当前位置:文档之家› 郑州大学2013级上学期期末考试微A积分(上)试题(卷)及其参考答案 (1)

郑州大学2013级上学期期末考试微A积分(上)试题(卷)及其参考答案 (1)

郑州大学2013级上学期期末考试微A积分(上)试题(卷)及其参考答案 (1)
郑州大学2013级上学期期末考试微A积分(上)试题(卷)及其参考答案 (1)

郑州大学2013—2014学年度第一学期期末考试

微积分试卷(A 卷)

考试时间:2小时 考试方式:闭卷

复查总分 总复查人

一、求解下列各题(每题5分,共50分)

1.求极限???

??????

??-+∞

→x x x arctan 2

lim π. 【解】=???

?????? ??-+∞

→x x x arctan 2lim π22221arctan 12

lim lim lim 11

1

1x x x x x x x x

x

π

→+∞→+∞→+∞-

-+===+-.

2.设函数1

2

+=

x x y ,求它在0=x 处的导数和微分.

解:()

2

2

2211

.

1.1++-+=

'x x x x x y (

)

3

2

1

1+=

x ;

()

dx x dx y dy 3

211

+=

'=.

所以 ,()10='y ,dx dy x ==|0. 3.已知??=22

0cos x y

t tdt dt e ,求

dx

dy . 【解】方程两边关于x 求导得

()'='22cos 2x x y e y . 即

2

2cos 2y e x x y -='.

4.设曲线方程为???==.2cos ,sin t y t x ① 求曲线在点4π

=t 处的切线方程.

【解法一】

因t dt dy 2sin 2-=;t dt

dx cos =. 故

t t a t dt dx dt dy dx dy sin 4cos 2sin 2-=-==. 当4

π

=

t 时,由①式算得 0,22

==

y x ,因此切点坐标为???

? ??0,22, 又曲线在点4

π

=

t 处的切线的斜率为

222

2

4|4-=?-===π

t dx dy k . 所以,曲线在点4

π

=

t 处的切线方程为

???

?

??-

-=-22220x y . 【解法二】由①式消参得

2221sin 21x t y -=-=, 即

221x y -=. ①

当4

π

=

t 时,由①式算得 0,22

==

y x ,因此切点坐标为???

? ??0,22; 又曲线在点???

?

??0,22处的切线的斜率为 222

2

44|

|2

22

2

-=?

-=-==

=

=

x x x dx dy

k .

所以,曲线在点4

π

=

t 处的切线方程为

???

?

??--=-22220x y . 5. 求dx e

x

?

+11

. 【解法一】dx e x ?+11dx e

e x x ?--+=1()()

C e e d e x

x x ++-=++-=---?1ln 111; 【解法二】dx e x ?+11()

dx e e e x

x x ?+-+=11()()

C e x e d e dx x x x ++-=++-=??1ln 111; 【解法三】令t e x =,即 t x ln =,dt t

dx 1

=,则

dt t t dt t t dx e x ?????? ??+-=+=+111

1.1111()t d t dt t ++-=??1111

C e e C t t x x

++=++-=1ln

1ln ln ; 【解法四】令t e x 2tan =,即 t x t a n

ln 2=,tdt t

dx 2sec tan 1

2=,则 C e

e C t dt t dx e x

x

x ++=+==+??1ln 2sin ln 2cot 211C e e x x ++=1ln . 6. 求()

dx x x x

?

+2

ln ln 1.

【解】()

dx x x x

?

+2

ln ln 1()

()dx x x x ln 1.ln 1

2

+=?()()C x

x x x d x x +-==?-ln 1

ln ln 2

. 7. 求xdx ?20

3sin π

.

【解法一】3

2

!!3!!2sin 20

3==

?xdx π

【解法二】(

)

()3

2cos cos 31cos cos 1sin |203

2

2

20

3

=??? ??-=-=??π

π

π

x x x d x xdx .

8. 求dx x

?-1

011

ln

.

【解】原积分即为

()dx x ?--1

1ln (令x t -=1)dt t ?-=10

ln ?-=1

ln xdx .

因为-∞=+

→x x ln lim 0

,所以上述积分为广义积分. ?

?+→+-=-1

010

ln lim ln εεxdx xdx []11ln lim 0

=+--=+→εεεε. 其中 =+

→εεεln lim 0

=+→ε

εε1ln lim 0

=-+→2

01

1

lim

ε

εε0lim 0=-+→εε. 9. 求解微分方程y y y '+'=''3.①

【解】①为可降阶的高阶微分方程.令()y p y =',则dy

dp p y ='', ①可化为 p p dy

dp

p +=3 即

012

=???? ??--p dy dp p . ②

当0≠p 时,由②式得到

12+=p dy

dp

. ③ ③为可分离变量型,由③得到 ??=+dy dp p 211

1arctan C y p +=,故有 ()1tan C y p +=,也就是

()1tan C y dx

dy

+=. ④ ④为可分离变量型,由④得到

()??=+dx dy C y 1tan 1

()21ln sin ln C x C y +=+ 化简得

()x e C C y 21s i n =+

为①的通解.又注意到当0=p 时,当0='y 时,可得①的平凡解C y =. 10.求方程x x e xe y y y -=+'-''2 ① 的一个特解. 【解】与①对应的齐次方程的特征方程为

0122=+-r r ,解之得,121==r r .

由①的右端项()x e x 1-可见,因1=λ是重特征根,故可设①的特解为

()b ax e x y x +=2*,即

()

23*bx ax e y x += ②

由②得, ()bx ax bx ax e y x 23223*+++='

; ③

()

b ab bx ax bx ax e y x 2646223*+++++="

将②、③、④代入①有

()()x x e x b ax e 126-=+ ,即

126-=+x b ax ⑤

比较⑤式知 ???-==,12,16b a ,解之得 ???

????-==.21,6

1b a

故??? ??-=216

1

2*x e x y x .

二、求解下列各题(每题10分,共20分)

1.(1)设平面图形A 由抛物线2

x y =,直线及x 轴所围成,求平面图形A 绕x 轴旋转一周所形成的立体体积.

(2)在抛物线2x y =上求一点,使得过此点所作切线与8=x 及x 轴所围成图形面积最大.

【解】

(1) ().85

58

2

2?=

=?π

πdx x V

(2)在曲线2x y =上任取一点()

2,t t ,则曲线在该点处切线斜率为 ()t x t y k t x 22|=='==. 从而曲线在该点处切线方程为

()t x t t y -=-.22 ① ①中令0=y ,解得 2

t

x =

;令8=x ,解得 .162t t y -= ② 所以曲线在该点处的切线与两直角边8,0==x y 围成的三角形面积为

()()

()80.6484

1

16.28.21232≤≤+-=-??? ??-=t t t t t t t t S ③

令()()

02566434

1

64164322=+-=+-=

't t t t t S , ④ 得.16=t (舍)或者.3

16

=t

又因为()()64641-=

''t t S ,01296316<-=??

? ??''S ,所以当316=t 时,()t S 取到最大

值,为27512316=??? ??S .即所求点为??

?

??9256,316 .

【注意】也可以这样求()t S 的最值:由③

()()

216.28.21t t t t S -??

?

??-=

()()t t t 2.16.16.8

1

--=(均值不等式) ()()27512

316.81321616813

3

=??

? ??=??????+-+-≤t t t . ⑤ ⑤式中等号当且仅当t t 216=-,即316=t 时成立,所以当3

16=t 时,()t S 取到最大值

27

512

. 2.放射性化学元素镭,在任意时刻t 的质量()t m 减少的速率与 此时刻t 存在的质量()t m 成正比,比例系数为正数k .假定开

始时刻0=t 时质量为0m 克,经过1600年后它的质量减少了一半.求出k 和质量的具体衰变规律.

【解】由题意知

???

????==-===.2,,0160000||m m m m km dt

dm

t t

方程

km dt

dm

-= ① 为可分离变量型,分离变量且两边积分得

C kt m dt k dm m

ln ln 1

+-=?-=??.

于是得①的通解为

kt Ce m -=. ②

将初始条件,00

|

m m t ==2

1600

|

m m t =

=依次代入②,解得 .,1600

2

ln 0m C k == 所以 t e

m m 1600

2ln 0-=.

三、求解下列各题(每题10分,共20分)

1.设函数()x f y =在区间[]b a ,可导,()1=a f ,且导函数有界()M x f ≤'.证明:

()()()a b a b M dx x f b

a

-+-≤

?

2

2

1 【证法一】由拉格朗日中值定理知,对于任何[]b a x ,∈,存在()x a ,∈ξ

()()()()()a x M a x f a f x f -+≤-'+=1ξ.

所以有

()≤

?b

a dx x f ()[]?-+b

a

dx a x M 1()()a b a b M -+-=2

2

1. 【证法二】令 ()()()()a x a x M dt t f x F x

a ----

=?2

2

1,[]b a x ,∈. 则

()()()1---='a x M x f x F ;()().M x f x F -'=''

因为当()b a x ,∈时,()()0≥-'=''M x f x F ,故()x F '在[]b a ,上单减,因此当

()b a x ,∈时,()()()01=-='≤'a f a F x F ,故()x F 在[]b a ,上单减,所以 ()()a F b F ≤,即 ()()()a b a b M dx x f b

a -+-≤

?2

2

1. 2.设()u g 和()u f 在[]ππ,-连续,证明:

(1)若()u g 为奇函数,则 ()022

=?-du u g π

π ;

(2)证明:()()dx x f dx x xf ??=

π

π

π

sin 2

sin . 【证明】

(1) 设()I du u g =?-22

π

π.令t u -= 则

()dt t g I ?-

--=22

ππ()dt t g ?--=22

ππ()du u g ?-

-=22

π

π(因为()u g 为奇)

()I du u g -=-=?-22

π

π,

即得到 I I -=.因此必有 ()022

==?-du u g I π

π.

(2) 设()I dx x xf =?π

sin .

令x t -=π 则

()()[]dt t f t I ?---=0

sin π

ππ()()[]dx x f x ?--=π

ππ0

sin

()()dx x f x ?-=ππ0

sin ()dx x f ?=ππ0sin ()dx x xf ?-π

sin

()I dx x f -=?π

π0

sin

即得到

()I dx x f I -=?π

π0

sin .

因此必有 ().s i n 2

dx x f I ?=π

π

也就是

()()dx x f dx x xf ??

=

π

π

π

sin 2sin .

四、(10分)设方程033=+-c x x (c 为实常数).利用微分学知识解决以下问题:

(1)证明无论c 为何值,方程总有实根;

(2)c 满足什么条件时,方程恰好有一个实根? (3)c 满足什么条件时,方程恰好有两个实根? (4)c 满足什么条件时,方程恰好有三个实根? (5)方程会不会有四个实根?说明理由. 【解】

(1) 令 ()c x x x f +-=33,()+∞∞-∈,x .

因为()-∞=??? ??

+-=-∞→-∞→3231.1.31lim lim x c x x x f x x ;

().1.1.31lim lim 323+∞=??? ?

?

+-=+∞→+∞→x c x x x f x x

且()x f 在()+∞∞-,上连续,故由根值定理知,方程()0=x f 总有实根,即方程

033=+-c x x 总有实根.

(2)、(3)、(4)令()()+∞∞-∈+-=,,33x c x x x f . 则()()()().,,113332+∞∞-∈-+=-='x x x x x f

令().0='x f 得()x f 共有两驻点1,121=-x x .

x ()1,-∞- 1- ()1,1- 1 ()+∞,1

()f x ' + 0 — 0 + ()x f ↑ 极大c +2 ↓ 极小c +-2 ↑ 综合上述分析就可以画出()c x x x f y +-==33之草图.根据草图不难看出: 当2-c 时,方程恰有一个实根; 当2±=c 时,方程恰有两个实根; 当22<<-c 时,方程恰有三个实根.

(5)方程不会有四个实根.(反证)假设方程有四个实根,则由罗尔定理知,方程()0='x f 就有三个实根,即函数()x f 共有三个驻点,这与已知()x f 仅有两个驻点矛盾!

关于清华大学高等数学期末考试

关于清华大学高等数学 期末考试 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

清华大学 2010-2011学年第 一 学期期末考试试卷(A 卷) 考试科目: 高等数学A (上) 考试班级: 2010级工科各班 考试方式: 闭卷 命题教师: 一. 9分 ) 1、若在), (b a 内,函数)(x f 的一阶导数0)(>'x f ,二阶导数0)(<''x f ,则函数)(x f 在此区间内单调 ,曲线是 的。 2、设?????+=+=232322t t y t t x 确定函数)(x y y =,求=22dx y d 。 3、=? dx 1cos 12 。 本大题共3小题,每小题3分,总计 9分) 1、设A x x ax x x =-+--→1 4lim 231,则必有 答( ) 2、设211)(x x f -=,则)(x f 的一个原函数为 答( ) 3、设f 为连续函数,又,?=x e x dt t f x F 3)()(则=')0(F 答( ) 2小题,每小题5分,总计10分 ) 1、求极限x e e x x x cos 12lim 0--+-→。

2、x y 2ln 1+=,求y '。 3小题,每小题8分,总计24分 ) 1、讨论?? ???=≠=0,00arctan )(2 x x x x x f ,,在0=x 处的可导性。 2、设)(x f 在]1,0[上连续,且1)(0≤≤x f ,证明:至少存在一点]1,0[∈ξ,使得 ξξ=)(f 。 3、证明不等式:当4>x 时,22x x >。 3小题,每小题8分,总计24分 ) 1、求函数x e y x cos =的极值。 2、求不定积分? x x x d cos sin 3。 3、计算积分?-+-+2222)cos 233(ln sin ππdx x x x x 。 4小题,每小题6分,总计24分 ) 1、求不定积分? +)1(10x x dx 。 2、计算积分?+πθθ4 30 2cos 1d 。 3、求抛物线221x y = 被圆822=+y x 所截下部分的长度。 4、求微分方程''-'-=++y y y x e x 2331的一个特解。

微积分期末测试题及复习资料

一 单项选择题(每小题3分,共15分) 1.设lim ()x a f x k →=,那么点x =a 是f (x )的( ). ①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对 2.设f (x )在点x =a 处可导,那么0()(2)lim h f a h f a h h →+--=( ). ①3()f a ' ②2()f a ' ③()f a ' ④ 1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ). ①(-1,1) ②,22ππ??-??? ? ③(0,+∞) ④(-∞,+∞) 4.设2()()lim 1() x a f x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在 5.已知0lim ()0x x f x →=及( ),则0 lim ()()0x x f x g x →=. ①g (x )为任意函数时 ②当g (x )为有界函数时 ③仅当0lim ()0x x g x →=时 ④仅当0 lim ()x x g x →存在时 二 填空题(每小题5分,共15分) 1.sin lim sin x x x x x →∞-=+____________. 2.31lim(1)x x x +→∞+=____________. 3.()f x =那么左导数(0)f -'=____________,右导数(0)f +'=____________. 三 计算题(1-4题各5分,5-6题各10分,共40分) 1.111lim()ln 1 x x x →-- 2.t t x e y te ?=?=?,求22d y dx 3.ln(y x =,求dy 和22d y dx . 4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求dy dx . 5.设111 1,11n n n x x x x --==++,求lim n x x →∞.

大一上学期微积分期末试卷及答案

1 1?设f(x) 2cosx,g(x) (l)sinx在区间(0, —)内( 2 2 A f (x)是增函数,g (x)是减函数 Bf (x)是减函数,g(x)是增函数 C二者都是增函数 D二者都是减函数2、x 0时,e2x cosx与sinx相比是() A高阶无穷小E低阶无穷小C等价无穷小 1 3、x = 0 是函数y = (1 -sinx)书勺() A连续点E可去间断点C跳跃间断点 4、下列数列有极限并且极限为1的选项为( ) n 1 n A X n ( 1) B X n sin - n 2 1 1 C X n n (a 1) D X n cos— a n 5、若f "(x)在X。处取得最大值,则必有() A f /(X。)o Bf /(X。)o Cf /(X。)0且f''( X o)

5、 若 则a,b 的值分别为: X 1 X + 2x-3

2 1 In x 1 ; 2 y x 3 2x 2; 3 y log^x 1 -,(0,1), R ; 4(0,0) x lim 5解:原式=x 1 (x 1)( x m ) ~~1)( x 7 b lim 3) x 7, a 1、 2、 、判断题 无穷多个无穷小的和是无穷小( lim 沁在区间(, X 0 X 是连续函数() 3、 f"(x 0)=0—定为f(x)的拐点 () 4、 若f(X)在X o 处取得极值,则必有 f(x)在X o 处连续不可导( 5、 f (x) 0,1 f '(x) 0令 A f'(0), f '(1),C f (1) f (0),则必有 A>B>C( 1~5 FFFFT 二、计算题 1用洛必达法则求极限 1 2 ~ lim x e x x 0 1 e 解:原式=lim x 0 1 x x 2 lim e x 2 ( 2x x 0 2x 3 3 4 k 2 若 f(x) (x 10),求f”(0) 3) 1 lim e x x 0 3 3 2 2 f '(x) 4(x 10) 3x 12x (x 3 3 2 3 2 2 f ''(x) 24x (x 10) 12x 3 (x 10) 3x 24x f ''(x) 0 10)3 3 .. .3 3 4 , 3 (x 10) 108 x (x 10)2 4 r t I 八] 2 3 求极限 lim(cos x)x x 0

大一微积分期末试卷及答案

微积分期末试卷 一、选择题(6×2) cos sin 1.()2,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π →-=--==>、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( ) n 1 X cos n = 2 00000001( ) 5"()() ()()0''( )<0 D ''()'()06x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线 1~6 DDBDBD 二、填空题 1d 1 2lim 2,,x d x ax b a b →++=xx2 211、( )=x+1 、求过点(2,0)的一条直线,使它与曲线y=相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是:2+1 x5、若则的值分别为: x+2x-3

1 In 1x + ; 2 322y x x =-; 3 2 log ,(0,1),1x y R x =-; 4(0,0) 5解:原式=11(1)()1m lim lim 2 (1)(3)3477,6 x x x x m x m x x x m b a →→-+++===-++∴=∴=-= 三、判断题 1、无穷多个无穷小的和是无穷小( ) 2、0sin lim x x x →-∞+∞在区间(,)是连续函数() 3、0f"(x )=0一定为f(x)的拐点() 4、若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、设 函 数 f (x) 在 [] 0,1上二阶可导且 '()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有 1~5 FFFFT 四、计算题 1用洛必达法则求极限2 1 20lim x x x e → 解:原式=2 2 2 1 1 1 330002(2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞- 2 若34()(10),''(0)f x x f =+求 解:332233 33232233432'()4(10)312(10)''()24(10)123(10)324(10)108(10)''()0 f x x x x x f x x x x x x x x x x f x =+?=+=?++??+?=?+++∴= 3 2 4 lim(cos )x x x →求极限

大一微积分期末试卷及答案

微积分期末试卷 选择题(6×2) cos sin 1.()2 ,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π→-=--== >、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小 3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001() 5"()() ()()0''( )<0 D ''()'()0 6x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线 C既有铅直又有水平渐近线 D既有铅直渐近线 1~6 DDBDBD 一、填空题 1d 12lim 2,,x d x ax b a b →++=x x2 21 1、( )= x+1 、求过点(2,0)的一条直线,使它与曲线y= 相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+14、y拐点为:x5、若则的值分别为: x+2x-3

1 In 1x + ; 2 322y x x =-; 3 2 log ,(0,1),1x y R x =-; 4(0,0) 5解:原式=11 (1)() 1m lim lim 2 (1)(3) 3 4 77,6 x x x x m x m x x x m b a →→-+++== =-++∴=∴=-= 二、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0 sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函数f(x)在 [] 0,1上二阶可导且 ' ()0A ' B ' (f x f f C f f <===-令(),则必有 1~5 FFFFT 三、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 解:原式=2 2 2 1 1 1 3 3 2 (2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞- 2 若3 4 ()(10),''(0)f x x f =+求 解:3 3 2 2 3 3 3 3 2 3 2 2 3 3 4 3 2 '()4(10)312(10) ''()24(10)123(10)324(10)108(10)''()0 f x x x x x f x x x x x x x x x x f x =+?=+=?++??+?=?+++∴= 3 2 4 lim (cos )x x x →求极限

微积分(上)期末考试试题(B)

微积分(上)期末考试试题(B)

对外经济贸易大学 2003-2004学年第一学期 《微积分》(上)期末考试试卷(B) 课程课序号CMP101??(1~14) 学号:___________ 姓名:___________ 班级:___________ 成绩:___________ 题号 一 二 三 四 五 六 总分 成 绩 一、 选择题 (选出每小题的正确答案,每小题2分,共计8分) 1. 下列极限正确的是 _________。 (A )1 0lim 20x x + →= (B ) 10lim 20 x x - →= (C )1lim(1) x x e x →∞ -=- (D ) 01lim (1)1x x x +→+= 2.若()(),f x x a x x φφφ=-≠其中()为连续函数,且(a )0,() f x 在 x a =点_________。 (A ) 不连续 (B ) 连续 (C )可导 (D ) 不可导

3. 设f (x )有二阶连续导数,且 2 () (0)0,lim 1,_______x f x f x →'''==则。 () 0()A x f x =是的极大值点 ()0(0)B f (,)是f(x)的拐点 ()0()C x f x =是的极小值点 ())0D f x x =(在处是否取极值不确定 4.下列函数中满足罗尔定理条件的是 。 ()ln(2) [0,1] A f x x x =-() 2 01()0 1 x x B f x x ?≤<=? =?() ()sin sin [0,] C f x x x x π=+() 2 1 ()1[1,1] D f x x =- -() 5.若()(),f x x φ''=则下列各式 成立。 () ()()0A f x x φ-= () ()()B f x x C φ-= () ()()C d f x d x φ=?? () ()()d d D f x dx x dx dx dx φ=?? 二、 填空题(每小题3分,共18分) 1. 设0 (2) ()0(0)0,lim 1sin x f x f x x f x →-===-在处可导,且,那么曲线() y f x =在原点处的切线方程是__________。 2.设函数f (x )可导,则2 (4)(2)lim 2 x f x f x →--=-_________。 3.设ln ,()x xf x dx x '=?为f(x)的一个原函数那么 。 4 . 设 2121,2ln 3x x y a x bx x a b ===++均是的极值点,则、的值为 。 5. 设某商品的需求量Q是价格P的函数

大一微积分期末试题附答案

微积分期末试卷 一、选择题(6×2) cos sin 1.()2,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π →-=--==>、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001 () 5"()() ()()0''( )<0 D ''()'()06x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线 二、填空题 1 d 1 2lim 2,,x d x ax b a b →++=xx2 211、( )=x+1 、求过点(2,0)的一条直线,使它与曲线y=相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+1 x5、若则的值分别为: x+2x-3

三、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函 数 f (x) 在 [] 0,1上二阶可导且 '()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有 四、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 2 若34()(10),''(0)f x x f =+求 3 2 4 lim(cos )x x x →求极限 4 (3y x =-求 5 3tan xdx ? 五、证明题。 1、 证明方程3 10x x +-=有且仅有一正实根。 2、arcsin arccos 1x 12 x x π +=-≤≤证明() 六、应用题 1、 描绘下列函数的图形 21y x x =+

清华大学微积分习题(有答案版)

第十二周习题课 一.关于积分的不等式 1. 离散变量的不等式 (1) Jensen 不等式:设 )(x f 为],[b a 上的下凸函数,则 1),,,2,1),1,0(],,[1 ==∈?∈?∑=n k k k k n k b a x λλΛ,有 2),(1 1≥≤??? ??∑∑==n x f x f k n k k k n k k λλ (2) 广义AG 不等式:记x x f ln )(=为),0(+∞上的上凸函数,由Jesen 不等式可得 1),,,2,1),1,0(,01 ==∈?>∑=n k k k k n k x λλΛ,有 ∑==≤∏n k k k k n k x x k 1 1 λλ 当),2,1(1 n k n k Λ==λ时,就是AG 不等式。 (3) Young 不等式:由(2)可得 设111,1,,0,=+>>q p q p y x ,q y p x y x q p +≤1 1 。 (4) Holder 不等式:设11 1, 1,),,,2,1(0,=+>=≥q p q p n k y x k k Λ,则有 q n k q k p n k p k n k k k y x y x 111 11?? ? ????? ??≤∑∑∑=== 在(3)中,令∑∑======n k q k n k p k p k p k y Y x X Y y y X x x 1 1,,,即可。 (5) Schwarz 不等式: 2 1122 1 121?? ? ????? ??≤∑∑∑===n k k n k k n k k k y x y x 。 (6) Minkowski 不等式:设1),,,2,1(0,>=≥p n k y x k k Λ,则有 ()p n k p k p n k p k p n k p k k y x y x 11111 1?? ? ??+??? ??≤??????+∑∑∑=== 证明: ()()() () () ∑∑∑∑=-=-=-=+++=+?+=+n k p k k k n k p k k k n k p k k k k n k p k k y x y y x x y x y x y x 1 1 1 1 1 1 1

微积分期末测试题及答案

微积分期末测试题及答 案 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

一 单项选择题(每小题3分,共15分) 1.设lim ()x a f x k →=,那么点x =a 是f (x )的( ). ①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对 2.设f (x )在点x =a 处可导,那么0()(2)lim h f a h f a h h →+--=( ). ①3()f a ' ②2()f a ' ③()f a ' ④1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ). ①(-1,1) ②,22ππ??-???? ③(0,+∞) ④(-∞,+∞) 4.设2 ()()lim 1()x a f x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在 5.已知0lim ()0x x f x →=及( ),则0 lim ()()0x x f x g x →=. ①g (x )为任意函数时 ②当g (x )为有界函数时 ③仅当0lim ()0x x g x →=时 ④仅当0 lim ()x x g x →存在时 二 填空题(每小题5分,共15分) sin lim sin x x x x x →∞-=+. 31lim(1)x x x +→∞+=. 3.()f x =那么左导数(0)f -'=____________,右导数(0)f +'=____________. 三 计算题(1-4题各5分,5-6题各10分,共40分) 1.111lim()ln 1 x x x →-- 2.t t x e y te ?=?=? ,求22d y dx 3.ln(y x =,求dy 和22d y dx . 4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求 dy dx . 5.设111 1,11n n n x x x x --==+ +,求lim n x x →∞.

清华大学微积分试题库完整

(3343).微分方程0cos tan =-+'x x y y 的通解为 x C x y cos )(+=。 (4455).过点)0,2 1(且满足关系式11arcsin 2 =-+ 'x y x y 的曲线方程为 21arcsin - =x x y 。 (4507).微分方程03='+''y y x 的通解为 2 2 1x C C y + =。 (4508).设)(),(),(321x y x y x y 是线性微分方程)()()(x f y x b y x a y =+'+''的三个特解,且 C x y x y x y x y ≠--) ()() ()(1312,则该微分方程的通解为 )())()((())()((1132121x y x y x y C x y x y C y +-+-=。 (3081).设x e x y x y -++=+=22213,3是某二阶线性非齐次微分方程的两个特解,且相 应齐次方程的一个解为x y =3,则该微分方程的通解为x e C x C x y -+++=212 3。 (4725).设出微分方程x e xe x y y y x x 2cos 32++=-'-''-的一个特解形式 )2sin 2cos ()(*x F x E e e D Cx x B Ax y x x +++++=-。 (4476).微分方程x e y y y =+'-''22的通解为 )sin cos 1(21x C x C e y x ++=。 (4474).微分方程x e y y 24=-''的通解为 x x e x C e C y 222141??? ? ? ++=-。 (4477).函数x C x C y 2s i n 2c o s 21+=满足的二阶线性常系数齐次微分方程为04=+''y y 。 (4532).若连续函数)(x f 满足关系式 2ln )2 ()(20 +=? x dt t f x f ,则=)(x f 2ln 2x e 。 (6808).设曲线积分 ?--L x ydy x f ydx e x f cos )(sin ])([与路径无关,其中)(x f 具有一阶 连续导数,且0)0(=f ,则)(x f 等于[ ] (A) )(2 1x x e e --。 (B) )(21 x x e e --。

微积分上期末考试试题A卷附答案

一、 选择题 (选出每小题的正确选项,每小题2分,共计10分) 1.1 lim 2x x - →=_________。 (A ) - (B ) + (C ) 0 (D ) 不存在 2.当0x →时,()x x f x x += 的极限为 _________。 (A ) 0 (B ) 1 (C )2 (D ) 不存在 3. 下列极限存在,则成立的是_________。 0()()() lim ()x f a x f a A f a x - ?→+?-'=?0()(0) ()lim (0) x f tx f B tf x →-'= 0000()()()lim 2()t f x t f x t C f x t →+--'= 0()() ()lim ()x f x f a D f a a x →-'=- 4. 设f (x )有二阶连续导数,且()0 () (0)0,lim 1,0()_______x f x f f f x x →'''==则是的。 (A ) 极小值 (B )极大值( C )拐点 (D ) 不是极值点也不是拐点 5.若()(),f x g x ''=则下列各式 成立。 ()()()0A f x x φ-=()()()B f x x C φ-= () ()() C d f x d x φ= ?? () ()()d d D f x dx x dx dx dx φ=?? 二、 填空题(每小题3分,共18分) 1. 设0 (2) ()0(0)0,lim 1sin x f x f x x f x →===-在处可导,且,那么曲线()y f x =在原点处的切线方程是__________。 2.函数()f x =[0,3]上满足罗尔定理,则定理中的= 。 3.设1 (),()ln f x f x dx x '=?的一个原函数是 那么 。 4.设(),x f x xe -=那么2阶导函数 ()___f x x ''=在点取得极_____值。 5.设某商品的需求量Q是价格P的函数5Q =-,那么在P=4的水平上,若价格 下降1%,需求量将 。 6.若,1 1),(+-= =x x u u f y 且,1)('u u f =dy dx = 。 三、计算题(每小题6分,共42分): 1、 求 11ln (ln ) lim x x e x -→

微积分期末试卷及答案

一、填空题(每小题3分,共15分) 1、已知2 )(x e x f =,x x f -=1)]([?,且0)(≥x ?,则=)(x ? . 答案:)1ln(x - 王丽君 解:x e u f u -==1)(2 ,)1ln(2x u -=,)1ln(x u -=. 2、已知a 为常数,1)12 ( lim 2=+-+∞→ax x x x ,则=a . 答案:1 孙仁斌 解:a x b a x ax x x x x x x x -=+-+=+-+==∞→∞→∞→1)11(lim )11( 1lim 1lim 022. 3、已知2)1(='f ,则=+-+→x x f x f x ) 1()31(lim . 答案:4 俞诗秋 解:4)] 1()1([)]1()31([lim 0=-+--+→x f x f f x f x

4、函数)4)(3)(2)(1()(----=x x x x x f 的拐点数为 . 答案:2 俞诗秋 解:)(x f '有3个零点321,,ξξξ:4321321<<<<<<ξξξ, )(x f ''有2个零点21,ηη:4132211<<<<<<ξηξηξ, ))((12)(21ηη--=''x x x f ,显然)(x f ''符号是:+,-,+,故有2个拐点. 5、=? x x dx 22cos sin . 答案:C x x +-cot tan 张军好 解:C x x x dx x dx dx x x x x x x dx +-=+=+=????cot tan sin cos cos sin sin cos cos sin 22222222 . 二、选择题(每小题3分,共15分) 答案: 1、 2、 3、 4、 5、 。 1、设)(x f 为偶函数,)(x ?为奇函数,且)]([x f ?有意义,则)]([x f ?是 (A) 偶函数; (B) 奇函数; (C) 非奇非偶函数; (D) 可能奇函数也可能偶函数. 答案:A 王丽君 2、0=x 是函数??? ??=≠-=.0 ,0 ,0 ,cos 1)(2x x x x x f 的 (A) 跳跃间断点; (B) 连续点; (C) 振荡间断点; (D) 可去间断点. 答案:D 俞诗秋

清华大学第二学期高等数学期末考试模拟试卷及答案

清华大学第二学期期末考试模拟试卷 一.填空题(本题满分30分,共有10道小题,每道小题3分),请将合适的答案填在空中. 1. 设向量AB 的终点坐标为()7,1, 2-B ,它在x 轴、y 轴、z 轴上的投影依 次为4、4-和7,则该向量的起点A 的坐标为___________________________. 2. 设a 、b 、c 都是单位向量,且满足0 =++c b a ,则=?+?+?a c c b b a _____________________________. 3. 设()()xy xy z 2cos sin +=,则 =??y z _____________________________. 4. 设y x z =,则=???y x z 2___________________. 5. 某工厂的生产函数是),(K L f Q =,已知⑴. 当20,64==K L 时, 25000=Q ;(2)当20,64==K L 时,劳力的边际生产率和投资的边际生产率 为270='L f ,350='K f 。如果工厂计划扩大投入到24,69==K L ,则产量的近似增量为_______________ 6. 交换积分顺序,有()=?? --2 21 , y y y dx y x f dy _____________________________. 7. 设级数 ∑∞ =1 n n u 收敛,且 u u n n =∑∞ =1 ,则级数()=+∑∞ =+1 1n n n u u __________. 8. -p 级数 ∑∞ =1 1 n p n 在p 满足_____________条件下收敛. 9. 微分方程x x y sin +=''的通解为=y ______________________.

期末高等数学(上)试题及答案

第一学期期末高等数学试卷 一、解答下列各题 (本大题共16小题,总计80分) 1、(本小题5分) 求极限 lim x x x x x x →-+-+-2332121629124 2、(本小题5分) .d )1(22x x x ?+求 3、(本小题5分) 求极限lim arctan arcsin x x x →∞?1 4、(本小题5分) ? -.d 1x x x 求 5、(本小题5分) .求dt t dx d x ?+2 021 6、(本小题5分) ??.d csc cot 46x x x 求 7、(本小题5分) .求?ππ 2 1 21cos 1dx x x 8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==?????=cos sin (),22 9、(本小题5分) . 求dx x x ?+3 01 10、(本小题5分) 求函数 的单调区间y x x =+-422 11、(本小题5分) .求? π +2 02sin 8sin dx x x 12、(本小题5分) .,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分) 设函数由方程所确定求.y y x y y x dy dx =+=()ln ,226 14、(本小题5分) 求函数的极值y e e x x =+-2 15、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222 16、(本小题5分) .d cos sin 12cos x x x x ? +求 二、解答下列各题 (本大题共2小题,总计14分)

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 (一) 一、选择题(共12分) 1. (3分)若2,0, (),0 x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0 (3)(3) lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3 分)定积分22 π π -?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分) 1 2 4 1(sin )x x x dx -+=? . 3. (3分) 2 1lim sin x x x →= . 4. (3分) 3 2 23y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 ln(15)lim .sin 3x x x x →+ 2. (6 分)设1 y x = +求.y ' 3. (6分)求不定积分2ln(1).x x dx +?

4. (6分)求3 (1),f x dx -? 其中,1,()1cos 1, 1.x x x f x x e x ? ≤? =+??+>? 5. (6分)设函数()y f x =由方程0 cos 0y x t e dt tdt + =?? 所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞? ?+ ?? ? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 2 2y x x π π?? =- ≤≤ ?? ? 与x 轴所围成图形绕着x 轴旋转一周所得旋 转体的体积. 3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().2 2 b b a a b a f x dx f a f b x a x b f x dx -''= ++ --? ? (二) 一、 填空题(每小题3分,共18分) 1.设函数()2 312 2 +--= x x x x f ,则1=x 是()x f 的第 类间断点. 2.函数()2 1ln x y +=,则= 'y . 3. =? ? ? ??+∞→x x x x 21lim . 4.曲线x y 1 = 在点?? ? ??2,21处的切线方程为 .

清华大学微积分A(1)期中考试样题

一元微积分期中考试答案 一. 填空题(每空3分,共15题) 1. e 1 2。21 3. 31 4。3 4 5. 1 6.第一类间断点 7。()dx x x x ln 1+ 8。 22sin(1)2cos(1)x x x e ++ 9。 0 10。11?????? ?+x e x 11.x x ne xe + 12。13 13。0 14。)1(223 +? =x y 15. 13y x =+ 二. 计算题 1. 解:,)(lim ,0)(lim 00b x f x f x x ==+?→→故0=b 。 …………………3分 a x f x f f x =?=′? →?)0()(lim )0(0 …………………3分 1)0()(lim )0(0=?=′+→+x f x f f x …………………3分 1=a 故当1=a ,0=b 时,)(x f 在),(+∞?∞内可导。 …………………1分 2. 解:=?+∞→])arctan ln[(lim ln /12x x x πx x x ln )arctan ln(lim 2?+∞→π = x x x x /1arctan ) 1/(1lim 22?+?+∞→π …………罗比达法则…………4分 =x x x x arctan )1/(lim 2+?++∞→π = )1/(1)1/()1(lim 2222x x x x ++?+∞→ = 2211lim x x x +?+∞→ = 1? ………………………4分 所以,原极限=1?e ………………………………………………………………………2分 3. 解:)'1)((''y y x f y ++= ,故 1) ('11)('1)(''?+?=+?+=y x f y x f y x f y ;……4分 3 2)]('1[)('')]('1[)'1)((''''y x f y x f y x f y y x f y +?+=+?++= …………………………………………6分 4.解:

最新大一期末考试微积分试题带答案

第一学期期末考试试卷 一、填空题(将正确答案写在答题纸的相应位置. 答错或未答,该题不得分.每小题3分,共15分.) 1. =→x x x 1 sin lim 0___0_____. 2. 设1 )1(lim )(2+-=∞→nx x n x f n ,则)(x f 的间断点是___x=0_____. 3. 已知(1)2f =,4 1 )1('-=f ,则 12 ()x df x dx -== _______. 4. ()a x x '=_______. 5. 函数434)(x x x f -=的极大值点为________. 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写 在答题纸的相应位置.答案选错或未选者,该题不得分.每小题3分,共15分.) 1. 设)(x f 的定义域为)2,1(, 则)(lg x f 的定义域为________. A.)2lg ,0( B. ]2lg ,0[ C. )100,10( D.)2,1(. 2. 设对任意的x ,总有)()()(x g x f x ≤≤?,使lim[()()]0x g x x ?→∞ -=,则 lim ()x f x →∞ ______. A.存在且一定等于零 B. 存在但不一定等于零 C.不一定存在 D. 一定存在. 3. 极限=-→x x x x e 21lim 0________. A. 2e B. 2-e C. e D.不存在. 4. 设0)0(=f ,1)0(='f ,则=-+→x x f x f x tan ) 2()3(lim 0________. A.0 B. 1 C. 2 D. 5. 5. 曲线2 21x y x =-渐近线的条数为________. A .0 B .1 C .2 D .3. 三、(请写出主要计算步骤及结果,8分.) 求2 0sin 1lim sin x x e x x →--. 四、(请写出主要计算步骤及结果,8分.)

关于清华大学高等数学期末考试

关于清华大学高等数学期 末考试 This manuscript was revised on November 28, 2020

清华大学 2010-2011学年第 一 学期期末考试试卷(A 卷) 考试科目: 高等数学A (上) 考试班级: 2010级工科各班 考试方式: 闭卷 命题教师: 一. 9分 ) 1、若在) ,(b a 内,函数)(x f 的一阶导数0)(>'x f ,二阶导数0)(<''x f ,则函数)(x f 在此区间内单调 ,曲线是 的。 2、设?????+=+=232322t t y t t x 确定函数)(x y y =,求=22dx y d 。 3、=? dx 1cos 12 。 本大题共3小题,每小题3分,总计 9分) 1、设A x x ax x x =-+--→1 4lim 231,则必有 答( ) 2、设211)(x x f -=,则)(x f 的一个原函数为 答( ) 3、设f 为连续函数,又,?=x e x dt t f x F 3)()(则=')0(F 答( ) 2小题,每小题5分,总计10分 ) 1、求极限x e e x x x cos 12lim 0--+-→。

2、x y 2ln 1+=,求y '。 3小题,每小题8分,总计24分 ) 1、讨论?? ???=≠=0,00arctan )(2 x x x x x f ,,在0=x 处的可导性。 2、设)(x f 在]1,0[上连续,且1)(0≤≤x f ,证明:至少存在一点]1,0[∈ξ,使得 ξξ=)(f 。 3、证明不等式:当4>x 时,22x x >。 3小题,每小题8分,总计24分 ) 1、求函数x e y x cos =的极值。 2、求不定积分? x x x d cos sin 3。 3、计算积分?-+-+2222)cos 233(ln sin ππdx x x x x 。 4小题,每小题6分,总计24分 ) 1、求不定积分? +)1(10x x dx 。 2、计算积分?+πθθ4 30 2cos 1d 。 3、求抛物线221x y = 被圆822=+y x 所截下部分的长度。 4、求微分方程''-'-=++y y y x e x 2331的一个特解。

相关主题
相关文档 最新文档