当前位置:文档之家› 勾股定理实际应用(讲义及答案)

勾股定理实际应用(讲义及答案)

勾股定理实际应用(讲义及答案)
勾股定理实际应用(讲义及答案)

勾股定理实际应用(讲义)

课前预习

1.

常用的6组勾股数:___________;__________;___________;___________;__________;___________.2.

请你画出圆柱的侧面展开图.

3.读一读,做一做

小聪郊游时发现了一个有趣的问题:有一只蚂蚁从易拉罐底部爬向易拉罐顶部的罐口处喝饮料,在侧面留下了其爬行的轨迹.小聪观察后发现,蚂蚁爬行的路径是一条曲线,小聪想知道蚂蚁具体爬行了多长,于是邀请小明一起来研究这个问题.经过一番讨论,小聪和小明分别准备尝试用两种方法来进行测量.

方案一:小聪准备用一根绳子沿着蚂蚁爬过的轨迹来进行测量,然后再借助绳子的长度来估计爬行的路程,如图1.方案二:小明准备将易拉罐侧面剪开,然后用尺子直接测量蚂蚁爬行的路程.小明剪开易拉罐侧面,将其展开后发现,蚂蚁爬行的路径竟然是一条笔直的线段,如图2.

请你选一张长方形纸片,画出他的对角线,然后卷成一个圆柱,并参照小聪和小明的方法,动手测量一下这条线的长度.图1

图2

知识点睛

蚂蚁爬最短路问题处理思路:

(1)________________________;

(2)找点,连线;

(3)构造__________,利用__________进行计算.

精讲精练

1.有这样一个有趣的问题:如图所示,圆柱的高等于8cm,底

面半径等于2cm.在圆柱的下底面的A点处有一只蚂蚁,它想吃到上底面上与A相对的B点处的食物,则蚂蚁沿圆柱的侧面爬行的最短路程是__________.(π取整数3)

2.如图,一根藤蔓一晚上生长的长度是沿树干爬一圈后由点A

上升到点B,已知AB=5cm,树干的直径为4cm.你能计算出藤蔓一晚上生长的最短长度吗?(π取整数3)

3.如图所示,有一根高为2m的木柱,它的底面周长为0.3m,

为了营造喜庆的气氛,老师要求小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,则小明至少需要准备一根长为_______的彩带.

第3题图第4题图

4.如图,一个三级台阶的每一级的长、宽、高分别为20dm,

3dm,2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是________.

5.如图,一只蚂蚁从长、宽、高分别为9cm,7cm,5cm的长

方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是_______cm.

第5题图第6题图

6.如图,长方体的长为15cm,宽为10cm,高为20cm,BC=

5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短路程是______________.

7.如图,圆柱形玻璃杯,高为14cm,底面周长为24cm,在杯

内离杯底1cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短路程为________.

第7题图第8题图

8.如图,一长方体敞口玻璃罐的长、宽、高分别为18cm,4cm,

6cm,在罐内点E处有一小块饼干碎末,此时一只蚂蚁正好在罐外壁,在长方形ABCD中心的正上方1cm的点H处,则蚂蚁到达饼干的最短路程是_______.

9.如图,某隧道的截面是一个半径为3.6米的半圆形,一辆高

3.2米,宽3米的卡车能通过该隧道吗?

10.如图,隧道的截面由半圆和长方形构成,长方形的长BC为

8m,宽AB为1m,该隧道内设双向行驶的车道(共有2条车道),若现有一辆货运卡车高4m,宽2.3m,则这辆货运卡车能否通过该隧道?

11.如图是一个圆柱形饮料罐,底面半径是5cm,高是12cm,

上底面中心有一个小圆孔,现将一根长度为15cm的吸管的一端插入罐中,则吸管在罐外的长度的最小值是_______cm.

第11题图第12题图

12.一个门框的尺寸如图所示,一块长3m,宽2.2m的薄木板

_______(能或不能)从门框通过.

13.小明家住在18层的高楼上,一天,他与妈妈去买竹竿,如果

电梯的长、宽、高分别是1.6米、1.2米、2.1米,那么能放入电梯内的竹竿的最大长度是_________米.

【参考答案】

课前预习

1.3,4,5;5,12,13;7,24,25;8,15,17;

9,40,41;11,60,61

2.作图略

3.略

知识点睛

(1)作侧面展开图或表面展开图

(3)直角三角形;勾股定理

精讲精练

1.10cm

2.藤蔓一晚上生长的最短长度是13cm

3. 2.9m

4.25dm

5.15

6.25cm

7.20cm

8.15cm

9.此卡车能通过该隧道

10.这辆货运卡车能通过该隧道

11.2

12.能

13.2.9

勾股定理应用题

2.勾股定理实际问题应用 1.若等腰三角形腰长为10cm ,底边长为16 cm,那么它的面积为 ( ) A. 48 cm 2 B. 36 cm 2 C. 24 cm 2 D.12 cm 2 2.一根32厘米的绳子被折成如图所示的形状钉在P 、Q 两点,PQ=16厘米,且RP ⊥PQ , 则RQ= 厘米 3.小明和小强的跑步速度分别是6m/s 和8m/s ,他们同时从同一地点分别向东、南练习跑 步,那么从出发开始需__________s 可以相距160m 4.一条河的宽度处处相等,小强想从河的南岸横游到北岸去,由于水流影响,小强上岸 地点偏离目标地点200m ,他在水中实际游了520m ,那么该河的宽度为 ( ) A.440 m B.460 m C.480 m D. 500 m 5、将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱 形水杯中,如图所示,设筷子露在杯子外面的长度为h cm ,则h 的取 值范围是( ). A .h ≤17cm B .h ≥8cm C .15cm ≤h ≤16cm D .7cm ≤h ≤16cm 6.一架5m 长的梯子靠在一面墙上,梯子的底部离建筑物2m ,若梯子底部滑开1m ,则梯 子顶部下滑的距离是___________(结果可含根号) 7、有一圆柱形食品盒,它的高等于16cm ,底面直径为20cm , 蚂蚁爬行的速度为2cm/s. 如果在盒外下底面的A 处有一只蚂蚁,它想吃到盒外对面中部点B 需要多少时间? (结果保留π) 8.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程 大约是 ( ) A.6cm B.10cm C.14cm D. 18cm 9、如图,笔直的公路上A 、B 两点相距25km ,C 、D 为两村庄,DA ⊥AB 于点A ,CB ⊥AB 于 点B ,已知DA=15km ,CB=10km ,现在要在公路的AB 段上建一个土特产品收购站E ,使得C 、 D 两村到收购站 E 的距离相等,则收购站E 应建在离A 点多远处? A D E B C A · B · A B · ·

勾股定理的应用(讲义及答案).

勾股定理的应用(讲义) 知识点睛 1.利用勾股定理解决实际问题的处理思路: (1)理解题意,把实际问题转化为数学问题; (2)找出相应的直角三角形,并找出其______、______; (3)根据已知及所求,利用___________进行计算. 2.“勾股定理”或“勾股定理逆定理”: 条件是直角三角形时,考虑______________________; 要证明三角形是直角三角形,考虑______________________. 精讲精练 1.一艘帆船由于风向的原因先向正东方向航行了160km,然后 向正北方向航行了120km,这时它离出发点有________km. 2.我方侦察员小王在距离东西向公路400m处侦察,发现一辆敌 方汽车在公路上疾驶,他赶紧拿出红外测距仪,测得汽车与他相距400m,10s后,汽车与他相距500m,则敌方汽车的速度为_________km/h. 3.如图,一个梯子AB长2.5米,顶端A靠在一竖直的墙AO上,这 时梯子底端B与墙角O的距离为0.7米.梯子滑动后停在CD位置上,测得BD=0.8米,求梯子顶端A沿墙下滑了多少米?

4.一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处, 则折断处离地面的高度是_________尺.(这是我国古代数学著作《九章算术》中的一个问题.其中的丈、尺是长度单位,1丈=10尺) 第4题图第5题图 5.在我国古代数学著作《九章算术》中记载了一道有趣的问题, 这个问题的大意是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度是_______尺,这根芦苇的长度是 _______尺. 6.如图,公路上A,B两站相距5km,在公路附近有C,D两 所学校,DA⊥AB于点A,CB⊥AB于点B,已知AD=2km,BC=1km,现要在公路边建一个青少年活动中心E,使C,D 两所学校到E的距离相等,则青少年活动中心E应建在距离A多远处?

勾股定理(讲义)

勾股定理 一、知识归纳 1.勾股定理 容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222 += a b c 2.勾股定理的适用围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 3.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ∠=?,则c,b=,a= ?中,90 C ②知道直角三角形一边,可得另外两边之间的数量关系 二、题型 题型一:直接考查勾股定理 例1. 在ABC C ∠=? ?中,90 ⑴已知6 BC=.求AB的长 AC=,8 ⑵已知17 AB=,15 AC=,求BC的长 解: 题型二:应用勾股定理建立方程

2 1 E D C B A 例2.⑴在AB C ?中,90ACB ∠=?,5AB =cm ,3BC =cm ,C D AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为 例3.如图ABC ?中,90C ∠=?,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长

A B C D E 例4.如图Rt ABC ?,90C ∠=?3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积 题型三:实际问题中应用勾股定理 例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 m

勾股定理的实际运用

勾股定理的实际运用 一.勾股定理: (1)直角三角形两直角边的_______等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么_____. (2)我国古代把直角三角形中较短的直角边称为_____,较长的直角边称为________,斜边称为______. 二.直角三角形的判别条件 1.直角三角形的判别条件(也称为勾股定理的逆定理) 如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形(此判别条件也称为勾股定理的逆定理).如图所示,在△ABC中,如果AC2+BC2=AB2.那么△ABC就是以∠C为直角的直角三角形. 2.判断直角三角形的步骤 (1)确定最长边. (2)算出最长边的平方与另两边的平方和.(3)比较最长边的平方与另两边的平方和是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形. 3.直角三角形的判别条件与勾股定理的联系和区别 (1)联系 都是和直角三角形有关的内容,都和三角形的三边有关系,都渗透了数形结合的思想. (2)区别 勾股定理是由形到数,即由直角三角形得到三边之间的数量关系,是直角三角形的一个性质;而直角三角形的判别条件是由数到形,即由三边关系得到三角形的形状—直角三角形,是直角三角形的一种判别方法.

知识点一.确定几何体表面上的最短路线 1.解决几何体表面上两点之间最短路线问题的关键是把立体图形转化为平面图形,具体步骤是:(1)把立体图形展开成平面图形;(2)确定最短路线;(3)确定直角三角形;(4)根据直角三角形的边长,利用勾股定理求解 2.求立体图形表面上两点之间的最短路线长,主要涉及如下问题: (1)圆柱形物体表面上两点之间的最短路线长,主要涉及如下问题:(1)圆 柱形污图表面两点之间的最短路线长;(2)长方体表面两点之间的最短路线长;(3)台阶表面两点之间的最短路线长. 例题1:如图所示,有一个圆柱形油罐,要从点A处环绕油罐建梯子,正好到 点A的正上方点B,问梯子最短需要多长?(已知油罐的底面周长是12m,高AB 是5m) 知识点二.利用直角三角形的判别条件判断垂直 利用直角三角形的判别条件判断三角形是直角三角形也是判断垂直的一种方法.在实际生活中常常需要判断两直线是否垂直,解决此类问题的一般方法是将实 际问题转化为数学问题.首先,结合题意画出符合要求的三角形,再利用直角三角形的判别条件判断垂直. 例题2.如图所示,如果只给你一把带有刻度的直尺,你能否检验∠P是不是直角?简述你的作法,并说明理由.

勾股定理复习讲义

2 1E D C B A 勾股定理复习 班级______姓名_________ 一.知识归纳 1.勾股定理:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么____________, 2.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足________,那么这个三角形是_______,其中_____为斜边 如何判定一个三角形是否是直角三角形 (1)首先确定最大边(如c ).(2)验证2 c 与2 a +2 b 是否具有相等关系. 若2c =2a +2b ,则△ABC 是 ;若2c ≠2a +2 b ,则△ABC 不是 . 3.勾股数 ①能够构成直角三角形的三边长的三个_________称为勾股数,即222a b c +=中,a ,b ,c 为_____整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如_______;_______;________;7,24,25等 题型一:直接考查勾股定理 例1.(1)在ABC ?中,90C ∠=?,17AB =,15AC =,BC = (2)在ABC ?中,90ACB ∠=?,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = (3)已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 (4)已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为 2cm 练习1:求下列阴影部分的面积: (1) 正方形S = ; (2)长方形S = ; (3)半圆S = ; 2:如图2,已知△ABC 中,AB =17,AC =10, BC 边上的高AD =8,则边BC 的长为 例2.如图ABC ?中,90C ∠=?,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长 D C B A

勾股定理的应用

卓邦教育勾股定理应用练习 1.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)() A、3 B、5 C、4.2 D、4 1题2题3题4题 2.如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO=8米.若梯子的顶端沿墙面向下滑动2米,这时梯子的底端在水平的地面也恰好向外移动2米,则梯子AB的长度为() A、10米 B、6米 C、7米 D、8米 3.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺. A、10 B、12 C、13 D、14 4.如图,一棵大树在离地面6米高的B处断裂,树顶A落在离树底部C的8米处,则大树断裂之前的高度为() A、10米 B、16米 C、15米 D、14米 5.如图,高速公路上有A、B两点相距25km,C、D为两村庄,已知DA=10km,CB=15km.DA⊥AB 于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则AE的长是()km. A、5 B、10 C、15 D、25 6.如图,小明爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算这块土地的面积,以便估算产量.小明测得AB=8m,AD=6m,CD=24m,BC=26m,又已知∠A=90°.求这块土地的面积. 7.如图,某地方政府决定在相距50km的两站之间的公路旁E点,修建一个土特产加工基地,且C、D两村到点E的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?

勾股定理实际应用(讲义及答案)

勾股定理实际应用(讲义) ? 课前预习 1. 常用的6组勾股数:___________;__________;___________;___________; __________;___________. 2. 请你画出圆柱的侧面展开图. 3. 读一读,做一做 小聪郊游时发现了一个有趣的问题:有一只蚂蚁从易拉罐底部爬向易拉罐顶部的罐口处喝饮料,在侧面留下了其爬行的轨迹.小聪观察后发现,蚂蚁爬行的路径是一条曲线,小聪想知道蚂蚁具体爬行了多长,于是邀请小明一起来研究这个问题.经过一番讨论,小聪和小明分别准备尝试用两种方法来进行测量. 的长度来估计爬行的路程,如图1. 方案二:小明准备将易拉罐侧面剪开,然后用尺子直接测量蚂蚁爬行的路程.小明剪开易拉罐侧面,将其展开后发现,蚂蚁爬行的路径竟然是一条笔直的线段,如图2. 请你选一张长方形纸片,画出他的对角线,然后卷成一个圆柱,的方法,动手测量一下这条线的长度. ? 知识点睛

蚂蚁爬最短路问题处理思路: (1)________________________; (2)找点,连线; (3)构造__________,利用__________进行计算. ?精讲精练 1.有这样一个有趣的问题:如图所示,圆柱的高等于8 cm,底面半径等于2 cm.在 圆柱的下底面的A点处有一只蚂蚁,它想吃到上底面上与A相对的B点处的食物,则蚂蚁沿圆柱的侧面爬行的最短路程是__________.(π取整数3) 2.如图,一根藤蔓一晚上生长的长度是沿树干爬一圈后由点A上升到点B,已知 AB=5 cm,树干的直径为4 cm.你能计算出藤蔓一晚上生长的最短长度吗?(π取整数3) 3.如图所示,有一根高为2 m的木柱,它的底面周长为0.3 m,为了营造喜庆的气 氛,老师要求小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正

(完整版)勾股定理的实际应用题

18.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起? 19.(2007?义乌市)李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长. (1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处; (2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处; (3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A. 20.(2013?贵阳模拟)请阅读下列材料: 问题:如图1,圆柱的底面半径为1dm,BC是底面直径,圆柱高AB为5dm,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线: 路线1:高线AB+底面直径BC,如图1所示.路线2:侧面展开图中的线段AC,如图2所示.(结果保留π) (1)设路线1的长度为L1,则=_________.设路线2的长度为L2,则=_________.所以选择路线_________(填1或2)较短. (2)小明把条件改成:“圆柱的底面半径为5dm,高AB为1dm”继续按前面的路线进行计算.此时,路线1:= _________.路线2:=_________.所以选择路线_________(填1或2)较短. (3)请你帮小明继续研究:当圆柱的底面半径为2dm,高为hdm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.

勾股定理在实际问题中的应用举例

勾股定理在实际问题中的应用举例 一、利用勾股定理解决立体图形问题 勾股定理是揭示直角三角形的三条边之间的数量关系,可以解决许多与直角三角形有关的计算与证明问题,在现实生活中有着极其广泛的应用,下面就如何运用勾股定理解决立体图形问题举例说明,供参考。 一、长方体问题 例1、如图1,图中有一长、宽、高分别为5cm、4cm、3cm 的木箱,在它里面放入一根细木条(木条的粗细、变形忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是() A、41cm B、34cm C、50cm D、75cm 分析:图中BD 为长方体中能放入的最长的木条的长度,可先连接BC,根据已知条件,可以判断BD 是Rt△BCD 的斜边,BD 是Rt△ BCD 的斜边,根据已知条件可以求出BC 的长,从而可求出BD 的长。 解:在Rt△ABC 中,AB=5 ,AC=4,根据勾股定理, 得BC= AB2 AC2 = 41 , 在Rt△BCD 中,CD=3,BC= 41 , 22 BD= BC2 CD2 = 50 。所以选C。说明:本题的关键是构造出直角三角形,利用勾股定理解决问题。二、圆柱问题 例2、如图2,是一个圆柱形容器,高18cm ,底面周长为60cm,在外侧距下底1cm 的点S处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口处1cm 的点F 出有一苍蝇,急于捕获苍蝇充饥的蜘蛛,所走的最短路线的长度是多少?

分析:勾股定理是平面几何中的一个重要定理,在遇到立体图形时,需根据具体情况,把立体图形转化为平面图形,从而使空间问题转化为平面问题。由题意可知,S、 F 两点是曲面上的两点,表示两点间的距离显然不能直接画出,但我们知道圆柱体的侧面展开图是一个长方形,,于是我们就可以画出如图3 的图,这样就转化为平面中的两点间的距离问题,从而使问题得解。 解:画出圆柱体的侧面展开图,如图3,由题意,得SB=60÷2=30(cm),FB=18―1―1=16 (cm),在Rt△SBF 中,∠SBF=90°,由勾股定理得,SF= SB2 FB 2 = 302 162 =34(cm),所以蜘蛛所走的最短路线的长度是34cm。 说明:将立体图形展开,转化为平面图形,或将曲面转化为平面,然后再运用“两点之间,线段最短”和勾股定理,则是求立体图形上任意两点间的最短距离的常用的方法,这也是一种重要的数学思想转化思想。 二、利用勾股定理确定最短问题 我们知道,两点之间线段最短,但这两点之间的距离往往要通过适当的知识求出其大小,现介绍一种方法,用勾股定理确定最短问题. 例1(恩施自治州)如图 1 ,长方体的长为15,宽为10 ,高为20,点 B 离点 C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点 A 爬到点 B ,需要爬行的最短距离是() 图1 ①

勾股定理实际应用(讲义及答案)

勾股定理实际应用(讲义) 课前预习 1. 常用的6组勾股数:___________;__________;___________;___________;__________;___________.2. 请你画出圆柱的侧面展开图. 3.读一读,做一做 小聪郊游时发现了一个有趣的问题:有一只蚂蚁从易拉罐底部爬向易拉罐顶部的罐口处喝饮料,在侧面留下了其爬行的轨迹.小聪观察后发现,蚂蚁爬行的路径是一条曲线,小聪想知道蚂蚁具体爬行了多长,于是邀请小明一起来研究这个问题.经过一番讨论,小聪和小明分别准备尝试用两种方法来进行测量. 方案一:小聪准备用一根绳子沿着蚂蚁爬过的轨迹来进行测量,然后再借助绳子的长度来估计爬行的路程,如图1.方案二:小明准备将易拉罐侧面剪开,然后用尺子直接测量蚂蚁爬行的路程.小明剪开易拉罐侧面,将其展开后发现,蚂蚁爬行的路径竟然是一条笔直的线段,如图2. 请你选一张长方形纸片,画出他的对角线,然后卷成一个圆柱,并参照小聪和小明的方法,动手测量一下这条线的长度.图1 图2

知识点睛 蚂蚁爬最短路问题处理思路: (1)________________________; (2)找点,连线; (3)构造__________,利用__________进行计算. 精讲精练 1.有这样一个有趣的问题:如图所示,圆柱的高等于8cm,底 面半径等于2cm.在圆柱的下底面的A点处有一只蚂蚁,它想吃到上底面上与A相对的B点处的食物,则蚂蚁沿圆柱的侧面爬行的最短路程是__________.(π取整数3) 2.如图,一根藤蔓一晚上生长的长度是沿树干爬一圈后由点A 上升到点B,已知AB=5cm,树干的直径为4cm.你能计算出藤蔓一晚上生长的最短长度吗?(π取整数3)

勾股定理简单应用

勾股定理应用的教学设计 教学目标 1 ?会用勾股定理进行简单的计算。 2.通过探究,会运用勾股定理解释生活中的实际问题 教学重点 勾股定理的应用。 教学难点 实际问题向数学问题的转化 教学过程 通过小组合作学习探究,研究勾股定理在实际中的应用 一、 复习旧知 复习勾股定理以及一些简单的计算 ⑴勾股定理: ____________________________________________________ (2)求出下列直角三角形中未知的边. 通过四个问题,让学生明白勾股定理在实际生活中的应用,以及如何去使用勾股定理 问题1.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口, 则圆形盖半径至 少为多少米? ? 问题2.如图所示,一旗杆在离地面 5 m 处断裂,旗杆顶部落在离底部 12 m 处,问旗杆 折断前有多咼? 合作探究 B A 2 C C C

问题4.如图,一个5米长的梯子AB 斜着靠在竖直的墙A0上,这时A0的距离为3米. ① 球梯子的底端B 距墙角0多少米? ② 如果梯的顶端A 沿墙下滑1米至C,请同学们猜一猜,底端 B 也将滑动1米吗? 算一算,底端滑动的距离。(结果保留 1位小数). 三. 深化新知 “引葭赴岸”是《九章算术》中的一道题“今有池方一丈,葭生其中央,出水一尺 , 引 葭赴岸,适与岸齐。问水深、葭长各几何?” 四、课堂小结 本节课你有什么收获?你认为用勾股定理解决实际问题的关键是什么? 五、运用新知 1校园里有两棵树,相距15米,一棵树高10米,另一棵树高18米,一只小鸟从一棵树 的顶端飞到另一棵树的顶端,小鸟至少要飞 ___________ 米。 2如图,一根12米高的电线杆两侧各用 15米的铁丝固定,两个固定点之间的距离 问题3.如下图,要将楼梯铺上地毯,则需要 _____ 米长的地毯.

勾股定理实际应用(讲义) 含答案

勾股定理实际应用(讲义) ? 课前预习 1. 常用的6组勾股数:___________;__________;___________;___________; __________;___________. 2. 下列各组数: ①6,6,8 ②65,8 5,2 ③13,14,15 ④0.6,0.8,1.0 ⑤10,24,26 ⑥7,12,13 其中能作为直角三角形三边长的是___________.(填写序号) 3. 请你画出圆柱的侧面展开图. 4. 读一读,做一做 小聪郊游时发现了一个有趣的问题:有一只蚂蚁从易拉罐底部爬向易拉罐顶部的罐口处喝饮料,在侧面留下了其爬行的轨迹.小聪观察后发现,蚂蚁爬行的路径是一条曲线,小聪想知道蚂蚁具体爬行了多长,于是邀请小明一起来研究这个问题.经过一番讨论,小聪和小明分别准备尝试用两种方法来进行测量. 的长度来估计爬行的路程,如图1. 方案二:小明准备将易拉罐侧面剪开,然后用尺子直接测量蚂蚁爬行的路程.小明剪开易拉罐侧面,将其展开后发现,蚂蚁爬行的路径竟然是一条笔直的线段,如图2. 请你选一张长方形纸片,画出他的对角线,然后卷成一个圆柱,的方法,动手测量一下这条线的长度. ? 知识点睛

蚂蚁爬最短路问题处理思路 (1)__________________________; (2)__________________________; (3)_______________,利用________________进行计算. ? 精讲精练 1. 有这样一个有趣的问题:如图所示,圆柱的高等于12cm ,底面半径等于3cm .在 圆柱的下底面的A 点处有一只蚂蚁,它想吃到上底面上与A 相对的B 点处的食物,则沿圆柱的侧面爬行的最短路程是__________.(π取整数3) 2. 如图,一根藤蔓一晚上生长的长度是沿树干爬一圈后由点A 上升 到点B ,已知AB =5cm ,树干的直径为4cm .你能计算出藤蔓一晚上生长的最短长度吗?(π取整数3) 3. 如图所示,有一根高为2m 的木柱,它的底面周长为0.3m ,为了营造

勾股定理的实际应用题

18. 如图,有一只小鸟在一棵高 13m 的大树树梢上捉虫子,它的伙伴 在离该树 12m ,高8m 的一棵小树树梢上发 出友好的叫声,它立刻以 2m/s 的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起? 19. (2007?义乌市)李老师在与同学进行 蚂蚁怎样爬最近”的课题研究时设计了以下 三个问题,请你根据下列所给 的重要条件分别求出蚂蚁需要爬行的最短路程的长. (1) 如图1,正方体的棱长为 5cm 一只蚂蚁欲从正方体底面上的点 A 沿着正方体表面爬到点 C 1处; (2) 如图2,正四棱柱的底面边长为 5cm ,侧棱长为6cm , —只蚂蚁从正四棱柱底面上的点 A 沿着棱柱表面爬到 3,圆锥的母线长为 4cm ,圆锥的侧面展开图如图 4所示,且/ AOA 1=120° 一只蚂蚁欲从圆锥的底面上 A . 20. (2013?贵阳模拟)请阅读下列材料: 问题:如图1,圆柱的底面半径为 1dm , BC 是底面直径,圆柱高 AB 为5dm ,求一只蚂蚁从点 A 出发沿圆柱表面 爬行到点C 的最短路线,小明设计了两条路线: 路线1:高线AB+底面直径BC ,如图1所示?路线2:侧面展开图中的线段 AC ,如图2所示.(结果保留n) 线 ______________ (填1或2)较短. (2)小明把条件改成: 圆柱的底面半径为 5dm ,高AB 为1dm "继续按前面的路线进行计算. 此时,路线1: '= _ 一 . 路线2: : . = _ 一 .所以选择路线 _ 一 (填1或2)较短 . C 1处; (3)如图 的点A 出发,沿圆锥侧面爬行一周回到点 ?所以选择路 A 圏1 L 2,则:.'=

勾股定理的应用(讲义)(含答案)

勾股定理的应用(讲义) ?知识点睛 1.利用勾股定理解决实际问题的处理思路: (1)理解题意,把实际问题转化为数学问题; (2)找出相应的直角三角形,并找出其______、______; (3)根据已知及所求,利用___________进行计算. 2.“勾股定理”或“勾股定理逆定理”: 条件是直角三角形时,考虑______________________; 要证明三角形是直角三角形,考虑______________________. ?精讲精练 1.一艘帆船由于风向的原因先向正东方向航行了160 km,然后向正北方向航行了 120 km,这时它离出发点有________km. 2.我方侦察员小王在距离东西向公路400 m处侦察,发现一辆敌方汽车在公路上疾 驶,他赶紧拿出红外测距仪,测得汽车与他相距400 m,10 s后,汽车与他相距500 m,则敌方汽车的速度为_________km/h. 3.如图,一个梯子AB长2.5米,顶端A靠在一竖直的墙AO上,这时梯子底端B与墙角O 的距离为0.7米.梯子滑动后停在CD位置上,测得BD=0.8米,求梯子顶端A沿墙下滑了多少米?

4.一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处,则折断处离地面的高 度是_________尺.(这是我国古代数学著作《九章算术》中的一个问题.其中的丈、尺是长度单位,1丈=10尺) 第4题图第5题图 5.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的大意 是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺. 如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度是_______尺,这根芦苇的长度是_______尺. 6.如图,公路上A,B两站相距5 km,在公路附近有C,D两所学校,DA⊥AB于点 A,CB⊥AB于点B,已知AD=2 km,BC=1 km,现要在公路边建一个青少年活动中心E,使C,D两所学校到E的距离相等,则青少年活动中心E应建在距离A多远处? D E C B A

八年级数学《勾股定理》讲义

【课题名称】八上数学《勾股定理》 【考纲解读】 1.掌握勾股定理的含义; 2.理解勾股数,并且会熟练地运用勾股数; 3.能够根据勾股定理,解决实际问题。 【考点梳理】 考点1:勾股定理 (1)勾股定理:直角三角形两直角边的平方和等于斜边的平方。 (2)勾股定理的表示:如果直角三角形的两直角边分别为 a , b ,斜边为 c ,那么222a b c += (3)勾股定理的证明:勾股定理的证明方法很多,常见的是拼图法。图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变。根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。 考点2:勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。 考点3:勾股数 (1)能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数。 (2)记住常见的勾股数可以提高解题速度,比如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等。 考点4:勾股定理的应用 (1)已知直角三角形的任意两边长,求第三边。在A B C ?中,90C ∠=?,则c ,b ,a ; (2)已知直角三角形一边,可得另外两边之间的数量关系; (3)可以运用勾股定理解决一些实际问题,比如圆柱和长方体的最短距离问题。 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

初中数学初中数学 勾股定理的实际应用

第2课时勾股定理的实际应用 1.熟练运用勾股定理解决实际问题;(重点) 2.勾股定理的正确使用.(难点 ) 一、情境导入 如图,在一个圆柱形石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近? 二、合作探究 探究点一:勾股定理在实际生活中的应用 【类型一】勾股定理在实际问题中的简单应用 如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子是直的,结果保留根号)? 解析:开始时,AC=5米,BC=13米,即可求得AB的值,6秒后根据BC、AC长度即可求得AB的值,然后解答即可. 解:在Rt△ABC中,BC=13米,AC =5米,则AB=BC2-AC2=12米,6秒后,BC=13-0.5×6=10米,则AB=BC2-AC2=53米,则船向岸边移动距离为(12-53)米. 方法总结:在实际生产生活中有很多图形是直角三角形或可构成直角三角形,在计算中常应用勾股定理. 【类型二】含30°或45°等特殊角的三角形与勾股定理的综合应用 由于过度采伐森林和破坏植被,我国许多地区频频遭受沙尘暴的侵袭,今日A市测得沙尘暴中心在A市的正西方向300km的B处,以107km/h的速度向南偏东60°的BF方向移动,距沙尘暴中心200km的范围是受沙尘暴影响的区域,问:A市是否会受到沙尘暴的影响?若不会,说明理由;若会,求出A市受沙尘暴影响的时间. 解析:过点A作AC⊥BF于C,然后求出∠ABC=30°,再根据直角三角形30°角所 对的直角边等于斜边的一半可得AC=1 2AB,从而判断出A市受沙尘暴影响,设从D点开始受影响,此时AD=200km,利用勾股定理列式求出CD的长,再求出受影响的距离,然后根据时间=路程÷速度计算即可得解. 解:如图,过点A作AC⊥BF于C,由

勾股定理在折叠问题中的应用(讲义及答案)

勾股定理在折叠问题中的应用 ? 课前预习 1. 观察图形,回顾轴对称的性质: (1)全等变换:对应边________,对应角_________; (2)对应点所连的线段被对称轴_____________. l A' B' C' C B A 2. 如图,乐乐将△ABC 沿DE ,EF 分别翻折,顶点A ,B 均落在点O 处,且EA 与 EB 重合于线段EO ,若∠DOF =139°,则∠C 的度数为( ) A .38° B .39° C .40° D .41° O F E D C B 3. 如图,有一张直角三角形纸片,两直角边AC =6,BC =8,点D 在BC 边上,将直 角边AC 沿直线AD 折叠,点C 恰好落在斜边AB 上的点E 处.设DE 的长为x ,则CD =__________,BD =_________.(用含x 的代数式表示) D E A B C ? 知识点睛 1. 轴对称(折叠)的思考层次

(1)全等变换:对应边_______、对应角_______. (2)对称轴性质: ①对应点所连线段_____________________; ②对称轴上的点_______________________. (3)组合搭配:长方形背景下的折叠常出现______三角形. (4)作图:关注_______和________,有时需要依据不变特征分析转化,补全图形. ①当对称轴已知时,直接作点的对称点,找对应点; ②当对应点已知时,作对应点所连线段的垂直平分线,找对 称轴(折痕); ③当对称轴过定点时,常作弧找对应点. ? 精讲精练 1. 如图,有一张直角三角形纸片,两直角边AC =6 cm ,BC =8 cm ,点D 在BC 边 上,将直角边AC 沿直线AD 折叠,点C 恰好落在斜边AB 上的点E 处,则线段CD 的长为__________. D E A B C N M F C B E D A 第1题图 第2题图 2. 如图,将边长为4 cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在点F 处,折痕为MN ,则线段CN 的长为__________. 3. 如图,在长方形ABCD 中,AB =5 cm ,在DC 上存在一点E ,将△AED 沿直线AE 折叠,使点D 落在BC 边上的点F 处,若△ABF 的面积为30 cm 2,则EF 的长为_______. F E D C B A 4. 如图,在长方形ABCD 中,点E 在AB 边上,将长方形ABCD 沿直线DE 折叠, 点A 恰好落在BC 边上的点F 处.若AE =5,BF =3,则CF 的长为_______.

八年级数学勾股定理讲义全

【考纲解读】 1.掌握勾股定理的含义; 2.理解勾股数,并且会熟练地运用勾股数; 3.能够根据勾股定理,解决实际问题。 【考点梳理】 考点1:勾股定理 (1)勾股定理:直角三角形两直角边的平方和等于斜边的平方。 (2)勾股定理的表示:如果直角三角形的两直角边分别为a ,b , 斜边为c ,那么222a b c += (3)勾股定理的证明:勾股定理的证明方法很多,常见的是拼图法。图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变。根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。 考点2:勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。 考点3:勾股数 (1)能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数。 (2)记住常见的勾股数可以提高解题速度,比如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等。 考点4:勾股定理的应用 (1)已知直角三角形的任意两边长,求第三边。在A B C ?中,90C ∠=?,则c , b ,a ; (2)已知直角三角形一边,可得另外两边之间的数量关系; c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

(3)可以运用勾股定理解决一些实际问题,比如圆柱和长方体的最短距离问题。 【例题讲解】 例1:如图字母B所代表的正方形的面积是() A.12 B.13 C.144 D.194 例2:下列由线段a,b,c组成的三角形不是直角三角形的是() A.a=3,b=4,c=5 B.a=2,b=3,c= C.a=12,b=10,c=20 D.a=5,b=13,c=12 例3:三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是() A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形 例4:如图,有两棵树,一棵高10米,另一棵高5米,两树相距12米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行() A.8米B.10米C.13米 D.14米 例5:如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是() A.9 B.10 C.D. 例6:如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的点C有个. 【课堂检测】 1.如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC=3,AB=5,则DE等于() A.2 B.C.D. 2.在ABC中,∠C=90°,若AC=3,BC=4,则AB=() A.B.5 C.D.7 3.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是() A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3 C.a2=c2﹣b2D.a:b:c=3:4:6

专题五:勾股定理的分类应用

勾股定理全章常考分类习题 方程思想的应用: 1、 如图所示,已知△ABC 中,∠C=90°,∠A=60°, ,求、、的值。 2.如图,将矩形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE 的 长. 3.如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长. 4. 如图,在长方形ABCD 中,将?ABC 沿AC 对折至?AEC 位置,CE 与AD 交于点F 。(1)试说明:AF=FC ;(2)如果AB=3,BC=4,求AF 的长 5. 如图,在长方形ABCD 中,DC=5,在DC 边上存在一点E ,沿直线AE 把△ABC 折叠,使点D 恰好在BC 边上,设此点为F ,若△ABF 的面积为30,求折叠的△AED 的面积 D C B A F E

典型几何题 1.如图,Rt △ABC 中,∠C =90°,∠A =30°,BD 是∠ABC 的平分线,AD =20,求BC 的长. 2.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长. 3.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积. 4.已知:如图,△ABC 中,∠CAB =120°,AB =4,AC =2,AD ⊥BC ,D 是垂足,求AD 的长. 5、如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB , BC=6,AC=8, 求AB 、CD 的长 D C B A

勾股定理(讲义)

勾股定理 一、知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 3.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=?,则c ,b =,a = ②知道直角三角形一边,可得另外两边之间的数量关系 二、题型 题型一:直接考查勾股定理 例1. 在ABC ?中,90C ∠=? ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 解: 题型二:应用勾股定理建立方程 例2.⑴在ABC ?中,90ACB ∠=?,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为

2 1 E D C B A A B C D E 例3.如图ABC ?中,90C ∠=?,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长 例4.如图Rt ABC ?,90C ∠=?3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积 题型三:实际问题中应用勾股定理 例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 m 三、勾股定理的逆定理知识归纳 1. 勾股定理的逆定理: 如果三角形的三边长a ,b ,c 有下面关系:a 2 +b 2 =c 2 ,那么这个三角形是直角三角形,其中c 为斜边。 2. 常用的平方数 112 =_______,122 =_______,132 =_______,142 =_______,152 =_______,162 =_______,172 =_______,182 =_______,192 =_______,202 =_______,252 =_______. 注意.如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中

勾股定理——在实际生活中的应用

17.1勾股定理——在实际生活中的应用 学习目标 1通过本科的学习,掌握利用勾股定理解决实际问题的方法:分析———画图———解答。 2掌握勾股定理在实际生活中的重要性。 3在互助学习中进一步了解数学源于生活,又服务于生活的道理。 教学重点 如何利用勾股定理解决实际问题。 教学难点 将实际生活问题转化成用勾股定理解决的数学问题。 教学手段 多媒体课件 教学准备 课件五个生准备门框框架 教学方式 互助学习 教学过程 一、温故知新 (一)出示课件一 生齐读勾股定理 (二)师:大家读的非常好,同学们,我们学习了勾股定理,你们知道它对我们的生活有哪些帮住呢?这节课我们就来学习17.1勾股定理——在实际生活中的应用。通过这节课的学习你会知道勾股定理的重要性。 师板书课题:勾股定理———在实际生活中的应用 师:请同学们打开教材25页,互助合作学习完成例1,例2. 二、互助学习 (一)出示课件2、3.结合课件小组进行互助学习。师友互学,教师巡视指导。 生1汇报例1,师友补充并展示例1的解题过程。 生2讲解例2,师友展示例2解答过程。 (一)生讨论归纳:通过对例1、例2的学习,你发现了什么? 教师板书:分析-------------画图--------------解答 (RT△) (勾股定理) 三、探究提升 (一)出示课件4(思考题) 师友再次合作学习、讨论、探究、质疑。 (二) 生利用前面所总结的解体方法解答,并指派一名学生讲解并板书,同时质疑。 四、当堂检测 (一)出示课件5、生看题解答。 教师提示:要想在立方体图形上求两点间的最短距离、首先要把立体图形展开成平面图形再思考。 (二)组长检查组员的答卷 一名学生到展台前展示解题过程。 五、总结收获 (一)学友总结收获,师友补充。教师概括总结。

相关主题
文本预览
相关文档 最新文档