当前位置:文档之家› 光电检测技术英文

光电检测技术英文

光电检测技术英文
光电检测技术英文

英文原文

1.5 Experimental Setup

Due to the many concepts and variations involved in performing the experiments in this project and also because of their introductory nature, Project 1 will very likely be the most time consuming project in this kit. This project may require as much as 9 hours to complete. We recommend that you perform the experiments in two or more laboratory sessions. For example, power and astigmatic distance characteristics may be examined in the first session and the last two experiments (frequency and amplitude characteristics) may be performed in the second session.

A Note of Caution

All of the above comments refer to single-mode operation of the laser which is a very fragile device with respect to reflections and operating point. One must ensure that before performing measurements the laser is indeed operating single-mode. This can be realized if a single, broad fringe pattern is obtained or equivalently a good sinusoidal output is obtained from the Michelson interferometer as the path imbalance is scanned. If this is not the case, the laser is probably operating multimode and its current should be adjusted. If single-mode operation cannot be achieved by adjusting the current, then reflections may be driving the laser multimode, in which case the setup should be adjusted to minimize reflections. If still not operating single-mode, the laser diode may have been damaged and may need to be replaced.

Warning

The lasers provided in this project kit emit invisible radiation that can damage the human eye. It is essential that you avoid direct eye exposure to the laser beam. We recommend the use of protective eyewear designed for use at the laser wavelength of 780 nm.

Read the Safety sections in the Laser Diode Driver Operating Manual and in the laser diode section of Component Handling and Assembly (Appendix A) before proceeding.

1.5.1 Semiconductor Diode Laser Power Characteristics

1.Assemble the laser mount assembly (LMA-I) and connect the laser to its power supply. We will first collimate the light beam. Connect the laser beam to a video monitor and image the laser beam on a white sheet of paper held about two to ten

centimeters from the laser assembly. Slowly increase the drive current to the laser and observe the spot on the white card. The threshold drive current rating of the laser is supplied with each laser. Increase the current to about 10-20 mA over the threshold value.

With the infrared imager or infrared sensor card, observe the spot on the card and adjust the collimator lens position in the laser assembly LMA-I to obtain a bright spot on the card. Move the card to about 30 to 60 centimeters from the lens and adjust the lens position relative to the laser to obtain a spot where size does not vary strongly with the position of the white card. When the spot size remains roughly constant as the card is moved closer or further from the laser, the output can be considered collimated. Alternatively, the laser beam may be collimated by focusing it at a distance as far away as possible. Protect fellow co-workers from accidental exposure to the laser beam.

2.Place an 818-SL detector on a post mount (assembly M818) and adjust its position so that its active area is in the center of the beam. There should be adequate optical power falling on the detector to get a strong signal. Connect the photodetector to the power meter (815). Reduce the background lighting (room lights) so that the signal being detected is only from the laser. Reduce the drive current to a few milliamperes below threshold and, again, check to see that room light is not the dominant signal at the detector by blocking the laser light.

3. Increase the current and record the output of the detector as a function of laser drive current. You should obtain a curve similar to Figure 1.2. If desired, the diode temperature may also be varied to observe the effects of temperature on threshold current. When examining laser diode temperature characteristics, the laser diode driver should be operated in the constant current mode as a safeguard against excessive currents that damage the diode laser. Note that as the diode temperature is reduced, the threshold decreases. Start all measurements with the diode current off to prevent damage to the laser by preventing drive currents too high above threshold. To prevent destruction of the laser, do not exceed the stated maximum drive current of the laser.

1.5.2 Astigmatic Distance Characteristics

The laser diode astigmatic distance is determined as follows. A lens is used to focus the laser beam at a convenient distance. A razor blade is, then, incrementally moved across the beam to obtain data for total optical power passing the razor edge vs. the razor blade position. A plot of this data produces an integrated power profile of the laser beam (Figure 1.9a) which through differentiation exposes the actual power profile (Figure 1.9b) which, in turn, permits determination of the beam diameter (W).

A beam diameter profile is obtained by measuring the beam diameter while varying the laser position. Figure 1.9c illustrates the two beam diameter profiles of interest: one for razor edge travel in the direction perpendicular to the laser diode junction plane and the other for travel in the direction parallel to the junction plane. The astigmatic distance for a laser diode is the displacement between the minima of these two profiles. This method is known as the knife edge technique.

1. Assemble the components shown in Figure 1.8 with the collimator lens (LC), in the rotational stage assembly (RSA-I), placed roughly 1 centimeter away from the laser. The beam should travel along the optic axis of the lens. This is the same lens used in collimating the laser in the previous setup. The approximate placement of all the components are shown in the figure. Make sure that the plane of the diode junction

(xz plane in Figure 1.1) is parallel with the table surface.

2. Due to the asymmetric divergence of the light, the cross-section of the beam leaving the laser and, further, past the spherical lens is elliptical. The beam, thus, has two distinct focal points, one in the plane parallel and the other in the plane perpendicular to the laser diode junction. There is a point between the two focal points where the beam cross-section is circular. With the infrared imager and a white card, roughly determine the position where the beam cross-section is circular.

Figure 1.9 – Procedure for finding astigmatic distance.

3. Adjust the laser diode to lens distance such that the razor blades are located in the xy plane where the beam cross-section is circular.

4. Move the laser diode away from the lens until minimum beam waist is reached at the plane of razor blades. Now, move the laser diode about 200 μm further away from the lens.

5. Move razor blade 1 in the x direction across the beam through the beam spread θx and record the x position and detected intensity at each increment (≤100 μm increments). The expected output is shown in Figure 1.9. The derivative of this curve yields the intensity profile of the beam in the x direction from which the beam diameter is determined.

6. Repeat with razor blade 2 for θy in the y direction.

7. Move the laser closer to the lens in increments (≤50 μm) through a total of at least than 500μm. Repeat Steps 5 and 6 at each z increment, recording the z position.

8. Using the collected data, determine the beam intensity profiles in the x and y directions as a function of the lens position z. This is done by differentiating each data set with respect to position. Then, calculate the beam diameter and plot as a function of z. The difference in z for the minimum in θx and θy is the astigmatic distance of the laser diode. Use of computer software, especially in differentiating the data, is highly recommended.

If the laser junction is not parallel to the table surface, then for each measurement above, you will obtain an admixture of the two beam divergences and the measurement will become imprecise. If the laser is oriented at 45° to the surface of the table, the astigmatic distance will be zero.

Different laser structures will have different angular beam divergences and, thus, different astigmatic distances. If you have access to several different laser types (gain guided, index guided), it may be instructive to characterize their astigmatic distances.

1.5.3 Frequency Characteristics of Diode Lasers

In order to study frequency characteristics of a diode laser, we will employ a Michelson interferometer to convert frequency variations into intensity variations. An experimental setup for examining frequency and, also, amplitude characteristics of a laser source is illustrated in Figure 1.10.

1. In this experiment, it is very possible that light may be coupled back into the laser, thereby, destabilizing it. An optical isolator, therefore, will be required to minimize feedback into the laser. A simple isolator will be constructed using a polarizing beam splitter cube and a quarterwave plate. We orient the quarterwave plate such that the linearly polarized light from the polarizer is incident at 45° to the principal axes of the quarterwave plate so that light emerging from the quarterwave plate is circularly polarized. Reflections change left-circular polarized light into right-circular or vice versa so that reflected light returning through the quarterwave plate will be linearly polarized and 90° rotated with respect to the polarizer transmission axis. The polarizer, then, greatly attenuates the return beam.

In assembling the isolator, make sure that the laser junction (xz plane in Figure 1.1) is parallel to the surface of the table (the notch on the laser diode case points upward) and the beam is collimated by the lens. The laser beam should be parallel to the surface of the optical table. Set the polarizer and quarterwave (λ/4) plate in place.

Pla ce a mirror after the λ/4 plate and rotate the λ/4 plate so that maximum rejected signal is obtained from the rejection port of the polarizing beam splitter cube as shown in Figure 1.11. When this signal is maximized, the feedback to the laser should be at a minimum.

2. Construct the Michelson interferometer as shown in Figure 1.12. Place the beam steering assembly (BSA-II) on the optical table and use the reflected beam from the mirror to adjust the quarterwave plate orientation. Set the cube mount (CM) on the optical breadboard, place a double sided piece of adhesive tape on the mount, and put the nonpolarizing beam splitter cube (05BC16NP.6) on the adhesive tape. Next, place the other beam steering assembly (BSA-I) and the detector mount (M818BB) in location and adjust the mirrors so that the beams reflected from the two mirrors overlap at the detector.

When long path length measurements are made, the interferometer signal will decrease or disappear if the laser coherence length is less than the two way interferometer path imbalance. If this is the case, shorten the interferometer until the signal reappears. If this does not work, then check the laser for single-mode operation by looking for the fringe pattern on a card or by scanning the piezoelectric transducer block (PZB)in BSA-II and monitoring the detector output which should be sinusoidal with PZB scan distance. If the laser does not appear to be operating single-mode, realign the isolator and/or change the laser operating point by varying the bias current. Additionally, to ensure single-mode operation, the laser should be DC biased above threshold before applying AC modulation. Overdriving the laser can also force it into multimode operation.

3. The Michelson interferometer has the property that depending on the position of the mirrors, light may strongly couple back toward the laser input port. In order to further reduce the feed-back, slightly tilt the mirrors as illustrated in Figure 1.13. If still unable to obtain single-mode operation, replace the laser diode.

4. Place a white card in front of the detector and observe the fringe pattern with the infrared imager. Slightly adjust the mirrors to obtain the best fringe pattern. Try to obtain one broad fringe.

5. Position the detector at the center of the fringe pattern so that it intercepts no more than a portion of the centered peak.

6. By applying a voltage to the piezoelectric transducer block attached to the mirror (part PZB) in one arm of the interferometer (i.e. BSA-II), maximize the output intensity. The output should be stable over a time period of a minute or so. If it is not, verify that all components are rigidly mounted. If they are, then room air currents may be destabilizing the setup. In this case, place a box (cardboard will do) over the setup to prevent air currents from disturbing the interferometer setup.

7.Place the interferometer in quadrature (point of maximum sensitivity between maximum and minimum outputs of the interferometer) by varying the voltage on the PZB.

8. The output signal of the interferometer due to frequency shifting of the laser is given by ?I∝?φ = 2π/c ?L ?ν where ?L is the difference in path length between the two arms of the interferometer and ?ν is the frequency sweep of the laser that is induced by applying a current modulation. Remember that in a Michelson interferometer ?L is twice the physical difference in length between the arms since light traverses this length difference in both directions. ?L values of 3-20 cm represent convenient length differ ences with the larger ?L yielding higher output signals.

Before we apply a current modulation to the laser, note that the interferometer output signal, ?I, should be made larger than the detector or laser noise levels by proper choice of ?L and current mo dulation amplitude di. Also recall from Section 1.3

that when the diode current is modulated so is the laser intensity as well as its frequency. We can measure the laser intensity modulation by blocking one arm of the interferometer. This eliminates interference and enables measurement of the intensity modulation depth. We, then, subtract this value from the total interferometer output to determine the true dI/di due to frequency modulation. Apply a low frequency, small current modulation to the laser diode. Note that when the proper range is being observed

15mA 10di

dv v 1--= and

1mA 2.0di

dI I 1-= for the amplitude change only.Recalling

i v L c 2di d di dI ???=?∝πφ)( ,15mA 10~di

dI Lv 2c --?π, or

15-mA 10

L K 2~di dI -?λπ where K is a detector response constant determined by varying ?L.

9. With the interferometer and detection system properly adjusted, vary the drive frequency of the laser and obtain the frequency response of the laser (Figure 1.4 or

1.10a).You will need to record two sets of data: (i) the modulation depth of the interferometer output as a function of frequency, and (ii) the laser intensity modulation depth. The difference of the two sets of collected data will provide an estimate of the actual dI/di due to frequency modulation. Also note that if the current modulation is sufficiently small and the path mismatch sufficiently large, the laser intensity modulation may be negligible. You may need to actively keep the

interferometer in quadrature by adjusting the PZB voltage.

Make any necessary function generator amplitude adjustments to keep the current modulation depth of the laser constant as you vary the frequency. This is because the function generator/driver combination may not have a flat frequency response. The effect of this is that the current modulation depth di is not constant and varies with frequency. So to avoid unnecessary calculations, monitor the current modulation depth by connecting the LASER MONITOR connector on the laser diode driver system to an oscilloscope and keep the modulation depth constant by adjusting the amplitude of the applied sinusoidal wave as a function of frequency. Record the frequency for your laser at which the thermal contribution to dν/di begins to become negligible and dν/di drops off (see Section 1.3).

10. Keeping the above equations in mind, we will, now, measure the FM chirp characteristics of the laser. At a constant current modulation frequency (choose a modulation frequency where dν/di varies rapidly, i.e. where the slope of your graph from Step 9, which should be similar to Figure 1.10a, is maximum), vary the current modulation depth di for different laser bias levels and derive a curve such as the one in Figure1.10b.The output dν should not vary significantly except around threshold and at high currents.

Caution

Do not exceed the specified drive currents/output power ratings of the diode or it may be damaged.

11. The phase noise characteristic behavior (Section1.4) as a function of interferometer path length imbalance ?L may be determined by ind ucing phase noise through application of laser current modulation. Make sure that the interferometer is in quadrature.

Set the laser diode current above threshold, apply a small current modulation, and fix the modulation frequency at a desired value. Convenient frequencies may include 50 Hz, 2 kHz, and 50 kHz (see Reference 1.5). Monitor the detector output with a spectrum analyzer or an oscilloscope and record the peak-to-peak output intensity at interferometer quadrature. You may accomplish this by manually sweeping the PZB voltage to cause a minimum of π/2 phase shift, recording the maximum peak-to-peak intensity as a function of path length imbalance. It is important to ensure that instrument noise is below the signal levels expected and it is assumed that single-mode operation of the laser is maintained. Curves similar to Figure 1.10c should be obtained.

1.5.4 Amplitude Characteristics of Diode Lasers

The measurements of the intensity characteristics are taken by placing the detector before the interferometer as in Figure 1.10 or by blocking one mirror in the interferometer. Again, the laser must be operated single-moded with minimum feedback or the noise level and functionality will drastically change. The relative intensity noise (RIN) is defined as 20log(dI/I) where dI is the RMS intensity fluctuations so that for dI~10-4 , the RIN is -80 dB. Normally, these measurements are made with a spectrum analyzer and a 1 Hz bandwidth.

When making RIN measurements, electronic and photodetector shot noise must be below the RIN levels. (OPTIONAL) You may determine the shot noise using an incoherent source (e.g. lamp) with an intensity level similar to that of the laser. The resultant frequency spectrum of noise with the light source excited gives a measure of the shot noise level which should be adjusted to be at least 10 dB greater than electronic noise levels. The measured shot noise should be checked with Equation

0.47.

1. Vary the laser drive current from below threshold through and above the threshold and record the laser output power and intensity noise at a desired frequency using a spectrum analyzer. When you calculate the RIN, assuming that shot and electronic noises are below the RIN level, a plot similar to that presented in Figure 1.10d should be obtained. In most cases, for single-mode operation, the noise peaks at threshold. The shape of the noise curve may vary if the laser is modulated, if it becomes multi-modal, or if the side-mode suppression on a nominally single-mode laser is not adequate (< 20 dB).

2. It is instructive to operate the laser with modulation signals of varying depth and/or degrading the isolator performance by rotating the λ/4 plate to increase feedback to the laser. This will illustrate noise properties for various feedback conditions which are important to subsequent sensor and communication experiments. RINs of less than -150dB and -120dB are required for television broadcast signals and sensitive interferometric sensors, respectively.

3. The intensity noise of diode lasers has a 1/f characteristic (performance is degraded as the frequency is lowered). With the laser above threshold and the photodetector connected to a spectrum analyzer, determine the RIN as a function of modulation frequency. The response shown in Figure 1.10e should be obtained where the noise becomes white (flat with frequency) starting somewhere between 100 kHz and 1 MHz for typical lasers.

NOTE: The Michelson interferometer setup used in this project will again be used in Project3. It may, therefore, save time to proceed directly to Project3 before completing characterization of diode lasers in Project2.

激光检测技术研究现状与发展趋势

激光检测技术研究现状与发展趋势 提要:激光检测学科发展现状在光电检测领域,利用光的干涉、衍射和散射进行检测已经有很长的历史。由泰曼干涉仪到莫尔条纹,然后到散斑,再到全息干涉,出现了一个个干涉场,物理量(如位移、温度、压力、速度、折射率等)的测量不再需要单独测量,而是整个物理量场一起进行测量。自从激光出现以后,电子学领域的许多探测方法(如外差、相关、取样平均、光子计数等)被引入,使测量灵敏度和测量精度得到大大提高。用激光检测关键技术(激光干涉测量技术、激光共焦测量技术、激光三角测量技术)实现的激光干涉仪、激光位移传感器等,可以完成纳米级非接触测量。可以说,超精密加工技术将随着高精密激光检测技术的发展而发展;在此基础上,提出了激光测量需解决的关键技术及今后的发展方向。 1.测量原理 1.1激光测距原理 先由激光二极管对准目标发射激光脉冲。经目标反射后激光向各方向散射。部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上。雪崩光电二极管是一种内部具有放大功能的光学传感器,因此它能检测极其微弱的光信号。记录并处理从光脉冲发出到返回被接收所经历的时间,即可测定目标距离。

1.2激光测位移原理 激光发射器通过镜头将可见红色激光射向被测物体表面,经物体反射的激光通过接收器镜头,被内部的CCD线性相机接收,根据不同的距离,CCD线性相机可以在不同的角度下“看见”这个光点。根据这个角度及已知的激光和相机之间的距离,数字信号处理器就能计算出传感器和被测物体之间的距离。 2.激光测量系统的应用 激光功率和能量是描述激光特性的两个基本参数,激光功率计和能量计是最常用的两类激光测量仪器。随着激光技术的不断发展,对激光测试技术和测量仪器提出了更高要求。由于调Q和锁模激光的出现和应用,要求测量的激光功率已从毫瓦、瓦、千瓦、兆瓦直到千兆瓦以上。激光能量也从毫焦尔逐渐跨过千焦尔。脉冲激光的持续时间也由毫秒、微秒、毫微秒、而缩短至微微秒量级。光谱范围也从紫外、可见、红外扩展到近毫米波段。激光精密测量和某些生物医学方面的研究和应用(如眼科治疗、细胞手术器等)的发展,对激光测量的精度也提出了非常高的要求。 2.1激光非球面检测技术 长期以来,非球面检测技术一直制约着非球面制造精度的提高,尤其对于高精度非球面的检测。规的非球面检测方法如刀口阴影法、激光数字干涉法及接触式光栅测量法等,对于检测工件表面来说都有一定的局限性。原子力显微镜是利用纳米级的探针固定在可灵敏操控的微米级尺度的弹性悬臂上,当针尖很靠近样品时,其顶端的原子与

光电检测技术课程作业及答案(打印版)

思考题及其答案 习题01 一、填空题 1、通常把对应于真空中波长在(0.38m μ)围的电磁辐射称 μ)到(0.78m 为光辐射。 2、在光学中,用来定量地描述辐射能强度的量有两类,一类是(辐射度学量),另一类是(光度学量)。 3、光具有波粒二象性,既是(电磁波),又是(光子流)。光的传播过程中主要表现为(波动性),但当光与物质之间发生能量交换时就突出地显示出光的(粒子性)。 二、概念题 1、视见函数:国际照明委员会(CIE)根据对许多人的大量观察结果,用平均值的方法,确定了人眼对各种波长的光的平均相对灵敏度,称为“标准光度观察者”的光谱光视效率V(λ),或称视见函数。 2、辐射通量:辐射通量又称辐射功率,是辐射能的时间变化率,单位为瓦(1W=1J/s),是单位时间发射、传播或接收的辐射能。 3、辐射亮度:由辐射表面定向发射的的辐射强度,除于该面元在垂直于该方向的平面上的正投影面积。单位为(瓦每球面度平方米) 。 4、辐射强度:辐射强度定义为从一个点光源发出的,在单位时间、给定方向上单位立体角所辐射出的能量,单位为W/sr(瓦每球面度)。 三、简答题 辐射照度和辐射出射度的区别是什么? 答:辐射照度和辐射出射度的单位相同,其区别仅在于前者是描述辐射接

收面所接收的辐射特性,而后者则为描述扩展辐射源向外发射的辐射特性。 四、计算及证明题 证明点光源照度的距离平方反比定律,两个相距10倍的相同探测器上的照度相差多少倍?答: 2 22 4444R I R I dA d E R dA d E R I I ===∴=ππφπφφπφ=的球面上的辐射照度为半径为又=的总辐射通量为在理想情况下,点光源设点光源的辐射强度为 ()1 2222222221 122 12 11001001010E E L I E L I L I L I E R I E L L L L =∴====∴= = 又的距离为第二个探测器到点光源, 源的距离为设第一个探测器到点光 习题02 一、填空题 1、物体按导电能力分(绝缘体)(半导体)(导体)。 2、价电子的运动状态发生变化,使它跃迁到新的能级上的条件是(具有能向电子提供能量的外力作用)、(电子跃入的那个能级必须是空的)。 3、热平衡时半导体中自由载流子浓度与两个参数有关:一是在能带中(能态的分布),二是这些能态中(每一个能态可能被电子占据的概率)。 4、半导体对光的吸收有(本征吸收)(杂质吸收)(自由载流子吸收)(激子吸收)(晶格吸收)。半导体对光的吸收主要是(本征吸收)。 二、概念题 1、禁带、导带、价带:

光电检测技术试题及答案

光电检测技术试题及答案 光电检测技术试题及答案1、光电器件的基本参数特性有哪些? (响应特性噪声特性量子效率线性度工作温度) @响应特性分为电压响应度电流响应度光谱响应度积分响应度响应时间频率响应 @噪声分类:热噪声散粒噪声产生-复合噪声 1/f噪声信噪比S/N 噪声等效功率NEP 2、光电信息技术是以什么为基础,以什么为主体,研究和发展光电信息的形成、传输、接收、变换、处理和应用。 (光电子学光电子器件) 3、光电检测系统通常由哪三部分组成 (光学变换光电变换电路处理) 4、光电效应包括哪些 外光电效应和内光电效应) 外光电效应:物体受光照后向外发射电子——多发生于金属和金属氧化物。内光电效应:物体受到光照后所产生的光电子只在物质内部而不会逸出物体外部——多发生在半导体。 内光电效应又分为光电导效应和光生伏特效应。

光电导效应:半导体受光照后,内部产生光生载流子,使半导体中载流子数显著增加而电阻减少的现象。 光生伏特效应:光照在半导体PN结或金属—半导体接触面上时,会在PN结或金属—半导体接触的两侧产生光生电动势。 5、光电池是根据什么效应制成的将光能转换成电能的器件,按用途可分为哪几种? (光生伏特效应太阳能光电池和测量光电池) 6、激光的定义,产生激光的必要条件有什么? ( 定义:激光是受激辐射的光放大粒子数反转光泵谐振腔) 7、热释电器件必须在什么样的信号的作用下才会有电信号输出? (交变辐射) 8、 CCD是一种电荷耦合器件,CCD的突出特点是以什么作为信号,CCD的基本功能是什么? (电荷 CCD的基本功能是电荷的存储和电荷的转移。) 9根据检查原理,光电检测的方法有哪四种。 (直接作用法差动测量法补偿测量法脉冲测量法) 10、光热效应应包括哪三种。 (热释电效应辐射热计效应温差电效应) 11、一般PSD分为两类,一维PSD和二维PSD,他们各自用途是什么?

光电检测技术

光电检测技术总结 经过一学期的光电检测技术课程的学习,我们大致上了解了光电检测技术有许多方面的知识,按照传感器、转换电路、检测装置划分排列。接下来我们来仔细探讨一下究竟有什么值得我们学习的。 首先是光电技术的定义。何为光电技术?光电检测技术是以激光、红外、光纤等现代光电子器件作为基础,通过对被检测物体的光辐射,经光电检测器接收光辐射并转换为电信号,由输入电路、放大滤波等检测电路提取有用信息,或进入计算机处理,最终显示输出所需要的检测物理参数。其中检测和测量有一些不同的地方:检测:通过一定的物理方式,分辨出被测参量并归属到某一范围带,以此来判别被测参数是否合格或是否存在。测量:将被测的未知量与同性质的标准量比较,确定被测量对标准量的倍数,并通过数字表示出这个倍数的过程。而光电检测技术的应用存在在生活中的每一个部分。比如人的视觉功能,人眼是一个直径为23mm的近似球体,眼球前方横径为11mm的透明角膜具有屈光作用,角膜后的虹膜中央有称为瞳孔的圆孔,它可以扩大或缩小以调节进入眼球的光亮。虹膜后的水晶体相当于光学系统中的透镜,其直径为9mm。在眼球的后方有视网膜,这是光学细胞和杆状细胞,它们和视网膜上的其他细胞组成的微小感光单元。这些感光单元接收光刺激后转化为神经冲动,经视神经传导到大脑的高级视觉中枢,从而产生亮度和彩色的感觉,同时也形成有关物体状和大小的判断。因此,人眼是一个高灵敏度、高分辨率和极为复杂而精巧的光传感器。正好光学仪器是人眼的视觉扩展,通过利用光辐射的各种现象和特性,摄取信息实现控制的有力工具,它是人类视觉参与下才能工作的。光学仪器一共在人类视觉上做出了以下的扩展:1、时间上扩展,可以通过摄像机记录过去的样子;2、空间上的扩展,通过地球卫星观看世界个地的样貌;3、识别能力的扩展,通过放大镜和显微镜我们能够观测到人眼看不见的细微东西。 光电检测系统由哪些东西组成?典型的光电仪器包括了精密机械、光学系统、光电信号传感器、电信号处理器和运算控制计算机以及输出显示设备等环节。各种环节分别实现各自的职能,组成光、机、电的综合系统。一个典型的光电检测系统的组成由辐射源开始,依次为传输媒质、检测目标、光学系统、光点检测器件、信息处理、输出设备。其中辐射源通过传输媒质由对象空间进入到光电系统。

光电检测技术作业答案

光电检测技术作业2 光电导灵敏度S g = 0.5X10 -6S/lx,1. 设某只CdS光敏电阻的最大功耗为30mW, =0 。试求当 CdS 光敏电阻上的偏置电压为 20V 时的极限照度。 暗电导 g 2. 在如图所示的照明灯控制电路中,将上题所给的CdS光敏电阻用作光电传感 器,若已知继电器绕组的电阻为 5 K ,继电器的吸合电流为2mA,电阻R 1K 。求为使继电器吸合所需要的照度。要使继电器在 3lx时吸合,问应如何调整电阻器R?

3. 在如图所示的电路中,已知R b 820 ,R e 3.3k ,U w 4V,光敏电 阻为R p ,当光照度为40lx时输出电压为6V,80lx时为9V。设该光敏电阻在30~100lx之间的 值不变。试求: (1)输出电压为8V时的照度。 (2)若R e增加到6k ,输出电压仍然为8V,求此时的照度。 (3)若光敏面上的照度为70lx,求R e 3.3k 与R e 6k 时输出的电压。(4)求该电路在输出电压为 8V时的电压灵敏度。

4. 影响光生伏特器件频率响应特性的主要因素有哪些?为什么PN结型硅光电二极管的最高工作频率小于等于107Hz? 5为什么在光照度增大到一定程度后,硅光电池的开路电压不再随入射照度的增大而增大?硅光电池的最大开路电压为多少?为什么硅光电池的有载输出电压总小于相同照度下的开路电压? 6硅光电池的内阻与哪些因素有关?在什么条件下硅光电池的输出功率 最大? 答:(1)极电容,串接电阻,串接电阻越小越好。 (2)显然,存在着最佳负载电阻Ropt,在最佳负载电阻情况下负载可以获得最大的输出功率Pmax

光电探测技术发展概况

光电探测技术发展概况 学号:20121226465姓名:熊玉宝 摘要:本文扼要论述光电探测技术重要性,并简要地介绍了光电探测技术的几种主要方法及发展趋势。 关键词:光电;探测;技术 光电探测技术是根据被探测对象辐射或反射的光波的特征来探测和识别对象的一种技术,这种技术本身就赋予光电技术在军事应用中的四大优点,即看得更清、打得更准、反应更快和生存能力更强。 光电探测技术是现代战争中广泛使用的核心技术,它包括光电侦察、夜视、导航、制导、寻的、搜索、跟踪和识别多种功能。光电探测包括从紫外光(0.2~0.4μm)、可见光(0.4~0.7μm)、红外光(1~3μm,3~5μm,8~12μm)等多种波段的光信号的探测。 新一代光电探测技术及其智能化,将使相关武器获得更长的作用距离,更强的单目标/多目标探测和识别能力,从而实现更准确的打击和快速反应,在极小伤亡的情况下取得战争的主动权。同时使武器装备具有很强的自主决策能力,增强了对抗,反对抗和自身的生存能力。实际上,先进的光电探测技术已成为一个国家的军事实力的重要标志。 现代高技术战争的显著特点首先是信息战,而信息战中首要的任务是如何获取信息。谁获取更多信息,谁最早获取信息,谁就掌握信息战的主动权。光电探测正是获取信息的重要手段。微波雷达和光电子成像设备常常一起使用,互相取长补短,相辅相成,可以获取更多信息,可以更早获取信息。前者作用距离远,能全天候工作;后者分辨率高,识别能力和抗干扰能力强。无论侦察卫星、预警卫星、预警飞机还是无人侦察机往往同时装备合成孔径雷达和CCD相机、红外热像仪或多光谱相机。为改进对弹道导弹的预警能力,美国正在研制的天基红外系统(SBIRS)拟用双传感器方案,即一台宽视场扫描短波红外捕获传感器和一台窄视场凝视多色(中波/长波红外、长波红外/可见光)跟踪传感器,能捕获和跟踪弹道导弹从发射到再入大气的全过程。美国已经装备并正在不断改进的CR-135S眼镜蛇球预警机,采用可见光和中波红外像机,能精确测定420km外的导弹发射,确定发动机熄火点,计算出它的弹道和碰撞点。最近在上面加了一台远程激光测距机,其作用距离可达400km。美国海军也在为战区弹道导弹防御

《光电检测技术》考试大纲

《光电检测技术》考试大纲 一、课程性质 专业基础课。 二、适用科学 仪器科学与技术、光学工程(包括专业型硕士:仪器仪表工程、光学工程)。 三、试卷结构 基础知识占60%,应用能力占40%。 四、参考书目 教材:徐熙平、张宁编著,光电检测技术及应用,机械工业出版社,2016 参考:雷玉堂主编,光电检测技术,中国计量出版社,2009 王庆有主编,光电传感应用技术,机械工业出版社,2011 五、考试内容与基本要求 第一章绪论 [考试要求]光电检测技术及特点、光电检测系统的组成。 [考试内容]光电检测技术、光电检测系统的组成。 第二章光电检测技术基础 [考试要求] 辐射度量和光度量的基本概念,半导体的物理基础,半导体对光的吸收,各类光电效应概念,光电器件的基本参数。 [考试内容] 辐射度量和光度量的基本概念 半导体物理基础:半导体特性、能带、半导体导电结构、载流子的运动, PN结、半导体对光的吸收; 内光电效应:光电导效应、光生伏特效应; 外光电效应; 光电器件常用的各种基本参数。 第三章光电检测器件 [考试要求]光电导器件、光生伏特器件、光电发射器件、热辐射探测器件、热释电器件、光电耦合器件和图像传感器件等各种光电传感器的结构、工作原理、 特性参数和使用方法,关键参数计算等。 [考试内容]光电导器件:光敏电阻; 光生伏特器件:光敏二极管、硅光电池、光敏晶体管、光电位置敏感器件;

光电发射器件:光电倍增管; 热辐射探测器件:热敏电阻、热电偶、热电堆; 热释电器件:工作原理,居里温度,热释电器件优点; 光耦合器件:定义、原理、如何用光耦合器件组成简单的逻辑电路? 图像传感器:电荷耦合器件、CMOS图像传感器、红外热成像、图像的增强 与变像。 第四章半导体发光管与激光器 [考试要求] 发光二极管、激光器等常用光源的工作原理、特性及其应用。 [考试内容]发光二极管:发光机理、应用; 半导体激光器:发光机理、结构; 几种典型的激光器:气体激光器、固体激光器结构。 第五章辐射信号检测 [考试要求] 辐射信号检测的方法,如直接检测、光外差检测、基于几何光学方法的光电信息变换检测、温度检测、莫尔条纹检测,并结合实际举例说明了如何 使用调制盘检测、投影放大法、光三角法、光扫描法、光焦点法等进行长、 宽尺寸测量的原理、结构,典型信号检测的优缺点。 [考试内容]直接探测法:光学系统、调制盘; 光外差探测法:探测原理、光外差探测的特性; 几何光学方法的光电信息变换:长、宽、位移、速度; 莫尔条纹特点及特性参数计算。 第六章光电检测系统典型电路 [考试要求] 常用的光电传感器如光敏电阻、光敏二极管、CCD电荷耦合器件等对应的典型电路,并举例说明了使用可编程逻辑器件进行CCD驱动的方法,视 频信号的二值化处理方法,光电信号常用的辨向处理和细分电路。 [考试内容]光敏电阻的变换电路:基本偏置、恒流电路、恒压电路; 光生伏特器件的偏置电路:反偏、零偏; CCD器件驱动电路:驱动电路时序方法、可编程器件产生驱动时序; 视频信号二值化处理电路:阈值法、微分法; 常用的光电信号辨向处理与细分电路。 第七章微弱信号检测

光电检测技术在机械设计中的应用与发展(DOC)

《光机电检测技术》 结课论文 光电检测技术在机械设计中的应用

摘要:本文通过对光电检测基本原理的描述,通过讨论了光电检测技术在印刷机,包装机械,洗衣机当中的应用,论述了在工艺上应该注意的问题。 关键词:光电检测,机械 前言:检测技术在国民经济的各个行业中,起着举足轻重的作用,无论科学研究、产品质量及自动控制都需要检测,利用现代光电子技术作为检测手段,具有无接触、无损、远距离、抗干扰能力强、受环境影响小、检测速度快、测量精度高等优越性,是当今检测技术发展的主要方向。光电检测技术是以激光、红外、光纤等现代光电子器件作为基础,通过对被检测物体的光辐射,经光电检测器接受光辐射并转换为电信号,由输入电路、放大滤波等检测电路提取有用信息,再经模/数转换接口输入计算机运算处理,最后显示输出所需要的检测物理量等参数。 1.光电检测的基本原理 图1 光电检测系统主要由投光器(光源)、受光器、信号处理装置等组

成。根据受光器所感知的信号判断被测对象的有无、形状、方位和颜色时,按投光器和受光器的相对位置不同可分为反射型和透过型两种型式,见图2。作为光电检测媒介的光可以是自然光如白炽灯、萤光灯或卤素灯发出的光。随着光电技术的发展,现常用的是一种特殊的经过调制的光,它是反光二极管在电压作用下发出的光。因为半导体没有热惯性,可以在通电的瞬间发光,并且可发出与电流波形相同的光,这大大提高了其抗干扰能力。投光器发出的光采用不同形式接触被测物后照射在受光器上,而受光器是在光照射下产生电流(或电导率发生变化),即所谓的具有光电效应的光敏元件,常用的有光电二极管和光电三极管。光电二极管的PN结在没有光照时和普通二极管一样具有单向导电性,使用时处于反向偏置;光线照射管芯,会产生光生载流子,在反向电压作用下,生载流子导电产生光电流,即随入射光强度的变化在负载电阻的两端就会产生随光强度变化的光电压,经检波、放大处理去推动控制系统。 图2 2.光电检测在机械设计中的应用

光电检测技术考试试卷

光电检测技术期中考试试卷 2014 一.选择题(20分) 1.对于费米能级,以下说法不正确的是( ) A 一个平衡的系统只能有唯一一个费米能级 B 电子占据率为0.5时所对应的能级 C p 型半导体材料费米能级靠近价带顶 D n 型半导体材料费米能级靠近价带顶 2.负电子亲和势阴极和正电子亲和势比较有重要差别,参与发射的的电子( ) A 不是冷电子,而是热电子 B 不是热电子,而是冷电子 C 既是冷电子,又是热电子 D 既不是冷电子,也不是热电子 3.下列器件按照响应速度由快到慢的顺序,正确的是( ) A PIN 光电二极管 PN 结光电二极管 光电三极管 光敏电阻 B PIN 光电二极管 光敏电阻PN 结光电二极管 光电三极管 C 光电三极管 PIN 光电二极管 光敏电阻PN 结光电二极管 D PN 结光电二极管 光电三极管 PIN 光电二极管 光敏电阻 4.下列探测器的光-电响应时间,由少数载流子的寿命决定: ( ) A 光电导探测器 B 光电二极管 C 光电倍增管 D 光电倍增管 5.对于光敏电阻,下列说法不正确的是( ) A 弱光照下,光电流与照度之间具有良好的线性关系 B 光敏面做成蛇形,有利于提高灵敏度 C 光敏电阻光谱特性的峰值波长,低温时向短波方向移动 D 光敏电阻具有前历效应 6.下列光源中哪一种光源,可作为光电探测器在可见光区的积分灵敏度测量标准光源:( ) A 氘灯 B 低压汞灯 C 色温2856K 的白炽灯 D 色温500K 的黑体辐射器 7.当黑体的温度升高时,其峰值光谱辐射出射度所对应的波长的移动方向为( ) A.向短波方向移动 B.向长波方向移动 C.不移动 D.均有可能 8.表中列出了几种国外硅APD 的特性参数 根据表中数据,要探测830nm 的弱光信号,最为合适的器件是 ( ) A C30817E B C30916E C C30902E D C30902S 9.已知甲、乙两厂生产的光电器件在色温2856K 标准钨丝灯下标定出的灵敏度分别为uW uA S e /5=, lm A o S v /4.=,则甲乙两厂中光电器件灵敏度比较结果正确的是( ) A. 甲场灵敏度高 B. 乙场灵敏度高 C. 甲乙两场灵敏度一样高 D. 无法比较

光电测试技术考试版

1、光电测试技术的发展,从功能上来看具有什么特点: 1、 从静态测量向动态测量发展; 2、 从逐点测量向全场测量发展; 3、 从低速测量向高速测量发展,同时具有存储和记录功能。 2、测量中应遵循的原则:阿贝原则,封闭原则 3、人眼进行调焦的方法中最简单、最常用的是清晰度法和消视差法。 人眼的对准不确定度和调焦不确定度 最简便最常用的调焦方法是清晰度法和消视差法。 清晰度法是以目标与比较标志同样清晰为准。调焦不确定度是由于存在几何焦深和物理焦深所造成的。 消视差法是以眼睛在垂轴平面上左右摆动也看不出目标和标志有相对横移为准的。 用望远镜调焦的目的是提高精度、准确度 4、 光电对准按功能原理分类: a) 光度式:普通光度式、差动光度式 b) 相位式:光度式的基础上加入一个调制器即成为相位式 5、 关于光具座: 测量焦距时使用玻罗板 6、 分辨率测试技术有几种判据? ? 瑞利(Rayleigh )判据认为,当两衍射斑中心距正好等于第一暗环的半径时,人眼刚 能分辨开这两个像点,这时两衍射斑的中心距为 ? 道斯(Dawes )判据认为,人眼刚能分辨两个衍射像点的最小中心距为 ? 斯派罗(Sparrow )判据认为,当两个衍射斑之间的合光强刚好不出现下凹时为刚可 分辨的极限情况,两衍射斑之间的最小中心距为 例:假设汽车两盏灯相距r =1.5m ,人的眼睛瞳孔直径D=4mm ,问最远在多少米的地方,人眼恰好能分辨出这两盏灯? 1-平行光管 2-透镜夹持器 3-测量显微镜 4- 测微目镜 5-导轨 1 2 3 4 5 0'1.22 1.22f F D σλλ==0 1.02F σλ=00.947F σλ=

光电检测技术的现状及发展趋势

光电检测作为光学与电子学相结合而产生的一门新兴检测技术,主要包括光信息获取、光电变换、光信息测量以及测量信息的智能化处理等,具有精度高、速度快、距离远、容量大、非接触、寿命长、易于自动化和智能化等优点,在国民经济各行业中得到了迅猛的发展和广泛的应用,如光扫描、光跟踪测量,光纤测量,激光测量,红外测量,图像测量,微光、弱光测量等,是当前最主要和最具有潜力的光电信息技术。本文从光电检测技术本身特点出发,分析其发展现状及发展趋势。 一、光电检测技术的概述 光电检测技术是光学与电子学相结合而产生的一门新兴检测技术。它主要利用电子技术对光学信号进行检测,并进一步传递、储存、控制、计算和显示。光电检测技术从原理上讲可以检测一切能够影响光量和光特性的非电量。它可通过光学系统把待检测的非电量信息变换成为便于接受的光学信息,然后用光电探测器件将光学信息量变换成电量,并进一步经过电路放大、处理,以达到电信号输出的目的。然后采用电子学、信息论、计算机及物理学等方法分析噪声产生的原因和规律,以便于进行相应的电路改进,更好地研究被噪声淹没的微弱有用信号的特点与相关性,从而了解非电量的状态。微弱信号检测的目的是从强噪声中提取有用信号,同时提高测系统输出信号的信噪比。 光电检测的系统机构比较简单,分为信号的处理器,受光器,光源。在实际检测过程中,受光器在获得感知信号后,就会被反映为不同形状、颜色的信号,同时根据这些器件所处在的不同位置,就能够将他分为反射型与透过型的两种比较的模式。光电检测的媒介光应当是自然的光,例如白炽灯或者萤光灯。特别是随着这些技术的发展,光电技术也取得的非常好发展。由于投光器在发出光后,会以不一样的方式触摸这些被检测物中,直到照射到检测系统中的受光器中,同时受光器在此刺激下,会产生一定量的电流,这就是我们常说的光敏性的原件,实际生活中应用比较广泛的有三极管、二极管。 光电检测技术主要包括光电变换技术、光信息获取与光信息测量技术以及测量信息的光电处理技术等。光电检测技术将光学技术与电子技术相结合实现对各种量的测量,它具有高精度、高速度、远距离、大量程、非接触测量等特点。 二、光电检测技术的发展现状

光电检测技术期末试卷试题大全

1、光电器件的基本参数特性有哪些? (响应特性噪声特性量子效率线性度工作温度) 响应特性分为电压响应度电流响应度光谱响应度积分响应度响应时间频率响应 噪声分类:热噪声散粒噪声产生-复合噪声1/f噪声信噪比S/N 噪声等效功率NEP 2、光电信息技术是以什么为基础,以什么为主体,研究和发展光电信息的 形成、传输、接收、变换、处理和应用。 (光电子学光电子器件) 3、光电检测系统通常由哪三部分组成 (光学变换光电变换电路处理) 4、光电效应包括哪些 外光电效应和内光电效应) 外光电效应:物体受光照后向外发射电子——多发生于金属和金属氧化物。 内光电效应:物体受到光照后所产生的光电子只在物质内部而不会逸出物体外部——多发生在半导体。 内光电效应又分为光电导效应和光生伏特效应。 光电导效应:半导体受光照后,内部产生光生载流子,使半导体中载流子数显著增加而电阻减少的现象。 光生伏特效应:光照在半导体PN结或金属—半导体接触面上时,会在PN结或金属—半导体接触的两侧产生光生电动势。 5、光电池是根据什么效应制成的将光能转换成电能的器件,按用途可分为 哪几种? (光生伏特效应太阳能光电池和测量光电池) 6、激光的定义,产生激光的必要条件有什么? (定义:激光是受激辐射的光放大粒子数反转光泵谐振腔) 7、热释电器件必须在什么样的信号的作用下才会有电信号输出? (交变辐射) 8、CCD是一种电荷耦合器件,CCD的突出特点是以什么作为信号,CCD的 基本功能是什么? (电荷CCD的基本功能是电荷的存储和电荷的转移。) 9根据检查原理,光电检测的方法有哪四种。 (直接作用法差动测量法补偿测量法脉冲测量法) 10、光热效应应包括哪三种。 (热释电效应辐射热计效应温差电效应) 11、一般PSD分为两类,一维PSD和二维PSD,他们各自用途是什么? (一维PSD主要用来测量光点在一维方向的位置;二维PSD用来测定光点在平面上的坐标。) 12、真空光电器件是基于什么效应的光电探测器,它的结构特点是有一个真空管,其他元件都在真空管中,真空光电器件包括哪两类。 (外光电效应光电管光电倍增管) 二、名词解释 1、响应度 (响应度(或称灵敏度):是光电检测器输出信号与输入光功率之间关系的度量。)2、信噪比 (是负载电阻上信号功率与噪声功率之比)

光电检测技术课程作业及答案(打印版)

光电检测技术课程作业及答案(打印版)

思考题及其答案 习题01 一、填空题 1、通常把对应于真空中波长在(0.38m μ)范围内的电磁辐 μ)到(0.78m 射称为光辐射。 2、在光学中,用来定量地描述辐射能强度的量有两类,一类是(辐射度学量),另一类是(光度学量)。 3、光具有波粒二象性,既是(电磁波),又是(光子流)。光的传播过程中主要表现为(波动性),但当光与物质之间发生能量交换时就突出地显示出光的(粒子性)。 二、概念题 1、视见函数:国际照明委员会(CIE)根据对许多人的大量观察结果,用平均值的方法,确定了人眼对各种波长的光的平均相对灵敏度,称为“标准光度观察者”的光谱光视效率V(λ),或称视见函数。 2、辐射通量:辐射通量又称辐射功率,是辐射能的时间变化率,单位为瓦(1W=1J/s),是单位时间内发射、传播或接收的辐射能。 3、辐射亮度:由辐射表面定向发射的的辐射强度,除于该面元在垂直于该方向的平面上的正投影面积。单位为(瓦每球面度平方米) 。 4、辐射强度:辐射强度定义为从一个点光源发出的,在单位时间内、给定方向上单位立体角内所辐射出的能量,单位为W/sr(瓦每球面度)。 三、简答题 辐射照度和辐射出射度的区别是什么? 答:辐射照度和辐射出射度的单位相同,其区别仅在于前者是描述辐射接

收面所接收的辐射特性,而后者则为描述扩展辐射源向外发射的辐射特性。 四、计算及证明题 证明点光源照度的距离平方反比定律,两个相距10倍的相同探测器上的照度相差多少倍?答: 2 22 4444R I R I dA d E R dA d E R I I ===∴=ππφπφφπφ=的球面上的辐射照度为半径为又=的总辐射通量为在理想情况下,点光源设点光源的辐射强度为ΘΘ ()1 2222222221 122 12 11001001010E E L I E L I L I L I E R I E L L L L =∴====∴= =ΘΘ又的距离为第二个探测器到点光源, 源的距离为设第一个探测器到点光 习题02 一、填空题 1、物体按导电能力分(绝缘体)(半导体)(导体)。 2、价电子的运动状态发生变化,使它跃迁到新的能级上的条件是(具有能向电子提供能量的外力作用)、(电子跃入的那个能级必须是空的)。 3、热平衡时半导体中自由载流子浓度与两个参数有关:一是在能带中(能态的分布),二是这些能态中(每一个能态可能被电子占据的概率)。 4、半导体对光的吸收有(本征吸收)(杂质吸收)(自由载流子吸收)(激子吸收)(晶格吸收)。半导体对光的吸收主要是(本征吸收)。 二、概念题 1、禁带、导带、价带:

光电检测技术在机械设计中的应用与发展

光电检测技术在机械设计中的应用与发展 摘要:本文通过对光电检测基本原理的描述,通过讨论了光电检测技术在印刷机,包装机械,洗衣机,表面粗糙度的测定当中的应用,论述了在工艺上应该注意的问题,同时展望了光电检测技术的发展趋势 关键词:光电检测机械 前言:检测技术在国民经济的各个行业中,起着举足轻重的作用,无论科学研究、产品质量及自动控制都需要检测,利用现代光电子技术作为检测手段,具有无接触、无损、远距离、抗干扰能力强、受环境影响小、检测速度快、测量精度高等优越性,是当今检测技术发展的主要方向。光电检测技术是以激光、红外、光纤等现代光电子器件作为基础,通过对被检测物体的光辐射,经光电检测器接受光辐射并转换为电信号,由输入电路、放大滤波等检测电路提取有用信息,再经模/数转换接口输入计算机运算处理,最后显示输出所需要的检测物理量等参数。光电检测在机械设计中的应用也越来越多。 1.光电检测的基本原理 光电检测系统主要由投光器(光源)、受光器、信号处理装置等组成。根据受光器所感知的信号判断被测对象的有无、形状、方位和颜色时,按投光器和受光器的相对位置不同可分为反射型和透过型两种型式,见图1。作为光电检测媒介的光可以是自然光如白炽灯、萤光灯或卤素灯发出的光。随着光电技术的发展,现常用的是一种特殊的经过调制的光,它是反光二极管在电压作用下发出的光。因为半导体没有热惯性,可以在通电的瞬间发光,并且可发出与电流波形相同的光,这大大提高了其抗干扰能力。投光器发出的光采用不同形式接触被测物后照射在受光器上,而受光器是在光照射下产生电流(或电导率发生变化),即所谓的具有光电效应的光敏元件,常用的有光电二极管和光电三极管。光电二极管的PN结在没有光照时和普通二极管一样具有单向导电性,使用时处于反向偏置;光线照射管芯,会产生光生载流子,在反向电压作用下,生载流子导电产生光电流,即随入射光强度的变化在负载电阻的两端就会产生随光强度变化的光电压,经检波、放大处理去推动控制系统。

光电检测技术与应用-郭培源-课后答案

光电检测技术与应用课后答案 第1章 1、举例说明你说知道的检测系统的工作原理。 (1)光电检测技术在工业生产领域中的应用:在线检测:零件尺寸、产品缺陷、装配定位…(2)光电检测技术在日常生活中的应用: 家用电器——数码相机、数码摄像机:自动对焦---红外测距传感器自动感应灯:亮度 检测---光敏电阻 空调、冰箱、电饭煲:温度检测---热敏电阻、热电偶遥控接收:红外检测---光敏二极管、光敏三极管可视对讲、可视电话:图像获取---面阵CCD 医疗卫生——数字体温计:接触式---热敏电阻,非接触式---红外传感器办公商务——扫描仪:文档扫描---线阵CCD 红外传输数据:红外检测---光敏二极管、光敏三极管(3)光电检测技术在军事上的应用:夜视瞄准机系统:非冷却红外传感器技术激光测距仪:可精确的定位目标光电检 测技术应用实例简介点钞机 (1)激光检测—激光光源的应用用一定波长的红外激光照射第五版人民币上的荧光字,会使荧光字产生一定波长的激光,通过对此激光的检测可辨别钞票的真假。由于仿制 困难,故用于辨伪很准确。(2)红外穿透检测—红外信号的检测红外穿透的工作原理是利用人民币的纸张比较坚固、密度较高以及用凹印技术印刷的油墨厚度较高,因而 对红外信号的吸收能力较强来辨别钞票的真假。人民币的纸质特征与假钞的纸质特征 有一定的差异,用红外信号对钞票进行穿透检测时,它们对红外信号的吸收能力将会 不同,利用这一原理,可以实现辨伪。 (3)荧光反应的检测—荧光信号的检测荧光检测的工作原理是针对人民币的纸质进行检测。人民币采用专用纸张制造(含85%以上的优质棉花),假钞通常采用经漂白处理后的普通纸进行制造,经漂白处理后的纸张在紫外线(波长为365nm的蓝光)的照射下会出现荧光反应(在紫外线的激发下衍射出波长为420-460nm的蓝光),人民 币则没有荧光反应。所以,用紫外光源对运动钞票进行照射并同时用硅光电池检测钞 票的荧光反映,可判别钞票真假。 (4)纸宽的检测—红外发光二极管及接收二极管的应用主要是用于根据钞票经过此红外发光及接收二极管所用的时间及电机的转速来间接的计算出钞票的宽度,并对机器 的运行状态进行判断,比如有无卡纸等;同时也能根据钞票的宽度判断出其面值。

光电检测技术的发展及应用

新世纪献辞 光学?激光是知识创新体系的重要一环 李景镇 (深圳大学科技研究院,深圳 518060) 1 20世纪的光学创新在人类知识创新上有特殊重要的地位 ?普朗克从黑体辐射的研究中提出了辐射能量子化理论,随之出现的量子力学、量子物理、量子化学、量子生物学,等等,是人类认识微观世界的基础。 ?爱因斯坦明确提出了光量子理论,光量子的能量E=ν,根据迈克尔逊光干涉实验导致了狭义相对论的出现,形成了新的时空概念及推导出质能互换定律E=mc2; 玻尔在光谱学的成就和量子理论的指导下,提出子氢原子的光谱理论,导致了对原子、分子结构的了解; ?爱因斯坦1917年提出原子系统中不仅有自然辐射,而且有受激辐射,受激光辐射是激光的理论基础;1954年,T.H. Townes发明了NH3受激辐射的微波放大器;1960年,T.H. Maiman做出了红宝石激光器。激光的发现,是人类科学技术发展史上的一次重大突破; ?半导体物理在导致科技进入信息时代的同时,也为光电器件及光信息技术开辟了途径; ?光纤通信,是人们进入信息时代的重大突破; ?超分辩显微术,特别是扫描探针技术,使人们进入观察、操纵,重组原子成为现实; ?超大天文望远镜,特别是哈勃空间望远镜,大大提高了人们认识宇宙的深度、广度; ?光合作用的研究,等等。 这些重大的突破和创新,正是知识创新体系中最重要的源泉,在创新体系中属于最高层次。 2 光学知识本身的知识创新 主要体现在光学到光子学的飞跃,正像电学到电子学的飞跃。光子学是研究光子的产生,运动和转化的科学,侧重于从微观的角度来研究它的属性。完成光学到光子学飞跃的重大突破和进展主要有: ?半导体超晶格概念和理论的提示,半导体超晶格激光器、量子阱、量子线和量子点激光器的出现; ?微腔量子电动力学效应的发现和垂直腔面发射激光器的问世,是光子学理论和器件的重大突破,是光集成的基础; ?非线性导波光学的发展,导致了光通信技术上的三大突破;孤子激光器和光孤子传输,光纤放大器,和波分复用技术; ?光子材料和光子器件的发展,光子晶体的研究正出现突破,光子晶体的研究与上个世纪半导体的研究有着同样重大的意义; ?光存储和广义三维光存储的进展; ?光双稳、光互联和光子计算机的进展; ?量子光学的进展,量子纠缠态、量子通信和量子计算机已初见端倪,等等; 3 激光在知识和技术创新体系中居于重要地位和光纤技术一道是光子学的主要依托,将在下世纪———光子世纪担纲重要的角色,关于激光的历史作用,王大珩院士有一段精辟的论述: “60年代激光的问世,堪称本世纪物理学重大进展之一,是光学方面具有革命意义的重大突破。基于它所具有的前所未有的性质,对于光的本质,以及光与物质相互作用都具有划时代的认识。我们知道,X光在研究物质上将近一个世纪,还有其生命力,还用以研究较复杂的分子(生物分子),而激光所开辟的研究物质动态及反应的手段,它的生命力将更长,必将成为即将到来的下个世纪(21世纪)的重要科学研究对象”。激光是创新体系中的重要一环。 光电检测技术的发展及应用 钟丽云 (昆明理工大学激光研究所,昆明 650051) 检测技术在国民经济的各个行业中,起着举足轻重的作 用,无论科学研究、产品质量及自动控制都需要检测,利用现代 光电子技术作为检测手段,具有无接触、无损、远距离、抗干扰 能力强、受环境影响小、检测速度快、测量精度高等优越性,是 当今检测技术发展的主要方向。 利用光的干涉、衍射和散射进行检测已经有很长的历史, 由台曼干涉仪到莫尔条纹,然后到散斑,再到全息干涉,出现了 一个个干涉场,物理量(如位移、温度、压力、速度、折射率等)的 测量不再需要一个个的测量,而是整个物理量场一起进行。 自从激光出现以后,电子学领域的许多探测方法(如外差、 相关、取样平均、光子计数等)被引入,使测量灵敏度和测量精 度得到大大提高。光纤技术的出现,由于光纤能控制光束的传 播路径,使调制的方法增多,接收更为方便,同时它能进入物体 内部,扩大了测量范围,提高了测量精度,甚至可以事先铺设在 各种建筑物内部,作实时监测和自动控制等。 CCD固体摄像头的出现 ,由于它是成像的,又很容易和计 算机连接,利用图像处理技术,可以提高测量的信噪比,并扩大 测量范围,目前它正全面地改造着传统的光学测量方法;由于 它的高分辨率,可以直接用于物体外部尺寸,轮廓以及位移和 有关物理量的测量。由于图像具有非常高的信息量,特别是彩 色CCD,在遥感技术和光纤传感技术中也得到普遍应用。 利用光与物质的相互作用,如激光致超声、激光热效应等 新的探测方法,在无损检测中也得到广泛应用。随着科学技术 的不断发展,新的探测方法还会不断的出现。 计算机在光电检测中的应用,不但可以处理大量的测量数 据,而且还可以用于设备本身的自诊断,使设备成为真正的智 能仪器。某些传统的光学仪器,如照像机和显微镜等,由于采 用了新的光信息处理方法,而出现了富里叶光谱仪和断层摄影 与计算机成像结合的CT等许多光电子设备;将激光技术和计 算机技术相结合,出现了品种繁多的各行各业的光电子仪器设 备,如激光相位测距仪、激光多谱勒测速、干涉仪、光纤陀螺、激 光排版、激光印刷、VCD光盘以及各种激光治疗仪等。 1  《激光杂志》2000年第21卷第3期 LASERJOURNAL(Vol121,No.312000)

光电检测技术介绍

?(一)检测 一、检测是通过一定的物理方式,分辨出被测参数量病归属到某一范围带,以此来 判别被测参数是否合格或参数量是否存在。测量时将被测的未知量与同性质的标准量进行比较,确定被测量队标准量的倍数,并通过数字表示出这个倍数的过程。 在自动化和检测领域,检测的任务不仅是对成品或半成品的检验和测量,而且为了检查、监督和控制某个生产过程或运动对象使之处于人们选定的最佳状况,需要随时检测和测量各种参量的大小和变化等情况。这种对生产过程和运动对象实时检测和测量的技术又称为工程检测技术。 测量有两种方式:即直接测量和间接测量 直接测量是对被测量进行测量时,对以表读数不经任何运算,直接的出被测量的数值,如:用温度计测量温度,用万用表测量电压 间接测量是测量几个与被测量有关的物理量,通过函数关系是计算出被测量的数值。 如:功率P与电压V和电流I有关,即P=VI,通过测量到的电压和电流,计算出功率。 直接测量简单、方便,在实际中使用较多;但在无法采用直接测量方式、直接测量不方便或直接测量误差大等情况下,可采用间接测量方式。 光电传感器与敏感器的概念 传感器的作用是将非电量转换为与之有确定对应关系得电量输出,它本质上是非电量系统与电量系统之间的接口。在检测和控制过程中,传感器是必不可少的转换器件。 从能量角度出发,可将传感器划分为两种类型:一类是能量控制型传感器,也称有源传感器;另一类是能量转换传感器,也称无源传感器。能量控制型传感器是指传感器将被测量的变换转换成电参数(如电阻、电容)的变化,传感器需外加激励电源,才可将被测量参数的变化转换成电压、电流的变化。而能量转换型传感器可直接将被测量的变化转换成电压、电流的变化,不需外加激励源。 在很多情况下,所需要测量的非电量并不是传感器所能转换的那种非电量,这就需要在传感器前面加一个能够把被测非电量转换为该传感器能够接收和转换的非电量的装置或器件。这种能够被测非电量转换为可用电量的元器件或装置成为敏感器。例如用电阻应变片测量电压时,就需要将应变片粘贴到售压力的弹性原件上,弹性原件将压力转换为应变力,应变片再将应变力转换为电阻的变化。这里应变片便是传感器,而弹性原件便是敏感器。敏感器和传感器随然都可对被测非电量进行转换,但敏感器是把被测量转换为可用非电量,而传感器是把被测非电量转换为电量。 二、光电传感器是基于光电效应,将光信号转换为电信号的一种传感器,广泛应用 于自动控制、宇航和广播电视等各个领域。 光电传感器主要噢有光电二极管、光电晶体管、光敏电阻Cds、光电耦合器、继承光电传感器、光电池和图像传感器等。主要种类表如下图所示。实际应用时,要选择适宜的传感器才能达到预期的效果。大致的选用原则是:高速的光电检测电路、宽范围照度的照度计、超高速的激光传感器宜选用光电二极管;几千赫兹的简单脉冲光电传感器、

光电检测前沿技术论文

光电检测前沿技术论文 光电检测技术在机械设计制造中的应用 摘要:随着我国经济的不断发展,国家和企业对机械制造业也越来越大,这样机械制 造业就出现了飞速发展的趋势,从而推动制造业的飞速发展,目前我国已经成为全球第一 大机械制造业大国,相比于西方发达国家,我国的机械技术还是存在一定的差距。尤其随 着21世纪信息技术的飞速发展与深入各行各业中,让光电检测技术在机械设计中应用更 加广泛,光电检测只有掌握好光电检测技术,才能更好的应对自己的工作。在本文主要 对光电检测技术在机械设计制造中的应用进行了探究和分析。 关键词:光电检测技术;机械设计制造;应用 1.前言 随着我国科学技术和经济的发展,光电检测技术被广泛应用到机械设计制造中。主要 是因为其特点是可以实现无接触检测,因而可以将机械动态检测变成光电静态检测,从而 可显著简化机械结构。除此之外在很多场合还可省去调整操作,本文首先对阐述光电检测 的基本原理;然后对光电检测在机械设计制造中的应用进行了分析和探究。 2.光电检测的基本原理 电管的基本结构简图如图1所示,具体选择哪一种结构的光电管与设备具体结构和使 用要求有关。透射式光电管的工作原理是发光二级管发出的光信号直接照射到接收三级管 的基极,三极管基级接收到光信号后在发射极或集电极上产生一个输出信号,然后后续电 路再对所接收到的信号进行处理去控制相应部件.显然光电流的强弱直接影响到输出信号 的强弱,当发光管和接收管之间没有任何物体时,输出信号最强;反之当有物体夹在中间时,输出信号就开始减弱,中间物体的厚度越厚,透明度越差,则输出信号就越弱,因此 用这种光电管即可进行物体位置检测,也可进行物体厚度检测。 透射式光电管在印刷机上主要用于位置检测和双.张检测,其位置检测实际结构示意 图如图2A所示.图中光电管1是通用的槽形光祸,控制圆盘2用来控制光电管1发光管和 接收管之间的通与断,控制圆盘2固定在回转轴3上,因而可以用来检测回转轴3的相对 位置,从而根据工艺要求发出相应的控制信号,厚度检测如图2B所示,由发光管1发出 的信号经过纸张2到达接收管3,纸张厚度或透明度发生变化后,接收管3输出的信号强 度也随之变化,因而在用一张纸调试好后当有两张纸或多张纸通过发光管和接收管之间时,接收管的输出信号强度减弱,从而发出双张或多张控制信号。 3.光电检测在机械设计制造中的应用

相关主题
文本预览
相关文档 最新文档