降低信噪比。

对策:1)针对衰落、散射

——加强接收机AGC设计(控制特性大于120dB以上,不同通信方式具有不同的放电常数);

——不用或少用调幅方式;

——采用交织、分集等资料纠错。

2)针对多径时延、多普勒效应

——降低传输波特率;

——调制器增加多普勒频偏纠正。

3)降低大气噪声干扰影响

——采用功率自适应技术;

——提高天线方向性;

——提高接收机选择性和倒易混频等与抗干扰有关指针。

3 超短波的电波传输

超短波段的波长已经在10m以下,电离层已不在进行反射。而大地、建筑物对它有很大的吸收,所以超短波的电波只能直线或称视线传播。由于地球表面是一球

面,因此当发射台站以50m高天线发射时,他传播距离应在半径50km左右圆周内。城市里的建筑物对它产生吸收和反射。对于30MHz~100MHz频段,除视线传播外,在地球表面C层电离层比较浓密时,地面和电离层之间视为“波导”,这时电波将会绕射传播,电波将会传输100多公里远。超短波亦常用于散射通信,即利用流星在大气中燃烧时产生的反射进行通信。

电磁波危害

拒绝愚昧迷信,走出手机辐射误区!手机辐射是电磁波辐射的一种,因此要了解手机辐射必须先从电磁波谈起。什么是电磁波辐射 从科学的角度来说,电磁波是能量的一种。正像人们一直生活在空气中而眼睛却看不见空气一样,人们也看不见无处不在的电磁波。电磁波就是这样一位人类素未谋面的“朋友”。电磁波是电磁场的一种运动形态。电可以生成磁,磁也能带来电,变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,所以电磁波也常称为电波。1864年,英国科学家麦克斯韦在总结前人研究电磁现象的基础上,建立了完整的电磁波理论。他断定电磁波的存在,推导出电磁波与光具有同样的传播速度。1887年德国物理学家赫兹用实验证实了电磁波的存在。之后人们又进行了许多实验,不仅证明光是一种电磁波,而且发现了更多形式的电磁波,它们的本质完全相同,只是波长和频率有很大的差别。将常见的电磁波按频率顺序列举如下:长波<广播中波<广播短波<广播调频<微波<红外线<可见光<紫外线

电磁波屏蔽原理和屏蔽材料复习课程

电磁波屏蔽原理和屏 蔽材料

电磁波屏蔽原理和屏蔽材料 作者:陈亚庆 指导老师:魏相飞 摘要:电磁波对人类文明与社会发展具有重要的意义。电磁波作为信息的载体应用于通信、广播、电视,作为探求未知物质世界的手段用于雷达、导航、遥感遥测等。随着科学技术的发展,越来越多的电磁波的应用被发现。但电磁波在造福人类的同时也给环境带来污染。本课题要求通过广泛的调研,了解电磁波的传播原理,屏蔽原理以及相关的屏蔽材料。 关键字:电磁波;电磁波屏蔽;电磁波屏蔽材料。 The Electromagnetic Shielding Principle And Shielding Material Abstract:The electromagnetic wave to the human civilization and social development has the vital significance. Electromagnetic wave as the carrier of application information in communication, broadcast, television, by exploring the unknown material world means used in radar, navigation, remote sensing etc. With the development of science and technology, more and more application of electromagnetic waves was found. But the electromagnetic wave in the benefit of mankind but also pollute the environment. This topic through extensive investigation and

低频磁场屏蔽的原理及屏蔽物的结构要点

5.3.4 低频磁场屏蔽的原理及屏蔽物的结构要点 1.低频磁场屏蔽原理 减小低频磁场干扰的方法,除了合理地布置元器件、走线的相对位置和方位外,对于低频(如50 H2)交变磁场的干扰,可采用低频磁场屏蔽的方法来减小其影响,见图5—32 图5—32(a)中,T为电子元器件或电路,当不加屏蔽地放在磁场中时,将会受到低频磁场于扰,如电子束受力发生偏转,改变磁性材料的磁化性能等。图5—32(b)为用高磁导串材料做的一个屏蔽盒。斯麦迪电子磁力线通过时阻力很小,而空气的磁导率很低,磁力线通过时受到很大阻力。因此磁力线将绝大部分从屏蔽体上流过,只有很少量经过屏蔽体内的空气到达元器件了上。即磁力线主要经1—2—3—4线路流走,很少量经1—2’一3’一4流走,从而对T起到了保护作用。综上所述,低频磁场的屏蔽原理就是磁分路原理,即用高磁导率的材料做成屏蔽体,使磁力线分路而起到屏蔽效果。屏蔽体导磁率越南,屏蔽体的壁厚越厚,磁分路作用就越好,屏蔽效果也就越好。几种常用材料的相对导磁串见表5—9。相对导磁率是材料的导磁率与空气导磁串之比,空气的相对导磁串为l。从表5—9中可知:作为低频敬屏蔽物的材料应选钢铁、不锈钢或坡莫合金,而不应选铜或铝等电的良导体。 2.低频疆场屏蔽物的结构要点(1)减小蹬屏蔽盒在接口处的接继磁力线通过屏蔽罩的接口缝隙处时,将会受到很大的磁阻,使磁力线产生泄漏,因此在设计时缝隙处应有较大的重矗[见图5—33(a)中的A3,且应使配合紧密,尽量减小缝隙。还应注意统欧与磁力线的相对位置,不应使接缝切断磁力线而增加磁阻。图5—33(a)的安装是正确的,图5—33(b)的安装则不正确。

最新为什么金属网可以屏蔽电磁波

金属网可以阻挡电磁波传播的原理是什么? 首先,不是衍射。 我们都做过直流电路实验,导线就是金属,也就谈不上屏蔽(静电屏蔽是指接地金属罩,屏蔽静电场)。电磁波辐射,是关于时变电磁场的问题,导体对其影响大不相同。 如果利用趋肤效应,解释的实际上是金属板屏蔽电磁场原理。 ?对于一个金属板(良导体),电磁波从一面辐射而来,大部分能量被反射,小部分能量进入金属,该电磁波会随进入金属的深度成e指数衰减(能量转化为表面电流),当金属层过薄时,电磁波就会穿透金属层继续传播。对于同一频率电磁波,电导率越高,衰减越快。对于相同金属材料,电磁波频率越高,衰减越快。 ?定义:趋肤深度,电磁波传输一个趋肤深度的距离后,振幅衰减到原来的36.8%,能量衰减到13.5%。 对于相同金属材料,电磁波频率越高,趋肤深度越小。 ?例:10GHz电磁波。银,电导率6.173e7(S/m),趋肤深度6.4e-7(m),即0.64微米;1GHz电磁波,趋肤深度20.24e-7(m),即2.24微米。【1】 那么,同材料的金属板,频率越高,趋肤深度越小,对辐射防御能力是越强。 回归正题,金属网屏蔽电磁场原理,(趋肤效应解释波导也有用到,不是重点)。 ?先说矩形波导,四壁是金属,电磁波在波导中的介质中传播。金属网实际上就是下图中许许多多的矩形 波导叠放组合在一起,z方向长度再缩短些就是了。 ?为何电磁波不会从金属网的窟窿中穿透呢?对于金属网,每一个网孔都是一个波导。借用光的粒子说,电磁波像弹球一样,进入网孔波导后,来回在金属壁上反弹,曲折前进。【2】 ?为满足金属壁这一边界条件下的Maxwell方程,对于相同规格的矩形波导,频率越低(波长越大),theta 越大;当波长大于等于截止波长时,theta=90°,电磁波只上下弹跳,不前进了。

无线电波对人体的危害及防护

无线电波对人体的危害及防护 一、无线电通信技术、计算机技术的应用与发展给人类的生存生活与信息交流带来了方便,同时对人类的健康造成的影响已不容忽视 随着无线电通信、计算机技术及电子科学技术的发展,电磁波辐射技术的利用也越来越广泛,与人们的工作、学习和生活息息相关,密不可分。从频率与波长讲,像人们所知的长波、中波、短波、超短波、微波、卫星通信,从开展的业务上讲,通信、导航、广播、电视、雷达、工业、科学研究、医疗设备的电磁辐射应用非常普遍。它都是利用电磁波辐射来传播信息和传送能量,完成信息传递、科学研究和医疗目的。特别是二十世纪九十年代初迅速发展的无线寻呼业务以及无线移动通信,大大加快了人们文字与语音信息的交流,给人们的生活带来了无限的方便。各种医疗电子器件的使用,促进了医疗水平的提高。无线通信、计算机技术的发展不但提高了各族人民群众的生活质量,同时也推动了国民经济的增长。 现在人们随时可以见到手机、对讲机、GSM、PHS、CDMA无线基站、广播电台、电视台、微波站、卫星地球站等各种无线电发射设备,它们每时每刻都在向空中辐射电磁信号,这些看不见的能量,在空中已造成了很大的污染,它对人体健康已经造成影响,这已是不争的事实,电磁辐射对人类的危害已引起人们的广泛关注,做好电磁防护,消除和减小电磁辐射对人们身体健康的有害影响已显的非常重要。 无线电波对人体影响如何,主要决定于几个因素,一是辐射电波的波长(或频率),二是人体吸收电波功率的大小,三是受辐射时间的长短。一般来讲,电磁波波长越短,人体吸收电磁波功率越大,受电磁波照射的时间越长对人体的影响就越大,反之影响就越小。 人体受电磁波严重辐射时,会出现一些不良反应,主要症状表现为会使人感到头疼、出现呕吐、有的出现脱发并伴有白血球下降、全身无力,甚至会使人失去生育能力,所以电磁辐射对人类健康造成的危害不可忽视。 二、国家电磁辐射防护规定,是保证电磁辐射对人身体健康影响最小的基本要求,也是有益人民大众身体健康的基本国策 为了防止电磁辐射污染、保护环境、保障公众健康、促进伴有电磁辐射的正当实践的发展,我国政府对电磁辐射污染的防护非常重视,于1988年以国家标准的形式颁布了《电磁辐射防护规定》,对100KHz-300GHz频段的电磁辐射规定了防护限值,该规定除了不适用于为病人安排的医疗或诊断照射外,完全适用于我国境内产生电磁辐射污染的一切单位和个人、一切设施或设备。《电磁辐射防护规定》给出了电磁辐射防护限值,规定了人们可以接受电磁辐射污染数值的上限(包括各种可能的电磁辐射污染的总量值)。要求一切产生电磁辐射污染的单位或个人,应本着可合理达到尽量低的原则,努力减少其电磁辐射污染水平。产生电磁辐射污染的单位或部门,均可以制定各自的管理标准,但必须严于国家标准。国家颁布的这个电磁辐射防护规定,对电磁辐射防护提出了要求,必须严格遵照实施,才能从根本上保证电磁辐射设备周围的电磁环境符合环保要求,对人身体健康的影响符合国家标准。 国家对电磁辐射防护要求:

电磁波对人体的影响

电磁波对人体的影响 1电磁波的分类[1—2] 电磁辐射的频谱可由甚低频到极高频 (10Hz),其中高频电磁波由微波(300MHz~300GHz) 和射频构成。我公司使用的高频发生设备产生的频段为 6.5—6.8MHz(即6.5×106Hz—6.8×106Hz),属于射频范畴,也即属于高频电磁波。 2高频电磁场对人体的影响 2.1 对人体生物学效应[2] 2.1.1 电磁辐射的生物整体效应 电磁场能从整体角度影响实验动物或人的功能、组织结构,导致神经系统、免疫系统、内分泌系统及血液系统功能紊乱,直观表现为生物体温升高,血压及心律变化。例如多年接触大功率辐射或从事超过微波辐射卫生防护标准的工作人员的脑电图有所变化,个体表现抑郁、反应迟钝、神经衰弱征候群以及条件反射受抑制等症状。 电磁辐射的细胞效应 长时间的电磁辐射可引起细胞形态和功能的改变,影响生物大分子(包括DNA、RNA和蛋白质)的合成、细胞的增殖和分化,是引发细胞癌变的主要因素之一。 电磁辐射的生物膜效应 体现在生物膜上的电磁辐射效应主要有Na+、K+、Ca2+通道通透性的改变、细胞膜电位的变化、外周膜蛋白的脱落、膜流动性的改变、膜脂质过氧化的改变和膜上酶活的改变。 2.2 对男性生殖功能影响[3] 研究表明,工龄超过2年的雷达工人,前向运动精子百分率明显低于对照人群,而精子畸形率显著高于对照人群,并且发现精子畸形率改变是微波生物效应的敏感指标,研究结果还表明:当微波的辐射剂量<1.0mw/cm2较长时间暴露,暴露组精子畸形率和阴性对照组差异无明显的统计学意义;当辐射剂量>2.5 mw /cm2时,暴露组的精子畸形率明显高于对照组。 从目前已有的射频电磁辐射对男性(雄性)生殖功能影响的研究可以看出,射频电磁场在一定的条件下会对男性(雄性)生殖功能产生一定的危害作用,这种影响与辐射频率、功率密度、辐射时间、主体特性以及主体与辐射源的距离等等因素都有关系。

金属网屏蔽电磁波原理

金属网可以屏蔽电磁波传播的原理是什么? 首先,不是衍射。 我们都做过直流电路实验,导线就是金属,也就谈不上屏蔽(静电屏蔽是指接地金属罩,屏蔽静电场)。电磁波辐射,是关于时变电磁场的问题,导体对其影响大不相同。 如果利用趋肤效应,解释的实际上是金属板屏蔽电磁场原理。 ?对于一个金属板(良导体),电磁波从一面辐射而来,大部分能量被反射,小部分能量进入金属,该电磁波会随进入金属的深度成e指数衰减(能量转化为表面电流),当金属层过薄时,电磁波就会穿透金属层继续传播。对于同一频率电磁波,电导率越高,衰减越快。对于相同金属材料,电磁波频率越高,衰减越快。 ?定义:趋肤深度,电磁波传输一个趋肤深度的距离后,振幅衰减到原来的 36.8%,能量衰减到13.5%。对于相同金属材料,电磁波频率越高,趋肤深 度越小。 ?例:10GHz电磁波。银,电导率6.173e7(S/m),趋肤深度6.4e-7(m),即0.64微米;1GHz电磁波,趋肤深度20.24e-7(m),即2.24微米。【1】那么,同材料的金属板,频率越高,趋肤深度越小,对辐射防御能力是越强。

回归正题,金属网屏蔽电磁场原理,(趋肤效应解释波导也有用到,不是重点)。?先说矩形波导,四壁是金属,电磁波在波导中的介质中传播。金属网实际上就是下图中许许多多的矩形波导叠放组合在一起,z方向长度再缩短些就 是了。 ?为何电磁波不会从金属网的窟窿中穿透呢?对于金属网,每一个网孔都是一个波导。借用光的粒子说,电磁波像弹球一样,进入网孔波导后,来回在金属壁上反弹,曲折前进。【2】 ?为满足金属壁这一边界条件下的Maxwell方程,对于相同规格的矩形波导,频率越低(波长越大),theta越大;当波长大于等于截止波长时,theta=90°,电磁波只上下弹跳,不前进了。 ?截止波长=2a(a为上上图中的矩形波导长边),若孔径指半径,孔径=a/2,则波长大于4倍孔径的电磁波就会被屏蔽。“金属网孔形式若为矩形整齐排列,金属网孔径小于电磁波波长的1/4时,则电磁波不能透过金属网”有相当

电磁波的危害和防护

电磁波的危害和防护

————————————————————————————————作者:————————————————————————————————日期:

电磁波的危害和防护 随着经济的发展和物质文化生活水平的不断提高,各种家用电器——电视机、空调器、电脑、手机等已经成为现代都市家庭不可或缺的东西。然而,各种家用电器和电子设备在使用过程中会产生多种不同波长和频率的电磁波。在特定条件下,这些电磁波可能成为“电磁污染”,危害到人们的健康。 1 电磁污染危害人体的机理 电磁污染危害人体的机理主要是热效应、非热效应和累积效应等。 热效应:人体70%以上是水,水分子受到电磁波辐射后相互摩擦,导致体温升高,从而影响到体内器官的正常工作。 非热效应:人体的器官和组织都存在微弱的电磁场,一旦受到外界电磁场的干扰,处于平衡状态的微弱电磁场将遭到破坏,人体也会遭受损伤。 累积效应:热效应和非热效应对人体的伤害具有累积效应,其伤害程度会随时间和影响程度发生累积,久而久之会成为永久性病态。对于长期接触电磁波辐射的群体,即使电磁波功率很小、频率很低,也可能被诱发意想不到的病变。 2 电磁污染的危害

1998年世界卫生组织调查显示,电磁辐射对人体有五大影响:(1)电磁辐射是心血管疾病、糖尿病、癌突变的主要诱因之一; (2)电磁辐射会对人体生殖系统、神经系统和免疫系统造成直接伤害; (3)电磁辐射是造成孕妇流产、不育、畸胎等病变的诱发因素之一; (4)过量的电磁辐射直接影响儿童身体组织、骨骼发育,导致视力、肝脏造血功能下降,严重者可导致视网膜脱落; (5)电磁辐射可使男性性功能下降、女性内分泌紊乱。 3 电磁波的防护 3.1电磁环境标准及相关规定 为控制现代生活中电磁波对环境的污染,保护人们身体健康,1989年12月22日我国卫生部颁布了《环境电磁波卫生标准》( GB9175-88),规定居住区环境电磁波强度限制值:长、中、短波应小于lOV/m,超短波应小于5V/m,微波应小于10μW/cm2。我国有关部门还制订了《电视塔辐射卫生防护距离标准》,国家环保局也颁布了《电磁辐射环境保护管理办法》。

电力设备低频电磁场仿真分析解决方案

ANSYS 电力设备低频电磁场仿真分析解决方案

目录 一、电力设备仿真分析(CAE)的必要性 (3) 二、ANSYS低频电磁场仿真分析论证 (3) 2.1 ANSYS Emag软件简介 (3) 2.2 ANSYS Emag在电力系统中的应用 (4) 2.2.1 电场分析 (4) 2.2.2 磁场分析 (5) 2.2.3 耦合场分析 (5) 2.3 ANSYS Emag应用案例 (6) 2.3.1 电场分析 (6) 2.3.1.1 电场分析应用案例——屏蔽电极电场结构优化设计 (6) 2.3.1.2 电场分析应用案例——电流互感器远场边界计算 (7) 2.3.2 磁场分析 (8) 2.3.2.1 磁场分析应用案例——空心电流互感器磁场分析 (8) 2.3.2.2 磁场分析应用案例——电流互感器输出特性计算 (9) 2.3.3 电磁场-热耦合分析 (10)

一、电力设备仿真分析(CAE)的必要性 随着超高压特高压电网的相继投运,电力系统的安全性以及电网的稳定性成为电网运行中关键因素之一。更高的电压等级、更严格的运行指标对大容量、高性能输配电设备提出了更高的要求。当前,计算机辅助设计(CAD)技术早已在电力设备制造中成熟运用,然而,对产品性能进行前期计算机仿真分析(CAE)技术还未能广泛应用。 随着电压等级以及性能要求的提高,样品试验的试验成本、试验耗时以及试验困难度(如大电流、高电压)等传统的产品性能验证方式都对设计成功率要求更高,传统的反复试验指导设计的方式已经不可行,因此,计算机辅助分析(CAE)的重要性达到了空前的高度,计算机硬件以及软件技术的飞速发展也使得CAE 成功应用于大规模工程问题成为现实。 电力设备的主要特性可分为电气、机械、温升以及化学等特性,这些特性相互作用,是一个集电、磁、结构、热、流体等于一体的综合的复杂的过程。ANSYS 公司开发提供的系列仿真分析软件包含电磁、结构、热以及流体的仿真分析模块,可以很好的应用于电力设备的各方面性能仿真分析;其优越的多物理场耦合功能能够分析电力设备的整体综合性能;其优化功能能够为电力设备小型化、性能优化提供最优方案。 二、ANSYS低频电磁场仿真分析论证 2.1 ANSYSEmag软件简介 ANSYS Emag是ANSYS产品家族中专用的低频电磁场仿真分析模块,秉承了ANSYS家族产品的整体优势,历经超过25年的开发与应用,成为ANSYS家族产品中不可或缺的一员。 ANSYS Emag提供了完备的低频电磁场分析功能,包括静态电场、静态磁场、直流传导场、低频电场(时谐和瞬态)、以及低频磁场(时谐和瞬态)分析功能,覆盖了几乎所有工程低频电磁问题的分析类型;ANSYS Emag提供的场路耦合功能能够方便直观的将电路模型与电磁场有限元模型直接相连,进行更精确、更系

电磁屏蔽基本原理

1、电磁屏蔽基本原理 如图1所示电磁屏蔽的基本原理是:采用低电阻的导体材料,并利用电磁波在屏蔽导体表面的反射和在导体内部的吸收以及传输过程中的损耗而使电磁波能量的继续传递受到阻碍,起到屏蔽作用。某些屏蔽材料可将大部分入射波反射掉,利用内部吸收及多重反射损耗掉部分进入材料的电磁波,只允许极少量的电磁波透过材料继续传播。 钢金属结构就起到了电磁屏蔽的作用,会大大影响附近基站对楼内的信号覆盖强度,下面用具体公式证明这一点。 钢金属结构对电磁波的损耗主要由反射损耗和吸收损耗组成。吸收损耗是指电磁波穿过屏蔽罩时能量损耗的数量,吸收损耗计算公式为: AdB=(f×σ×μ) /2×t 其中 f:频率(MHz) μ:金属导磁率σ:金属导电率 t:屏蔽罩厚度 联通附近基站使用的频率是900MHz,钢的导磁率约为450×10-4左右,钢的导电率约为×10-5左右,钢结构厚度约为0.02米左右。 将上述参数代入公式,吸收损耗约为31dB。 反射损耗(近场)的大小取决于电磁波产生源的性质以及与波源的距离。对于杆状或直线形发射天线而言,离波源越近波阻越高,反射损耗随波阻与屏蔽阻抗的比率变化,因此它不仅取决于波的类型,而且取决于屏蔽罩与波源之间的距离。 近场反射损耗可按下式计算 RdB=168+10×lg(σ/μrf)

其中 r:波源与屏蔽之间的距离,估算取为200米。 将参数代入公式,得到反射损耗为。 因此,由于钢金属结构引起的损耗为吸收损耗和反射损耗之和,即为,再加上建筑物其他混凝土结构的损耗20dB,总损耗约为97dB。 2、链路预算 下行链路(DownLink)是指基站发,移动台接收的链路。 上行链路(UpLink)是指移动台发,基站接收的链路。 对于GSM900M系统的上下行链路,按照链路预算公式,计算后建筑物内信号电平值为-99dBm左右,基本无法满足正常的通话需求。 对于GSM1800M系统,其覆盖能力还不如GSM900M,也无法达到覆盖效果。 对于CDMA系统,链路预算表格如下表

电磁辐射的危害与预防论文

电磁辐射(论文) 题目:电磁辐的研究学生:毛圣杰 指导老师:楚君 学号:2015550605 专业:电子信息工程学院:信息工程学院

目录 一、引言 (4) 二、电磁辐射的产生 (5) 三、电磁辐射的危害 (6) 四、电磁辐射的相关法律法规 (8) 五、安全作业与电磁辐射污染的防范 (9) 六、结语 (11)

摘要:本文介绍了电磁辐射的定义以及常见的电磁辐射源,阐述了电磁辐射的类别以及它们的分类,同时从几个方面介绍了电磁辐射对人类活动带来的影响、产生影响的因素及辐射大小的衡量,探讨了电磁辐射的防护以及国家的有关规定。 关键字:电磁辐射电磁波电磁危害电磁防护

引言 电磁辐射是以一种看不见、摸不着的特殊形态存在的物质,是电场和磁场的交互变化产生的电磁波向空中发射或泄露的现象,过量的电磁辐射会造成电磁辐射污染。电磁辐射又叫电磁波,包括有无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等等。人类生存的地球本身就是一个大磁场,它表面的热辐射和雷电都可产生电磁辐射,太阳及其他星球也从外层空间原原不断地产生电磁辐射。围绕在人类身边的天然磁场、太阳光、家用电器等都会发出强度不同的电磁辐射。

一、电磁辐射是指能量以电磁波的形式通过空间传播的现象。任何交流电在其周围都要形成交变的电场,交变的电场又产生交变的磁场,交变的磁场又产生交变的电场,这种交变的电场与交变的磁场相互垂直,以源为中心向周围空间交替地产生并以一定的速度传播,即为电磁波。 二、电磁辐射源一般分为天然电磁辐射和人为电磁辐射两类。天然电磁辐射,如雷电、火山喷发、地震和太阳黑子引起的磁暴等;人为电磁辐射,有电波发射设施(如广播、电视发射塔等),通信设施(如人造卫星通信系统的地面站、雷达系统的雷达站、移动通讯塔等),各种高频设备(如高频热和机、高频焊接机、高频烘干机、家用微波炉等),交通设备(如电气化铁道、电车等),电力设备(如高压电线路、变电站等)。

电磁波有危害生活中处处在 电磁波危害

现代人们的日常生活可以说离不开电磁波,这是因为没有电磁波,也就没有现代的无线电通讯,这样要使用手机打电话、收看电视节目都将是不可能的事情,现在的人们很难想象,如果没有邮电、电话、电报、电视、广播的世界将会是什么样子,电磁波在帮助人们实现美好的梦想、给人类带来极大方便的同时,也不可避免地带来一些危害。 一、什么是电磁波? 电磁波是电场和磁场在空间的传播而形成,它可以在真空或在介质中传播,在真空中,电磁波的传播速度最快,为3×103m/s,这个数值也是物体运动的极限速度,可见光、微波和γ射线都属于电磁波。 二、电磁波的特性 通过做磁铁实验就会发现,磁场的穿透能力非常强,不论是薄木片、垫板、铁片、铝箔纸还是手掌,都无法阻隔电磁波,电磁波中的磁场,与磁铁的磁场一样,它们都是无孔不入,并且具有很强的穿透力。 三、电磁波的产生与危害 由于电磁波的频率会发生变化,因此很容易对人们产生伤害。例如,在家庭照明电路中使用的是交流电,它的频率每秒钟正、反变化50次,也就相当于磁

场的方向每秒钟变化50次,这样变化的磁场可以使人体中产生变化的电流,从而会对人体产生一定的危害作用,对一般情况下使用的小磁铁来说,因为其南、北极固定不变的,因此不至于对人体产生危害, 在我们的日常生活中,到处都充满了电磁波,只要是使用家用电器,就不可避免地会产生电磁波,例如,电风扇、吹风机、果汁机、微波炉、电冰箱、洗衣机、电视机、空调器等这些家用电器在使用的过程中都会产生电磁波,就连墙壁中安装的照明暗线,也可以使电磁波检测笔哔哔叫,因而大家在睡觉时最好不要靠近装有电线的墙壁,以防因电磁波的影响而难以好好的休息。 我们经常使用的手机,它在接打电话时产生的电磁波还是比较强的,如果你是在电脑前接打电话,常常会发现电脑屏有明显的屏幕闪烁感;若是在正在播放节目的收音机前接打手机,收音机也会受到极大的干扰,影响收听的效果;大家看电视时,时常会发生图像抖动和“雪花”现象,这也是因为受到附件其它电器产生电磁波干扰的缘故。 微波炉工作时产生的微波也是很强的电磁波,有人曾经通过实验发现,微波炉工作时产生的微波能够抑制植物的生长!大家可能会觉得不可思议,然而这确是不争的事实,实验过程是这样的,将四盆绿豆苗分别放在微波炉中被微波照射约5s、10s、15s、20 s后,移出置于空旷处,另外一盆完全不照射微波,作为实验控制组,仔细观察这五盆绿豆苗每天的生长进度,发现不受微波照射的实验控制组,绿豆苗生长正常;经过微波照射后的那四盆绿豆苗中,只有照射5s的

浅谈电磁场屏蔽

浅谈电磁场屏蔽 【摘要】阐述了三种电磁场屏蔽的屏蔽原理,在屏蔽材料的选取、屏蔽效果、应用范围等方面对三者进行了比较。 【关键词】电磁场屏蔽;屏蔽原理;屏蔽材料;屏蔽效果 0引言 随着电子技术的发展,越来越多的电子电气设备进入人们的生活,电磁污染日益严重。另一方面,由于电子电气设备小型化的要求,极易受外界电磁干扰而使其产生误动作,从而带来严重后果。因此人们越来越重视电子产品的电磁兼容性(EMC),电磁场的屏蔽就是电磁兼容技术的主要措施之一。 根据条件的不同,电磁场的屏蔽一般可以分为三类:静电屏蔽、静磁屏蔽和高频电磁场的屏蔽。三种屏蔽的共同点是防止外界的电磁场进入到某个需要保护的区域中去。但是由于所要屏蔽的场的特性不同,因而对屏蔽材料的要求也就不一样。 1静电屏蔽 静电屏蔽的目的是防止外界的静电场进入到某个区域。实际上对于变化很慢的交流电而言,它周围的电场几乎和静电场一样,只是电荷的分布周期性地变化而已。因此防止低频交流电的电场,也可以归结为静电屏蔽一类。静电屏蔽对导体壳的厚度和电导率无特别要求,但对于低频交流电场,屏蔽壳要选电导率高一点的材料。 图1空腔导体屏蔽外电场 静电屏蔽分为外屏蔽和全屏蔽。空腔导体内无电荷,在外电场中处于静电平衡时,其内部的场强总等于零(图1),因此外电场不可能对其内部空间发生任何影响。若空腔导体内有带电体,在静电平衡时,它的内表面将产生等量异号的感应电荷,外表面会产生等量同号的感应电荷(图2),此时感应电荷的电场将对外界产生影响。这时空腔导体只能屏蔽外电场,却不能屏蔽内部带电体对外界的影响,所以叫外屏蔽。如果外壳接地,即使内部有带电体存在,内表面感应的电荷与带电体所带的电荷的代数和为零,而外表面产生的感应电荷通过接地线流入大地(图3)。此时外界无法影响壳内空间,内部带电体对外界的影响也随之消除,所以这种屏蔽叫做全屏蔽。 实际使用中一般均采用接地的屏蔽方法,且金属外壳不必严格完全封闭,用金属网罩代替金属壳体也可达到类似的静电屏蔽效果。例如高压电力设备安装接地金属网,电子仪器的整体及某些部分使用接地金属外壳等。 2静磁屏蔽 图4 静磁屏蔽的目的是屏蔽外界静磁场和低频电流的磁场,这时必须用磁性介质作外壳。如图4,用磁导率为的铁磁材料制成屏蔽壳,壳与空腔则可看作两个并联的磁阻。由于,空腔磁阻远大于屏蔽壳磁阻,所以外界的磁感线绝大部分穿过屏蔽壳而不进入空腔。要想获得更好的屏蔽效果,可使用较厚的屏蔽壳或采用多重屏蔽壳。因此效果良好的铁磁屏蔽壳一般都比较笨重。在重量和体积受到限制的情况下,常常采用磁导率高达数万的坡莫合金来做屏蔽壳,壳的各个部分要尽量结合紧密,使磁路畅通。磁屏蔽不同于电屏蔽,壳体是否接地不会影响屏蔽效果,但是要求金属材料磁导率要高。

电磁波的危害和防护

电磁波的危害和防护 随着经济的发展和物质文化生活水平的不断提高,各种家用电器——电视机、空调器、电脑、手机等已经成为现代都市家庭不可或缺的东西。然而,各种家用电器和电子设备在使用过程中会产生多种不同波长和频率的电磁波。在特定条件下,这些电磁波可能成为“电磁污染”,危害到人们的健康。 1 电磁污染危害人体的机理 电磁污染危害人体的机理主要是热效应、非热效应和累积效应等。 热效应:人体70%以上是水,水分子受到电磁波辐射后相互摩擦,导致体温升高,从而影响到体内器官的正常工作。 非热效应:人体的器官和组织都存在微弱的电磁场,一旦受到外界电磁场的干扰,处于平衡状态的微弱电磁场将遭到破坏,人体也会遭受损伤。 累积效应:热效应和非热效应对人体的伤害具有累积效应,其伤害程度会随时间和影响程度发生累积,久而久之会成为永久性病态。对于长期接触电磁波辐射的群体,即使电磁波功率很小、频率很低,也可能被诱发意想不到的病变。 2 电磁污染的危害

1998年世界卫生组织调查显示,电磁辐射对人体有五大影响:(1)电磁辐射是心血管疾病、糖尿病、癌突变的主要诱因之一; (2)电磁辐射会对人体生殖系统、神经系统和免疫系统造成直接伤害; (3)电磁辐射是造成孕妇流产、不育、畸胎等病变的诱发因素之一; (4)过量的电磁辐射直接影响儿童身体组织、骨骼发育,导致视力、肝脏造血功能下降,严重者可导致视网膜脱落; (5)电磁辐射可使男性性功能下降、女性内分泌紊乱。 3 电磁波的防护 3.1电磁环境标准及相关规定 为控制现代生活中电磁波对环境的污染,保护人们身体健康,1989年12月22日我国卫生部颁布了《环境电磁波卫生标准》( GB9175-88),规定居住区环境电磁波强度限制值:长、中、短波应小于lOV/m,超短波应小于5V/m,微波应小于10μW/cm2。我国有关部门还制订了《电视塔辐射卫生防护距离标准》,国家环保局也颁布了《电磁辐射环境保护管理办法》。

电磁辐射对人的影响及危害

电磁辐射对人的影响及危害 课题组组长:唐蔚军 课题组成员:韦乐、邓小娜、郑婷婷、徐以轩、王花、符雪栩、冯云、吴刚 指导老师:曾维娜 开题时间:2009年10月结题时间:2010年2月 课题安排: 韦乐、邓小娜:负责上网调查,搜索课题里的有关资料及内容工作. 郑婷婷、徐以轩:负责排表几整理有利的资料内容工作. 王花、符雪栩:负责书写课题报告论文工作. 冯云、吴刚:负责列表及排表工作. 课题的方法: 调查法 课题的目的与意义: 课题只对电磁波的各方面进行学习,如电磁波的产生、传播途径、对人体的危害等,对生活中的电磁辐射及市民对电磁波的了解情况进行调查。 首先,课题组将对电磁波的本质及其它方面进行了解、学习。内容如下: 1、什么是电磁波?什么是电磁辐射?什么是电磁辐射污染源? 2、电磁波对人体作用的机理和危害。 3、电磁辐射会对人们的生活、生产等各方面造成什么危害? 其次,我们将对生活中的主要电磁辐射源和周围身边的电磁辐射源进行调查。 再次,我们将对周围的人对电磁波的认识情况进行调查。调查主要采用匿名问卷调查的方式。 最后,我们将根据调查的结果得出结论: 1、人们的身边有哪些电磁辐射源? 2、身边的电磁辐射情况 3、身边的人对电磁波的了解情况。 在得出结论后,我们还将根据调查的结果针对生活里的电磁辐射、提高生活中对电磁辐射的警惕性,从学生的角度出发,对政府和环保部门提出有益的建议。 论文 电磁辐射的危害

我们一直生活在一个充满辐射的世界里——大气热辐射、太阳光辐射、放射性元素辐射、电磁辐射……地球本身就是一个大磁场,其表面的热辐射和雷电都可产生电磁辐射。此外太阳及其它星球也在外层空间源源不断地产生电磁辐射。但科学研究表明,天然产生的电磁辐射对人体的影响很小,是基本没损害的。对人体构成威胁、对环境造成污染的是人工产生的电磁辐射。近年来,随着科技的发展,电视机、电冰箱、洗衣机、微波炉,手机、计算机等各种各样的电子产品走进了人们的工作、学习、生产、生活中,给人们带来了便利。然而,几乎所有的电子产品都会释放电磁波,即使是电线,也会释放电磁波。 根据麦克斯韦理论,任何加速的电荷都能发射电磁辐射,在有电流通过的地方,均会产生电磁波。手机、微波炉等会产生较高频的突波(脉动波)及不均匀的电磁辐射波,如防护不当,会对人体有一定的伤害。但大部分电器产生的低频电磁辐射为均匀稳定的交流电磁辐射波,对人体尚无明显伤害。长时间的低频脉动电磁场对生物体的作用尚无定论,但发达国家已对此开始采取防范措施。瑞典、美国的学者、专家的有关专题报告中曾指出:低频脉动电磁场所发出的辐射,同样能引起人体某些病变。因此,目前关于辐射方面的很多问题尚待研究。 在您看电视的时候,您也许不会料到比高压电缆所产生的电磁波还要强的电磁辐射正笼罩着您;在您用移动电话谈妥一宗生意的时候,您不会想到手机天线集中释放的电磁波已经进入了您的体内…… 生活中的电子产品种类十分众多,与我们的生活、工作关系非常密切,我们与它们接触的时间又比较长,因此,这些电子产品所产生的电磁辐射对人体健康的影响问题已经越来越受到人们的重视。 既然电磁辐射与人体健康的关系如此密切,那么电磁辐射到底是怎么一回是呢? 要想弄清电磁辐射是怎么一回事,首先就必须弄清什么是电磁波? 什么是电磁波? 电磁波就是在空间传播的周期性变化的电磁场。无线电波、光线、X射线和γ射线等都是波长不同的电磁波,也叫电波。电磁场是电场和磁场的统称。 变化着的电场和磁场往往同时并存,并且互相转化。 电磁辐射和电磁污染 其实电波就是电磁辐射。电磁辐射指电磁场的能量以波的形式向四周传播。在没有实物媒质存在时,它的传播速度为光速。电磁辐射可按其波长、频率排列成若干频率段,形成电磁波谱。频率越高,该辐射的量子能量越大,其生物学作用就越强。科学实验表明,能引起生物组织电离的最小量子能量约为12电子伏(相应波长、频率介于远紫外线与X射线之间),人们常把量子能量大于这一水平的电磁辐射称为电离辐射,反之,把量子能量小于这一水平的电磁辐射称为非电离辐射。 电磁辐射的来源: 电磁辐射的来源主要有两类:

低频电磁波的屏蔽

低频电磁波的屏蔽一、前言 凡是有电源的地方、有用电设备的地方、几百米内有高压电线的地方、几十米内有地下电缆的地方,甚至只有金属管道和金属梁架的地方,都可能有高达数十以至数百毫高斯的低频电磁干扰。低频电磁干扰的强度变化常常无规律可循,短时间内就会有相当大的上下波动;低频电磁干扰的来源往往难以确定,这样就更增加了屏蔽设计的难度。 二、低频电磁屏蔽与其它屏蔽的差异比较 1、低频电磁场 根据电磁波传输的基本原理,在频率很低的时候良导体中的电磁波只存在于导体表面有“趋肤效应”(波从表面进入导电媒质越深,场的幅度就越小,能量就变得越小,这一效应就是趋肤效应)。 高频电路中,传导电流集中到导线表面附近的现象也有这样的问题又称“集肤效应”。交变电流通过导体时,由于感应作用引起导体截面上电流分布不均匀,愈近导体表面电流密度越大。这种“趋肤效应”使导体的有效电阻增加。频率越高,趋肤效应越显著。当频率很高的电流通过导线时,可以认为电流只在导线表面上很薄的一层中流过,这等效于导线的截面减小,电阻增大。既然导线的中心部分几乎没有电流通过,就可以把这中心部分除去以节约材料。因此,在高频电路中可以采用空心导线代替实心导线。此外,为了削弱趋肤效应,在高频电路中也往往使用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。在工业应用方面,利用趋肤效应可以对金属进行表面淬火。)、磁滞损耗(放在交变磁场中的铁磁体,因磁滞现象而产生一些功率损耗,从而使铁磁体发热,这种损耗叫磁滞损耗。铁磁材料在磁化过程中由磁滞现象引起的能量损耗。磁滞指铁磁材料的磁性状态变化时,磁化强度滞后于磁场强度,它的磁通密度B与磁场强度H之间呈现磁滞回线关系。经一次循环,每单位体积铁心中的磁滞损耗等于磁滞回线的面积。这部分能量转化为热能,使设备升温,效率降低,这在交流电机一类设备中是不希望的。软磁材料的磁滞回线狭窄,其磁滞损耗相对较小。硅钢片因此而广泛应用于电机、变压器、继电器等设备中。)以及反射损耗(反射损耗是指由于屏蔽的内部反射导致的能量损耗的数量,他随着波阻和屏蔽阻抗的比率而变化)都很小,低频电磁波的能量基本由磁场能量构成。所以这时我们所要屏蔽的应该是电磁波的磁场分量(电磁屏蔽的

低频磁场的屏蔽解读

低频磁场的屏蔽 对于许多人而言,低频磁场干扰是一种最难对付的干扰,这种干扰是由直流电流或交流电流产生的。例如,由于炼钢的感应炉中有数万安培的电流,会在周围产生很强的磁场,这个强磁场会使控制系统中的磁敏感器件失灵,最常见的磁敏感设备是彩色CRT显示器。在磁场的作用下,显示器屏幕上的图象会发生抖动、图象颜色会失真,导致显示质量严重降低,甚至无法使用。低频磁场往往随距离的衰减很快,因此在很多场合,将磁敏感器件远离磁场源是一个减小磁场干扰的十分有效的措施。但当空间的限制而无法采取这个措施时,屏蔽是一个十分有效的措施。但要注意的是,低频磁场屏蔽与与射频屏蔽是完全不同的,射频屏蔽可以用铍铜复合材料、银、锡或铝等材料,但这些材料对磁场没有任何屏蔽作用。只有高导磁率的铁磁合金能屏蔽磁场。 1.基本原理 根据电磁屏蔽的基本原理,低频磁场由于其频率低,趋肤效应很小,吸收损耗很小,并且由于其波阻抗很低,反射损耗也很小,因此单纯靠吸收和反射很难获得需要的屏蔽效能。对这种低频磁场,要通过使用高导磁率材料提供磁旁路来实现屏蔽,如图1所示。由于屏蔽材料的导磁率很高,因此为磁场提供了一条磁阻很低的通路,因此空间的磁场会集中在屏蔽材料中,从而使敏感器件免受磁场干扰。 图1 高导磁率材料提供了磁旁路,起到屏蔽作用 从这个机理上看,显然屏蔽体分流的磁场分量越多,则屏蔽效能越高。根据这个原理,我们可以用电路的的计算方法来计算磁屏蔽效果。用两个并联的电阻

分别表示屏蔽材料的磁阻和空间的磁阻,用电路分析的方法来计算磁场的分流,由此可以计算屏蔽效果。 计算屏蔽效果 H i = H 0 Rs / ( Rs + R 0) 式中: H i = 屏蔽体内的磁场强度 H 0 = 屏蔽体外的磁场强度 Rs = 屏蔽体的磁阻 R 0 = 空气的磁阻 磁阻的计算公式 磁阻 = S / (μ A ) 式中: S = 磁路长度 μ = m 0 m r μ r = 屏蔽材料的相对磁导率 A = 磁通流过的面积 因此圆形管子的磁阻为 Rs = p b /( μ 0 μ r 2t L ) 为了简单,设截面为正方形, 管子内空气的磁阻为: 屏蔽效能为: R 0 = 2 b /( μ 0 2b L ) SE = H 0 / H i 对于高导磁率屏蔽材料,Rs < < R 0 ,因此,屏蔽效能为: SE = R 0 / Rs = 2 m r t / p b 从公式中可以看出,屏蔽材料的导磁率越高、越厚,则屏蔽效能越高。另外,b 越小,屏蔽效能越高,这意味着,屏蔽体距离所保护的空间越近,则效果越好。 2.基本概念 磁场强度 ( H ): 单位是奥斯特,与磁场源的强度和距离有关 磁通密度 ( B ): 单位是高斯,度量穿过每平方厘米的磁力线数量,与源的方向有关 磁导率 ( μ ): 表征材料为磁力线提供通路的能力, μ = B / H 饱和强度 : 在饱和强度下,材料不能再通过多余的磁力线 磁阻 ( R ): 表征材料对通过磁通的阻碍特性,定义为:R = L / μ A ,L 是磁通路径长度(cm ),A 截面面积(cm 2) 3.屏蔽材料

电磁波屏蔽涂料

电磁波屏蔽涂料 随着信息技术的飞速发展,计算机网络、信息处理设备、电子通信设备及各种电器设备作为信息技术的载体已在各个行业广泛应用,特别是电子元件小型化、高度集成化以及电子仪器仪表轻量化、高速化和数字化;电磁信号,由于其易受外界电磁干扰而出现动作失误,从而带来严重后果,因此必须采取各种有效防护措施,才能保障其不受干扰和瘫痪。从电磁信号泄露失密方面而言,无论军事机密或是商业机密,通过电磁波的泄露,都会给相关单位造成极大的损失,为此必须采取相应的屏蔽措施,防止电磁信号泄露和被侦测,以防失密;从预防电磁波污染来讲,现在对各种电磁污染危害的防护已引起环保部门和有关方面的高度重视,屏蔽电磁污染使其限定在一定区域,已成为环保领域最为活跃的研究课题之一。 电磁屏蔽涂料:是一种在化学溶剂中掺人导电颗粒,并能喷涂于 ABS 等工程塑料、玻璃钢、木材、水泥墙面等非金属材料上,对电磁波进行屏蔽的功能性涂料。具有室温固化、附着力强的优点,是手机,显示器、打印机及各类仪表的非金属壳体进行电磁屏蔽最为简便的一种处理方式。 电磁屏蔽涂料由合成树脂、导电填料、溶剂配制而成,将其涂覆于基材表面形成一层固化膜,从而产生导电屏蔽效果。涂覆方法主要采用喷涂、刷涂、浸涂和辊涂等。导电涂料作为电磁屏蔽材料的最大优点是成本低,简单实用且适用面广,使用最多的是银系导电涂料,也是开发最早的品种之一。 目前常用的电磁屏蔽涂料主要是以复合法制得的,它由树脂、稀释剂、添加剂以及导电性填料等所组成。树脂具有粘接性,常用的有环氧树脂、聚氨酯、酚醛、聚酰亚胺、丙烯酸等树脂。使用时可根据其固化条件,耐温、耐磨、硬度、挠曲等要求加以选择,也可将各类树脂混合使用以获得综合性能。稀释剂和添加剂用以降低树脂的粘度,浸润填充物,常用的有甲基溶纤剂、松木油、乙二醇丁醚醋酸酯等,烯释剂一般不采用溶剂型的,以避免发生气泡而降低导电性和粘接性。添加剂用来改进导电胶的性能,如分散剂能使导电填料充分分散,补强剂能增大附着力等。 现有的电磁屏蔽涂料以导电涂料为主,导电涂料中加入的导电性填料一般是金、银、铜、镍等金属粉末和炭黑、石墨等非金属粉末。金粉的导电性最高,化学稳定性好,但价格昂贵,以致使用受到限制。银粉的导电性也很优良,价格较金粉为低,虽然配胶后易沉淀,有“迁移”现象,但还是较为普遍采用。铜、镍的性能与银相近,价格比银低得多,但易氧化,导电性不稳定,配胶的耐久性差。炭黑、石墨粉末作为导电填料,其分散性好,价格低廉,但导电性较差,用作电磁屏蔽是较为理想的材料。

低频电磁波的危害

低频电磁波对人的伤害,主要有以下两种: 1,高强度的无线电波可以在人体内形成感应电流,对神经系统和内脏的正常工作造成影响。 快速发展的新技术和社交方式的改变造就了越来越多的人造电磁场来源,环境中人造电磁场下的暴露量不断增加。从电力的产生和传输,家用电器,工业设备到电信和广播,无论家居还是工作,每个人都暴露在以复杂的方式混合的微弱的电场和微弱的磁场之中。 在外界没有电场的情况下,我们人体内也会有作为正常身体功能的一部分的化学反应产生的很微弱的电流。比如,神经会以发送电脉冲的形式传递信号;大多数的生物化学反应,包括消化和大脑活动,都伴随着带电粒子的重新排布。心脏的电活动也是非常活跃的,医生可以用心电图来记录下它们。低频的电场可以像影响由带电微粒组成的其它物质一样影响人体。当电场作用在导电材料上的时候,会影响表面的电荷分布。电场会使得电流从身体流向大地。低频的磁场可以在人体中感应出环流的电流。电流的强度取决于外界磁场的强度。如果电流足够大,会产生对人体神经和肌肉的刺激,或者影响其它的生理过程。电场和磁场都可以在人体中感应出电压和电流,但是就算直接站在高压电线的下方,身体中感应出的电流相比于可以产生电击或者其他电效应的限值仍然是非常小的。 2,一些能被分子吸收的光,比如可见光、红外光和微波(包括微波炉里面的辐射),如果高强度高的话,可以加热人体造成烧灼伤害 加热是射频电磁场的主要生理作用。在微波炉中,这一事实被用来加热食物。人们平常接触到的射频电磁场的强度比可以产生明显加热效果的强度低得多。射频电磁波的加热效应是目前安全准则制定的主要依据。科学家也在研究长期暴露在可以加热人体的临界值以下产生效应的可能性。到目前为止,低强度长时间暴露在射频和工频的电磁场下的负面健康影响并没有得到确证。 对于大部分可见光甚至更低频的红外、微波辐射波段,由于光子的能量比分子间化学键的能量小,是不可能破坏分子结构的。如果波长合适(主要是红外光),能够被分子吸收(跟分子的振动或者转动能级恰好匹配),那么分子会吸收这种电磁波而使得分子运动变得剧烈;而微波波段的电磁波能够驱动某些极性分子(分子内部有带正电和负电的部分)做振荡运动,使得分子之间互相碰撞,也会加剧分子的运动。总之,就是在这一波段的电磁波的作用下将会使得人体温度升高,有可能造成烧灼的伤害。微波炉就是利用电磁波驱动水等极性分子振荡运动以加热食物另外,一切物体都在不断地向四面八方辐射各种波长的电磁波,这就是“黑体辐射”的物理知识。辐射的不同波长电磁波的能量分布服从普朗克提出的黑体辐射定律。我们日常所见的一切都在不停地以电磁波照射着周围的一切,也持续受到着周围一切的黑体辐射。按照室温计算(300开尔文,27摄氏度),我们辐射的电磁波强度最大的波长是约十个微米,处于红外光的范围里,每平方厘米的皮肤每秒钟辐射出的电磁波总能量为0.046焦耳。显而易见,低强度的红外光辐射对人体是完全无害的。值得注意的是,人的眼睛看不见红外线,但是会被高强度的红外线烧伤。一般的微波炉工作频率是2.45GHz(1G 等于十亿),无线网络(WIFI)的无线路由器工作频率一般是2.4GHz(也有5GHz的),3G 网络的频率在1.7-2.4GHz之间,而手机的信号频率在0.8-0.96GHz之间和1.71-1.85GHz 之间,在这些频率范围内,辐射对人体的伤害表现为热效应。电磁波通过驱动极性分子(主要是水)做振荡运动,使得分子之间互相碰撞,加剧所有分子的运动,表现为温度升高。对于像部分食物或者生物体这样含水多的物体,这个波段的穿透深度基本上在厘米量级(温菜的时候有时表层热了,下面还凉着),所以如果你没有感觉到皮肤发热或体温上升,那么就完全不用担心这个波段的辐射伤害。总之,在从可见光到微波波段的电磁辐射里面,如果没有闻到烤肉的味道也没有觉得体温升高太多的话,就不用担心电磁辐射的伤害。尽管说从物

相关主题
文本预览
相关文档 最新文档