当前位置:文档之家› 各计算材料软件的优势.

各计算材料软件的优势.

各计算材料软件的优势.
各计算材料软件的优势.

不同计算材料软件的模块与优势

理工院13级物理学徐飞鸿学号13345028

日期:2015年10月29日

Materials Studio:

Materials Studio是ACCELRYS公司专门为材料科学领域研究者所涉及的一款可运行在PC上的模拟软件。它可以帮助你解决当今化学、材料工业中的一系列重要问题。支持Windows98、NT、Unix以及Linux等多种操作平台的Materia ls Studio使化学及材料科学的研究者们能更方便的建立三维分子模型,深入的分析有机、无机晶体、无定形材料以及聚合物。

多种先进算法的综合运用使Material Studio成为一个强有力的模拟工具。它可以进行性质预测、聚合物建模还是X射线衍射模拟,操作简单,并且得到的数据切实可靠。灵活方便的Client-Server结构还是的计算机可以在网络中任何一台装有NT、Linux或Unix操作系统的计算机上进行,从而最大限度的运用了网络资源。

ACCELRYS的软件使任何的研究者都能达到和世界一流工业研究部门相一致的材料模拟的能力。模拟的内容囊括了催化剂、聚合物、固体化学、结晶学、晶粉衍射以及材料特性等材料科学研究领域的主要课题。

模块简介:

Materials Studio采用了大家非常熟悉的Microsoft标准用户界面,允许用户通过各种控制面板直接对计算参数和计算结果进行设置和分析。目前,Mat erials Studio软件包括如下功能模块:

Materials Visualizer:

提供了搭建分子、晶体及高分子材料结构模型所需要的所有工具,可以操作、观察及分析结构模型,处理图表、表格或文本等形式的数据,并提供软件的基本环境和分析工具以及支持Materials Studio的其他产品。是Materials Studio 产品系列的核心模块。

Discover:

Materials Studio的分子力学计算引擎。使用多种分子力学和动力学方法,以仔细推导力场作为基础,可准确地计算出最低能量构型、分子体系的结构和动力学轨迹等。

COMPASS:

支持对凝聚态材料进行原子水平模拟的功能强大的力场。是第一个由凝聚态性质以及孤立分子的各种从头算和经验数据等参数化并经验证的从头算力场。可以在很大的温度、压力范围内精确地预测孤立体系或凝聚态体系中各种分子的结构、构象、振动以及热物理性质。

Amorphous Cell:

允许对复杂的无定型系统建立有代表性的模型,并对主要性质进行预测。通过观察系统结构和性质之间的关系,可以对分子的一些重要性质有更深入的了解,从而设计出更好的新化合物和新配方。可以研究的性质有:内聚能密度(CE D)、状态方程行为、链堆砌以及局部链运动等。

Reflex:

模拟晶体材料的X光、中子以及电子等多种粉末衍射图谱。可以帮助确定晶体的结构,解析衍射数据并用于验证计算和实验结果。模拟的图谱可以直接与实验数据比较,并能根据结构的改变进行即时的更新。包括粉末衍射指标化及结构精修等工具。

Reflex Plus:

是对Reflex的完善和补充,在Reflex标准功能基础上加入了已被广泛验证的PowderSolve技术。Reflex Plus提供了一套可以从高质量的粉末衍射数据确定晶体结构的完整工具。

Equilibria:

可计算烃类化合物单组分体系或多组分混合物的相图,溶解度作为温度、压力和浓度的函数也可同时得到,还可计算单组分体系的virial系数。适用领域包括石油及天然气加工过程(如凝析气在高压下的性质)、石油炼制(重烃相在高压下的性质)、气体处理、聚烯烃反应器(产物控制)、橡胶(作为温度和浓度的函数的不同溶剂的溶解度)。

DMol3:

独特的密度泛函(DFT)量子力学程序,是唯一的可以模拟气相、溶液、表面及固体等过程及性质的商业化量子力学程序,应用于化学、材料、化工、固体物理等许多领域。可用于研究均相催化、多相催化、分子反应、分子结构等,也可预测溶解度、蒸气压、配分函数、熔解热、混合热等性质。

CASTEP:

先进的量子力学程序,广泛应用于陶瓷、半导体、金属等多种材料,可研究:晶体材料的性质(半导体、陶瓷、金属、分子筛等)、表面和表面重构的性质、表面化学、电子结构(能带及态密度)、晶体的光学性质、点缺陷性质(如空位、间隙或取代掺杂)、扩展缺陷(晶粒间界、位错)、体系的三维电荷密度及波函数等。

Materials Studio软件的优点:

1、Materials Studio是专门为材料科学领域研究者开发的一款可运行在P C上的模拟软件。支持Windows 98、2000、NT、Unix以及Linux等多种操作平台。

2、Materials Studio软件采用灵活的Client-Server结构。其核心模块V isualizer运行于客户端PC,支持的操作系统包括Windows 98、2000、NT;计算模块(如Discover)

3、Amorphous,Equilibria,DMol3,CASTEP等)运行于服务器端,支持的系统包括Windows 2000、NT、SGIIRIX以及Red Hat Linux。

4、投入成本低,易于推广。浮动许可(Floating License)机制允许用户将计算作业提交到网络上的任何一台服务器上,并将结果返回到客户端进行分析,从而最大限度地利用了网络资源,减少了硬件投资。

Wien2K:

用密度泛函理论(DFT)计算固体的电子结构。它基于键结构计算最准确的方案——完全势能(线性)增广平面波((L)APW)+局域轨道(lo)方法。在密度泛函中可以使用局域(自旋)密度近似(LDA)或广义梯度近似(GGA)。WIEN 2000使用全电子方案,包含相对论影响。

功能

1、计算固体特性。

2、键能和态密度,电子密度和自旋密度,X射线结构因子,Baders的“分子中的原子”概念,总能量,力,平衡结构,结构优化,分子动力学,电场梯度,异构体位移,超精细场,自旋极化(铁磁性和反铁磁性结构),自旋-轨道耦合,X 射线发射和吸收谱,电子能量损失谱计算固体的光学特性。

3、费米表面。

4、LDA,GGA,meta-GGA,LDA+U,轨道极化。

5、中心对称和非中心对称晶格,内置230个空间群。

6、图形用户界面和用户指南。

7、友好的用户环境W2web (WIEN to WEB)可以很容易的产生和修改输入文件

8、帮助用户执行各种任务(如电子密度,态密度等。

平台:Unix / Linux。

Gaussian:

Gaussian是目前计算化学领域内最流行、应用范围最广的商业化量子化学计算程序包。Gaussian软件的出现降低了量子化学计算的门槛,使得从头计算方法可以广泛使用,从而极大地推动了其在方法学上的进展。其可执行程序可在不同型号的大型计算机,超级计算机,工作站和个人计算机上运行,并相应有不同的版本。到目前为止,Gaussian已经推出了12个版本,包括Gaussian70、G aussian76、Gaussian80、Gaussian82、Gaussian86、Gaussian88、Gaussian90、Gaussian92、Gaussian92/DFT、Gaussian94、Gaussian98、Gaussian03等,其版本数字也是该版本发布的年份。其中,每个版本发布后,还陆续发布了一些这些版本的修订版。目前最新的版本是Gaussian03 Revision D.01/D.02。

Gaussian程序是用FORTRAN语言编写的,它从量子力学的基本原理出发,可计算能量、分子结构、分子体系的振动频率以及大量从这些基本计算方法中导

出的分子性质。它能用于研究不同条件下的分子和反应,包括稳定的粒子和实验上难以观测的化合物,例如瞬时的反应中间物和过渡结构。

Gaussian的并行模式是采用OpenMP来实现的。OPENMP的并行实现是针对共享内存的机器的,实现方法简单。因此Gaussian在共享内存的机器上,能获得很好的性能。对于跨节点的计算,Gaussian使用TCP Linda软件来实现。TCP L inda是一个虚拟共享内存的并行执行环境,它可以把一个通过网络连接的分布式内存的机群或工作站虚拟成共享内存环境,从而使像Gaussian这样的用OPEN MP实现并行的程序能够在分布式内存的机器上运行。

功能

1、分子能量和结构

2、过渡态能量和结构

3、键和反应能量

4、分子轨道

5、多重矩

6、原子电荷和电势

7、振动频率

8、红外和拉曼光谱

9、核磁性质

10、极化率和超极化率

11、热力学性质

12、反应路径

计算可以对体系的基态或激发态执行。可以预测周期体系的能量,结构和分子轨道。因此,Gaussian可以作为功能强大的工具,用于研究许多化学领域的课题,例如取代基的影响,化学反应机理,势能曲面和激发能等等。

Gaussian 03 介绍

Gaussian 03在化学、化工、生物化学、物理化学等化学相关领域方面的功能都进行了增强。

1、研究大分子的反应和光谱

Gaussian 03对ONIOM做了重大修改,能够处理更大的分子(例如,酶),可以研究有机体系的反应机制,表面和表面反应的团簇模型,有机物光化学过程,有机和有机金属化合物的取代影响和反应,以及均相催化作用等。

ONIOM的其它新功能还有:定制分子力学力场;高效的ONIOM频率计算;ONIO M对电、磁性质的计算。

2、通过自旋-自旋耦合常数确定构像

当没有X-射线结构可以利用时,研究新化合物的构像是相当困难的。NMR

光谱的磁屏蔽数据提供了分子中各原子之间的连接信息。自旋-自旋耦合常数可用来帮助识别分子的特定构像,因为它们依赖于分子结构的扭转角。

除了以前版本提供的NMR屏蔽和化学位移以外,Gaussian 03还能预测自旋-自旋耦合常数。通过对不同构像计算这些常数,并对预测的和观测的光谱做比较,可以识别观测到的特定构像。另外,归属观测的峰值到特定的原子也比较容易。

3、研究周期性体系

Gaussian 03扩展了化学体系的研究范围,它可以用周期性边界条件的方法(PBC)模拟周期性体系,例如聚合物和晶体。PBC技术把体系作为重复的单元进行模拟,以确定化合物的结构和整体性质。例如,Gaussian 03可以预测聚合物的平衡结构和过渡结构。通过计算异构能量,反应能量等,它还可以研究聚合物的反应,包括分解,降解,燃烧等。Gaussian 03还可以模拟化合物的能带隙。

PBC的其它功能还有:(1) 二维PBC方法可以模拟表面化学,例如在表面和晶体上的反应。用同样的基组,Hartree-Fock或DFT理论方法还可以用表面模型或团簇模型研究相同的问题。Gaussian 03使得对研究的问题可以选择合适的近似方法,而不是使问题满足于模块的能力极限。(2) 三维PBC:预测晶体以及其它三维周期体系的结构和整体性质。

4、预测光谱

Gaussian 03可以计算各种光谱和光谱特性。包括:IR和Raman;预共振Ra man;紫外-可见;NMR;振动圆形二色性(VCD);电子圆形二色性(ECD);旋光色散(OR D);谐性振-转耦合;非谐性振动及振-转耦合;g张量以及其它的超精细光谱张量。

5、模拟在反应和分子特性中溶剂的影响

在气相和在溶液之间,分子特性和化学反应经常变化很大。例如,低位构像在气相和在(不同溶剂的)溶液中,具有完全不同的能量,构像的平衡结构也不同,化学反应具有不同的路径。Gaussian 03提供极化连续介质模型(PCM),用于模拟溶液体系。这个方法把溶剂描述为极化的连续介质,并把溶质放入溶剂间的空穴中。

Gaussian 03的PCM功能包含了许多重大的改进,扩展了研究问题的范围:可以计算溶剂中的激发能,以及激发态的有关特性;NMR以及其它的磁性能;用能量的解析二级导数计算振动频率,IR和Raman光谱,以及其它特性;极化率和超极划率;执行性能上的改善。

G03W的界面和G98W相比,没有什么变化,G98W的用户不需要重新熟悉界面。

Gaussian新增内容

1、新的量子化学方法

(1) ONIOM模块做了增强

对ONIOM(MO:MM)计算支持电子嵌入,可以在QM区域的计算中考虑MM区域的电特性。

通过算法的改善,ONIOM(MO:MM)对大分子(如蛋白质)的优化更快,结果更可靠。

ONIOM(MO:MM)能够计算解析频率,ONIOM(MO:MO)的频率计算更快。

提供对一般分子力场(MM)的支持,包括读入和修改参数。包含了独立的MM 优化程序。

支持任何ONIOM模拟的外部程序。

(2) 修改和增强了溶剂模块

改善和增强了连续介质模型(PCM):

默认是IEFPCM模型,解析频率计算可以用于SCRF方法。此外改善了空穴生成技术。

模拟溶液中的很多特性。

可以对Klamt的COSMO-RS程序产生输入,通过统计力学方法,用于计算溶解能,配分系数,蒸汽压,以及其它整体性质。

(3) 周期性边界条件(PBC)

增加了PBC模块,用于研究周期体系,例如聚合物,表面,和晶体。PBC模块可以对一维、二维或三维重复性分子或波函求解具有边界条件的Schrodinger 方程。周期体系可以用HF和DFT研究能量和梯度;

(4) 分子动力学方法

动力学计算可以定性地了解反应机制和定量地了解反应产物分布。计算包含两个主要近似:

Born-Oppenheimer分子动力学(BOMD), 对势能曲面的局域二次近似计算经典轨迹。计算用Hessian算法预测和校正走步,较以前的计算在步长上能够改善10倍以上。还可以使用解析二级导数,BOMD能够用于所有具有解析梯度的理论方法。

提供原子中心密度矩阵传播(ADMP)分子动力学方法,用于Hartree-Fock和DFT。吸取了Car和Parrinello的经验,ADMP传递电子自由度,而不是求解每个核结构的SCF方程。与Car-Parrinello不同之处在于,ADMP传递密度矩阵而不是MO。如果使用了原子中心基组,执行效率会更高。这一方法解决了Car-Pa rrinello存在的一些限制,例如,不再需要用D代替H以获得能量守恒,纯DF T和混合DFT均可使用。ADMP也可以在溶剂存在的情况下执行,ADMP可以用于O NIOM(MO:MM)计算。

(5) 激发态

激发态计算方面做了增强。由于改善了在完全组态相互作用计算中求解CI 矢量的算法,提高了CASSCF执行效率。对能量和梯度计算可以使用约14个轨道(频率计算仍是8个)。

限制活性空间(RAS)的SCF方法。RASSCF把分子轨道分成五个部分:最低的占据轨道(计算中作为非活性轨道考虑),计算中作为双占据的RAS1空间,包含对所研究问题非常重要分子轨道的RAS2空间,弱占据的RAS3空间,以及未占据轨道(计算中做冻结处理)。因此,CASSCF在RAS计算中分成三个部分,考虑的组态通过定义RAS1空间允许的最少电子数和RAS3空间允许的最多电子数,以及三个RAS空间电子总数来产生。

NBO轨道可用于定义CAS和RAS活性空间。对于对应成键/孤对电子的反键轨道可以提供相当好的初始猜测。

对称性匹配簇/组态相互作用(SAC-CI)方法,用于有机体系激发态的高精度计算,研究两个或更多电子激发的过程(例如电离谱的扰动),以及其它的问题。

CIS,TD-HF和TD-DFT的激发态计算中可以考虑溶剂影响。

2、新的分子特性

(1) 自旋-自旋耦合常数,用于辅助识别磁谱的构像。

(2) g张量以及其它的超精细光谱张量,包括核电四次常数,转动常数,四次离心畸变项,电子自旋转动项,核自旋转动项,偶极超精细项,以及Fermi

接触项。所有的张量可以输出到Pickett的拟合与光谱分析程序。

(3) 谐性振-转耦合常数。分子的光谱特性依赖于分子振、转模式的耦合。可用于分析转动谱。

(4) 非谐性振动及振-转耦合。通过使用微扰理论,更高级的项可以包含到频率计算中,以产生更精确的结果。

(5) 预共振Raman光谱,可以产生基态结构,原子间连接,以及振动态的信息。

(6) 旋光性以及旋光色散,通过GIAO计算,用于识别手性体系的异构体。

(7) 电子圆二色性(ECD)。这一特性是光学活性分子在可见-紫外区域的差异吸收,用于归属绝对构型。预测的光谱还可用于解释已存在的ECD数据和归属峰位,

(8) 含频极化和超极化,用于研究材料的分子特性随入射光波长的变化。

(9) 用量度无关原子轨道(GIAO)方法计算磁化率,它类似于电极化率,用于研究分子的顺磁/反磁特性。

(10) 预测气相和在溶剂中的电、磁特性和光谱。

(11) ONIOM预测电、磁特性。

3、新增加的基本算法

(1) 更好的初始轨道猜测。Gaussian 03使用Harris泛函产生初始猜测。这个泛函是对DFT非迭代的近似,它产生的初始轨道比Gaussian 98要好,例如,对有机体系有所改善,对金属体系有明显改善。

(2) 新的SCF收敛算法,几乎可以解决以前所有的收敛问题。对于其它极少数的不收敛情况,Gaussian 03提供了Fermi展宽和阻尼方法。

(3) 纯DFT计算的密度拟合近似。这一近似在计算库仑相互作用时,把密度用一组原子中心函数展开,而不是计算全部的双电子积分。它用线性换算的算法,对中等体系的纯DFT计算可以极大地提高计算效率,而又不损失多少精度。Gau ssian 03可以对AO基自动产生合适的拟合基,也可以选择内置的拟合基。

(4) 更快的自动FMM方法,用于适中的体系(纯DFT约100个原子,混合DF T约150个原子)。

(5) 对纯DFT使用更快的库仑能算法,节省库仑问题的CPU时间。

(6) O(N)更精确的交换能量项。在Hartree-Fock和DFT计算中,通过删除密度矩阵的零值项来屏蔽精确的交换贡献。这可以节省时间,而又不损失精度。

4、新增功能:

(1) 新的密度泛函:OPTX交换,PBE和B95相关,VSXC和HCTH纯泛函,B1及其变体B98,B97-1,B97-2,PBE1PBE混合泛函。

(2) 高精度能量方法:G3及其变体,W1方法。另外还包含W1BD,它用BD 代替耦合簇,比CBS-QB3和G3更精确,当然计算也更加昂贵。

(3) 对重元素全电子基组计算的Douglas-Kroll-Hess标量相对论修正,用于当ECP基组不能满足精度的情况。

(4) 逼近基组极限的UGBS基组。

SIESTA(Spanish Initiative for Electronic Simulations with Thousands ofAtoms):

SIESTA是一种实现电子结构计算和第一性原理分子动力学模拟的程序,同时也是一种实现的方法。

软件功能:SIESTA用于分子和固体的电子结构计算和分子动力学模拟。SIE STA使用标准的Kohn-Sham自恰密度泛函方法,结合局域密度近似(LDA-LSD)或广义梯度近似(GGA)。计算使用完全非局域形式(Kleinman-Bylander)的标准守恒

赝势。基组是数值原子轨道的线性组合(LCAO)。它允许任意个角动量,多个zet a,极化和截断轨道。计算中把电子波函和密度投影到实空间网格中,以计算Ha rtree和XC势,及其矩阵元素。除了标准的Rayleigh-Ritz本征态方法以外,程序还允许使用占据轨道的局域化线性组合。使得计算时间和内存随原子数线性标度,因而可以在一般的工作站上模拟几百个原子的体系。程序用Fortran 90编写,可以动态分配内存,因此当要计算的问题尺寸发生改变时,无需重新编译。程序可以编译为串行和并行模式。

软件主要有以下功能:

l 总能量和部分能量

l 原子力

l 应力张量

l 电偶极矩

l 原子,轨道和键分析 (Mulliken)

l 电子密度

l 几何松弛,固定或者改变晶胞

l 常温分子动力学

l 可变晶胞动力学 (Parrinello-Rahman)

l 自旋极化计算(共线或者非共线)

l BZ区的k-取样

l 态的局域和轨道投影密度

l 能带结构

l 通过过滤或移到原子格点的方法平滑“蛋箱效应”

l HF和混和泛函

l 用多格点方法对溶剂中的分子计算Poisson-Boltzman方程

l 其它的线性标度方法

l 增强的MD历史框架

Siesta 3.0新增功能:

1. 功能增強:TranSiesta功能;主程序模块化;计算COOP/COHP/PDOS曲线的新程序,用于化学分析;优化基组、赝势的工具程序;新的过滤流程,用于减少蛋箱结构的影响。

2. 新的工具:新版本denchar;新的检查蛋箱脚本;赝势文件解释器;加入新的STM-图像代码;Python、Matlab、Octave语言的脚本工具。

3. 新的功能:更灵活的产生基组选项;正确处理带电表面;Ordejon-Mauri 线性标度泛函支持奇数电子;PBEsol和Wu-Cohen泛函;优化的增强;新的分子力学框架,包括Grimme型vdW;任意k点。

VASP:

VASP是使用赝势和平面波基组,进行从头量子力学分子动力学计算的软件包,它基于CASTEP 1989版开发。VAMP/VASP中的方法基于有限温度下的局域密度近似(用自由能作为变量)以及对每一MD步骤用有效矩阵对角方案和有效Pula y混合求解瞬时电子基态。这些技术可以避免原始的Car-Parrinello方法存在的一切问题,而后者是基于电子、离子运动方程同时积分的方法。离子和电子的相互作用超缓Vanderbilt赝势(US-PP)或投影扩充波(PAW)方法描述。两种技术都可以相当程度地减少过渡金属或第一行元素的每个原子所必需的平面波数量。力与张量可以用VAMP/VASP很容易地计算,用于把原子衰减到其瞬时基态中。

功能

一、VASP程序的亮点:

1、VASP使用PAW方法或超软赝势,因此基组尺寸非常小,描述体材料一般需要每原子不超过100个平面波,大多数情况下甚至每原子50个平面波就能得到可靠结果。

2、在平面波程序中,某些部分代码的执行是三次标度。在VASP中,三次标度部分的前因子足可忽略,导致关于体系尺寸的高效标度。因此可以在实空间求解势的非局域贡献,并使正交化的次数最少。当体系具有大约2000个电子能带时,三次标度部分与其它部分可比,因此VASP可用于直到4000个价电子的体系。

3、VASP使用传统的自洽场循环计算电子基态。这一方案与数值方法组合会实现有效、稳定、快速的Kohn-Sham方程自洽求解方案。程序使用的迭代矩阵对角化方案(RMM-DISS和分块Davidson)可能是目前最快的方案。

4、VASP包含全功能的对称性代码,可以自动确定任意构型的对称性。

5、对称性代码还用于设定Monkhorst-Pack特殊点,可以有效计算体材料和对称的团簇。Brillouin区的积分使用模糊方法或四面体方法。四面体方法可以用Bl?chl校正去掉线性四面体方法的二次误差,实现更快的k点收敛速度。

二、VASP 5.2的新功能:

1、大规模并行计算需要较少的内存。

2、加入新的梯度校正泛函AM05和PBEsol;用标准PBE POTCAR文件提供新泛函;改善了单中心处理。

3、离子位置和格矢中加入有限差分,从而得到二阶导,用于计算原子间力常数和声子(需要超晶胞近似),和弹性常数。计算中自动考虑对称性。

4、离子位置和静电场中加入线性响应,从而得到二阶导,用于计算原子间力常数和声子(需要超晶胞近似),Born有效电荷张量,静态介电张量(电子和离子贡献),内应变张量,压电张量(电子和离子贡献)。线性响应只能用于局域和半局域泛函。

5、精确的非局域交换和杂化泛函:Hartree-Fock方法;杂化泛函,特别是P BE0和HSE06;屏蔽交换;(实验性的)简单模型势GW-COHSEX,用于经验的屏蔽交换内核;(实验性的)杂化泛函B3LYP。

6、通过本征态求和计算含频介电张量:使用粒子无关近似,或通过GW的随机相近似。可用于局域,半局域,杂化泛函,屏蔽交换,和Hartree-Fock。

7、完全含频GW,速度达到等离子极点模型:单发G0W0;在G和W中迭代本征矢直至自洽;(实验性的)迭代G(也可以选W)本征矢的自洽GW;(实验性的)对相关能使用RPA近似的GW总能量;用LDA计算G和W的顶点校正(局域场效应),仅能用于非自旋极化的情况;(实验性的)W的多体顶点校正,仅能用于非自旋极化的情况。

实验性的功能:用TD-HF和TD-杂化泛函求解Cassida方程(仅能用于非自旋极化的Tamm-Dancoff近似);GW顶点的Bethe-Salpeter(仅能用于非自旋极化的Tamm-Dancoff近似)。

USPEX:

对在高温、高压等极端环境中材料结构的变化,以及发现材料新的物相是目前材料学研究领域的热点和难点。USPEX对这一难点问题取得了突破性的进展。USPEX是Universal Structure Predictor: Evolutionary Xtallography的缩写,由Artem R. Oganov研究小组开发的一种计算方法和同名软件实现。她克服了使用传统方法中遇到的成功率低和计算成本高的缺点,成功地实现了对于任意给定温度、压强条件下, 无需实验数据等经验参数,仅从材料化学成分组成进行晶体结构预测的功能。“uspekh” 在俄语中是“成功”的意思,也显示了这种方法近100%的成功率!

特色功能

无需实验数据,仅从材料的化学成分出发预测晶体结构,特别适用于高温、高压等极限条件下的晶体结构和分子结构预测。功能性材料,如超硬、超密材料,高/低k介电材料等新能源材料,如储氢材料等金属,超导体,金属有机物等材料支持各种晶胞结构的搜索。由实验得到的晶胞结构开始搜索,如晶胞参数,晶胞形状,晶胞体积等

由已知和假设结构开始搜索高效的收敛技术。

遗传进化算法(Evolutionary Algorithm)显著地降低对非物理和冗余结构的搜索

微粒群优化算法(Particle Swarm Optimization)对周期性晶体结构预测支持分子结构的全部固定、部分固定、和完全可变的各种操作

使用“指纹识别”技术来确定结构的相似程度支持断点续算(可修改参数) 具备与强大的可视化和分析工具STM4软件的接口

优势

USPEX通过数片结构的空间粘连,部分保留并考虑了原子的局域排布信息。反映了晶体中强的短程相互作用和当前一代的信息。对于处理较大的体系具有明显优势。置换算法提供了用户自定义哪种原子相互交换的功能,特别适用于具有长程化学相似的不同种原子构成的体系。

对于没有任何晶体信息或者仅有晶格参数的情况下,可以完全使用从头算处理6~40原子/晶胞的体系。对于多于40原子/晶胞的体系,计算成本显著增大,但仍可以实现,需要借助USPEX中的其他方法或近似,足以处理大多数的晶体学和地球物理学问题。对于100~200原子/晶胞的体系,使用经典力场方法,也可以得到很好的结果。

参考文献:

[1] 别再重硬轻软,高性能计算(HPC)软件大观it168网站原创作者: 雪原整理(2010)

材料模拟与计算 Asignment5

完成下面两个练习,提交截图 1.QM/MM calculation of the SW1 defect formation energy for a carbon Purpose: Introduces how to use the QMERA module in Materials Studio. Special attention is paid to preparing the system and which type of embedding scheme to use. Modules: Materials Visualizer, QMERA Time: Prerequisites: None The Stone-Wales (SW) defect is a common defect on carbon nanotubes that is thought to have important implications for their mechanical properties (see Andzelm et al., 2006). The 90° rotation of two carbon atoms around the midpoint of the C-C bond transforms four hexagons into two pentagons and two heptagons. This substructure is known as Stone-Wales defect. In this tutorial you will calculate the formation energy of a nonchiral SW defect (SW1). The following steps will be covered here: Getting started QM region definition QMERA calculation Analysis of results Note: In order to ensure that you can follow this tutorial exactly as intended, you should use the 1. Getting started Begin by starting Materials Studio and creating a new project. Open the New Project dialog and enter Stone-Wales as the project name, click the OK button. The new project is created with Stone-Wales listed in the Project Explorer. 2. Structure preparation The first thing you need to do is prepare the structure of the single-walled nanotube (SWNT). Select Build | Build Nanostructure | Single-Wall Nanotube from the menu bar. Change the N and M indices to 8 and 0 respectively. This corresponds to a nanotube of 6.26 ? diameter.

常用五金重量计算公式

常用金属材料重量计算公式 正方形和长方形(矩形)截面碳钢: 每米重量单位: kg/m(千克/米) & lb/ft(磅/英尺) 公式:kg/m = (Oc - 4Wt) * Wt * 0.00785 其中:Oc是外周长,Wt是壁厚;正方形Oc=4*a 长方形Oc=2a+2b a,b是边长 一,金属材料的理论重量计算方法 (单位:公斤) 角钢:每米重量=0.00785*(边宽+边宽-边厚)*边厚 圆钢:每米重量=0.00617*直径*直径(螺纹钢和圆钢相同) 扁钢:每米重量=0.00785*厚度*边宽 管材:每米重量=0.02466*壁厚*(外径-壁厚) 不锈钢管:(外径-壁厚)×壁厚×0.02491=公斤/米 板材:每米重量=7.85*厚度 黄铜管:每米重量=0.02670*壁厚*(外径-壁厚) 紫铜管:每米重量=0.02796*壁厚*(外径-壁厚) 铝花纹板:每平方米重量=2.96*厚度 有色金属比重:紫铜板8.9黄铜板8.5锌板7.2铅板11.37 有色金属板材的计算公式为:每平方米重量=比重*厚度 二,弯头重量计算公式 圆环体积=2X3.14X3.14(r^2)R r--圆环圆半径 R--圆环回转半径 中空管圆环体积=2X3.14X3.14((r^2)-(r’^2))R r’--圆环内圆半径 90,60,45度的弯头(肘管)体积分别是对应中空管圆环体积的1/4、1/6、1/8。 钢的密度工程上计算重量时按7.85公斤/立方分米,密度*体积=重量(质 量)。 1、180°弯头按表2倍计算,45°按1/2计算; 2、R1.0DN弯头重量按表2/3计算; 3、表中未列出壁厚的重量,可取与之相近的两个重量计算平均值; 4、90°弯头计算公式; 0.0387*S(D-S)R/1000 式中 S=壁厚mm D=外径mm R=弯曲半径mm 二,以下是焊接弯头的计算公式 1.外径-壁厚X壁厚X0.0387X弯曲半径÷1000, =90°弯头的理论重量 举例:426*1090°R=1.5D的 (426-10)*10*0.387*R600÷1000=96.59Kg 180°弯头按表2倍计算,45°按1/2计算; 2..(外径-壁厚)X壁厚X0.02466XR倍数X1.57X公称通径=90°弯头的理论重量举例:举例:426*1090°R=1.5D的 (426-10)*10*0.02466*1.5D*1.57*400=96.6Kg 180°弯头按表2倍计算,45°按1/2计算。 三、方钢管公式:4x壁厚x(边长-壁厚)x7.85

三种常用分子模拟软件介绍

三种常用分子模拟软件介绍 一、NAMD NAMD(NAnoscale Molecular Dynamics)是用于在大规模并行计算机上快速模拟大分子体系的并行分子动力学代码。NAMD用经验力场,如Amber,CHARMM和Dreiding,通过数值求解运动方程计算原子轨迹。 1. 软件所能模拟的体系的尺度,如微观,介观或跨尺度等 微观。 是众多md 软件中并行处理最好的,可以支持几千个cpu 运算。在单机上速度也很快。 模拟体系常为为10,000-1,000,000 个原子。 2. 软件所属的类型,如MD,DPD,DFT,MC,量化,或交叉等 全原子md,有文献上也用它做过cgmd。 3. 软件能研究的相关领域,使用者的背景最好是? 使用的力场有charmm,x-plor,amber 等,适合模拟蛋白质,核酸,细胞膜等体系。 也可进行团簇和CNT 系统的模拟 软件原理经典,操作简单。但需要对体系的性质足够了解。 4. 软件中主要涉及的理论方法范畴 经典的md,以及用多种方法计算自由能和SMD模拟。 数据分析时候一般很少涉及复杂的热力学和统计热力学的原理,但知道一些最好。

5.软件主要包含的处理工具 namd 是计算部分,本身不能建模和数据分析(unix 的哲学kiss)。但vmd 同namd 系出同门,已同namd 实现无逢链接。 vmd 的tcl 脚本一定要搞懂,别的就不多介绍了。[2] 6.与此软件密切相关的软件 vmd,及其他数据统计分析软件(excel,OOo-calc 等足够了)NAMD在window环境下的编译安装 1.下载NAMD_ 2.7b2_Win32 2.解压到任意目录下(建议最好直接是C:或D:下) 3.添加windows的环境变量:右键单击我的电脑----属性-----高级-----环境变量(在右下角)-----在系统的Path变量里添加你NAMD所在文件夹,比如我 的%SystemRoot%\system32;%SystemRoot%;%SystemRoot%\Syste m32\Wbem;C:\ProgramFiles\CommonFiles\ThunderNetwork\KanKan \Codecs; C:\NAMD_2.7b2_Win32 注意:添加的变量名称要和文件夹得名称一致(如果文件夹得名称你改为namd,那么变量名称为C:NAMD) 4.namd2.7需要后面跟conf 文件才可以正确运行,并且要在conf 文件所在目录执行命令。如:我的命令窗口显示C:\Documents and Settings\HP> 因此我的conf文件要放在C:\Documents and Settings\HP 这个文件夹下,然后执行命令C:\Documents and Settings\HP> C:\NAMD_2.7b2_Win32\namd2 da.conf 即可。 二、GROMACS

晶体生长计算与模拟软件之FEMAG

晶体生长计算软件FEMAG 20世纪80年代中期,鲁汶大学Fran?ois Dupret教授带领其团队,开始晶体生长的研究,经过10多年的行业研发及应用,Fran?ois Dupret教授于2003年成立了FEMAGSoft公司(总部设在比利时Louvain-la-Neuve市),正式推出晶体生长数值仿真软件FEMAG。如今,FEMAG软件已成为全球行业用户高度认可的数值仿真工具,在晶体生长数值模拟领域处于国际领先地位。 FEMAG Soft擅长所有类型晶体材料生长方面的工艺模拟专业技术,比如:?直拉法(Czochralski) ?区熔法(Floating Zone) ?适用于铸锭定向凝固过程工艺(DS),Bridgman法 ?物理气相传输法(PVT) 产品模块 1.FEMAG/CZ-Czochralski (CZ) Process 适用于Czochralski直拉法生长工艺和Kyropoulos生长工艺 2.FEMAG/DS-Directional Solidification (DS) Process 适用于铸锭定向凝固过程工艺 3.FEMAG/FZ-Float Zone Process (FZ) 适用于区熔法生长工艺

主要功能 1.全局热传递分析 “全局性”即包涵所有拉晶要素在内,并考虑传热模式的耦合。全局热传递模拟分析,主要考虑:炉内的辐射和传导、熔体对流和炉内气体流量分析。 2.热应力分析 按照经验,一般情况下,晶体位错的产生与晶体生长过程中热应力的变化有着密切的关系。该软件可以进行三维的非轴对称和非各向同性温度场热应力分析计算,可以提出对晶体总的剪切力预估。 “位错”的产生是由于在晶体生长过程中,热剪应力超越临界水平,被称为CRSS(临界分剪应力),而导致的塑性变形。 3.点缺陷预报 该软件可以预知在晶体生长过程中的点缺陷(自裂缝和空缺),该仿真可以很好的预测在晶体生长过程中点缺陷的分布。 4.动态仿真 动态仿真提供了对复杂几何形状对于时间演变的预测。该预测把发生在晶体生长和冷却过程中所有瞬时的影响因素都考虑在内。为了准确地预报晶体点缺陷和氧分,布动态仿真尤其是不可或缺的。 5.固液界面跟踪 在拉晶的过程中准确预测固液界面同样是一个关键问题。对于不同的柑祸旋转速度和不同的提拉高度,其固液界面是不同的。 6.加热器功率预测 利用软件动态仿真反算加热功率对于生长合格晶体也是非常必要的。

数值模拟软件大全

数值模拟软件大全 GEO-SLOPE Offical WebSite: www. geo-slope. com SLOPE/W: 专业的边坡稳定性分析软件, 全球岩土工程界首 选的稳定性分析软件 SEEP/W: 专业的地下渗流分析软件, 第一款全面处理非饱和土体渗流问题的商业化软件 SIGMA/W: 专业的岩土工程应力应变分析软件, 完全基于土(岩)体本构关系建立的专业有限元软件 QUAKE/W: 专业的地震应力应变分析软件, 线性、非线性土体的水平向与竖向耦合动态响应分析软件 TEMP/W: 专业的温度场改变分析软件, 首款最具权威、涵盖范围广泛的地热分析软件 CTRAN/W: 专业的污染物扩散过程分析软件, 超值实用、最具性价比的地下水环境土工软件 AIR/W:专业的空气流动分析软件, 首款处理地下水-空气-热相互作用的专业岩土软件 VADOSE/W: 专业的模拟环境变化、蒸发、地表水、渗流及地下水对某个区或对象的影响分析软件, 设计理论相当完善和全面的环境土工设计软件 Seep3D(三维渗流分析软件)是GeoStudio2007专门针对工程结构中的真实三维渗流问题, 而开发的一个专业软件, Seep3D软件将强大的交互式三维设计引入饱和、非饱和地下水的建模中, 使用户可以迅速分析各种各样的地下水渗流问题. 特点:GeoStudio其实就是从鼎鼎大名的GEO-SLOPE发展起来的, 以边坡分析出名, 扩展到整个岩土工程范围, 基于. NET平台开发的新一代岩土工程仿真分析软件, 尤其是VADOSE/W模块是极具前瞻性的, 环境岩土工程分析的利器. 遗憾的是其模块几乎都只提供平面分析功能. Rocscience Offical WebSite: www. rocscience. com Rocscience 软件的二维和三维分析主要应用在岩土工程和 采矿领域, 该软件使岩土工程师可以对岩质和土质的地表 和地下结构进行快速、准确地分析, 提高了工程的安全性并 减少设计成本. Rocscience 软件对于岩土工程分 析和设计都很方便, 可以帮助工程师们得到快速、正确的解答. Rocscience 软件对于用户最新的项目都有高效的解算结果, 软件操作界面是基于WINDOWS 系统的交互式界面. Rocscience 软件自带了基于CAD 的绘图操作界面, 可以随意输入多种格式的数据进行建模, 用户可以快速定义模型的材料属性、边界条件等, 进行计算得到自己期望的结果. Rocscience 软件包括以下十三种专业分析模块: Slide 二维边坡稳定分析模块

各种材料重量计算方法

圆钢重量(公斤)=×直径×直径×长度 方钢重量(公斤)=×边宽×边宽×长度 六角钢重量(公斤)=×对边宽×对边宽×长度 八角钢重量(公斤)=×对边宽×对边宽×长度 螺纹钢重量(公斤)=×计算直径×计算直径×长度 角钢重量(公斤)=×(边宽+边宽-边厚)×边厚×长度 扁钢重量(公斤)=×厚度×边宽×长度 钢管重量(公斤)=×壁厚×(外径-壁厚)×长度 六方体体积的计算 公式①×H/m/k 即×××高或厚度 各种钢管(材)重量换算公式 钢管的重量=×π×(外径平方-内径平方)×L×钢铁比重其中:π = L=钢管长度钢铁比重取所以,钢管的重量=××(外径平方-内径平方)×L× * 如果尺寸单位取米(M),则计算的重量结果为公斤(Kg)

钢的密度为: cm3 (注意:单位换算) 钢材理论重量计算 钢材理论重量计算的计量单位为公斤( kg )。其基本公式为: W(重量,kg )=F(断面积 mm2)×L(长度,m)×ρ(密度,g/cm3)×1/1000 各种钢材理论重量计算公式如下: 名称(单位) 计算公式 符号意义 计算举例

圆钢盘条(kg/m) W= ×d×d d = 直径mm 直径100 mm 的圆钢,求每m 重量。每m 重量= ×1002= 螺纹钢(kg/m) W= ×d×d d= 断面直径mm 断面直径为12 mm 的螺纹钢,求每m 重量。每m 重量= ×12 2= 方钢(kg/m) W= ×a ×a a= 边宽mm 边宽20 mm 的方钢,求每m 重量。每m 重量= ×202=

扁钢 (kg/m) W= ×b ×d b= 边宽mm d= 厚mm 边宽40 mm ,厚5mm 的扁钢,求每m 重量。每m 重量= ×40 ×5= 六角钢 (kg/m) W= ×s×s s= 对边距离mm 对边距离50 mm 的六角钢,求每m 重量。每m 重量= ×502=17kg 八角钢 (kg/m)

全方位轮参数计算设计软件使用说明书V1.0

第一章系统概述 1.1 系统介绍 全方位轮参数计算设计软件是集国内外齿轮最新研究成果和实践经验,结合最新国家及国际标准,经知名齿轮专家的几十年研究和提炼,推出的全新设计的齿轮专家系统。系统提供了原始设计,精度计算、强度校核、几何计算、齿轮测绘等模块。在国内拥有众多客户,并得到了客户的认可和好评。 系统以专家模式,渐进方式指导用户快速完成从原始参数得到设计参数的优化设计过程,系统提供大量详实的资料,使得每步的操作和每个的功能都有根有据。同时设计过程在优化条件下,又提供了及其灵活的控制和操作,用户根据自己的经验和方法,选择完全符合自己的设计参数。在系统推荐的总变位分配方案下,可以根据不同的设计优化目的,提供了9种总变位分配方法。在齿轮精度计算中,软件使用了最新国际精度标准并且提供了多达8种的侧隙类型选择,提供了完整的齿厚检测方法。在强度计算中,软件采用了ISO6336-1/2/3强度计算标准(GB/T3480-1997等同采用ISO标准),并且提供了灵活智能的计算过程配置管理功能,使得强度计算可以按照客户的计算要求,并且一步完成包括接触、弯曲、胶合在内的所有计算内容,用户直接可以输出指定格式的计算报告。 使用本软件,用户可以大量节约设计时间和设计成本,提高生产效率。使得原本需要好几天甚至好几个星期的设计量,只需要几分钟或几小时就完成。 2 功能特点 1. 简单易用软件使用Windows标准界面和操作习惯,界面简洁美观,步骤思路清晰,操作方便灵活,对稍有机械传动设计知识的人员,无须培训,在短时间内即可熟悉操作过程。 2.使用范围广软件可以适合减速机行业、矿山机械、汽车行业、船舶行业等多种行业的传动件和传动设备的设计计算要求。 3.先进设计理念和最新标准本软件结合了国内外先进的传动设计技术和研究成

计算器模拟系统设计-毕业设计

计算器模拟系统设计 学生:XXX 指导教师:XXX 内容摘要:本设计是基于51系列的单片机进行的简易计算器系统设计,可以完成计算器的键盘输入,进行加、减、乘、除3位无符号数字的简单四则运算,并在LED 上相应的显示结果。 设计过程在硬件与软件方面进行同步设计。硬件选择AT89C51单片机和 74lS164,输入用4×4矩阵键盘。显示用5位7段共阴极LED静态显示。软件从分析计算器功能、流程图设计,再到程序的编写进行系统设计。选用编译效率最高的Keil 软件用汇编语言进行编程,并用proteus仿真。 关键词:LED 计算器 AT89C51芯片 74LS164

Calculator simulation system desig n Abstract:The design is a simple calculator based on 51 series microcontroller system design, to complete the calculator keyboard input, add, subtract, multiply, and in addition to three unsigned numeric simple four operations, and the corresponding result will be displayed on the LED. The design process of hardware and software aspects of the synchronous design. Hardware choose AT89C51 microcontroller and 74ls164--enter the 4 × 4 matrix keyboard. Static display with five 7-segment common cathode LED display. Software calculator function from the analysis, flow charts, design, and then program the preparation of system design. Selected to compile the most efficient Keil software in assembly language programming, and with proteus simulation. Keywords: LED calculator AT89C51 chip 74LS164

常用金属材料计算公式

常用金属材料重量计算公式 圆钢重量(公斤)=0.00617×直径×直径×长度 方钢重量(公斤)=0.00785×边宽×边宽×长度 六角钢重量(公斤)=0.0068×对边宽×对边宽×长度 八角钢重量(公斤)=0.0065×对边宽×对边宽×长度 螺纹钢重量(公斤)=0.00617×计算直径×计算直径×长度 角钢重量(公斤)=0.00785×(边宽+边宽-边厚)×边厚×长度 扁钢重量(公斤)=0.00785×厚度×边宽×长度 钢管重量(公斤)=0.02466×壁厚×(外径-壁厚)×长度 六方体体积的计算 公式①s20.866×H/m/k 即对边×对边×0.866×高或厚度 各种钢管(材)重量换算公式 钢管的重量=0.25×π×(外径平方-内径平方)×L×钢铁比重其中:π= 3.14 L=钢管长度钢铁比重取7.8 所以,钢管的重量=0.25×3.14×(外径平方-内径平方)×L×7.8 * 如果尺寸单位取米(M),则计算的重量结果为公斤(Kg) 钢的密度为:7.85g/cm3 (注意:单位换算) 钢材理论重量计算 钢材理论重量计算的计量单位为公斤(kg )。其基本公式为: W(重量,kg )=F(断面积mm2)×L(长度,m)×ρ(密度,g/cm3)×1/1000 各种钢材理论重量计算公式如下: 名称(单位) 计算公式 符号意义 计算举例 圆钢盘条(kg/m) W= 0.006165 ×d×d d = 直径mm 直径100 mm 的圆钢,求每m 重量。每m 重量= 0.006165 ×1002=61.65kg 螺纹钢(kg/m) W= 0.00617 ×d×d d= 断面直径mm 断面直径为12 mm 的螺纹钢,求每m 重量。每m 重量=0.00617 ×12 2=0.89kg 方钢(kg/m)

数据结构课程设计 模拟计算器程序

数据结构课程设计 题目名称:模拟计算器程序 计算机科学与技术学院 课程设计任务书 一、设计任务 设计一个模拟计算器的程序 二、设计要求 1、要求对包含加、减、乘、除、括号运算符及SQR和ABS函数的任意整型表达式进 行求解

2、程序基本功能要求实现完整,并有简单的验证。 3、设计报告要求格式规范,符合学校课程设计报告要求。 4、报告中流程图要求描述规范,算法设计清楚正确。 三、设计期限 2018年3月5日到2018年3月30日 前言 利用本学期所学的《数据结构》课程,运用相关知识,查阅相关资料,编写C语言程序,设计一个简单计算器,要求编写的简单计算器能够模拟windows系统的计算器,用户能够用键盘输入相关数据,要求对包含加、减、乘、除、括号运算符及SQR和ABS函数的任意整型表达式进行求解,并且在程序运行过程中能够正常的退出程序。

这个程序实际上就是对一个表达式进行计算。而一个算术表达式中包含各种运算符,每个运算符的等级可能会不同,这就成了本程序需要解决的一个主要的问题之一了。另外计算器中需要有各种数学函数,比如:abs sqrt sin cos tan等,如何对这些函数进行处理,也是本程序能成功的一个关键。还有一个问题就是如何处理操作符和操作数之间的关系也是一个要点。例如:1+2*(3-2/1),经过怎么样的变换和处理能得出结果5。数据的输入这里应该要用字符,然后通过字符和整形之间的关系进行转换即可,这样处理的话,就方便很多了。 在计算器程序运行中,输入数据时如果遇到输入错误的情况,能够能过键盘上的退格键进行删除,并且重新输入正确的数据。在数据输入完成后,如果需要放弃本次计算操作,可以利用程序中设置好的按键进行清零,并为下一次运算作准备。 本课程设计主要解决的是传统计算器中,不能对表达式进行运算的问题,通过制作该计算器模拟程序,可以做到快速的求解表达式的值,并且能够判定用户输入的表达式是否合法。该模拟计算器的核心部分就在用户输入的中缀表达式的转化,程序中用到了“栈”的后进先出的基本性质。 目录 第1章需求分析‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5 1.1系统设计流程图‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5 1.2 主要功能表‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 6

各种钢材计算方式

1、圆钢每m重量=0.00617×直径×直径 2、方钢每m重量=0.00786×边宽×边宽 3、六角钢每m重量=0.0068×对边直径×对边直径 4、八角钢每m重量=0.0065×直径×直径 5、螺纹钢每m重量=0.00617×直径×直径 6、等边角钢每m重量=边宽×边厚×0.015 7、扁钢每m重量=0.00785×厚度×宽度 8、无缝钢管每m重量=0.02466×壁厚×(外径-壁厚) 9、电焊钢每m重量=无缝钢管 10、钢板每㎡重量=7.85×厚度 11、黄铜管:每米重量=0.02670*壁厚*(外径-壁厚) 12、紫铜管:每米重量=0.02796*壁厚*(外径-壁厚) 13、铝花纹板:每平方米重量=2.96*厚度 14、有色金属比重:紫铜板8.9黄铜板8.5锌板7.2铅板11.37 15、有色金属板材的计算公式为:每平方米重量=比重*厚度 16、方管: 每米重量=(边长+边长)×2×厚×0.00785 17、不等边角钢每米重量=0.00785×边厚(长边宽+短边宽--边厚) 18、工字钢每米重量=0.00785×腰厚[高+f(腿宽-腰厚)] 19、槽钢每米重量=0.00785×腰厚[高+e(腿宽-腰厚)] 常用的一些金属材料重量计算公式,钢管重量计算公式,方钢重量计算公式,钢板重量计算公式: 园钢重量(公斤)=0.00617×直径×直径×长度 方钢重量(公斤)=0.00785×边宽×边宽×长度 六角钢重量(公斤)=0.0068×对边宽×对边宽×长度 八角钢重量(公斤)=0.0065×对边宽×对边宽×长度 纹钢重量(公斤)=0.00617×计算直径×计算直径×长度 角钢重量(公斤)=0.00785×(边宽+边宽-边厚)×边厚×长度 扁钢重量(公斤)=0.00785×厚度×边宽×长度 钢管重量(公斤)=0.02466×壁厚×(外径-壁厚)×长度 钢板重量(公斤)=7.85×厚度×面积 园紫铜棒重量(公斤)=0.00698×直径×直径×长度 园黄铜棒重量(公斤)=0.00668×直径×直径×长度 园铝棒重量(公斤)=0.0022×直径×直径×长度 方紫铜棒重量(公斤)=0.0089×边宽×边宽×长度 方黄铜棒重量(公斤)=0.0085×边宽×边宽×长度 方铝棒重量(公斤)=0.0028×边宽×边宽×长度 六角紫铜棒重量(公斤)=0.0077×对边宽×对边宽×长度 六角黄铜棒重量(公斤)=0.00736×边宽×对边宽×长度 六角铝棒重量(公斤)=0.00242×对边宽×对边宽×长度 紫铜板重量(公斤)=0.0089×厚×宽×长度 黄铜板重量(公斤)=0.0085×厚×宽×长度 铝板重量(公斤)=0.00171×厚×宽×长度

数值模拟计算整个过程

数值模拟计算的整个过程 数值模拟计算的整个过程主要包括一下几个过程: 一.建立模型(应用软件:CAD工具如PRO/E,Bladegen等) 几何生成时应注意的问题主要有以下几个部分: 1. 几何生成 1.1 几何区域的规划几何的生成可以是一个整体部分,但是有时为了网格划分时的方便可以把几个分成几个部分生成,例如轴流泵几何的生成可以分为四个部分:进水流道、叶轮、导叶和出水流道(图1.2),离心泵几何分为三个部分:进口端,叶轮,窝壳(图1.2)。 图1.1 轴流泵几何 图1.2 离心泵几何

1.2几何生成的方法 1.2.1泵的叶轮和导叶部分可以根据各自的木模图使用BLADEGEN较为方便的生成 1.2.2而其他部分则可以通过Pro E等三维CAD工具生成,其中离心泵窝壳由窝壳木模图先将各断面绘制成型,再利用扫掠的方法成型。 1.3.几何输出 1.3.1从PRO/E中导出文件时可以选择保存成igs格式,也可以保存成stp格式,在导出时按其默认格式保存,即igs格式的保存成面的形式,stp格式的保存成体和壳的形式。 1.3. 2. 进出水流道部分(轴流泵),进口端(离心泵)要做适当的延伸。 1.3.3 从PRO/E中导出之前可以可以改单位,或者明确几何生成时所用单位,以便导入。 1.3.4各部分的特征位置的坐标要明确,如几何中心,原点,以便各部分导入后的合并。 二.网格划分(软件: ANSYS ICEM ) 网格划分主要有以下几部分: 2.1. 几何检查及修复通过检查几何命令检查几何并将错误的部分根据实际情况修复(以轴流泵出水流道为例,见图2.1) 图2.1(a)轴流泵出水流道几何检查 图2.1(b)修复后的轴流泵出水流道几何

模拟计算器

智能仪器仪表课程设计报告

摘要 (3) 关键词 (3) 说明 (3) 一.设计功能及工具 (4) 1.1设计功能 (4) 1.2单片机AT89C51简介 (4) 1.3 LED数码显示管简介 (7) 1.4输入设备键盘 (7) 二.电路设计 (8) 2.1时钟电路 (8) 2.2复位电路 (9) 2.3显示驱动电路 (9) 2.4蜂鸣器提示电路 (10) 2.5总电路原理图 (10) 三.C设计和运行 (12) 3.1 C程序代码 (12) 3.2 Keil C调试运行 (18) 3.3 Proteus 操作运行 (19) 四.Proteus 仿真演示 (20) 4.1加法演示 (20) 4.2减法演示 (21) 4.3乘法演示 (22) 4.4除法演示 (23) 五.总结 (24) 参考文献 (24)

摘要 本设计一简易的模拟计算器程序,实现基本的加减乘除的运算并将结果显示在相应的LED上,且在数字信息输入完毕时有声音提示。 此次设计利用proteus 7 professional 软件绘制电路原理图,在Keil C平台上实现C语言程序编制,最后联立proteus和Keil C实现仿真设计成果。采用了4X4矩阵式键盘输入,8位LED动态显示,避免了I/O口扩展使程序简化。利用的A T89C51单片机,八个引脚用来扫描键盘的输入,八个引脚用来驱动八位LED显示,八个引脚用作八位LED的位选信号。当显示器输出大于八位时,可在剩下的I/O口中任意选一个用来使扬声器发出声音警报。 关键词:A T89C51 、计算器、proteus、Keil C 说明 本次模拟计算器程序小组共2人:耿莎莎(我)和黄洁雯。 其中,我主要负责Proteus 和Keil C软件的下载并学习用法;利用Proteus绘制电路原理图;成功无错误地运行C程序并联立Proteus仿真计算器成果。 鉴于程序运行无错误无警告,然而仿真徒有信号无法输入显示,遂求教于指导老师,以期发现并改正按键键盘输入程序来使仿真成果实现。

各计算材料软件的优势

不同计算材料软件的模块与优势 理工院13级物理学徐飞鸿学号 日期:2015年10月29日 Materials Studio: Materials Studio是ACCELRYS公司专门为材料科学领域研究者所涉及的一款可运行在PC上的模拟软件。它可以帮助你解决当今化学、材料工业中的一系列重要问题。支持Windows98、NT、Unix以及Linux等多种操作平台的Materials Studio使化学及材料科学的研究者们能更方便的建立三维分子模型,深入的分析有机、无机晶体、无定形材料以及聚合物。 多种先进算法的综合运用使Material Studio成为一个强有力的模拟工具。它可以进行性质预测、聚合物建模还是X射线衍射模拟,操作简单,并且得到的数据切实可靠。灵活方便的Client-Server结构还是的计算机可以在网络中任何一台装有NT、Linux或Unix操作系统的计算机上进行,从而最大限度的运用了网络资源。 ACCELRYS的软件使任何的研究者都能达到和世界一流工业研究部门相一致的材料模拟的能力。模拟的内容囊括了催化剂、聚合物、固体化学、结晶学、晶粉衍射以及材料特性等材料科学研究领域的主要课题。 模块简介: Materials Studio采用了大家非常熟悉的Microsoft标准用户界面,允许用户通过各种控制面板直接对计算参数和计算结果进行设置和分析。目前,Material s Studio软件包括如下功能模块: Materials Visualizer: 提供了搭建分子、晶体及高分子材料结构模型所需要的所有工具,可以操作、观察及分析结构模型,处理图表、表格或文本等形式的数据,并提供软件的基本环境和分析工具以及支持Materials Studio的其他产品。是Materials Studio产品系列的核心模块。 Discover:

常用金属材料重量计算公式

常用金属材料重量计算公式 常用金属材料重量计算公式(每千只重量) 园钢重量(公斤)=0.00617×直径×直径×长度 方钢重量(公斤)=0.00785×边宽×边宽×长度 六角钢重量(公斤)=0.0068×对边宽×对边宽×长度 八角钢重量(公斤)=0.0065×对边宽×对边宽×长度 螺纹钢重量(公斤)=0.00617×计算直径×计算直径×长度 角钢重量(公斤)=0.00785×(边宽+边宽-边厚)×边厚×长度扁钢重量(公斤)=0.00785×厚度×边宽×长度 钢管重量(公斤)=0.02466×壁厚×(外径-壁厚)×长度 钢板重量(公斤)=7.85×厚度×面积 园紫铜棒重量(公斤)=0.00698×直径×直径×长度 园黄铜棒重量(公斤)=0.00668×直径×直径×长度 园铝棒重量(公斤)=0.0022×直径×直径×长度 方紫铜棒重量(公斤)=0.0089×边宽×边宽×长度 方黄铜棒重量(公斤)=0.0085×边宽×边宽×长度 方铝棒重量(公斤)=0.0028×边宽×边宽×长度 六角紫铜棒重量(公斤)=0.0077×对边宽×对边宽×长度 六角黄铜棒重量(公斤)=0.00736×边宽×对边宽×长度 六角铝棒重量(公斤)=0.00242×对边宽×对边宽×长度 紫铜板重量(公斤)=0.0089×厚×宽×长度 黄铜板重量(公斤)=0.0085×厚×宽×长度

铝板重量(公斤)=0.00171×厚×宽×长度 园紫铜管重量(公斤)=0.028×壁厚×(外径-壁厚)×长度 园黄铜管重量(公斤)=0.0267×壁厚×(外径-壁厚)×长度 园铝管重量(公斤)=0.00879×壁厚×(外径-壁厚)×长度注:公式中长度单位为米,面积单位为平方米,其余单位均为毫米 角钢:每米重量=0.00785*(边宽+边宽-边厚)*边厚 圆钢:每米重量=0.00617*直径*直径(螺纹钢和圆钢相同) 扁钢:每米重量=0.00785*厚度*边宽 管材:每米重量=0.02466*壁厚*(外径-壁厚) 板材:每平方米重量=7.85*厚度 黄铜管:每米重量=0.02670*壁厚*(外径-壁厚) 紫铜管:每米重量=0.02796*壁厚*(外径-壁厚) 铝花纹板:每平方米重量=2.96*厚度 有色金属比重:紫铜板8.9黄铜板8.5锌板7.2铅板11.37 有色金属板材的计算公式为:每平方米重量=比重*厚度 方管 4x壁厚x(边长-壁厚)x7.85

C模拟计算器程序合院何浩

合肥学院 计算机科学与技术系 课程设计报告 2009~2010学年第二期 课程 课程设计名称 学生姓名 学号 专业班级 指导教师 一.课程设计题目:

模拟计算器程序 设计内容:设计一个程序来模拟一个简单的手持计算器。程序支持算术运算+、-、*、/、=、以及C(清除)、A(全清除)操作。程序运行时,显示一个窗口,等待用户输入,用户可以从键盘输入要计算的表达式,输入的表达式显示在窗口中,用户键入’=’符号后,窗口显示出结果。选作内容如果用户输入的表达式不合法,可以判别出来并给出相应的错误提示。测试数据程序输入不少于5种不同的表达式进行测试。 二.问题的分析 此程序设计主要运用了栈,利用栈后进先出的原理,建立两个栈,操作数栈和操作符栈,先将数据和运算符分别压入这两个栈,判断栈内和栈外运算符的优先级,依据运算符的优先级判断是应再次压入运算符,还是将数据和运算符弹出栈,在栈外进行运算,再将所得的结果压入栈,继续进行与计算,直至运算结束。 例如;计算5/2+1-2*3= 操作数2入操作数栈, 2 运算符”/”入运算符栈, 操作数5入操作数栈 5 / 数字栈运算符栈 。 运算符“+”入运算符栈顶 比较后,将2,5出栈运算, 并将结果入数字栈 2.5 数字栈字符栈 运算符“+”入字符栈,操作 1 数1入数字栈 2.5 + 数字栈字符栈

运算符“—”入运算符栈顶比较后,将 1,2.5出栈运算,并将结果压入操作 数栈 3.5 —运算符“—”入运算符栈 数字栈字符栈 操作数2入操作数栈,运算符“*” 入运算符栈顶比较后压入运算符栈 3 将操作数3压入操作数栈 2 * 3.5 — 数字栈字符栈 当扫描到=号时,操作数3和2出栈 运算符*出栈,进行运算,运算结果入 操作数栈 6 3.5 — 数字栈字符栈 操作数6和2出栈,运算符“—” 出栈,进行运算,运算结果入操作数 栈 6 3.5 — 数字栈字符栈

钢结构材料重量计算

材料重量计算

圆钢重量(公斤)=0.00617×直径×直径×长度 方钢重量(公斤)=0.00785×边宽×边宽×长度 六角钢重量(公斤)=0.0068×对边宽×对边宽×长度 八角钢重量(公斤)=0.0065×对边宽×对边宽×长度 螺纹钢重量(公斤)=0.00617×计算直径×计算直径×长度 角钢重量(公斤)=0.00785×(边宽+边宽-边厚)×边厚×长度 扁钢重量(公斤)=0.00785×厚度×边宽×长度 钢管重量(公斤)=0.02466×壁厚×(外径-壁厚)×长度 六方体体积的计算 公式①s20.866×H/m/k 即对边×对边×0.866×高或厚度 各种钢管(材)重量换算公式 钢管的重量=0.25×π×(外径平方-内径平方)×L×钢铁比重其中:π = 3.14 L=钢管长度钢铁比重取7.8 所以,钢管的重量=0.25×3.14×(外径平方-内径平方)×L×7.8 * 如果尺寸单位取米(M),则计算的重量结果为公斤(Kg) 钢的密度为: 7.85g/cm3 (注意:单位换算) 钢材理论重量计算 钢材理论重量计算的计量单位为公斤( kg )。其基本公式为: W(重量,kg )=F(断面积mm2)×L(长度,m)×ρ(密度,g/cm3)×1/1000 各种钢材理论重量计算公式如下: 名称(单位) 计算公式 符号意义 计算举例 圆钢盘条(kg/m) W= 0.006165 ×d×d d = 直径mm 直径100 mm 的圆钢,求每m 重量。每m 重量= 0.006165 ×1002=61.65kg 螺纹钢(kg/m) W= 0.00617 ×d×d

d= 断面直径mm 断面直径为12 mm 的螺纹钢,求每m 重量。每m 重量=0.00617 ×12 2=0.89kg 方钢(kg/m) W= 0.00785 ×a ×a a= 边宽mm 边宽20 mm 的方钢,求每m 重量。每m 重量= 0.00785 ×202=3.14kg 扁钢 (kg/m) W= 0.00785 ×b ×d b= 边宽mm d= 厚mm 边宽40 mm ,厚5mm 的扁钢,求每m 重量。每m 重量= 0.00785 ×40 ×5= 1.57kg 六角钢 (kg/m) W= 0.006798 ×s×s s= 对边距离mm 对边距离50 mm 的六角钢,求每m 重量。每m 重量= 0.006798 ×502=17kg 八角钢 (kg/m) W= 0.0065 ×s ×s s= 对边距离mm 对边距离80 mm 的八角钢,求每m 重量。每m 重量= 0.0065 ×802=41.62kg 等边角钢 (kg/m) = 0.00785 ×[d (2b – d )+0.215 (R2 – 2r 2 )] b= 边宽 d= 边厚 R= 内弧半径 r= 端弧半径 求20 mm ×4mm 等边角钢的每m 重量。从冶金产品目录中查出4mm ×20 mm 等边角钢的R 为3.5 ,r 为1.2 ,则每m 重量= 0.00785 ×[4 ×(2 ×20 –4 )+0.215 ×(3.52 – 2 ×1.2 2 )]=1.15kg

材料模拟软件技术参数

材料模拟软件技术参数 一、整体技术参数 1.软件必须是国际通用、技术成熟的商用软件,所有功能模块为原厂商开发并整合在统一的软件图形界面下使用,软件在国内销售的时间不少于10年。 2.软件必须为标准“客户端--服务器”结构,两端可同时支持Windows和Linux操作系统,所有模块都支持Pipeline Pilot工作流技术。 3.软件必须是一个整合的多尺度的材料模拟平台,软件各模块之间可以实现无转换数据直接共享。 4.软件的所有模块必须能同时能够在局域网上浮动运行。为保证全部软硬件系统的安全性、可维护性和保密性,所有模块在运行时只允许使用一个许可证加密文件。 5.软件为永久使用权,首次安装须一次性提供大于90年的许可加密文件,自安装之日起提供为期一年的软件免费升级。 6.软件要求当前最新版本。 7.软件需提供厂家授权或总代授权书。 二、程序功能参数 1.软件需具有可视化操作界面的模块,该模块能够具有搭建材料结构模型所需的相关工具,可以操作、观察及分析计算前后的结构模型,处理图型、表格或文本等形式的数据。需提供Perl 语言环境,需具有脚本编写功能,1个使用许可。 2.软件需具有基于平面波赝势法的量子力学程序模块,并且该模块要求是由剑桥凝聚态理论研究组所开发。该模块需能够用来研究晶体材料的性质、表面和表面重构的性质、表面化学、电子结构,晶体的光学性质、点缺陷性质(如空位、间隙或取代掺杂)、扩展缺陷(晶粒间界、位错)、成分无序,金属材料表面与其他化学成分的相互作用。该模块应支持并行计算,不限制并行的CPU个数,1个使用许可。 3.软件需具有基于原子轨道线性组合方法的量子力学程序模块,并且该模块要求使用源自瑞士Paul Scherrer Institut的Bernard Delley教授的独特密度泛函(DFT)量子力学商业程序,使用高效紧凑的数值轨道基组。该模块可以模拟气相、溶液、表面及其它固态环境中的化学反应过程,并预测材料的电子学性质。应支持并行计算,不限制并行的CPU个数,1个使用许可。 4.软件需可以搭建多种组分及不同配比的高分子共混模型、小分子溶液模型、复合材料模型、

相关主题
文本预览
相关文档 最新文档