当前位置:文档之家› UIP中文文档第八 uIP应用程序

UIP中文文档第八 uIP应用程序

UIP中文文档第八 uIP应用程序

详细说明:

uIP的发行版中包含了大量的应用程序.它们既也可以直接使用,也可以用来学习写uIP应用程序.

相关模块:

DNS resolver DNS服务器,用于查找主机名,并将其映射到IP地址.

SMTP E-mail sender RFC821定义的简单邮件传输协议,它是在因特网上发送和传输邮件的标准方法.

Telnet server uIP T elnet服务器.

Hello, world一个小例程,用于讲述如何使用原始套接字写应用.

Web client此例程是一个HTTP客户端,可以网络服务器上下载网页和文件.

Web server一个非常简单的网络服务器实现.

相关变量:

char telnetd_state::buf [TELNETD_CONF_LINELEN]

char telnetd_state::bufptr

u8_t telnetd_state::numsent

u8_t telnetd_state::state

基于UDP的程序设计

课程设计III课程设计 设计说明书 基于UDP的程序设计 学生姓名NX 学号1435354687 班级计算机1303 成绩 指导教师NBVC 数学与计算机科学学院 2016年 9 月 9 日

课程设计任务书 2016—2017学年第1 学期 课程设计名称:课程设计III课程设计 课程设计题目:基于UDP的程序设计 完成期限:自2016 年8月29 日至2015年9 月9 日共 2 周 设计内容: 1.任务说明UDP是TCP/IP协议族为传输层设计的两个协议之一,它在进程与进程的通信过程中,提供了有限的差错校验功能,是一种无连接的,不可靠的协议。我们要编写程序,设计一个基于UDP 的服务器。 指导教师:教研室负责人: 课程设计评阅

摘要 UDP是TCP/IP协议族为传输层设计的两个协议之一,它在进程与进程的通信过程中,提供了有限的差错校验功能,是一种无连接的,不可靠的协议。根据后UDP 协议的工作原理,编写程序实现基于UDP 的服务器。以命令行形式运行:1、UdpServer serve_port 其中,UdpServer 为程序名,server_port 为服务器使用的端口号。2、输出内容:服务器与客户端的交互过程,例如: UDP Server Recceive:...UDP Server Send:... 关键词:UDP;程序设计

目录 1 课题描述 (2) 2设计需求 (2) 3设计过程 (3) 4设计代码 (5) 5总结 (9) 参考文献 (11)

1 课题描述 UDP是TCP/IP协议族为传输层设计的两个协议之一,它在进程与进程的通信过程中,提供了有限的差错校验功能,是一种无连接的,不可靠的协议。UDP在一个较低的水平上完成进程之间的通信,在收到分组的时候没有流量控制机制也没有确认机制,适用于可靠性比较高的局域网。由于UDP采取了无连接的方式,因此协议简单,在一些特定的应用中协议运行效率高。UDP适合一些实时的应用,如IP电话,视频会议,它们要求源主机以恒定的速率发送数据,并且在网络出现拥塞时,可以丢失一些数据,但是延迟不能太大。基于这些特点,流式多媒体通信、多播等应用在传输层采用的就是UDP协议。 因为UDP具有TCP所望尘莫及的速度优势。虽然TCP协议中植入了各种安全保障功能,但是在实际执行的过程中会占用大量的系统开销,无疑使速度受到严重的影响。反观UDP由于排除了信息可靠传递机制,将安全和排序等功能移交给上层应用来完成,极大降低了执行时间,使速度得到了保证。 2设计需求 UDP 协议是一种无连接的不可靠的传输层协议。从应用层的角度来看,UDP 协议在网络层

Revolve产品知识

产品名称BOSE SoundLink Revolve 产地墨西哥颜色灰/银 产品尺寸/重量 152×82×82mm/660g 续航时间 12小时 充电时间4小时 供电方式锂电池 音频接口 3.5mm/ USB接口(只限电脑音源)单元尺寸3英寸 NFC功能是 防水级别IPX4防水 通话功能是 语音提示是 APP 是 保修期一年(注册微信会员赠送延保6个月) 包装清单音箱本机x1 USB电源x1USB连接线 x1 交流电源适配器 x1 技术特点1360度全向发声:一个向下发声的全音域单元配合BOSE专利的声波导向技术,可以向四周发出均匀,无死角的声音 技术特点2独特优势:体积小巧 低音震撼 技术特点3优雅的设计:采用高品质阳极氧化铝金属材质配合全新的无缝连接一体成型工艺,是产品更为高雅,耐用 技术特点4蓝牙无线连接:方便,易用,可连接几乎是所有常规的智能手机,平板电脑的蓝牙设 备,可支持与蓝牙设备10米距离的无线连接。技术特点5内置锂电池:更好的便携性,4小时充满电可在正常音量下约12小时的使用时间。 技术特点6IPX4级防水:可以使您在室外环境中放心使用。技术特点7BOSE Connect APP :轻松实现“派对模式”与“立体声模式”的切换,可以满足您更多声音需求。技术特点8支持有线连接:3.5mm与USB接口可以满足你有线音源的连接,连接更多的设备。 技术特点9可选配充电底座:充电方便,同时为扬声器在家中使用时提供了一个放置的地方。 技术特点10 远程操作:可通过配对的蓝牙设备控制扬声器的各项功能(如音量等)不需要携带其他产品说明

音效表现 Feature令人惊艳的宏亮气势,超乎想象的小巧体积。Benefit体积小巧 低音震撼 Advantage 精巧的外壳下装载了众多技术,展现出扬声器超乎想象的的低音效能,让人深深的沉醉在饱满的动人音色中。 Evidence X先生经常会带着家中的小朋友到户外和同事们野餐,因为有小孩子每次外出都需要随身带很多东西。聚会时大家喜欢拿出手机播放孩子们喜欢的音乐增加气氛,偶尔路过门店体验到我们的产品,十分满意。不仅可以满足了他外出携带需要,还提供了完美的音质 360°音效 Feature 可以向四周发出均匀的,无死角的声音。实现零死角的环绕音效。 Benefit随意摆放,一样可以体验到全方位的声音。 Advantage 一个向下发声的全音域单元配合BOSE专利的声波导向器,营造出全方位,无死角的震撼 Evidence X女士三口之家,每天晚上喜欢在客厅给孩子放放音乐,孩子太小总是跑来跑去,之前的音响固定的放在一个位置声音太大影响邻居,声音太小孩子跑来跑去还听不见。选择了我们产品后放在家里中间的位置不管孩子 精致设计 Feature 一体成型的采用高品质阳极氧化铝金属材质配合全新的无缝连接一体成型工艺。 Benefit使产品更为高雅,耐用。 Advantage 精密的设计,一体成型的阳极氧化铝材质,可以提供全方位的音效,不留一丝缝隙,外 Evidence X小姐喜欢游泳,喜欢做SPA ,喜欢泡温泉,更喜欢听音乐。自从购买了产品,她可以随意带着音响到她喜欢的地方,再也没有任何的顾虑。无论什么环境,我们的产品都可以

TCP和UDP数据包发送程序的设计与实现

摘要:在TCP/IP协议族中,传输层主要包括TCP和UDP两种通信协议,它们以不同的方式实现两台主机中的不同程序间之间的数据传输,即数据的端到端传输。TCP提供一种面向连接的、可靠的数据传输服务,保证了端到端数据传输的可靠性;而UDP提供一种无连接的、不可靠的数据传输方式,但保证了数据传输的实时性。本课程设计用C#语言分别编写了基于TCP的C/S聊天程序和基于UDP 的C/S聊天程序。经测试,本文程序基本实现了聊天功能,即实现了TCP和UDP数据包发送程序的设计。 关键词:TCP、UDP、C#、C/S聊天程序、数据包发送程序 Design and Realization of the Sending Program of TCP and UDP Packets Student:Zhou Ruijie Instructor:WangJing Abstract:In the TCP / IP protocol clan, the transport layer mainly includes two communication protocols TCP and UDP, which had achieved the data transmission among different programs between two hosts in different ways, namely the end-to-end data transmission. TCP provides a connection-oriented, reliable data transmission service, ensuring the reliability of the end-to-end data transmission; While UDP provides a connectionless, unreliable way of data transmission, but guaranteeing the data transmission in real-time. This course design has separately written TCP-based C/S chat program and UDP-based C/S chat program in C#. By test, this paper program has basically achieved chat function, namely realized the design of the sending program of TCP and UDP packets. Keywords:TCP、UDP、C#、C/S chat program、sending program of packets

python-ctypes模块中文帮助文档

内容: .加载动态链接库 .从已加载的dll中引用函数 .调用函数1 .基本的数据类型 .调用函数2 .用自己的数据类型调用函数 .确认需要的参数类型(函数原型) .返回值 .传递指针 .结构和联合 .结构或联合的对齐方式和字节的顺序 .结构和联合中的位 .数组 .指针 .类型转换 .未完成的类型 .回调函数 .访问dlls导出的值 .可变长度的数据类型 .bugs 将要做的和没有做的事情 注意:本文中的代码例子使用doctest确保他们能够实际工作。一些代码例子在linux和windows以及苹果机上执行有一定的差别 注意:一些代码引用了ctypes的c_int类型。它是c_long在32位机子上的别名,你不应该变得迷惑,如果你期望 的是c_int类型,实事上打印的是c_long,它们实事上是相同的类型。 加载动态链接库 ctypes加载动态链接库,导出cdll和在windows上同样也导出windll和oledll对象。 加载动态链接库后,你可以像使用对象的属性一样使用它们。cdll加载使用标准的cdecl调用约定的链接库, 而windll库使用stdcall调用约定,oledll也使用stdcall调用约定,同时确保函数返回一个windows HRESULT错误代码。这错误 代码自动的升为WindowsError Python exceptions,当这些函数调用失败时。 这有一些windows例子,msvcrt是微软的c标准库,包含大部分的标准c函数,同时使用cdecl调用约定。 注:cdecl和stdcall的区别请见https://www.doczj.com/doc/3918346391.html,/log-20.html >>> from ctypes import * >>> print windll.kernel32 # doctest: +WINDOWS

TCPIP协议规范及UIP处理流程模板

TCPIP协议规范及UIP处 理流程模板 目录 一、简要历史 (4) 二、TCP/IP协议族 (4) 2.1. 简介 (4) 2.2. 编址 (5) 2.2.1 物理地址 (5) 2.2.2 逻辑地址 (5) 2.2.3 端口地址 (8) 2.3. 分层数据包介绍 (8) 2.3.1 以太网帧 (8) 2.3.2 ARP报文格式 (9)

2.3.3 IP数据报格式 (11) 23.4 ICMP报文格式 (13) 2.3.5 IGMP报文格式 (15) 23.6 UDP用户数据报首部格式 (16) 2.3.7 TCP报文段格式 (17) 2.4. 分层协议讲解 (19) 2.4.1 ARP 和RARP (20) 2.4.2 IP 协议 (23) 2.4.3 ICMP 协议 (25) 2.4.4 网际组管理协议(IGMP) (30) 2.4.5 用户数据报(UDP) (31) 2.4.6 传输控制协议(TCP) (34) 三、UIP处理流程 (40) 3.1. 简介 (40) 3.2. 层次结构 (41) 3.2.1 实现设备驱动与UIP对接需要的7个接口程序,定义在uip.h: (42) 3.2.2 应用层要调用的函数,包括一些宏定义与函数,定义在uip.h: (48) 3.2.3 UIP中所用到的主要结构体 (55) 3.2.4 uip的初始化与配置函数 (64) 3.2.5 Uip的主程序循环 (67) 3.2.6 主要的处理函数uip_process() (71) 3.2.7 再來分析UIP_UDP_SEND_CONN,主要处理UDP报文的发送: (79) 3.2.8 接下來,分析UIP_POLL_REQUEST (82) 3.2.9 对定时器期满的处理流程UIP_TIMER (84) 3.2.10 对UIP_UDP_TIMER 的处理流程 (86) 3.2.11 原始套接字和原始线程 (87)

CAD和TSSD快捷键(含探索者中文键名)

AutoCAD 简化命令 3A, *3DARRAY 3DO, *3DORBIT 3F, *3DFACE 3P, *3DPOLY A, *ARRAY ,阵列ADC, *ADCENTER AD, *ID AE, *AREA AL, *ALIGN AP, *APERTURE ATP, *ATTDISP AT, *DDATTE -AT, *ATTEDIT ATT, *DDATTDEF -ATT, *ATTDEF AV, *DSVIEWER B, *BREAK H, *BHATCH BL, *BMAKE -BL, *BLOCK BO, *BOUNDARY -BO, *-BOUNDARY CO, *COPY CC, *CHAMFER CH, *DDCHPROP -CH, *CHANGE DDC, *DDCOLOR C, *CIRCLE D, *DIM DD, *DDEDIT DDV, *DDVPOINT DI, *DIST DIV, *DIVIDE DO, *DONUT DST, *DIMSTYLE DT, *DTEXT DV, *DVIEW DX, *DDIM DXI, *DXFIN DXO, *DXFOUT E, *ERASE EL, *ELEV ELL, *ELLIPSE EN, *END EP, *EXPLODE EX, *EXTEND F, *FILLET FF, *FILL FI, *FILTER G, *GROUP GR, *DDGRIPS -GR, *GRID HI, *HIDE HE, *HATCHEDIT HT, *HATCH I, *DDINSERT -I, *INSERT IM, *IMAGE -IM, *-IMAGE L, *LINE LA, *LAYER -LA, *-LAYER LE, *LEADER LEN, *LENGTHEN LI, *LIST LS, *LTSCALE LT, *LINETYPE -LT, *-LINETYPE LTS, *LTSCALE M, *MOVE MA, *MATCHPROP ME, *MEASURE MI, *MIRROR ML, *MLINE MO, *DDMODIFY MN, *MENU MS, *MSPACE MT, *MTEXT -MT, *-MTEXT MV, *MVIEW N, *NEW O, *OFFSET OP, *OPEN OS, *OSNAP

uip移植笔记

本笔记适用于uIP1.0。 移植平台介绍:MSP430F149+cs8900a+IAR 1、阅读The uIP Embedded TCP/IP Stack The uIP 1.0 Reference Manual. 2、建立一个文件夹,起名myport,将uip-1.0下的uIP和lib两个文件夹拷贝过去,然后再在myport下建立app文件夹。 3、将unix子文件夹下的clock-arch.c、clock-arch.h拷贝到myport下,这个文件实现协议栈所用的时钟,由430的定时器完成,有三个函数: clock_time_t clock_time(void) { return ticks; } void clock_init(void) { 定时器的初始化工作 } __interrupt void timer_interrupt(void)/*定时器中断函数*/ { ++ticks; }。 4、将unix子文件夹下的uip-conf.h拷贝到myport下,这个文件实现协议栈所用的配置,按照需要修改之。 5、写cs8900a的驱动函数,这里采用8位、查询模式,替换tapdev.c 或slipdev.c。 6、将unix子文件夹下的main.c函数拷贝到myport下,这个是主调度流程,按照需要修改。 7、建立自己的工程,将以上文件包含。 8、调试,改错。 其中,uip的缓冲区是以字节数组的形式产生,为了保证它的起始地址是偶数,必须指定地址。 UDP的初始化如下 void myudp_init(void) { uip_ipaddr_t ipaddr;//定义IP类型变量 uip_ipaddr(ipaddr, 210,29,104,88); //远程IP为210.29.104.88 if(myudp_conn != NULL) { uip_udp_remove(myudp_conn);//如果连接已经建立,则删除之 } myudp_conn = uip_udp_new(&ipaddr, HTONS(1000));//建立到远程ipaddr,端口为1000的连接 if(myudp_conn != NULL) {

python-os模块中文帮助文档

注此模块中关于unix中的函数大部分都被略过,翻译主要针对WINDOWS,翻译速度很快,其中很多不足之处请多多包涵。 这个模块提供了一个轻便的方法使用要依赖操作系统的功能。如何你只是想读或写文件,请使用open() ,如果你想操作文件路径,请使用os.path模块,如果你想在命令行中,读入所有文件的所有行,请使用 fileinput模块。使用tempfile模块创建临时文件和文件夹,更高级的文件和文件夹处理,请使用shutil模块。 os.error 内建OSError exception的别名。 https://www.doczj.com/doc/3918346391.html, 导入依赖操作系统模块的名字。下面是目前被注册的名字:'posix', 'nt', 'mac', 'os2', 'ce', 'java', 'riscos'. 下面的function和data项是和当前的进程和用户有关 os.environ 一个mapping对象表示环境。例如,environ['HOME'] ,表示的你自己home文件夹的路径(某些平台支持,windows不支持) ,它与C中的getenv("HOME")一致。 这个mapping对象在os模块第一次导入时被创建,一般在python启动时,作为site.py处理过程的一部分。在这一次之后改变environment不 影响os.environ,除非直接修改os.environ. 注:putenv()不会直接改变os.environ,所以最好是修改os.environ 注:在一些平台上,包括FreeBSD和Mac OS X,修改environ会导致内存泄露。参考putenv()的系统文档。 如果没有提供putenv(),mapping的修改版本传递给合适的创建过程函数,将导致子过程使用一个修改的environment。 如果这个平台支持unsetenv()函数,你可以删除mapping中的项目。当从os.environ使用pop()或clear()删除一个项目时,unsetenv()会自动被调用(版本2.6)。 os.chdir(path) os.fchdir(fd) os.getcwd() 这些函数在Files和Directories中。

UDP及TCP通信程序的设计与实现实验报告

实验报告 课程计算机网络(双语)(课程设计)实验名称UDP及TCP通信程序的设计与实现专业班级 姓名 学号 2013年 5 月30日

目录 实验目的和内容?错误!未定义书签。 实验目的?错误!未定义书签。 实验内容?错误!未定义书签。 实验环境?错误!未定义书签。 程序的逻辑框图?错误!未定义书签。 UDP通信程序的逻辑框图:?错误!未定义书签。 TCP通信程序的逻辑框图:?错误!未定义书签。 程序源代码(数据结构的描述、核心算法)?错误!未定义书签。 1.TCP通信程序源代码............................................. 错误!未定义书签。 2.TCP通信程序数据结构的描述?7 3.TCP通信程序的核心算法?错误!未定义书签。 4.UDP通信程序源代码.................................................. 错误!未定义书签。 5.UDP通信程序数据结构的描述.................................. 错误!未定义书签。 6.UDP通信程序的核心算法.......................................... 错误!未定义书签。实验数据、结果分析.................................................................... 错误!未定义书签。 TCP通信程序实验结果分析?错误!未定义书签。 UDP通信程序实验结果分析......................................... 错误!未定义书签。总结................................................................................................ 错误!未定义书签。实验目的和内容 实验目的 掌握win32平台下,使用winsock API来实现UDP通信程序和TCP通信程序。 实验内容 1.实现控制台模式下,在单机上基于UDP的聊天程序; 2.实现控制台模式下,在单机上基于TCP的聊天程序; 3.上述两个程序,最简单的实现方式是:一方发送、另一方接收、交替进行; 4.提交上述2个程序的源程序,程序代码有充分的注释,并填写实验报告,实验报告的主要

【资料】Airpak中文帮助文档(1.7部分)

Airpak中文帮助文档(1.7部分) 此文翻译来自Airpak帮助文档1.7部分 通过1.7部分,你将使用Airpak 建立一个问题、解决一个问题以及输出结果。这是 对Airpak 特点的基础介绍。 如有疑问可参考Airpak帮助文档的相关部分

1.7 示例 在下面的示例中,你将使用Airpak建立一个问题、解决一个问题以及输出结果。这是对Airpak特点的基础介绍。使用指南中的例子将提供更完整的程序特点。 1.7.1 问题描述 图1.7.1显示的所要解决的问题。房间中包含了一个开放的进风口、一个排气口和一个恒定温度的墙。房间的长是4.57 m,宽是 2.74 m,高是2.74m。房间外测量值是0.92 m ×0.46 m,同时引入一个冷空气射入房间使得空气流动。排气口的尺寸是0.91 m×0.45 m。惯性的力量、浮力的力量以及湍流混合的相互作用对所提供的空气的渗透及路径有着重要的影响。 1.7.2 主要的过程 图1.7.1显示的问题是一个稳定通风的情形。边界温度以及速度是被定义的。示例中的步骤简要如下: z打开和定义一项工作 z调整默认房间大小 z对于一个房间生成一个进风口(opening)、排气口(vent)以及墙 z生成网格 z计算

z检查结果 1.7.3 开始一个新工作 启动Airpak(1.5节)。图1.7.2.显示的是【Open job】面板。 在【Select the job to open】文本显示框中路径的最后将/sample写上。点击【Accept】打开一个新工作。Airpak将生成一个10 m×3 m×10 m默认房间,同时在图形窗口显示房间。 你可以使用鼠标左键围绕一个中心点旋转房间,或者使用鼠标中间键你可以将房间转移到屏幕的任意一点上。使用右键放大或缩小房间。为了将房间回复的默认方位,点击【Options】菜单下【Orient】,在下拉菜单中选择【Home】。 1.7.4 定义工作 通过定义房间的种类和设置环境温度来开始工作。这些参数在【Problem setup】面板中具体指明了。在【File】菜单中选择【Problem】可以打开【Problem setup】面板(如图1.7.3)。

UDP及TCP通信程序的设计与实现实验报告

实验报告 课程计算机网络(双语)(课程设计) 实验名称UDP及TCP通信程序的设计与实现专业班级 姓名 学号 2013 年 5 月30 日

目录 实验目的和内容 (1) 实验目的 (1) 实验内容 (1) 实验环境 (2) 程序的逻辑框图 (2) UDP通信程序的逻辑框图: (2) TCP通信程序的逻辑框图: (3) 程序源代码(数据结构的描述、核心算法) (4) 1.TCP通信程序源代码 (4) 2.TCP通信程序数据结构的描述 (7) 3.TCP通信程序的核心算法 (7) 4.UDP通信程序源代码 (8) 5.UDP通信程序数据结构的描述 (11) 6.UDP通信程序的核心算法 (12) 实验数据、结果分析 (13) TCP通信程序实验结果分析 (13) UDP通信程序实验结果分析 (14) 总结 (16) 实验目的和内容 实验目的 掌握win32平台下,使用winsock API来实现UDP通信程序和TCP通信程序。 实验内容 1.实现控制台模式下,在单机上基于UDP的聊天程序; 2.实现控制台模式下,在单机上基于TCP的聊天程序;

3.上述两个程序,最简单的实现方式是:一方发送、另一方接收、交替进行; 4.提交上述2个程序的源程序,程序代码有充分的注释,并填写实验报告,实验报告的主 要内容为说明程序设计的思路,程序代码的流程。 实验环境 在win7系统下,visual studio 2008环境下的win32平台下 程序的逻辑框图 UDP通信程序的逻辑框图: Server端:Client端:

TCP通信程序的逻辑框图: Server端:

UDP程序设计(c语言课程设计)

07网络工程本 北4-626寝室 负责人:林型超 第十一章UDP程序设计 信息简介:UDP协议,即拥护数据报协议(Use Datagram Protocol).是一个简单的面向数据报的传输层协议.他不提供可靠性,即只把应用程序传给IP层的数据发送出去,但是并不能保证他们能到达目的.广播和多播是基于UDP协议的两种消息发送机制.广播数据即从一个工作站发出,局域网内的其他所有工作站都能收到它.IP协议下,多播是广播的一种变形,IP多播要求将对收发数据感兴趣的所有主机加入到一个特定的组. 设计目的: 本章实现的程序即有广播的功能又有多播的功能,能实现基本的广播和多播机制,其主要包括如下功能. 1) 提供广播机制. (1) 能设定身份,即是广播消息发送者还是接收者,默认是消息接收者. (2) 能在默认的广播地址和端口号上发送广播消息,接收广播广播消息. (3) 能指定广播地址,端口号,发送(或接收)数量选项进行广播消息的发送和接收. 2) 提供多播机制 (1) 能制定身份,即是多播消息发送者好事接收者,默认是消息接收者. (2) 主机能加入一个指定多播组. (3) 能以默认选项发送多播消息.接收多播消息. (4) 能指定多播地址,本地接口地址,端口号,发送(或接收)数量和数据反还标志选项进行多播消息的发送和接收. 总体设计 功能模块设计 1.功能模块图 本程序有3大部分组成,即广播模块,多播模块部分,如图11.1所示.其中公共模块和多播模块共享的部分,包括

初始化模块,参数获取模块和用户帮助模块;广播模块包括广播消息模块;多播模块包括多播功能控制模块,多播消息发送模块和多播消息接收模块. 图11.1 功能模块图 1) 公共模块 (1) 初始化模块.该模块主要用于初始化全局变量,为全局变量赋初始值. (2) 参数获取模块.该模块用于获取用户提供的参数,包括获取广播参数,多播参数和区分广播与多播 公共参数等. (3) 用户帮助模块.该模块应于显示用户帮助,包括显示公共帮助,广播帮助和多播帮助. 2) 广播模块 (1) 广播消息发送模块.该模块用于现实在指定广播地址和端口发送指定数量的广播消息. (2) 广播消息接收模块.该模块用于现实在指定广播地址和端口接收指定数量的广播消息. 3) 多播模块 (1) 多播功能控制模块.该模块用于现实多播套接字的创建和绑定,多播地址的设定,多播数据的设置,数据反还选项的设置,以及多播组的加入等. (2) 多拨消息发送模块.该模块用于现实在指定多播组发送多播消息. (3) 多播消息接收模块.该模块用于现实在指定多播组接收多波消息. 2. 系统流程图 系统流程图如图11.2所示.程序首先初始化全局变量,包括广播(多播)地址,端楼号,发送(接收)消息数量 等,然后花圈用户提供的参数,并初始化Winsock 初始也成功则判断是进行广播还是多播程序;如果是广播,则判断是发送者身份还是接收身份,然后根据不同的身份进行相应的处理,即发送广播消息或者接收广播消息;同样地,如果是多播,也惊醒身份的判断,然后作同样的处理. UDP 程序设计 公共模块 广播模块 多播模块 初始化模块 用户帮助模块 参数获取模块 广播消息发送模块 广播消息接收模块 多播消息发送模块 多播功能控制模块 多播消息接收模块

pyevolve中文帮助文档

Pyevolve的用户手册中文版 1.1.6基本概念 Raw score:表示由适应度函数返回的还未进行比例换算的适应值。 Fitness score :对Raw score进行比例换算后的适应值,如果你使用线性的比例换算(Scaling.LinearScaling()),fitness score将会使用线性方法进行换算,fitness score代表个体与种群的相关程度。 Sample genome : 是所有genome进行复制的基础 1.2.3对pyevolve进行扩展 对pyevolve进行扩展首先要查看GenomeBase.GenomeBase类的源码。 扩展的基本步骤 1)创建染色体类 2)创建染色体的初始化函数 3)创建遗传算子:选择算子,交叉算子,和变异算子等。 1.3模块 1.3.2基本模块 a) Consts :常量模块 Pyevolve 提供了所有的默认遗传算子,这是为了帮助用户方便的使用API,在常量模块中,你可以找到这些默认的设置,最好的情况是查看常量模块,但是不改变常量模块中的内容。 b)Util :公用模块 公用模块中提供了一些公用的函数,比如列表项的交换,随机功能等。 list2DSwapElement(lst, indexa, indexb):交换矩阵中的元素项。 listSwapElement(lst, indexa, indexb):交换列表中的元素项。 c)FunctionSlot :函数分片模块 Pyevolve中广泛使用函数分片的概念;这个想法是很简单的,每个遗传操作或者说是任何遗传操作能够被分配到一个片,按照这种想法,我们能够添加不止一种的遗传操作,比如说同时进行两种或者更多的变异操作,或者两种或更多的计算操作等,函数分片模块是以FunctionSlot.FunctionSlot类来实现的。 例子: Def fit_fun(genome): …. Def fit_fun2(genome): …. Genome.evaluator.set(fit_fun) Genome.evaluator.add(fit_fun2) Print Genome.evaluator #the result is “slot [evaluator] (count:2)” Print Genome.evaluator[0] # the result is “function fit_fun at <....>” Print Genome.evaluator[1] # the result is “function fit_fun2 at <...>”

uip学习笔记

uip_buf:定义如下u8_t uip_buf[UIP_BUFSIZE + 2];所有的数据处理都是通过处理它来完成的。比如接受的数据存储在这里,要发送的数据有会放在这里。 uip_len:uip_buf有用数据的字节 uip_appdata:uip_buf第一个可用字节的指针 uip_conn:总是指向当前连接的指针,定义:struct uip_conn *uip_conn; 下面是TCP连接的结构,用来区别不同的TCP连接,uip_tcp_appstate_t appstate是可以读写的且在实践应用中需要重定义,其他项read-only。 struct uip_conn { uip_ipaddr_t ripaddr; /**< The IP address of the remote host. 远程主机IP地址*/ u16_t lport; /**< The local TCP port, in network byte order. 本地TCP端口号,网络字节顺序*/ u16_t rport; /**< The local remote TCP port, in network byte order.本地远程连接主机TCP端口号*/ u8_t rcv_nxt[4]; /**< The sequence number that we expect to receive next. */ u8_t snd_nxt[4]; /**< The sequence number that was last sent by us. */ u16_t len; /**< Length of the data that was previously sent. */ u16_t mss; /**< Current maximum segment size for the connection. */ u16_t initialmss; /**< Initial maximum segment size for the connection. */ u8_t sa; /**< Retransmission time-out calculation state variable. */ u8_t sv; /**< Retransmission time-out calculation state variable. */ u8_t rto; /**< Retransmission time-out. */ u8_t tcpstateflags; /**< TCP state and flags. */ u8_t timer; /**< The retransmission timer. */ u8_t nrtx; /**< The number of retransmissions for the last segment sent. */ /** The application state. */ uip_tcp_appstate_t appstate; }; uip的应用事件: 1.接收数据:uip_newdata()为真,即远程连接的主机有发送新数据。uip_appdata指针指向实际数据。数据的大小通过uIP函数uip_datalen()获得。在数据不是被缓冲后,应用程序必须立刻启动。 2.发送数据:应用程序通过使用uIP函数uip_send()发送数据。uip_send()函数采用两个参数;一个指针指向发送数据和数据的长度。如果应用程序为了产生要发送的实际数据需要RAM 空间,包缓存(通过uip_appdata指针指向)可以用于这方面。在一个时间里应用程序只能在连接中发送一块数据。因此不可以在每个应用程序启用中调用uip_send()超过一次;只有上

基于UDP的网络聊天程序

创建一个MFC的对话框工程Chat,界面如图 下面是实现步骤: 一、调用Afxstock全局函数初始化套接字库,在CChatApp::InitInstance()中添加代码: if (!AfxSocketInit()) { AfxMessageBox("加载字库失败!"); return FALSE; } 二、在CChatDlg类中添加一个成员函数:stocketInit(),并在CChatDlg::OnInitDialog()中调用一下,代码如下: BOOL CChatDlg::stocketInit() { m_socket=socket(AF_INET,SOCK_DGRAM,0); if (INVALID_SOCKET==m_socket) {

MessageBox("创建套接字失败!"); return FALSE; } SOCKADDR_IN socket_in; socket_in.sin_family=AF_INET; socket_in.sin_port=htons(3000); socket_in.sin_addr.S_un.S_addr=htonl(INADDR_ANY); int retval; retval=bind(m_socket,(SOCKADDR*)&socket_in,sizeof(SOCKADDR)); if (SOCKET_ERROR==retval) { closesocket(m_socket); MessageBox("绑定套接字失败!"); return FALSE; } return TRUE; } 三、在CChatDlg::OnInitDialog()中创建一个线程,用于接收数据。这是本程序的关键一步, 1、接收数据的recvfrom函数会一直等待数据的到来,如果放在主线程中会赌塞系统,所以必须在建一个线程实现。 2、线程必须接收对话框传来的套接字,用来接收数据,而得到的数据必须回传给对话框显示出来,但是线程只能接收一个LPVOID型的参数,要同时接受2个参数,就需要提前定义一个struct,里面包含2个成员:sock和hwnd,把这个结构的指针做为参数传递给线程。 3、数据的回传通过自定义消息实现,把接收到的数据作为消息的附件参数传给对话框。

奋斗STM32开发板uIP1.0 以太网例程讲解

奋斗版 STM32 开发板例程文档———uIP1.0 ENC28J60 以太网例程
https://www.doczj.com/doc/3918346391.html,
uIP1.0 ENC28J60 以太网例程
实验平台:奋斗版STM32开发板V2、V2.1、V3 实验内容:本例程演示了在奋斗STM32开发板上完成ARP,ICMP,TCP服务器、WEB 服务器以及UDP服务器,该实验学习了基于uIP1.0网络协议栈的程序编制。
预先需要掌握的知识
1.ENC28J60
ENC28J60是MICROCHIP公司的带SPI 接口的独立以太网控制器, 以太网控制器特性 ? IEEE 802.3 兼容的以太网控制器 ? 集成MAC 和10 BASE-T PHY ? 接收器和冲突抑制电路 ? 支持一个带自动极性检测和校正的10BASE-T 端口 ? 支持全双工和半双工模式 ? 可编程在发生冲突时自动重发 ? 可编程填充和CRC 生成 ? 可编程自动拒绝错误数据包 ? 最高速度可达10 Mb/s 的SPI 接口 缓冲器 ? 8 KB 发送/ 接收数据包双端口SRAM ? 可配置发送/ 接收缓冲器大小 ? 硬件管理的循环接收FIFO ? 字节宽度的随机访问和顺序访问(地址自动递增) ? 用于快速数据传送的内部DMA ? 硬件支持的IP 校验和计算 介质访问控制器(MAC)特性 ? 支持单播、组播和广播数据包 ? 可编程数据包过滤,并在以下事件的逻辑“与” 和“或”结果为真时唤醒主机: - 单播目标地址 - 组播地址 广播地址 - Magic Packet - 由64 位哈希表定义的组目标地址 - 多达64 字节的可编程模式匹配(偏移量可由用户定义)
淘宝店铺:https://www.doczj.com/doc/3918346391.html,
1

UDP通信方式实验c语言udp通信程序-arm课程设计报告.

UDP通信方式实验+c语言udp通信程序-arm课程设计报告 UDP通信方式实验+c语言udp通信程序-arm课程设计报告用户模式(USER MODE)是ARM 通常执行状态,用于执行大多数应用程序;快速中断模式(FIQ MODE)支持数据传输或通道处理;中断模式(IRQ MODE)用于通用中断处理;超级用户模式(SVC MODE)是一种操作系统受保护的模式:数据中止模式(ABT MODE)指令预取指中止、数据中止时进入该模式;未定义模式(UND MODE)当执行未定义的指令时进入该模式;系统模式(SYS MODE)是操作系统一种特许的用户模式。除了用户模式之外,其他模式都归为特权模式,特权模式用于中断服务、异常或者访问受保护的资源特权模式中除系统模式之外另5种模式又称为异常模式,在移植过程中必须设置中断向量表来处理异常。uCOS II的移 植主要处理标准中断(IRQ)、快速中断(FIQ)和软件中断(SWI)。2.4 支持的指令集原文请找腾讯3249114六.维^论,文.网https://www.doczj.com/doc/3918346391.html,带T变量的ARM7处理器核具有两个指令集:标准32位ARM指令集和16位 Thumb指令集,两种指令集有不同的应用范围,μC/OS-II包含了这些指令集的切换(TaskIsARM()和 TaskIsTHUMB()用于改变指令集)。2.5 移植μC/OS-IIμC/OS-II 要求所有.C 文件的都要包含都文件includes.h,这样使得用户项目中的每个.C文件不用分别去考虑它实际上需要哪些头文件。使用includes.h的缺点 是它可能会包含一些实际不相关的头文件,这意味着每个文件的编译时间可能会增加,但却增强了代码的可移植性。在本移植中另外增加了一个头文件config.h,我们要求所有用户程序必须包含config.h,在config.h中包含includes.h 和特定的头文件和配置项。而μC/OS-II 的系统文件依然只是包含includes.h,即μC/OS-II 的系统文件完全不必改动。所有的配置改变包括头 文件的增减均在config.h中进行,而includes.h定下来后不必改动(μC/OS- II 的系统文件需要包含的东西是固定的)。这样,μC/OS-II 的系统文件需要编译的次数大大减少,编译时间随之减少。μCOS-II 不使用C语言中的 short、int、long等数据类型的定义,因为它们与处理器类型有关,隐含着不可移植性。代之以移植性强的整数数据类型,这样,既直观又可移植。在使用周立功提供的μC/OS-II模板的任何功能之前,必须调用函数OSInit(),它完 成μC/OS-II的初始化并建立空闲任务。在开始多任务之前,必须建立至少一个用户任务(不包括μC/OS-II的空闲任务),这是通过调用函数OSTaskCreate()或函数OSTaskCreateExt()实现。最后函数main()调用函数 OSStart()将控制权交给μC/OS-II内核main()函数也就结束了。μC/OS-II应用程序主函数如下:程序清单 1int main (void){ OSInit(); //初始化 uC/OS- II OSTaskCreate(TaskStart,(void *)0, &TaskStartStk[127], 3); //创建起动任 务 OSStart(); //开始多任务} 第3章 ZLG/IP软件包结构和配置3.1 ZLG/IP 软件包结构为了使软件可移植性强、易维护,该软件包采用分层的方法编写。包括网络传输用到的协议、硬件驱动及μC/OS-II的结构进行分层。ZLG/IP包

相关主题
文本预览
相关文档 最新文档