当前位置:文档之家› 构造中位线巧解题

构造中位线巧解题

构造中位线巧解题
构造中位线巧解题

构造中位线巧解题 Ting Bao was revised on January 6, 20021

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。

一、知识回顾

1、三角形中位线定理:

的平行于第三边,并且等于它的一半。

2、梯形中位线定理

梯形的中位线平行于两底,并且等于两底和的一半

3、应用时注意的几个细节:

①定理的使用前提:三角形或梯形。

②定理使用时,满足的具体条件:

两条边的中点,且连接这两点,成一条线段。

③定理的结论:

位置上:与第三边是平行的;与底是平行的(梯形)

大小上:等于第三边的一半;等于两底和的一半(梯形)。

在应用时,要灵活选择结论。

4、梯形的中位线:

中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L.

L=(a+b)÷2

已知中位线长度和高,就能求出梯形的面积.

S梯=2Lh÷2=Lh

中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。

二、什么情况下该用中位线

1、直接找线段的中点,应用中位线定理

例1、小峰身高,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm

2、利用等腰三角形的三线合一找中点,应用中位线定理

例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。

3、利用平行四边形对角线的交点找中点,应用中位线定理

例3、如图5所示,AB ∥CD ,BC ∥AD ,DE ⊥BE ,DF=EF ,甲从B 出发,沿着BA 、AD 、DF 的方向运动,乙B 出发,沿着BC 、CE 、EF 的方向运动,如果两人的速度是相同的,且同时从B 出发,则谁先到达

总结:几何问题中出现多个中点时往往添加三角形中位线基本

图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

三、中位线能带来什么

1、说明角相等

例1已知,如图,四边形ABCD 中,AB =CD ,E 、F 分别是AD 、BC 的中点,BA 、FE 的延长线相交于点M ,CD 、FE 的延长线相交于点N 。

试说明:∠AME=∠DNE。

2、说明线段相等

例2 已知,如图,四边形ABCD 中,AC 、BD 相交于点O ,且AC =BD ,E 、F 分别是AD 、BC 的中点,EF 分别交AC 、BD 于点M 、N 。

试说明:OM =ON 。

例3:BD 、CE 分别是的△ABC 外角平分线,过A 作AF ⊥BD ,AG ⊥CE ,垂足分别是F 、G ,易证FG=2

1(AB+BC+AC )。

(1)若BD 、CE 分别是△ABC 的内角平分线,FG 与△ABC 三边有怎样的数量关系画出图形(图1)并说明理由;

(2)若BD 、CE 分别是△ABC 的内角和外角平分线,FG 与△ABC 三边有怎样的数量关系画出图形(图2)并说明理由.

A

B

F

C D

N M E D A

B

C O

E F M

N

P

三、本次课后作业:

1、已知三角形的三边为6、8、10,顺次连结各边中点,所得到的三角形的周长为多少

变形题:已知三角形的三边为a、b、c,顺次连结各边中点,所得到的三角形的周长为多少

2、已知△ABC中,D为AB的中点,E为AC上一点,AE=2CE,CD,BE交于O点,OE=2厘米。求BO的长。

3、已知△ABC中,BD,CE分别是∠ABC,∠ACB的平分线,AH⊥BD于H,AF⊥CE于F。若AB=14厘米,AC=8厘米,BC=18厘米,求FH的长。

4、已知在△ABC中,AB>AC,AD⊥BC于D,E,F,G分别是AB,BC,AC的中点。求证:∠BFE=∠EGD。

5、在△ABC中,AH⊥BC于H,D,E,F分别是BC,CA,AB的中点(如图2-62所示)。求证:∠DEF=∠HFE。

巧构一线三直角解题

巧构一线三直角解题 发表时间:2017-02-14T14:06:18.193Z 来源:《中小学教育》2017年2月第269期作者:鲍玉秀张刚 [导读] 教师在教学时要注意给学生创造机会,让学生学会找基本图形。 山东省淄博市周村区北郊中学255000;山东省淄博市修文外国语学校255000 教师在教学时要注意给学生创造机会,让学生学会找基本图形。通过基本图形的积累,学生在分析题目时,就能唤醒利用这些基本图形,并能直接解题。几何命题的证明方法很多,只要找到规律、找到模型,我们就可以“以不变应万变”,任何问题就能迎刃而解。所以说,模型建立是学好数学的秘密武器。 基本图形:如图1,B、D、C在一条直线上,∠B=∠ADE=∠C=90°。我们称这一图形为“一线三直角”模型,则△ABD∽△DCE(或 △ABD≌△DCE)。 点评:我们在教学中经常遇到此图形,只要见到一直角在一条直线上,我们可以构造两侧的直角三角形,利用相似三角形可以解决一类相关问题。当出现了有相等边的条件之后,相似就转化为全等了。综合性题目往往就会把相似和全等的转化作为出题的一种形式。本文将重点对这一基本图形进行探讨。 一、在旋转中出现一线三直角基本图形(全等) 如图,将AO绕点O按逆时针方向旋转90°,得到A’O。若点A的坐标为(a,b),则点A’的坐标为( )。 解析:过A点作AB⊥x轴,垂足为E,过A’作A’E’⊥x轴,则△A’OE≌△OAE,所以A’E’=OE=a,AE=OE’=b,所以A’的坐标为(-b,a)。 点评:教师在平时教学中就要注意基本图形的构造,为以后学习打下良好的基础。 变式:直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为2。把一块含有45°角的直角三角形如图放置,顶点A、B、C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为()。 分析:∠AEC=90°,并在直线l3,此时我们可以构造一线三直角数学模型,△ADE与△BEC全等,所以DB=CE=3。 二、在折叠中构造一线三直角 如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连结OB,将纸片OABC沿OB折叠,使点A落在A’的位置。若OB= 5,tan∠BOC= ,则点A’的坐标是多少? 解析:因为OB= 5,tan∠BOC= ,OA=1,AB=2,△A’OD∽△A’BE。设OD=a,则A’E=2a, A’D= (a+1), DE=AB,2a+ (a+1)=2,解得a= ,所以A’的坐标(- ,)。 点评:此题是以矩形折叠为载体,如果利用常规方法勾股定理及全等计算很麻烦。如果构造一线三直角是非常简单的,过A’做AB的平行线,与BC、AO的延长线交于E、D, △A’OD∽△A’BE。设OD=a,则A’E=2a, A’D= (a+1),DE=AB,2a+ (a+1)=2,计算量相当简单。 三、画斜为直,找直线构造一线三直角 如图,在平面直角坐标系xoy中,点A的坐标是(-7,1),∠AOB=135°,OB=5。(1)求△AOB的面积。(2)求点B的坐标。 解析:设B(x,y),过B点作BF⊥x轴,过D点作x轴的平行线,与y轴交于G点,过A点作AC⊥CD。因为∠AOB=135°,AO=5 2,所以∠AOD=45°,AD=OD=5,所以△BOF≌△DOG≌△DCA,所以AD=OD=BO,AC=DG=OF,CD=OG=BF,所以△AOB的面积= ×5×5= ,所以x+y=7,1+y=x,所以x=4,y=3。 点评:这是一道一题多解的题,将∠AOB=135°转化为∠AOD=45°,构造等腰直角三角形,再构造模型一线三直角(全等)。 四、在圆中构造一线三直角 如图,在平面直角坐标系中,⊙P与x轴相切于点C,与y轴分别交于A、B两点,连接AP并延长分别交⊙P、x轴于点D、E,连接DC并延长交y轴于点F。若点F的坐标为(0,1),点D的坐标为(6,-1)。(1)求证:DC=FC。(2)求直线AD的解析式。 解析:(1)由△OFC≌△GDC得到OC=CG,过点作DG⊥x轴,连接AC,因为AD为直径,所以∠AGD=90°,△OAG∽△CGD,所以DG∶GC=OG∶OA,所以1∶3=3∶OA,所以OA=9。 点评:从圆中找直角,利用直径得圆周角等于90°,问题便可迎刃而解。 基本图形的教学是初中几何教学的重点,也是难点,教师在平时教学中要注重基本图形的研究,要有足够的耐心等学生慢慢积累。学生的学习达到一定程度就会从复杂的图形中提炼出基本图形,才会出现解决问题时的灵感。

构造中位线巧解题复习过程

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。 一、知识回顾 1、三角形中位线定理: 三角形的中位线平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 3、应用时注意的几个细节: ①定理的使用前提:三角形或梯形。 ②定理使用时,满足的具体条件: 两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的;与底是平行的(梯形) 大小上:等于第三边的一半;等于两底和的一半(梯形)。 在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=2Lh÷2=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用中位线 1、直接找线段的中点,应用中位线定理 例1、小峰身高1.70m,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm 2、利用等腰三角形的三线合一找中点,应用中位线定理 例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。 3、利用平行四边形对角线的交点找中点,应用中位线定理

构造中位线巧解圆锥曲线题

构造中位线 巧解圆锥曲线题 徐志平 (浙江金华一中 321000) 在求一些与圆锥曲线有关的题目时,通常需要先构造出三角形或梯形的中位线,然后借助中位线的性质定理来求解,现举例加以分析说明。 1.求点的坐标 例1. 椭圆13 122 2=+y x 的一个焦点为1F ,点P 在椭圆上。如果线段1PF 的 中点M 在y 轴上,那么点M 的纵坐标是 ( ) A. 43± B. 2 2± C. 23± D. 43± M 的坐标,只需先求点P 的坐标即可。 连接PF 2,由于M 是PF 1的中点,O 是F 1F 2的中点, 所以MO 是21F PF ?的中位线,又轴x MO ⊥,则有 轴x PF PF MO ⊥22,//,3312=-=P x 2 3±=,43±=∴M y ,故选(D )。 例2.定长为3的线段AB 的两端点在抛物线y 2 =x 上移动,记线段AB 的中点 为M ,求点M 到y 轴的最短距离,并求此时点M 的坐标。 分析:利用抛物线的定义,结合梯形的中位线性质 定理可以解决问题。 解:抛物线的焦点)0,41(F ,准线 方程:41 -=x ,上分别作点A 、B 、M 的射影A 1、B 1、M 1,则由MM 1 是梯形AA 1B 1B )(21 )(21111BF AF BB AA MM +=+= ,在ABF ?可以取等号) 通径∴>≥+AB AB BF AF (,2 211=≥AB MM ∴M 到y 轴的最短距离= 。 4 5 4123=-即45=M x 。 ∴显然这时弦AB 过焦点),(04 1F 。设A (x 1,y 1),B (x 2,y 2),则有12 1x y = ① 22 2x y = ②,①-②得M y x x y y x x y y y y 21))((2121212121=--?-=-+

巧构几何图形 证明代数问题

巧构几何图形证明代数问题 ——兼谈构造法 习题已知a,b,c,d为正数,a^2+b^2=c^2+d^2,ac=bd,求证a=d,b=c. 分析注意到条件a^2+b^2=c^2+d^2,如果把a,b;c,d分别看成两个直角三角形的直角边,那么a^2+b^2,c^2+d^2分别表示这两个直角三角形的斜边的平方。故可构造如下图形1。 ac=bd,即 BC*AD=AB*CD ∴BC/AB=CD/AD 又∠B=∠D=90 ?? ∴Rt⊿ABC 相似于Rt⊿ADC 但为公共斜边,故 Rt⊿ABC?Rt⊿ADC ∴AB=AD,BC=CD,即b=c,a=d. 评注把正数与线段的长联系起来,给代数等式附以几何意义,从而利用图形的特点巧妙地解决了上述习题。其证法十分简捷,独具风格,耐人寻味!其高明之处就在于选择了恰当的图形!这种思考方法的关键是把数和形结合起来以互相利用!对代数等式可以这样做,对不等式也可以。 应用 【例1】已知a,b是两个不相等的正实数,求证(a+b)/2 >ab

[证明] 以a+b为边长作正方形,然后过a,b的连接点作正方形各边的垂线(如图2),于是大正方形的面积为(a+b)^2,四个矩形的面积都是ab,这样得 (a+b)^2>4ab ab>0 ∴a+b>2ab 即(a+b)/2>ab 【例2】已知0<θ<∏/2,求证1AB ∴sinθ+cosθ>1(三角形两边之和大于第三边) 又⊿ABC的面积=(1/2)BC*AC≤(1/2)AB*CO=(1/4)AB^2(三角形面积不大于一边与这边上中线积的一半) ∴2BC*AC≤AB^2 又BC^2+AC^2≤AB^2 ∴(BC+AC)^2≤2AB^2,BC+AC≤2AB,即sinθ+cosθ≤2

谈构造法在数学解题中的运用

谈构造法在数学解题中的运用 摘要:“构造法”作为一种重要的化归手段,在数学解题中有着重要的作用。本文从“构造函数”、“构造方程”等常见构造及“构造模型”、“构造情境”等特殊构造出发,例谈构造法在数学解题中的运用。 关键词:构造数学解题 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来,构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提,根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带,使解题另辟蹊径、水到渠成。 “构造法”作为一种重要的化归手段,在数学中有着极为重要的作用,现举例谈谈其在数学解题中的运用。 一、构造函数 理解和掌握函数的思想方法有助于实现数学从常量到变量的这个认识上的飞跃。很多数学命题繁冗复杂,难寻入口,若巧妙运用函数思想,能使解答别具一格,耐人寻味。 [例1](柯西不等式)设a i,b i(i=1,2,…,n)均为实数,证明:

? ? ????? ??≤??? ??∑∑∑===n i i n i i n i i i b a b a 1212 12 证:构造二次函数f(x)=?? ? ??+??? ??+??? ??∑∑∑===n i i n i i i n i i b x b a x a 1212122,则 [例2]已知x,y,z ∈(0,1),求证: x(1-y)+y(1-z)+z(1-x)<1 (第15届俄罗斯数学竞赛题) 分析:此题条件、结论均具有一定的对称性,然而难以直接证明,不妨用构造法一试。 证:构造函数 f(x)=(y+z-1)x+(yz-y-z+1) ∵y,z ∈(0,1), ∴f(0)=yz-y-z+1=(y-1)(z-1)>0 f(1)=(y+z-1)+(yz-y-z+1)=yz >0 而f(x)是一次函数,其图象是直线, ∴由x ∈(0,1)恒有f(x) >0 即(y+z-1)x+(yz-y-z+1) >0 整理可得x(1-y)+y(1-z)+z(1-x) <1 二、构造方程 方程是解数学题的一个重要工具,许多数学问题,根据其数量关系,在已知和未知之间搭上桥梁,构造出方程,使解答简洁、合理。 [例3]已知a,b,c 为互不相等的实数,试证: bc (a-b)(a-c) +ac (b-a)(b-c) +ab (c-a)(c-b) =1 (1) 证:构造方程

直角三角形的存在性问题解题策略

中考数学压轴题解题策略(3) 直角三角形的存在性问题解题策略 《挑战压轴题·中考数学》的作者上海马学斌 专题攻略 解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根. 一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程. 有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便. 解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起. 如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便. 在平面直角坐标系中,两点间的距离公式常常用到. 怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点). 例题解析 例?如图1-1,在△ABC中,AB=AC=10,cos∠B=4 5 .D、E为线段BC上的两个 动点,且DE=3(E在D右边),运动初始时D和B重合,当E和C重合时运动停止.过E 作EF//AC交AB于F,连结DF.设BD=x,如果△BDF为直角三角形,求x的值. 图1-1 【解析】△BDF中,∠B是确定的锐角,那么按照直角顶点分类,直角三角形BDF存在两种情况.如果把夹∠B的两条边用含有x的式子表示出来,分两种情况列方程就可以了.如图1-2,作AH⊥BC,垂足为H,那么H是BC的中点. 在Rt△ABH中,AB=10,cos∠B=4 5 ,所以BH=8.所以BC=16. 由EF//AC,得BF BE BA BC =,即 3 1016 BF x+ =.所以BF= 5 (3) 8 x+. 图1-2 图1-3 图1-4

中考数学构造法解题技巧

构造法在初中数学中的应用 所谓构造法就是根据题设条件或结论所具有的特征和性质,构造满足条件或结论的数学对象,并借助该对象来解决数学问题的思想方法。构造法是一种富有创造性的数学思想方法。运用构造法解决问题,关键在于构造什么和怎么构造。充分地挖掘题设与结论的内在联系,把问题与某个熟知的概念、公式、定理、图形联系起来,进行构造,往往能促使问题转化,使问题中原来蕴涵不清的关系和性质清晰地展现出来,从而恰当地构造数学模型,进而谋求解决题目的途径。下面介绍几种数学中的构造法: 一、构造方程 构造方程是初中数学的基本方法之一。在解题过程中要善于观察、善于发现、认真分析,根据问题的结构特征、及其问题中的数量关系,挖掘潜在已知和未知之间的因素,从而构造出方程,使问题解答巧妙、简洁、合理。 1、某些题目根据条件、仔细观察其特点,构造一个"一元一次方程" 求解,从而获得问题解决。 例1:如果关于x的方程ax+b=2(2x+7)+1有无数多个解,那么a、b的值分别是多少? 解:原方程整理得(a-4)x=15-b ∵此方程有无数多解,∴a-4=0且15-b=0 分别解得a=4,b=15 2、有些问题,直接求解比较困难,但如果根据问题的特征,通过转化,构造"一元二次方程",再用根与系数的关系求解,使问题得到解决。此方法简明、功能独特,应用比较广泛,特别在数学竞赛中的应用。

3、有时可根据题目的条件和结论的特征,构造出方程组,从而可找到解题途径。 例3:已知3,5,2x,3y的平均数是4。 20,18,5x,-6y的平均数是1。求 的值。 分析:这道题考查了平均数概念,根据题目的特征构造二元一次方程组,从而解出x、y的值,再求出的值。 二、构造几何图形 1、对于条件和结论之间联系较隐蔽问题,要善于发掘题设条件中的几何意义,可以通过构造适当的图形把其两者联系起来,从而构造出几何图形,把代数问题转化为几何问题来解决.增强问题的直观性,使问题的解答事半功倍。 例4:已知,则x 的取值范围是()

构造几何图形解决代数问题

构造几何图形解决代数问题 摘要 数与行是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。因此,数形结合的思想方法是数学教学内容的主线之一。数形结合的应用大致可分为两种情形:第一种情形是“以数解形”,而第二种情形是“以形助数”。本课题调查研究中主要研究“以形助数”的情形。 关键词 数形结合 解题 以形助数 教学 1.“以形助数”的思想应用 1.1解决集合问题:在集合运算中常常借助于数轴、Venn 图处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 例:已知集合A=[0,4],B=[-2,3],求A B 。 分析:对于这两个有限集合,我们可以将它们在数轴上表示出来,就可以很清楚地知道结果。如下图,由图我们不难得出A B=[0,3] 例:(2009湖南卷文)某班共30人,其中15人喜欢篮球运动,10人喜欢乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 分析:如下图,设所求人数为x ,则只喜爱乒乓球运动的人数为10(15)5,155308x x x x --=-+-=-?=故。 B=[-2,3] A=[0,4]

评价:通过上面两个典型例题的学习,我们基本了解了构造几何图形在代数问题中的简单应用,将抽象的集合问题形象地用图形表现出来,形象生动便于思考,找出问题中条件间的相互关系进而方便快捷地解答。 1.2解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图像的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 例:(2009山东理)若函数 ()(01)x f x a x a a a a =-->≠且有两个零点,则实数的取值范围是 分析:设函数(0,1)x y a a a =>≠且和函数y x a =+,则函数 ()(01)x f x a x a a a =-->≠且有两个零点,就是函数(0,1)x y a a a =>≠且与函数y x a =+有两个交点,由图象可知当01a <<时两函数只有一个交点,不符合,当1a >时,因为函数(1)x y a a =>的图象过点(0,1),而直线y x a =+所过的点一定在点(0,1)的上方,所以一定有两个交点,所以一定有两个交点,所以实数a 的取值范围是1a >

三角形中位线中的常见辅助线

三角形中位线中的常见 辅助线 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

三角形中位线中的常见辅助线 知识梳理 知识点一中点 一、与中点有关的概念 三角形中线的定义:三角形顶点和对边中点的连线 等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半. 中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.直角三角形斜边中线:直角三角形斜边中线等于斜边一半 斜边中线判定:若三角性一边上的中线等于该边的一半,则这个三角形是直角三角形 二、与中点有关的辅助线 方法一:倍长中线 解读:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的。 方法二:构造中位线 解读:凡是出现中点,或多个中点,都可以考虑取另一边中点,或延长三角形一边,从而达到构造三角形中位线的目的。

方法三:构造三线合一 解读:只要出现等腰三角形,或共顶点等线段,就需要考虑构造三线合一,从而找到突破口 其他位置的也要能看出 方法四:构造斜边中线 解读:只要出现直角三角形,或直角,则考虑连接斜边中线段,第一可以出现三条等线段,第二可以出现两个等腰三角形,从而转化线段关系。 其他位置的也要能看出

C E D B A 常见考点 构造三角形中位线 考点说明:①凡是出现中点,或多个中点,都可以考虑取四边形对角线中点、等腰三 角形底边中点、直角三角形斜边中点或其他线段中点; ②延长三角形一边,从而达到构造三角形中位线的目的。 “题中有中点,莫忘中位线”.与此很相近的几何思想是“题中有中线,莫忘加倍延”,这两个是常用几何思想,但注意倍长中线的主要目的是通过构造三角形全等将分散的条件集中起来.平移也有类似作用. 典型例题 【例1】 已知:AD 是ABC △的中线,AE 是ABD △的中线,且AB BD =,求证: 2AC AE =. 举一反三 1. 如右下图,在ABC ?中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证: 2AB DE =.

构造几何图形巧解向量问题

运用向量几何运算巧解几个高考题 向量是高中数学中重要的数学概念和数学工具之一,它用代数的方法来研究几何问题,是数形结合的一个典范,体现了解析几何的本质。代数几何化、几何代数化等多角度思维是平面向量命题的特点,这就说明了平面几何和平面向量交汇点的将是高考试题命制的焦点和热点。 例1. 已知向量e a ≠,1=e ,对任意R t ∈,恒有e a e t a -≥-,则( ) (A) e a ⊥ (B) )(e a a -⊥ (C) )(e a e -⊥ (D) )()(e a e a -⊥+ 参考答案:R t ∈ ,恒有e a e t a -≥-,等价于22e a e t a -≥-恒成立,即 22)()(e a e t a -≥-恒成立,展开整理得0)12(22≥-?+?-e a t e a t ?R t ∈恒成立,则 0)12(4)2(2≤-?-?-=?e a e a ,整理得0)1(2≤-?e a ,1=?∴e a ,)(e a e -⊥∴,所以选(C)。 妙解:如下图作a OA =,e OB =,e t OC =, 则 e a -= e t a -=,又因为?R t ∈,恒有e a e t a -≥- ≤,则必有 OC AB ⊥,即)(e a e -⊥。 例2.设向量a ,b ,c 满足0 =++c b a ,c b a ⊥-)(,b a ⊥,若1=a ,则222c b a ++的值是 。 参考答案: )(,)(b a c c b a +-=⊥-,)()(b a b a --⊥-∴, 0)()(=+?-∴b a b a ,022=-∴b a ,1==∴b a ,又),(b a c +-=0=?b a 22)(2222=?++=+-=∴b a b a b a c ,4222=++∴c b a 。 妙解:如下图作a BD AB ==,b BC =,c CA =, b a ⊥,BC AB ⊥∴,又 CD BC BD b a =-=- ,又c b a ⊥-)(, C A

例谈构造法在中学数学解题中的应用

例谈构造法在中学数学解题中的应用 发表时间:2012-01-12T09:16:31.067Z 来源:《素质教育》2012年1月下供稿作者:高雁[导读] 方程,作为中学数学的重要内容之一,与数、式、函数等诸多知识密切相关。高雁江苏省吴江市松陵高级中学215200 摘要:构造法是一种重要的数学解题方法,在解题中被广泛应用。构造法是一种极其富有技巧性和创造性的解题方法,体现了数学中发现、类比、化归的思想,渗透着猜想、探索、特殊化等重要的数学方法。运用构造法解数学题可从中激发学生的发散思维,使学生的思维 和解题能力得到培养,对培养学生的多元化思维和创新精神大有裨益。关键词:构造法构造数学解题 “构造法”是指为解决某个数学问题时先构造一种数学形式(比如几何图形、代数式、方程等),寻求与问题的某种内在联系,使之简单明了,起到化简、转化和桥梁作用,从而找到解决问题的思路、方法。此法重在“构造”、深刻分析、正确思维和丰富联想,它体现了数学中发现、类比、化归等思想,渗透着猜想、试验、探索、概括等重要方法,是一种富有创造性的解决问题的方法。 下面举一些应用构造法的例题,介绍其在数学解题中的巧妙应用。 一、构造方程 方程,作为中学数学的重要内容之一,与数、式、函数等诸多知识密切相关。根据问题条件中的数量关系和结构特征,构造出一个新的方程,然后依据方程的理论,往往能使问题在新的关系下得以转化而获解。构造方程是初等代数的基本方法之一。 二、构造几何图形(体) 如果问题条件中的数量关系有明显的或隐含的几何意义与背景,或能以某种方式与几何图形建立起联系,则可考虑通过构造几何图形将题设中的数量关系直接在图形中得以实现,然后,借助于图形的性质在所构造的图形中寻求问题的结论。构造的图形,最好是简单而又熟悉其性质的,这些几何图形包括平面几何图形、立体几何图形及通过建立坐标系得到的解析几何图形。 三、构造函数 所谓“构造函数”是指:由题设条件为对象,构想、组合出一种新的函数关系、方程、多项式等具体形式,使问题在新的观点下实现转化而获解。构造函数证(解)问题是一种创造性思维过程,具有较大的灵活性和技巧性。在运用过程中,应有目的、有意识地进行构造,始终“盯住”要证、要解的目标。

构造中位线巧解题

构造中位线巧解题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。 一、知识回顾 1、三角形中位线定理: 的平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 3、应用时注意的几个细节: ①定理的使用前提:三角形或梯形。 ②定理使用时,满足的具体条件: 两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的;与底是平行的(梯形) 大小上:等于第三边的一半;等于两底和的一半(梯形)。 在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=2Lh÷2=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用中位线 1、直接找线段的中点,应用中位线定理 例1、小峰身高,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm 2、利用等腰三角形的三线合一找中点,应用中位线定理 例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。 3、利用平行四边形对角线的交点找中点,应用中位线定 理 例3、如图5所示,AB∥CD,BC∥AD ,DE⊥BE ,DF=EF,甲从B出发,沿着 BA、AD、DF的方向运动,乙B出发,沿着BC、CE、EF的方向运动,如果两人的速 度是相同的,且同时从B出发,则谁先到达?

例谈高中数学解题中的“法宝”

例谈高中数学解题中的“法宝” 高中数学教学课程标准中明确规定了学习数学不仅包括数学内容、数学语言,更重要的是数学思想、方法。在数学解题过程中,某些数学问题用常规方法是难以解决的,这时可以根据题目的条件和结论的特征,从新的角度,用新的观点去观察分析,用已知的数学关系为“支架”构造出满足条件或结论的数学对象,使原问题中隐晦不清的关系在新构造的数学对象中清楚地表现出来,从而借助该数学对象解决数学问题。这种解决数学问题的方法就是构造法。 一、构造法解题的思路 构造法解题的基本思想方法是“转化”思想。用构造法解题的巧妙之处在于不是直接去解决所给的问题,而是把它转化成一个与原问题有关的辅助新问题,然后通过新问题的解决帮助解决原问题。 二、构造法的思维方式 构造法是一种简捷、快速,灵活变通的解题方法,这些特点,特别是简捷的特点会大大提高学生的求知欲,他们会有一种跃跃欲试的渴望,但却无从知道什么样的问题适合用构造法去解,如何构造? 应用构造法解题的关键一是要明确的解题方向,即要明确为了解决什么样的问题面建立一个相应的构造;二是要

弄清条件的本质特点,以便重新进行逻辑整合。构造法的思维方式是多样的,主要有类比构造,即所研究问题对象之间或这些对象与已学过的知识间存在着形式上、本质上的相同或相似性的可考虑类比构造;联想构造、转换构造、归纳构造、直觉构造、逆向构造,即按逆向思维方式,向原有数学形式的相反方向去思考,通过构造对立的数学形式来解决问题。 三、构造法在中学数学解题中的应用 1. 构造函数 函数在整个中学数学是占有相当的内容,学生对于函数的性质也比较熟悉。选择烂熟于胸的内容来解决棘手问题,会大大提高学生解决问题的能力。 2. 构造一元二次方程 方程作为中学数学的重要内容之一,它与代数式、函数、不等式等知识密切不可分。依据方程理论,能使许多的问题得以转化从而得到解决,这对学生的数学思想的培养具有重要意义。 有些数学题,经过观察可以构造一个方程,从而得到巧妙简捷的解答。 例2 若(z-x)2-4(x-y)(y-z)=0 ,求证:x,y,z成等差数列。 分析:拿到题目感到无从下手,思路受阻。但我们细

(完整word版)解直角三角形思想方法中考题型

思想方法中考题型 一、方程思想 根据题意设适当的未知数,从已知和未知中寻求等量关系,构造出方程或方程组,从而使问题获解. 例1如图1,河旁有一座小山,从山顶A处测得河对岸点C的俯角为30°,测得岸边点D的俯角为45°,又知河宽CD为50米.现需从山顶A到河对岸点C拉一条笔直的缆绳AC,求缆绳AC的长(答案可带根号). 解:过A点作AB⊥CD交CD的延长线于点B,设AB=x 在Rt△ABC中,因为∠ACB=∠CAE=30°,所以AC=2ABC=2x,BC=3AB=3x 在Rt△ABD中,因为∠ADB=∠EAD=45°,所以DB=AB=x 因为CD=50,所以 解得x=25(1+3)。答:缆绳AC的长为() 5013 +米. 说明先得出边角之间的关系,再构造方程求解,这是直角三角形的边角关系应用的常见方法,应值得注意. 二、数形结合思想 将数量和图形巧妙结合来寻找解题思路 例2如图2,A、B、C表示建筑在一座比较险峻的名山上的三个缆车站的位置,AB、BC表示连接三个缆车站的钢缆。已知A、B、C所处位置的海拔高度分别为124m、400m、1100m,如图建立直角坐标系,即A(a,124)、B(b,400)、C(c, 1100),若直线AB的解析式为y=1 2x+4,直线BC与水平线BC1的交角为45°. ⑴分别求出A、B、C三个缆车站所在位置的坐标; ⑵求缆车从B站出发到达C站单向运行的距离(精确到1m). A(240,124)、B(792,400)、C(2192,1100);(2)7002≈990(米). 三、转化思想 抽象转化为具体,复杂转化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法. 例3如图3,学校旗杆附近有一斜坡.小明准备测量学校旗杆AB的高度,他发现当斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影长BC=20米,斜坡坡面上的影长CD=8米,太阳光线AD与水平地面成26°角,斜坡CD与水平地面成30°的角.求旗杆AB的高度(精确到1米).(tan26°=0.43) 解:延长AD、BC交于点E,过点D作DF⊥CE于F.则依据题意可知,∠E=°,∠DCE=°。 在Rt△CFD中,得DF=4,CF=43≈6.928, 在Rt△DFE中, 在Rt△ABE中, 答:旗杆AB的高度约为. 四、建模思想 所谓建模思想就是认真分析题意,将实际问题抽象、转化为数学问题,建立数学模型,再通过对数学模型的探索达到解决问题的目的. 例4如图4,MN表示一段高速公路的设计路线图.在点M测得点N在它的南偏东30°的方向.测得另一点A在它的南偏东60°的方向;取MN上另一点B,在点B测得点A在它的南偏东75°的方向.以点A为圆心,500m为半径的圆形区域为某居民区.已知MB=400m,通过计算回答:如果不改变方向,高速公路是否会穿过居民区? 解:过点A作AC⊥MN于点C.依题意,得∠AMC=60°-30°=30°,∠ABC=75°-30°=45°.设AC为x m, 图2 B A 图4 M 30° 60° 75° 北 北 N C 图1 F 图3 E D C B A

数列的几种构造法解题

数列几种构造法解题 数列的构造法,我这里仅仅表示的是n 1a 与+n a 之间的常见关系,还有很多需要补充的。 以下主要是以例题为主,表示不同类型的构造方法。 1-n 1-n 1n n 1n 2q a a 等比数列,a 2a ,1例=?==+. 1 -n 2d )1n (a a 等差数列,2a 2.a 例1n n 1n =-+=+=+ 1 2a 化简可得2)1a (1a 所以整体是等比数列1a ,所以1x 展开解得)x a (2x a 构造等比数列1 a 2a 。3例n n 1 -n 1n n n 1n n 1n -=+=++=+=++=++ 1-n n 011-n 1-n n n 1n n n n 1n n n n 110111 1n 1n n n n 1n n n n n 1 -n 1n n n n 1n 1n n n 1n 2n a 所以n 1)1-n (2a 2a 可以得到 12a 2a 得到 2同除以22a a )22-3a 化简即可得3 2)32()33a (33a 即整体是等比数列33a 。所以3x 展开解得)3a (32x 3a 构造13a 23a 可以得到 3首先同除以,间接构造 2解2-3a 所以2)3-a (3-a 所以1 x 展开解得) 3x a (23x a 构造,直接构造法: 1解32a a )1,4例n ?==?+==-+==-=-=---=+=++==?=-=+=++=++-----+++++n n n n n n n n n x

3n 327an 所以2)33a (33n a 即是等比数列, 3n 3a 所以3 t ,3m 展开解得), t mn a (2t )1n (m a 构造 n 3+2a =a ,5例1-n 1 -n 1n n n 1n n 1+n --?=?++=++++==++=+++?+ 综合例6的通项公式。a ,试求n 3a 2a ,2a 已知n n n 1n 1++==+ 1n -23a 所以22 )113-a (1n 3a 所以1y ,1x ,1m 展开化简依次可以解得)y xn 3m a (2y )1n (x 3m a 解:构造1n n n 1n 1n 11n n n n 1n 1n -+==?++=++-==-=+++=++++---++

构造三角形中位线的方法

构造三角形中位线的方法

构造三角形中位线的方法 方法1 连接两点构造三角形的中位线 1.已知:如图,△ABC是锐角三角形,分别以AB、AC为边向外作两个正△ABM和△CAN,D、E、F分别是MB,BC,CN的中点,连结DE、FE,求证:DE=EF 证明:连接、, 和是等边三角形, ,,, , 即, 在与中 , , , 、、分别是、、的中点, ,, .

(2)延长BD交CA的延长线于E, ∵AD为∠BAC的平分线,BD⊥AD, ∴BD=DE,AB=AE=12, ∴CE=AC+AE=18+12=30, 又∵M为△ABC的边BC的中点, ∴DM是△BCE的中位线, ∴MD=1/2CE=15. 3.如图 , 在 Rt△ABC 中 ,∠ACB=90°,D 为△ABC 外一点 , 使∠DAC=∠BAC,E 为 BD 的中点 ,∠ABC=60°,求∠ACE 的度数。 解:延长 AD 、 BC 交于F. ∵在△ABC 与△ACF 中, ∠DAC=∠BAC,AC=AC,∠ACB=∠ACF=90°,∴△ABC ≌△ACF(ASA) , ∴BC=FC,∠F=∠ABC=60°, ∴∠CAF=30°,

∵E 为 BD 的 中点, ∴EC ∥ AF , ∴∠ACE=∠ CAF=30°. 方法3倍长法构造三角形的中位线 4.如图,在△ABC 中,∠ABC =90°,BA =BC ,△BEF 为等腰直角三角形, ∠BEF =90°,M 为AF 的中点,求证:CF ME 2 1 . 证明:如图,延长EF 到D ,使DE=EF ,连接AD 、BD , ∵△BEF 为等腰直角三角形,∠BEF=90°, ∴∠BFE=45°,BE ⊥DF , ∴BE 垂直平分DF ,

构造直角三角形来解题

构造直角三角形巧解题 山东省博兴县锦秋街道清河学校 张海生 256500 有些几何题,若能仔细观察、把握特征、抓住本质、恰当地构造直角三角形进行转化,就会收到化难为易、事半功倍的效果.下面举例介绍构造直角三角形解题的若干常用方法,供同学们复习时参考. 一、利用已知直角构造直角三角形 例1:如图1,在四边形ABCD 中,∠A=060,∠B=∠D=090,AB=2,CD=1.则BC 和AD 的长分别为_______和_______. 解析:考虑到图中含有090和060的角,若延长AD 、BC 相交于E ,则可以构造出Rt △AEB 和Rt △CED ,易知∠E=030,从而可求出DE=3,AE=4,BE=23,故AD=4-3,BC=23-2. 二、利用勾股定理构造直角三角形 例2:如图2,在四边形ABCD 中,AB=AD=8,∠A=060,∠ADC=0150,已知四边形ABCD 的周长为32,求四边形ABCD 的面积. 解析:四边形ABCD 是一个不规则的四边形,要求其面积,可设法变成特殊的三角形求解.连接BD ,则△ABD 是等边三角形, △BDC 是直角三角形,由于AB=AD=BD=8,,求△ABD 的面积不难解决,关键是求△BDC 的面积.可运用周长和勾股定理联合求出DC ,从而求出△BDC 的面积. 解答:连接BD.∵AB=AD ,∠A=060,∴△ABD 是等边三角形. ∴∠ADB=060,BD=AD=AB=8. 因为∠ADC=0150,∴∠BDC=090, 故△BDC 是直角三角形, 因为四边形ABCD 的周长为32, AB=AD=8, ∴BC+DC=32-16=16,BC=16-DC. 在Rt △BDC 中,222BC DC BD =+, 即()222168DC DC -=+.解得DC=6. ∴248621=??=?B DC S .用勾股定理求出等边△ABD 的高为3482 3=?. 3163482 1=??=?A B D S .∴24316+=+=??B DC A B D A B CD S S S 四. 说明:⑴求不规则的图形面积应用割补法把图形分解为特殊的图形;⑴四边形中通过添加辅助线构造直角三角形;⑶边长为a 的等边三角形的高为a 23,面积为24 3a . 三、利用高构造直角三角形 例3:如图3,等腰△ABC 的底边长为8cm ,腰长为5cm ,一动点P 在底边上从B 向C 以0.25cm/s 的速度移动,请你探究:当P 运动几秒时,P 点与顶点A 的连线PA 与腰垂直. 解析:本题是一道探究性的动态问题,假设P 在某一时刻有PA ⊥AC ,此时P 点运动了几秒,这是解决问题的着手点.设BP=x ,PC=8-x ,在Rt △PAC 中,由于PA 不知道,无法建立关系式.考虑△ABC 是等腰三角形,如作底边上的高AD ,则可用x 的代数式表示AP ,用勾股定理便可求出x ,进而求出运动时间.当P 点运动到D 与C 之间时,也存在AP ⊥AB 的情况,故要分类 讨论. 解答:作底边BC 的高AD ,则AD ⊥BC ,垂足为D. 设BP=xcm ,PA ⊥AC. 图1 图2 图3

高中数学解题方法之构造法(含答案)

十、构造法 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维 方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方 向,换一个角度去思考从而找到一条绕过障碍的新途径。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构 造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、 巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来, 构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提, 根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带, 使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、 数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这 些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结 规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特 点,以便依据特点确定方案,实现构造。 再现性题组 1、求证: 3 10910 22≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则4 2511≥???? ??+??? ??+ y y x x (构造函数) 3、已知01a <<,01b <<,求证: 22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a (构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当 c a b 111+=时取等号。(构造图形) 6 、求函数y = 再现性题组简解: 1、解:设)3(92 ≥+=t x t 则t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2 1212122212121>--=+-+=-t t t t t t t t t t t f t f ∴310313)3(9 10322=+=≥++= f x x y

相关主题
文本预览
相关文档 最新文档