当前位置:文档之家› 钛合金切削加工知识

钛合金切削加工知识

钛合金切削加工知识
钛合金切削加工知识

首页>行业信息>行业信息>

合金磨削刀具-钛合金的切削加工

摘要:文件地点传真-上海500kV世博输变电工程设备采购招标混凝土机械设备-我国混凝土泵车的研发趋势器材行业企业-2008年是纺织机械发展预测除尘器粉尘气体-现代锅炉除尘设备简介控制器技术空调-我国将制定变频控制器标准终结市场混乱新产品功能水平-中联环卫机械公司五款新产品通过验收波兰装配

厂徐州-扩大欧洲市场份额徐工波兰装配厂落成叉车鸟巢开幕式-龙工叉车为奥运鸟巢极速“变装”出力(图)刀具加工刀片-Kennametal公司推出KB9640新刀具工程机械企业-工程机械租赁业发展前景广阔1.钛合金可分为哪几类?钛是同素异构体,熔点为1720℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以上呈体心立方品格结构,称为β钛。利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温度及相分含量逐渐改变而得到不同组织的钛合金。室温下,合金,磨削,刀具,丝锥,切屑,砂轮,磨损,铰刀,硬质合金,温度,

1.钛合金可分为哪几类?

钛是同素异构体,熔点为1720℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以上呈体心立方品格结构,称为β钛。利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温度及相分含量逐渐改变而得到不同组织的钛合金。室温下,钛合金有三种基体组织,钛合金也就分为以下三类:

(1) α钛合金:它是α相固溶体组成的单相合金,不论是在一般温度下还是在较高的实际应用温度下,均是α相,组织稳定,耐磨性高于纯钛,抗氧化能力强。在500℃~600℃的温度下,仍保持其强度和抗蠕变性能,但不能进行热处理强化,室温强度不高。

(2) β钛合金:它是β相固溶体组成的单相合金,未热处理即具有较高的强度,淬火、时效后合金得到进一步强化,室温强度可达1372~1666 MPa;但热稳定性较差,不宜在高温下使用。

(3) α+β钛合金:它是双相合金,具有良好的综合性能,组织稳定性好,有良好的韧性、塑性和高温变形性能,能较好地进行热压力加工,能进行淬火、时效使合金强化。热处理后的强度约比退火状态提高50%~100%;高温强度高,可在400℃~500℃的温度下长期工作,其热稳定性次于α钛合金。

三种钛合金中最常用的是α钛合金和α+β钛合金;α钛合金的切削加工性最好,α+p钛合金次之,β钛合金最差。α钛合金代号为TA,β钛合金代号为TB,α+β钛合金代号为TC。

2.钛合金有哪些性能和用途?

钛是一种新型金属,钛的性能与所含碳、氮、氢、氧等杂质含量有关,最纯的碘化钛杂质含量不超过%,但其强度低、塑性高。%工业纯钛的性能为:密度ρ=cm3,熔点为1800℃,导热系数λ=,抗拉强度

σb=539MPa,伸长率δ=25%,断面收缩率ψ=25%,弹性模量E=×105MPa,硬度HB195。

(1)比强度高:钛合金的密度一般在cm3左右,仅为钢的60%,纯钛的强度接近普通钢的强度,一些高强度钛合金超过了许多合金结构钢的强度。因此钛合金的比强度(强度/密度)远大于其他金属结构材料,见表7-1,可制出单位强度高、刚性好、质轻的零、部件。目前飞机的发动机构件、骨架、蒙皮、紧固件及起落架等都使用钛合金。

(2)热强度高:对于α钛合金,在350℃时TA6的巩达422MPa、TA7的σb达491MPa,在500℃时TA8的σb达687MPa;对于α+β钛合金,在400℃时TC4的σb达618MPa、TC10的σb达834 MPa,在450℃时TC6和TC7的σb均达589MPa、TC8的σb达706MPa,在500℃时TC9的σb达785MPa。这两类钛合金在150℃~500℃范围内仍有很高的比强度,而铝合金在150℃时比强度明显下降。钛合金的工作温度可达500℃,铝合金则在200℃以下。

(3)抗蚀性好:钛合金在潮湿的大气和海水介质中工作,其抗蚀性远优于不锈钢;对点蚀、酸蚀、应力腐蚀的抵抗力特别强;对碱、氯化物、氯的有机物品、硝酸、硫酸等有优良的抗腐蚀能力。但钛对具有还原性氧及铬盐介质的抗蚀性差。

(4)低温性能好:钛合金在低温和超低温下,仍能保持其力学性能。在-100℃和-196℃时TA4的σb分别为893MPa和1207MPa,在-196℃和-253℃时TA7的σb分别为1216MPa和1543MPa、TC1的σb分别为1133MPa 和1354MPa、TC4的σb分别为1511MPa和1785MPa。因此,钛合金也是一种重要的低温结构材料。

(5)化学活性大:钛的化学活性大,与大气中O、N、H、CO、CO2、水蒸气、氨气等产生强烈的化学反应。含碳量大于%时,会在钛合金中形成硬质TiC;温度较高时,与N作用也会形成TiN硬质表层;在600℃以上时,钛吸收氧形成硬度很高的硬化层;氢含量上升,也会形成脆化层。吸收气体而产生的硬脆表层深度可达~ mm,硬化程度为20%~30%。钛的化学亲和性也大,易与摩擦表面产生粘附现象。

(6)导热系数小、弹性模量小:钛的导热系数λ=/,约为镍的1/4,铁的1/5,铝的1/14,而各种钛合金的导热系数比钛的导热系数约下降50%。钛合金的弹性模量约为钢的1/2,故其刚性差、易变形,不宜制作细长杆和薄壁件,切削时加工表面的回弹量很大,约为不锈钢的2~3倍,造成刀具后刀面的剧烈摩擦、粘附、粘结磨损。

钛合金的牌号、性能见表7-2。

3.钛合金有哪些切削特点?

钛合金的硬度大于HB350时切削加工特别困难,小于HB300时则容易出现粘刀现象,也难于切削。但钛合金的硬度只是难于切削加工的一个方面,关键在于钛合金本身化学、物理、力学性能间的综合对其切削加工性的影响。钛合金有如下切削特点:

(1)变形系数小:这是钛合金切削加工的显著特点,变形系数小于或接近于1。切屑在前刀面上滑动摩擦的路程大大增大,加速刀具磨损。

(2)切削温度高:由于钛合金的导热系数很小(只相当于45号钢的1/5~1/7),切屑与前刀面的接触长度极短,切削时产生的热不易传出,集中在切削区和切削刃附近的较小范围内,切削温度很高。在相同的切削条件下,切削温度可比切削45号钢时高出一倍以上。

(3)单位面积上的切削力大:主切削力比切钢时约小20%,由于切屑与前刀面的接触长度极短,单位接触面积上的切削力大大增加,容易造成崩刃。同时,由于钛合金的弹性模量小,加工时在径向力作用下容易产生弯曲变形,引起振动,加大刀具磨损并影响零件的精度。因此,要求工艺系统应具有较好的刚性。

(4)冷硬现象严重:由于钛的化学活性大,在高的切削温度下,很容易吸收空气中的氧和氮形成硬而脆的外皮;同时切削过程中的塑性变形也会造成表面硬化。冷硬现象不仅会降低零件的疲劳强度,而且能加剧刀具磨损,是切削钛合金时的一个很重要特点。

(5)刀具易磨损:毛坯经过冲压、锻造、热轧等方法加工后,形成硬而脆的不均匀外皮,极易造成崩刃现象,使得切除硬皮成为钛合金加工中最困难的工序。另外,由于钛合金对刀具材料的化学亲和性强,在切削温度高和单位面积上切削力大的条件下,刀具很容易产生粘结磨损。车削钛合金时,有时前刀面的磨损甚至比后刀面更为严重;进给量f%26lt; mm/r时,磨损主要发生在后刀面上;当f%26gt; mm/r时,前刀面将出现磨损;用硬质合金刀具精车和半精车时,后刀面的磨损以VBmax%26lt; mm较合适。

4.切削钛合金时怎样选择刀具材料?

切削加工钛合金应从降低切削温度和减少粘结两方面出发,选用红硬性好、抗弯强度高、导热性能好、与钛合金亲和性差的刀具材料,YG类硬质合金比较合适。由于高速钢的耐热性差,因此应尽量采用硬质合金制作的刀具。常用的硬质合金刀具材料有YG8、YG3、YG6X、YG6A、813、643、YS2T和YD15等。

涂层刀片和YT类硬质合金会与钛合金产生剧烈的亲和作用,加剧刀具的粘结磨损,不宜用来切削钛合金;对于复杂、多刃刀具,可选用高钒高速钢(如W12Cr4V4Mo)、高钴高速钢(如W2Mo9Cr4VCo8)或铝高速钢(如W6Mo5Cr4V2Al、M10Mo4Cr4V3Al)等刀具材料,适于制作切削钛合金的钻头、铰刀、立铣刀、拉刀、丝锥等刀具。

采用金刚石和立方氮化硼作刀具切削钛合金,可取得显著效果。如用天然金刚石刀具在乳化液冷却的条件下,切削速度可达200 m/min;若不用切削液,在同等磨损量时,允许的切削速度仅为100m/min。

5.切削钛合金时怎样选择刀具几何参数?

(1)前角γ0:钛合金切屑与前刀面的接触长度短,前角较小时既可增加刀屑的接触面积,使切削热和切削力不至于过分集中在切削刃附近,改善散热条件,又能加强切削刃,减小崩损的可能性。一般取γ0=5°~15°。

(2)后角α0:钛合金已加工表面弹性恢复大、冷硬现象严重,采用大后角可减小对后刀面造成的摩擦、粘附、粘结、撕裂等现象,以减小后刀面的磨损。各种切削钛合金刀具的后角基本上都大于等于15°。

(3)主偏角κr和副偏角κ′r:切削钛合金时切削温度高、弹性变形倾向大,在工艺系统刚性允许的条件下,应尽量减小主偏角,以增加切削部分的散热面积和减小切削刃单位长度上的负荷,一般采用κr=30°,粗加工时取κr=45°。减小副偏角可以加强刀尖,有利于散热和降低加工表面粗糙度值,一般取κ′r

=10°~15°。

(4)刃倾角λs:由于毛坯有硬皮和表层组织不均匀,粗车时切削刃容易崩损,为了增加切削刃的强度和锋利程度,应加大切屑的滑动速度,一般取λs =-3°~-5°,精车时λs =O°。

(5)刀尖圆弧半径rε:切削钛合金时刀尖是最薄弱的部分,容易崩掉和磨损,需磨出刀尖圆弧,一般rε=~。

车削时采用负倒棱(bγ=~ mm,γ01=-10°~0°),断(卷)屑槽的槽底圆弧半径Rn=6~8 mm。

另外,刀具刃磨质量对提高其耐用度也十分重要。硬质合金刀具宜用金刚石砂轮刃磨,切削时刃口必须锋利,前后刀面的表面粗糙度Ra值应小于,刃口部分不允许有微小的缺口。刀具刃磨后进行研磨,其耐用度可提高30%。

6.切削钛合金时怎样选择切削用量?

切削钛合金时,切削温度高、刀具耐用度低,切削用量中切削速度对切削温度的影响最大,因此应力求使所选择的切削速度下产生的切削温度接近最佳范围。高速钢刀具切削钛合金时的最佳切削温度约为480℃~540℃,硬质合金刀具约为650℃~750℃。切削钛合金一般采用较低的切削速度、较大的切削深度和进给量。

(1)切削速度Vc:切削速度对刀具耐用度影响最大,最好能使刀具在相对磨损最小的最佳切削速度下工作。切削不同牌号的钛合金,由于强度差别较大,切削速度应适当调整。切削深度对切削速度也有一定影响,应根据不同的切削深度来确定切削速度的大小,核正系数见表7-3和表7-4。

(2)进给量f:进给量对刀具的耐用度影响较小,在保证加工表面粗糙度的条件下,可选较大的进给量,一般取f=~ mm/r。进给量太小,使刀具在硬化层内切削,增加刀具磨损,同时极薄的切屑在高的切削温度下容易自燃,因此不允许f%26lt; mm/r。

(3)切削深度αp:切削深度对刀具耐用度的影响最小,一般选用较大的切削深度,这样不仅可以避免刀尖在硬化层内切削,减小刀具磨损,还可增加刀刃工作长度,有利于散热,一般取αp=1~5 mm。

车削钛合金的切削用量见表7-5。

7.切削钛合金时怎样选择切削液?

切削钛合金时,为了降低切削温度,应当向切削区域浇注大量的以冷却作用为主的切削液。对切削液的要求有导热系数大、比热大、热容量大、汽化热大、汽化速度快、流量大、流速快。一般说来,水比油的导热系数大3~5倍,比热大1倍,汽化热几乎大10倍左右,故用水溶性切削液较为合适。车、铣削钛合金时,常采用乳化液,或采用有极压添加剂的水溶性切削液。

极压乳化剂的配方为:

石油磺酸钠 10%油酸 3%

石油磺酸铅 6%三乙醇胺%

氯化石蜡 4% 20号机油%

氯化硬脂酸 3%

极压添加剂的水溶性切削液的配方为:

氯化脂肪酸、聚氯乙烯%~%

磷酸三钠%三乙醇胺 1%~2%

亚硝酸钠%水其余

对于钻孔、扩孔、铰孔、拉削、攻丝等工序,应该采用润滑作用较大的极压可溶性油作切削液,如蓖麻油、油酸、硫化油、氯化油等。

冷却润滑的方法最好采用高压喷雾冷却法、高压内冷却法等,这样才可起到良好的冷却、润滑作用。切削液流量不少于15~20 L/min。

8.切削钛合金时应注意哪些问题?

在切削钛合金的过程中,应注意的事项有:

(1)由于钛合金的弹性模量小,工件在加工中的夹紧变形和受力变形大,会降低工件的加工精度;工件安装时夹紧力不宜过大,必要时可增加辅助支承。

(2)如果使用含氯的切削液,切削过程中在高温下将分解释放出氢气,被钛吸收引起氢脆;也可能引起钛合金高温应力腐蚀开裂。

(3)切削液中的氯化物使用时还可能分解或挥发有毒气体,使用时宜采取安全防护措施,否则不应使用;切削后应及时用不含氯的清洗剂彻底清洗零件,清除含氯残留物。

(4)禁止使用铅或锌基合金制作的工、夹具与钛合金接触,铜、锡、镉及其合金也同样禁止使用。

(5)与钛合金接触的所有工、夹具或其他装置都必须洁净;经清洗过的钛合金零件,要防止油脂或指印污染,否则以后可能造成盐(氯化钠)的应力腐蚀。

(6)一般情况下切削加工钛合金时,没有发火危险,只有在微量切削时,切下的细小切屑才有发火燃烧现象。为了避免火灾,除大量浇注切削液之外,还应防止切屑在机床上堆积,刀具用钝后立即进行更换,或降低切削速度,加大进给量以加大切屑厚度。若一旦着火,应采用滑石粉、石灰石粉末、干砂等灭火器材进行扑灭,严禁使用四氯化碳、二氧化碳灭火器,也不能浇水,因为水能加速燃烧,甚至导致氢爆炸。

9.怎样对钛合金进行铣削?

钛合金在惰性气体介质中低速铣削时,切屑变形系数大于;但在大气中,铣削速度Vc=30 m/min时,切屑变形系数小于,这是因为钛合金在高温铣削时,对大气中氧和氮的亲和性很大,在800℃高温条件下,钛合金的切屑便激烈地从周围大气中吸收这些气体,产生相变并使缩短的铣屑重新伸长。钛合金铣削时温度很高,冲击力大,应选用能很好地承受交变载荷和热冲击的铣刀刀齿材料。通常选用YG 类硬质合金,也可用钴、铝超硬高速钢。

钛合金铣刀的几何参数和铣削用量见表7-6和表7-7。

铣削钛合金时,宜采用不对称顺铣法,这样刀齿前面远离刀尖部分首先接触工件,刀齿切离时的切屑很薄,不易粘结在切削刃上。而逆铣时正相反,容易粘屑,当刀齿再次切入时切屑被碰断,造成刀具材料剥落崩刃。

端铣刀与工件轴线间的偏移量e可决定铣刀刀齿与工件首先接触的最佳部位,顺铣或逆铣及切离时切屑厚度的大小,一般以偏移量e=~ do为宜(do为端铣刀直径)。

由于钛合金的弹性模量小,顺铣造成让刀现象,要求机床和刀具有较大的刚性。铣削时刀具与切屑的接触长度短,不易卷屑,要求刀具具有较好的刀齿强度及较大的容屑空间,否则切屑堵塞会造成刀具剧烈磨损。

10.怎样对钛合金进行钻孔?

钻孔为半封闭式切削,对钛合金钻孔过程中切削温度很高,钻孔后回弹大,钻屑长而薄,易粘结而不易排出,经常造成钻头被咬住、扭断等恶性事故。因此要求钻头具有高的强度和好的刚性,钻头与钛合金的化学亲和性要小,最好采用硬质合金钻头,但目前最常用的仍是麻花钻,经过采取一些措施改进后,也能取得较好的效果。

(1)改进钻头:为满足对钛合金钻孔的需要,应对麻花钻采取以下改进措施:

加大钻头顶角,2Ф=135°~140°;增大钻头外缘处后角,取12°~15°;增大螺旋角,p=35°~40°;增大钻心厚度,取~do(do为钻头直径)。

采用“S”形或“X”形修磨钻头横刃,横刃长度b=~do,同时保证横刃的对称度≤ mm。两种形式的横刃均可形成第二切削刃,起到分屑作用和减小钻孔时的轴向力。

最常用的是在麻花钻上磨出适于对钛合金钻孔的切削刃形,即钛合金群钻,其切削部分的形状见图7-1。图中外内刃顶角2φ和2φ′在钻头直径do%26gt;3~10mm时均为130°~140°,do%26gt;10~30 mm时为125°~140°;外刃后角α在do%26gt;3~10 mm时为12°~18°,do%26gt;10~30 mm时为10°~15°;横刃斜角ψ=45°;内刃前角γτ=-10°~-15°;内刃斜角τ=10°~15°;圆弧刃后角aR=18°~20°。

钛合金群钻的有关参数和钻削用量见表7-8和表7-9。

在钻头上做出四条导向刃带,加大钻头截面惯性矩,提高刚性,还自然地形成两条辅助冷却槽,耐用度比标准钻头提高3倍左右,切削温度约降低20%。同时由于导向稳定减小了孔扩张量,如Ф3 mm的四刃带钻头钻孔孔扩张量为~ mm,而标准钻头为~ mm。

(2)选择适宜的枪钻:在钻钛合金长径比大于5的深孔时,当孔径小于等于30 mm时,一般采用硬质合金枪钻,见图7-2;当孔径大于30 mm时,采用硬质合金BTA钻头或喷吸钻等。用图7-2所示枪钻钻削TC11的孔,孔深204 mm(长径比约为26),可保证表面粗糙度Ra为μm,生产率提高4倍,切屑呈“梅花”形或“C”形碎屑,排屑正常。

用硬质合金枪钻钻长径比大于30的深孔时,在轴向施加小于100Hz的振动进行振动钻孔,可使得工件表面粗糙度Ra为μm,生产率提高5倍。具体参数为Vc=17 m/min,f= min/r,振幅为 mm,频率35 Hz,工件圆度4 μm,表面粗糙度Ra为μm。

(3)选择合适的切削液:钻浅孔时可选用电解切削液,其成分为癸二酸7%~10%,三乙醇胺7%~10%,甘油7%~10%,硼酸7%~10%,亚硝酸钠3%~5%,其余为水。

钻深孔时不宜选用水基切削液,因为水在高温下可能在切削刃上形成蒸汽气泡,易产生积屑瘤,使钻孔不稳定。宜采用N32机油加煤油,其配比为3:1或3:2,也可采用硫化切削油。

11.怎样对钛合金进行铰孔?

用高速钢和YG类硬质合金制作的铰刀都可用于钛合金零件上铰孔。高速钢铰刀主要用于纯钛铰孔,YG类硬质合金铰刀主要用于钛合金铰孔。钛合金铰刀有直齿铰刀、阶梯铰刀和带刃倾角的阶梯铰刀三种,直齿铰刀铰出的工件孔径最大,阶梯铰刀次之,带刃倾角的阶梯饺刀最小。阶梯铰刀的第一锥在切削的同时为第二锥起了导向作用,也为第二锥留下了极为稳定的余量,实际上起到了粗铰和精铰的作用;带刃倾角的阶梯铰刀在刃倾角的作用下,提高铰孔过程的平稳性,并使切屑向下排出,不会摩擦、划伤孔壁,因而铰出的孔径精度比阶梯铰刀更高些。

钛合金铰刀的几何参数一般选用前角γ0=0°~5°,硬质合金铰刀取小值;后角α0=10°~15°;切削锥角κr=15°~30°。阶梯铰刀的第二锥角为15°,刃倾角λs=-15°。为了加大钛合金铰刀的容屑空间,齿数应少于标准铰刀,齿槽角δ=85°~90°。各种钛合金铰刀参数见图7-3、图7-4和图7-5。

钛合金铰刀的直径由铰出孔的扩张量大小来确定,一般高速钢铰刀扩张量取,硬质合金铰刀扩张量取。

对钛合金铰孔时,粗铰余量2αp=~ mm,精铰余量2αp =~ mm,直径小时取小值,反之取大值。硬质合金铰刀的切削用量Vc=15~50 m/min,f=~r,铰孔直径大时取大值,反之取小值。高速钢铰刀的铰削用量见表7-10。

铰削钛合金时,最好使用切削液,常用的是电解切削液或混合油(成分为蓖麻油60%和煤油40%)。12.对钛合金拉削时应注意哪些问题?

首先,根据钛合金材料的特性和切削特点,在拉刀设计时应注意以下几个方面的问题:

(1)拉刀的前后角直接影响拉刀的切削效果。用高速钢制作的拉刀前角一般取γ0=10°~20°,硬质合金拉刀γ0=8°~15°。用于外拉的拉刀切削齿后角αp =10°~12°,校准齿后角αk =8°~10°;用于内拉的切削齿后角αp =5°~8°,校准齿后角αk=2°~3°;高速钢和硬质合金拉刀的这两个后角相同。对于粗拉刀前后角用小值,精拉刀用大值。

(2)钛合金拉刀只要条件允许应尽可能做出刃倾角,一般取λs=5°~10°。

(3)拉刀前后刀面的粗糙度Ra≤ μm。

(4)校准齿上尽可能不留刃带,若需要时,其宽度应小于等于 mm。

(5)由于钛合金的弹性模量小,加工后回弹大,开槽拉刀刀齿宽度至少应等于或稍大于槽宽的下限尺寸,以免拉出的槽窄达不到要求。

(6)拉刀卷屑台的形式与拉削高温合金的基本相同。

(7)钛合金拉刀的磨钝标准一般为:粗拉刀VB≤~ mm,精拉刀VB≤~ mm。

再就是选用合理的拉削用量,在保证刀具耐用度的前提下提高生产效率。高速钢拉刀的拉削速度Vc=~6 m/min,粗拉刀的齿升量为~ mm,精拉刀为~ mm;硬质合金拉刀的拉削速度Vc=15~30 m/min,粗拉刀的齿升量为~ mm,精拉刀为~。

拉削钛合金工件时必须使用切削液,一般采用油基切削液,常用的是混合油(蓖麻油60%,煤油40%)。还可选用另一种切削油,其成分为:聚醚30%,酯类油30%,N7机械油30%,防锈添加剂和抗泡沫添加剂10%。

13.怎样对钛合金进行攻丝?

钛合金攻丝是钛合金切削加工中最困难的工序,特别是攻制小螺纹。这种困难主要表现在攻丝时的总扭矩大,约为45号钢的2倍;丝锥刀齿过快地磨损、崩刃,甚至被“咬死”在螺纹孔内而折断。这是由于钛合金的弹性模量太小,螺纹表面产生很大的回弹,使丝锥与工件接触的面积增大,造成很大的摩擦扭矩,磨损加剧;另外,切屑细小不易拳曲,有粘刀现象,造成排屑困难。因此,解决钛合金攻丝问题的关键是减小攻丝时丝锥与工件的接触面积。

(1)普通丝锥:必须经过技术处理后方能攻制钛合金螺纹。对普通丝锥进行处理的措施为:增大容屑空间,减少齿数;在校准齿上留出~ mm的刀带后,将后角加大到20°~30°,并沿丝锥全长磨去齿背中段;保留2~3扣校准齿后将后部的倒锥由~ mm/100 mm增大至~ mm/100 mm。当其他条件完全相同时,若将齿背宽度减小(磨去)1/2~2/3,攻丝扭矩下降1/4~1/3。

(2)修正齿丝锥:修正齿丝锥是把标准丝锥的成形法加工螺纹改为渐成法,工作原理如图7-6所示。由图可知,修正齿丝锥的齿形角α0小于螺纹齿形角α1,使丝锥齿侧与被切螺纹侧表面形成一侧隙角

φ=(α1-α0)/2,并将丝锥螺纹做出较大的倒锥,使得摩擦扭矩大大减小,同时也利于切削液的冷却润滑。

图中各角度间的关系式为:

tanδ=tan κr (tan(α1/2)˙cot(α0/2) -1)

设计攻制普通螺纹的修正齿丝锥时,为检验方便,一般取丝锥齿形角α0=55°,切削锥角δ可在2°30′~7°30′之间选取。

标准丝锥的倒锥是从校准齿开始的,倒锥量为~mm/100 mm;修正齿丝锥的倒锥则是从第一个切削齿开始,并且倒锥数值远大于标准丝锥,如κr =7°30′的修正齿丝锥可达 mm/100 mm。由于倒锥量加大,修正齿丝锥的校准部分便起不了导向作用,在切削锥前端时必须做出圆柱导向部,以避免丝锥刚攻入时产生歪斜,圆柱导向部的公称尺寸及公差取决于攻丝前的底孔尺寸。图7-7是修正齿丝锥的结构和几何参数示例。修正齿丝锥攻制的螺纹表面粗糙度不如成形式丝锥。

(3)跳牙丝锥:跳牙丝锥是在切削齿和校准齿上相间地去掉螺扣,其最大的特点是有效地减小了丝锥与工件的接触面积,使攻丝扭矩显著下降。由于间齿攻丝,相邻螺扣侧刃之间有较宽绰的空间,改善了容屑和切削液进入切削区的条件,提高了丝锥的耐用度;同时在制造丝锥时,砂轮外缘顶部也不需过分尖锐,改善了磨削条件。跳牙丝锥示意图见图7-8。

在相同的切削条件下经试验比较,跳牙丝锥的攻丝扭矩约为标准丝锥的30%~50%,修正齿丝锥的35%~60%,耐用度比修正齿丝锥高1~3倍,用跳牙丝锥对钛合金攻丝效果最好。

(4)螺纹底孔:对钛合金攻丝一般按牙高率(螺孔实际牙型高度与理论高度的比率)不超过70%为依据来选取底孔直径大小,即螺纹底孔直径d1= 8p(d0为螺纹公称尺寸,p为螺矩)。小直径或粗牙螺纹牙高率可取大一些,被加工材料强度低或螺纹深度小于螺纹基本直径时,可适当增大牙高率,但过大会增大攻丝扭矩,甚至折断丝锥。为保证攻丝精度和表面质量,螺纹底孔应为铰后的孔。

钛合金的攻丝速度要根据材料的类型和硬度来确定。α钛合金的攻丝速度一般取Vc=~12 m/min,α+β钛合金取Vc=~6 m/min,β钛合金取Vc=2~ m/min;钛合金的硬度≤HB350时选用较高的切削速度,反之选用较低的切削速度。

对钛合金攻丝时,一般用含Cl、P的极压切削液效果较好,但含Cl的极压切削液攻丝后必须清洗干净,防止零件晶间腐蚀;也可用蓖麻油60%、煤油40%的混合油作切削液。

14.磨削钛合金有哪些特点?

(1)磨削力大:磨削钛合金时,和一般磨削规律一样,径向力大于切向力。在相同条件下磨削TC9的径向分力几乎比45号钢大4倍,切向分力大80%左右。

(2)磨削温度高:钛合金磨削时滑擦过程所占比重大,产生强烈的摩擦,急剧的弹性、塑性变形和大量的热量,致使磨削区的温度很高。在相同条件下,磨削TC9的磨削温度为45号钢的~2倍,最高时可达1000℃。

(3)砂轮磨损失效:磨削钛合金时,除粘结、扩散外,钛合金与磨粒之间起化学作用,从而加速了砂轮的磨损过程。观察磨削后的砂轮,钛呈云雾状分布,几乎看不到砂轮磨粒。

(4)表面质量不易保证:钛合金磨削时,工件表面容易产生有害的残余拉应力和表面污染层,表面粗糙度数值较大。磨后表面残余拉应力数值大小随磨削用量的加大而增大,磨削速度是残余应力的主要影响因素。

(5)生产率低:在保证所要求的零件加工精度的条件下,很难获得较高的生产率。磨削时砂轮容易变钝失效,磨削比很低,在相同条件下磨削Tc4的磨削比只有,而45号钢为,约为45号钢的1/47。

15.磨削钛合金时怎样选择砂轮?

(1)磨料的选择:白刚玉WA砂轮一般只能在Vc≤10 m/s的条件下磨削钛合金,因为Vc加大会使磨削温度升高,钛合金表层会发生组织转变;而且在高温下很容易吸收空气中的氧形成氧化钛,并与Al2O3生成固溶体,因而增大了钛与Al2O3的粘附结合力,加剧砂轮的粘结磨损。

绿碳化硅GC及铈碳化硅CC磨料与钛合金粘附较轻,尤以CC砂轮的磨削力小且磨削温度低。采用混合磨料(以GC及CC为主磨料,以铬刚玉PA、单晶刚玉 SA、锆刚玉ZA或微晶刚玉MA为副磨料)磨削效果能得到很大提高,磨削温度降低到600℃以下,磨削比可达12。

采用人造金刚石JR和立方氮化硼CBN超硬磨料磨削钛合金效果最好。CBN砂轮磨削钛合金的磨削比比采用混合磨料高50~60倍,且工件表层残余应力几乎都为压应力,陶瓷CBN砂轮磨削效果见表7-11。

(2)粒度和硬度的选择:粒度和硬度都影响磨削比,粒度的影响大些。磨削钛合金时,常用粒度号为36号~80号的磨料、硬度为K~M的砂轮;较软的砂轮磨削力较小且磨削温度较低,但磨损较大。实践证明,既能减小磨削力又能适当提高磨削比,采用粒度为80号、硬度为J的砂轮为宜。

(3)结合剂的选择:磨削钛合金的砂轮一般选用陶瓷结合剂V,这种结合剂的砂轮磨削力比较大;对大而薄的砂轮选用橡胶结合剂R,可降低磨削温度和磨削力。

(4)组织的选择:采用中等偏疏松或疏松的砂轮组织5~8号为宜。成型磨削及精密磨削时,为保持砂轮型面及磨削表面粗糙度,可选用组织较为紧密的砂轮。

磨削钛合金时,不同磨削方式使用砂轮的具体选择见表7-12。

16.磨削钛合金时怎样选择磨削用量?

由于钛合金的磨削温度高,再加上钛合金的化学活性大,工件表层组织很容易发生相变,而且容易产生有害的残余拉应力,会降低零件的疲劳强度,因此在选择钛合金的磨削用量时首先要考虑的是降低磨削温度。磨削速度对磨削温度的影响最大,即磨削钛合金时的速度不宜太高。具体的钛合金磨削用量见表7-13。

17.磨削钛合金时怎样选择磨削液?

磨削钛合金时,要求磨削液具有冷却、润滑和冲洗作用,更重要的是应具有抑制钛与磨料的粘附作用和化学作用。目前用得较多的是水溶性磨削液,有亚硝酸钾溶液、亚硝酸钾和甲酸钠溶液、亚硝酸钠溶液、亚硝酸钠和甲酸钠溶液、亚硝酸胺溶液等。使用含极压添加剂S、Cl、P的极压油,效果较好,尤以氯(Cl)

极压油效果最好,但磨后应清洗零件,以防降低零件的抗疲劳强度。

对于缓进给磨削推荐选用下述配方制备磨削液:亚硝酸钠1%,苯甲酸钠%,甘油%,三乙醇胺%,水(其余)。使用立方氮化硼CBN砂轮磨削时不宜使用水溶性磨削液,因BN与水在800℃左右会起化学反应,造成砂轮过快磨损(BN+H2O→H2BO3+NH3)。

使用磨削液时,应特别注意流量要足够大,每毫米砂轮宽度一般不低于 L/min。砂轮线速度越高,流量应越大。水箱容量一般为流量的~3倍,以保持磨削液处于较低的温度。另外,钛合金的磨削温度较高,钛屑容易引起自燃,在使用油剂磨削液时,应注意防止发生火灾。

18.钛合金有哪些其他的磨削方法?

磨削钛合金除了常用的普通磨削法外,还可采用缓进给磨削法和低应力磨削法。

(1)缓进给磨削法:钛合金的缓进给磨削的特点与高温合金类同,有关的详细情况参照高温合金的缓进给磨削部分。钛合金的缓进给磨削一般选用 GC60G~JV的砂轮,磨削速度Vc=28~30 m/s,工件速度Vw=70

mm/min,磨削深度αp=1~2 mm。工件表面粗糙度值要求较小时,应采用较硬的砂轮;成形磨削时,可用金刚石滚轮或钢滚轮来修整砂轮。

(2)低应力磨削法:钛合金的低应力磨削是靠减小磨去单位体积金属消耗的能量,来降低磨后工件表层的残余拉应力,消除烧伤、变形和裂纹,很适合钛合金的磨削。低应力磨削应采取以下措施:使用较软的砂轮,经常保持砂轮和修整工具的锋利,减小径向进给量(或磨削深度),降低磨削速度,大量充分使用性能好的磨削液。但此法生产率低,只适用于承受很高应力的零件(如:高循环应力或在腐蚀条件下工作的零件),用这种磨削法可提高零件的疲劳强度。其磨削用量见表7- 14。

为了达到低应力磨削效果,应严格控制粗、半精、精磨三个阶段的径向进给量(或磨削深度):

①粗磨阶段。由毛坯尺寸磨至比最终尺寸大 mm,采用fr≤ mm/st。

②半精磨阶段。再磨至比最终尺寸大 mm,采用fr=~ mm/单行程,半精磨前应修整砂轮。

③精磨阶段。磨至最终尺寸,采用fr=~ mm/st,或根据需要用2~4个行程的无火花磨削至最终尺寸,精磨前应修整砂轮。

19.用金刚石刀具切削加工钛合金有哪些特点?

从加工钛合金的各种刀具材料切削实验的结果可以看出,金刚石刀具加工钛合金的效果最为显著。这是因为金刚石在钛中的溶解度比在铁中小得多,切削时金刚石刀具的扩散磨损很小,故用金刚石刀具切削钛合金有以下特点:

(1)有很高的耐用度:用硬质合金刀具和金刚石复合片刀具车削钛合金棒料,采用的车削用量为 Vc=56

m/min、αp=1 mm、f= mm/r,用硬质合金刀具车削时,刀具很快就磨损了,切下的切屑体积仅有 cm3;而在相同的磨损条件下,金刚石车刀却能切下多得多的切屑,切屑体积高达132 cm3,是硬质合金刀具的1885倍。通过切削钛合金试验,在相同的条件下,刀具材料磨损量最大的是氧化铝基陶瓷,其次是硬质合金,磨损量最小的是金刚石。

(2)有很高的导热性:钛合金的导热系数为~/,是45号钢的1/5~1/6,而金刚石的导热系数非常高,达W/,是45号钢的3倍、硬质合金的~7倍,加上金刚石硬度高,切削刃可磨得非常锋利,切削时产生的切削热较少,刀具又能传出很大部分切削热。因此用金刚石刀具加工钛合金的切削温度低。

(3)允许较高的切削速度:用YG类硬质合金加工TC4钛合金时,切削速度一般采用Vc=20~50 m/min;而用金刚石刀具在没用切削液干切时采用Vc=100 m/min,湿切时可高达Vc=200 m/min,比硬质合金高出好几倍,且刀具几乎看不出有多少磨损。

(4)粘结和扩散磨损最小:用于切削钛合金的各种刀具材料中,金刚石与钛合金间产生粘结和扩散的可能性最小,即切削时刀具产生粘结磨损和扩散磨损最小。

实践证明,精切钛合金时以金刚石刀具最佳,粗加工时以YG类硬质合金湿切为好。金刚石刀具的几何参数是γ0=-5°、α0=17°、κr=30°、κ′r=20°、λs=0°,rε= mm;切削用量是Vc=80~90 m/min,αp =~ mm,f=~ mm/r。

20.切削加工钛合金的实例有哪些?

(1)将145 mm×65 mm的钛合金车成圆棒,在Vc=56m/min、αp =2 mm、f = mm/r的情况下,开始用YG8硬质合金刀具,只车下 cm3体积的切屑。后改用金刚石复合刀片的车刀,切下切屑的体积达143 cm3,为硬

质合金刀具的204倍,且后刀面磨损很小。又如,用天然金刚石刀具,在干式切削时,在Vc=100 m/min的条件下,切削30 min后,刀具几乎没磨损。在有切削液的条件下,切削速度可达200 m/min。

(2)铣削TB2钛合金,刀具材料为YS30硬质合金,在 Vc=100~150 m/min、αp =~ mm、αf =~z的条件下,切削十分轻快,刀具磨损很小。

(3)对TC4钛合金车外圆和内孔,采用YM052硬质合金为刀具材料,在 Vc=70~120 m/min、αp =1~2 mm、f= mm/r条件下,刀具磨损比较小,而且表面粗糙度Rn可达μm。

(4)在TC4钛合金上加工M185×3的螺纹,螺纹为50mm长。采用YM051超细颗粒硬质合金车刀,刀具可车5~6件。

(5)用不同切削速度加工TC4钛合金时,切削条件为:γ0=3°,α0=14°,κr =κ′r =45°,rε=1 mm,f= mm/r,tip=1 mm,切削速度分别为30 m/min、60~70 m/min和90~100m/min,结果是:低速时YS2有很高的耐磨性,在高速时,YD15的耐磨性高于YS2。

钛合金特性及加工办法

精心整理 钛合金特性及加工方法 钛合金以其强度高、机械性能及抗蚀性良好而成为飞机及发动机理想的制造材料,但由于其切削加工性差,长期以来在很大程度上制约了它的应用。随着加工工艺技术的发展,近年来,钛合金已广泛应用于飞机发动机的压气机段、发动机罩、排气装置等零件的制造以及飞机的大梁隔框等结构框架件的制造。我公司某新型航空发动机的钛合金零件约占零件总数的11%。本文是在该新机试制过程中积累的对钛合金材料切削特性以及在不同加工方法下表现出的具体特点的认识及所应采取工艺措施的经验总结。 1钛合金的切削加工性及普遍原则 钛合金按金属组织分为a 相、b 相、a+b 相,分别以TA ,TB ,TC 表示其牌号和类型。我公司某新型发动 600 损严重。 要保持刀刃锋利,以保证排屑流畅,避免粘屑崩刃。 切削速度宜低,以免切削温度过高;进给量适中,过大易烧刀,过小则因刀刃在加工硬化层中工作而磨损过快;切削深度可较大,使刀尖在硬化层以下工作,有利于提高刀具耐用度。 加工时须加冷却液充分冷却。 切削钛合金时吃刀抗力较大,故工艺系统需保证有足够的刚度。由于钛合金易变形,所以切削夹紧力不能大,特别是在某些精加工工序时,必要时可使用一定的辅助支承。 以上是钛合金加工时需考虑的普遍原则,事实上,用不同的加工方法时及在不同的条件下存在着不同的矛盾突出点和解决问题的侧重点。 2钛合金切削加工的工艺措施

车削 钛合金车削易获得较好的表面粗糙度,加工硬化不严重,但切削温度高,刀具磨损快。针对这些特点,主要在刀具、切削参数方面采取以下措施: 刀具材料:根据工厂现有条件选用YG6,YG8,YG10HT。 刀具几何参数:合适的刀具前后角、刀尖磨圆。 较低的切削速度。 适中的进给量。 较深的切削深度。 选用的具体参数见表1。 表1车削钛合金参数表工序车刀前角go ° ° mm m/min mm mm/r 粗车56 精车56 铣削 了3 此外,为使钛合金顺利铣削,还应注意以下几点: 相对于通用标准铣刀,前角应减小,后角应加大。 铣削速度宜低。 尽量采用尖齿铣刀,避免使用铲齿铣刀。 刀尖应圆滑转接。 大量使用切削液。 为提高生产效率,可适当增加铣削深度与宽度,铣削深度一般粗加工为 1.5~3.0mm,精加工为0.2~0.5mm。 磨削 磨削钛合金零件常见的问题是粘屑造成砂轮堵塞以及零件表面烧伤。其原因是钛合金的导热性差,使磨削区产生高温,从而使钛合金与磨料发生粘结、扩散以及强烈的化学反应。粘屑和砂轮堵塞导致磨削比显著

钛合金切削中刀具材料选用及加工工艺介绍

.

6mm。 c.切削加工情况:有YG8铣平面,刀具切削轻松,在进刀与工件接触时 以及刀具将工件切透时有振动,中间切削过程平稳,使用磨削液。 留0.5mm 余量进行精铣,可获得R a1.6的表面粗糙度。 2.加工十字形状 a.刀具选择:选用硬质合金立铣刀,刀具材料为Y330。铣刀外径?40。 b.切削参数选择:主轴转速235r/min。 c.切削加工情况:用Y330加工十字形状,手动横向进给,刀具切削轻 松,切削时加磨削液充分冷却。精铣时铣刀底刃修磨R2,后角为1 0°~12°,并用碳化硅油石修磨使切削刃光滑,工件能得到R a1.6 的表面粗糙度。此时后角的选择,尤其是刀具圆弧面后角的选择至 关重要,过大,会在铣削过程中产生振动,容易崩刃,使切削刃产 生锯口,加剧磨损:过小,会造成排屑、断屑困难,切屑还会粘刀, 后刀面与工件磨擦现象严重,刀具磨损加快。因此正确地修磨后角, 可以提高刀具的使用寿命。 3.车削工件内外圆弧表面 刀具材料、几何参数及切削用量的选择如下: a.刀具材料为YG8,45°偏刀断续切削,使用磨削液让切削刃冷却。用工装夹 持工件,每组加工8件,粗车切削用量V=25~38m/min,f=0.3~0.5mm/r, ap=3~5mm.如加工中间内孔,在连续切削的条件下精车,切削用量V=50~7 5m/min,f=0.1~0.2mm/r,ap=0.25~0.8mm。 前角γ=8°~12°能保证刀具强度。 .磨出0.05~0.1mm的负倒棱,增强切削刃强度。 .后角a=15°~20°,以减少后刀面与工件的摩擦,提高刀具寿命。 .粗车时,刃倾角λ=-3°~-5°,精车时刃倾角λ=-3°~0°。 .粗车时,刀尖圆弧半径r0=0.5mm,精车时r0=1~2mm,以增强刀尖强度。 .切削加工情况:通过以上参数选择,工件可获得R a1.6的表面粗糙度,并能有效地提高刀具寿命,主切削刃在刃磨后用碳化硅油石研磨出倒棱,可消除刃磨产生的锯口,提高抗磨损能力,并增强主切削刃强度。 .加工零件两边U形弧槽 图1所示U槽深约24mm,宽18mm,圆弧为28,弧形槽弦长61mm,为半盲槽,加工 后底部弧面及两侧面壁厚为4mm。由于是半盲槽,刀具进入切槽后,铣削阻力增大, 排屑不畅,刀具与切屑挤压现象严重,切削过程中有振动,刀具易崩刃,如继续切 削,刀具将在颈部处折断。加工后的零件表面凹凸不平,表面粗糙度达不到要求。 在选用刀具上,原选用硬质合金立铣刀加工,由于铣削产生的振动使铣刀崩刃,刀 具寿命较短。后改用超硬铝高速钢铣刀(刀具牌号W6Mo5Cr4V2Al)切槽,取得了较满 意的效果。其加工步骤如下: a.先将铣刀底部磨出圆角R2,后角值取8°~12°,并用油石修光。如果刀具

钛合金切削加工知识

合金磨削刀具-钛合金的切削加工 首页>行业信息>行业信息> 合金磨削刀具-钛合金的切削加工 摘要:文件地点传真-500kV世博输变电工程设备采购招标混凝土机械设备-我国混凝土泵车的研发趋势器 材行业企业-2008年是纺织机械发展预测除尘器粉尘气体-现代锅炉除尘设备简介控制器技术空调-我国将 制定变频控制器标准终结市场混乱新产品功能水平-中联环卫机械公司五款新产品通过验收波兰装配厂-扩 大欧洲市场份额徐工波兰装配厂落成叉车鸟巢开幕式-龙工叉车为奥运鸟巢极速“变装”出力(图)刀具加工 刀片-Kennametal公司推出KB9640新刀具工程机械企业-工程机械租赁业发展前景广阔1.钛合金可分为哪几类?钛是同素异构体,熔点为1720℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以 上呈体心立方品格结构,称为β钛。利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温度及相分含量逐渐改变而得到不同组织的钛合金。室温下,合金,磨削,刀具,丝锥,切屑,砂轮,磨损,铰刀,硬质合金,温度, 1.钛合金可分为哪几类? 钛是同素异构体,熔点为1720℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以上呈体心立方品格结构,称为β钛。利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温度及相分含量逐渐改变而得到不同组织的钛合金。室温下,钛合金有三种基体组织,钛合金也就分为以下三类: (1) α钛合金:它是α相固溶体组成的单相合金,不论是在一般温度下还是在较高的实际应用温度下,均是α相,组织稳定,耐磨性高于纯钛,抗氧化能力强。在500℃~600℃的温度下,仍保持其强度和抗蠕变性能,但不能进行热处理强化,室温强度不高。 (2) β钛合金:它是β相固溶体组成的单相合金,未热处理即具有较高的强度,淬火、时效后合金得到进一步强化,室温强度可达1372~1666 MPa;但热稳定性较差,不宜在高温下使用。 (3) α+β钛合金:它是双相合金,具有良好的综合性能,组织稳定性好,有良好的韧性、塑性和高温变形性能,能较好地进行热压力加工,能进行淬火、时效使合金强化。热处理后的强度约比退火状态提高50%~100%;高温强度高,可在400℃~500℃的温度下长期工作,其热稳定性次于α钛合金。 三种钛合金中最常用的是α钛合金和α+β钛合金;α钛合金的切削加工性最好,α+p钛合金次之,β钛合 金最差。α钛合金代号为TA,β钛合金代号为TB,α+β钛合金代号为TC。 2.钛合金有哪些性能和用途? 钛是一种新型金属,钛的性能与所含碳、氮、氢、氧等杂质含量有关,最纯的碘化钛杂质含量不超过0.1%,但其强度低、塑性高。99.5%工业纯钛的性能为:密度ρ=4.5g/cm3,熔点为1800℃,导热系数 λ=15.24W/(m.K),抗拉强度σb=539MPa,伸长率δ=25%,断面收缩率ψ=25%,弹性模量E=1.078×105MPa,硬度HB195。 (1)比强度高:钛合金的密度一般在4.5g/cm3左右,仅为钢的60%,纯钛的强度接近普通钢的强度,一些高强度钛合金超过了许多合金结构钢的强度。因此钛合金的比强度(强度/密度)远大于其他金属结构材料, 见表7-1,可制出单位强度高、刚性好、质轻的零、部件。目前飞机的发动机构件、骨架、蒙皮、紧固件 及起落架等都使用钛合金。

钛合金的切削加工及刀具设计

钛合金的切削加工及刀具设计 核心提示:分析了钛合金的相对可切削性,阐述了钛合金切削加工条件;以钛合金车加工和孔加工为例介绍了钛合金加工刀具的设计. 1.引言 钛及钛合金不仅是制造飞机、导弹、火箭等航天器的重要结构材料,而且在机械工程、海洋工程、生物工程及化学工程中的应用也日益广泛。如在阀门制造中,将不锈钢阀门与钛制阀门同时在酸性介质中使用,钛制阀门具有更好的使用寿命。 在钛中加入合金元素形成钛合金,其强度显着提高,σb可从350~700MPa提高到1200 MPa,因此在工业上应用钛合金的意义更具重要性。通常按使用状态下的组织将钛合金分为α钛合金(以TA表示)、β钛合金和(α+β)钛合金(以TC表示)三类,三种钛合金中最常用的是α钛合金和(α+β)钛合金。由于钛合金可切削性极差,因此给实际应用带来很多困难。笔者从钛合金的相对可切削性研究出发,根据多年生产经验提出较实用的刀具,供读者应用时参考。 2.钛合金可切削性的研究 若以45号钢的可切削性为100%,则钛合金的可切削性约为20~40%,其可切削性比不锈钢差,但比高温合金稍好。在钛合金中又按β型钛合金、α+β型钛合金、α型钛合金为序其可切削性逐步改善,而纯钛的可切削性最好。即在一般情况下,材料硬度愈高,加入合金元素越多,材料的可切削性越差。加工钛合金时,若材料硬度小于HB 300将会出现强烈粘刀现象,而硬度大于HB370时加工又极其困难,因此最好使钛合金材料的硬度在HB300~370之间。 2.1 钛合金切削机理的研究 (1)气体杂质的影响 各种气体杂质对于钛合金的可切削性有很大影响,其中最显着的是氧、氢和氮;钛合金的可切削性随着气体在钛合金中的含量增加而恶化。

钛合金大进给铣削工艺研究

钛合金铣削加工的技术要点 newmaker 与其他大多数金属材料加工相比,钛加工不仅要求更高,而且限制更多。这是因为钛合金所具有的冶金特性和材料属性可能会对切削作用和材料本身产生严重影响。但是,如果选择适当的刀具并正确加以使用,并且按照钛加工要求将机床和配置优化到最佳状态,那么就完全可以满足这些要求,并获得令人满意的高性能和完美结果。传统钛金属加工过程中碰到的许多问题并非不可避免,只要克服钛属性对加工过程的影响,就能取得成功。 钛的各种属性使之成为具有强大吸引力的零件材料,但其中许多属性同时也影响着它的可加工性。钛具备优良的强度-重量比,其密度通常仅为钢的60%。钛的弹性系数比钢低,因此质地更坚硬,挠曲度更好。钛的耐侵蚀性也优于不锈钢,而且导热性低。这些属性意味着钛金属在加工过程中会产生较高和较集中的切削力。它容易产生振动而导致切削时出现震颤;并且,它在切削时还容易与切削刀具材料发生反应,从而加剧月牙洼磨损。此外,它的导热性差,由于热主要集中在切削区,因此加工钛金属的刀具必须具备高热硬度。 稳定性是成功的关键所在 某些机加工车间发现钛金属难以有效加工,但这种观点并不代表现代加工方法和刀具的发展趋势。之所以困难,部分是因为钛金属加工是新兴工艺,缺少可借鉴的经验。此外,困难通常与期望值及操作者的经验相关,特别是有些人已经习惯了铸铁或低合金钢等材料的加工方式,这些材料的加工要求一般很低。相比之下,加工钛金属似乎更困难些,因为加工时不能采用同样的刀具和相同的速率,并且刀具的寿命也不同。即便与某些不锈钢相比,钛金属加工的难度也仍然要高。我们固然可以说,加工钛金属必须采取不同的切削速度和进给量以及一定的预防措施。其实与大多数材料相比,钛金属也是一种完全可直接加工的材料。只要钛工件稳定,装夹牢固,机床的选择正确,动力合适,工况良好,并且配备具有较短刀具悬伸的ISO 50主轴,则所有问题都会迎刃而解——只要切削刀具正确的话。 但在实际铣削加工中,钛金属加工所需的条件不容易全部满足,因为理想的稳定条件并不总是具备。此外,许多钛零件的形状复杂,可能包含许多细密或深长的型腔、薄壁、斜面和薄托座。要想成功加工这样的零件,就需要使用大悬伸、小直径刀具,这都会影响刀具稳定性。在加工钛金属时,往往更容易出现潜在的稳定性问题。 必须考虑振动和热 非理想环境还包含其它因素,其中之一就是大多数机床目前装配的是IS0 40主轴,如果高强度地使用机床,就无法长时间保持新刀状态。此外,如果零件结构较复杂的话,通常就不易有效夹紧。当然挑战还不止于此,切削工序有时必须用于全槽铣、侧削或轮廓铣削,所有这

钛合金切削加工知识

首页>行业信息>行业信息> 合金磨削刀具-钛合金的切削加工 摘要:文件地点传真-上海500kV世博输变电工程设备采购招标混凝土机械设备-我国混凝土泵车的研发趋势器材行业企业-2008年是纺织机械发展预测除尘器粉尘气体-现代锅炉除尘设备简介控制器技术空调-我国将制定变频控制器标准终结市场混乱新产品功能水平-中联环卫机械公司五款新产品通过验收波兰装配 厂徐州-扩大欧洲市场份额徐工波兰装配厂落成叉车鸟巢开幕式-龙工叉车为奥运鸟巢极速“变装”出力(图)刀具加工刀片-Kennametal公司推出KB9640新刀具工程机械企业-工程机械租赁业发展前景广阔1.钛合金可分为哪几类?钛是同素异构体,熔点为1720℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以上呈体心立方品格结构,称为β钛。利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温度及相分含量逐渐改变而得到不同组织的钛合金。室温下,合金,磨削,刀具,丝锥,切屑,砂轮,磨损,铰刀,硬质合金,温度, 1.钛合金可分为哪几类? 钛是同素异构体,熔点为1720℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以上呈体心立方品格结构,称为β钛。利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温度及相分含量逐渐改变而得到不同组织的钛合金。室温下,钛合金有三种基体组织,钛合金也就分为以下三类: (1) α钛合金:它是α相固溶体组成的单相合金,不论是在一般温度下还是在较高的实际应用温度下,均是α相,组织稳定,耐磨性高于纯钛,抗氧化能力强。在500℃~600℃的温度下,仍保持其强度和抗蠕变性能,但不能进行热处理强化,室温强度不高。 (2) β钛合金:它是β相固溶体组成的单相合金,未热处理即具有较高的强度,淬火、时效后合金得到进一步强化,室温强度可达1372~1666 MPa;但热稳定性较差,不宜在高温下使用。 (3) α+β钛合金:它是双相合金,具有良好的综合性能,组织稳定性好,有良好的韧性、塑性和高温变形性能,能较好地进行热压力加工,能进行淬火、时效使合金强化。热处理后的强度约比退火状态提高50%~100%;高温强度高,可在400℃~500℃的温度下长期工作,其热稳定性次于α钛合金。 三种钛合金中最常用的是α钛合金和α+β钛合金;α钛合金的切削加工性最好,α+p钛合金次之,β钛合金最差。α钛合金代号为TA,β钛合金代号为TB,α+β钛合金代号为TC。 2.钛合金有哪些性能和用途? 钛是一种新型金属,钛的性能与所含碳、氮、氢、氧等杂质含量有关,最纯的碘化钛杂质含量不超过%,但其强度低、塑性高。%工业纯钛的性能为:密度ρ=cm3,熔点为1800℃,导热系数λ=,抗拉强度 σb=539MPa,伸长率δ=25%,断面收缩率ψ=25%,弹性模量E=×105MPa,硬度HB195。 (1)比强度高:钛合金的密度一般在cm3左右,仅为钢的60%,纯钛的强度接近普通钢的强度,一些高强度钛合金超过了许多合金结构钢的强度。因此钛合金的比强度(强度/密度)远大于其他金属结构材料,见表7-1,可制出单位强度高、刚性好、质轻的零、部件。目前飞机的发动机构件、骨架、蒙皮、紧固件及起落架等都使用钛合金。 (2)热强度高:对于α钛合金,在350℃时TA6的巩达422MPa、TA7的σb达491MPa,在500℃时TA8的σb达687MPa;对于α+β钛合金,在400℃时TC4的σb达618MPa、TC10的σb达834 MPa,在450℃时TC6和TC7的σb均达589MPa、TC8的σb达706MPa,在500℃时TC9的σb达785MPa。这两类钛合金在150℃~500℃范围内仍有很高的比强度,而铝合金在150℃时比强度明显下降。钛合金的工作温度可达500℃,铝合金则在200℃以下。

钛合金的切屑加工工艺综述

科技论坛钛合金的切屑加工工艺综述 裴东王波 (中国电子科技集团公司第十八研究所,天津300381 )1钛合金的切屑加工特点钛合金材料由于具有比重小、强度高,特别是在300~400℃高温下仍具有极高强度和抗蚀性等特点,已经成为航空航天工业中最重要的工程材料之一,获得了越来越广泛的应用。 但是,钛合金又是一种典型的难加工材料,切削性能很差。与其它金属材料相比,钛合金有如下切削特点:1.1变形系数小。这是钛合金切削加工的显著特点,由于变形系数小于或接近于1,切屑在前刀面上滑动摩擦的路程大大增大,加速刀具磨损。1.2切削温度高。由于钛合金的导热系数很小(只相当于45号钢的1/5~1/7),切屑与前刀面的接触长度极短,切削时产生的热不易传出,切削温度很高。在相同的切削条件下,切削温度可比切削45号钢时高出一倍以上,造成刀具因磨损加剧而报废。1.3单位面积上的切削力大。主切削力比切钢时约小20%,由于切屑与前刀面的接触长度极短,单位接触面积上的切削力大大增加,容易造成崩刃。同时,由于钛合金的弹性模量小,加工时在径向力作用下容易产生弯曲变形,引起振动,加大刀具磨损并影响零件的精度。1.4冷硬现象严重。由于钛的化学活性大,在高的切削温度下,很容易吸收空气中的氧和氮形成硬而脆的外皮;同时切削过程中的塑性变形也会造成表面硬化。冷硬现象不仅会降低零件的疲劳强度,而且能加剧刀具磨损,是切削钛合金时的一个很重要特点。2切屑刀具的选择2.1刀具材料切削加工钛合金为降低切削温度和减少粘结,应选用高温硬度好、抗弯强度高、导热性能好、与钛合金亲和性差的刀具材料。高速钢由于高温硬度低,耐热性差一般不作选择,但在其中参杂钒、 钴和铝等对高速钢进行改性后得到的高钒高速钢(如W12Cr4V4M o)、高 钴高速钢(如W2M o9Cr4VCo8)或铝高速钢(如W6M o5Cr4V2Al 、M 10M o4Cr4V3Al)等刀具材料,却适于制作切削钛合金的钻头、铰刀、 立铣刀、拉刀、丝锥等刀具。硬质合金刀具应该是较为理想的选则,但其中YT 类硬质合金会与钛合金产生剧烈的亲和作用,加剧刀具的粘结磨损,不宜用来切削钛合金;YG 类硬质合金刀具材料有YG8、YG3、YG6X 等都是切屑钛合金的较好选择,一般适用于小批量产品的加工。为了满足大批量钛合金产品的加工,最好选择有耐高温涂层的硬质合金刀具,减少由于刀具磨损而必须进行的换刀操作,提高加工效率。2.2刀具参数2.2.1前角γ0:钛合金切屑与前刀面的接触长度短,前角较小时既可增加刀屑的接触面积,使切削热和切削力不至于过分集中在切削刃附近,改善散热条件,又能加强切削刃,减小崩损的可能性。 一般取γ0=5°~15°。2.2.2后角α0:钛合金已加工表面弹性恢复 大、冷硬现象严重,采用大后角可减小对后刀面造成的摩擦、粘附、 粘结、撕裂等现象,以减小后刀面的磨损。各种切削钛合金刀具的后角基本上都大于等于15°。2.2.3主偏角κr 和副偏角κ'r :切削钛 合金时切削温度高、 弹性变形倾向大,在工艺系统刚性允许的条件下,应尽量减小主偏角,以增加切削部分的散热面积和减小切削刃单位长度上的负荷,一般采用κr =30°,粗加工时取κr =45°。减小 副偏角可以加强刀尖,有利于散热和降低加工表面粗糙度值,一般 取κ'r =10°~15°。2.2.4刃倾角λs :由于毛坯有硬皮和表层组织不均匀,粗车时切削刃容易崩损,为了增加切削刃的强度和锋利程度,应加大切屑的滑动速度,一般取λs =-3°~-5°,精车时λs =0°。2.2.5刀尖圆弧半径r ε:切削钛合金时刀尖是最薄弱的部分,容易崩掉和磨损, 需磨出刀尖圆弧, 一般r ε=0.5~ 1.5mm 。车削时采用负倒棱(b γ=0. 03~0.05mm , γ01=-10°~0°), 断(卷)屑槽的槽底 圆弧半径R n =6~8 mm 。 3切屑参数的选择 钛合金切削加工时,切屑参数的选择一般以采用较低的切削速度、较大的切削深度和进给量为原则。较低的切削速度能够有效降 低切屑刃的温度。有实验数据表明切屑刃在高温段的寿命相比低温段呈现非线性的急速下降,因此降低切屑速度能够延长刀具使用寿命, 提高加工效率。较大的切削深度能够使刀刃避免由于钛合金变形系数小,使前刀面上的滑动摩擦路程大大增大而造成的刀具磨损。同时由于冷硬现象的存在,较大切削深度使刀刃完全进入被切 削的钛合金表面内,有效以防止产生磨损或崩刃现象。 3.1切削速度Vc :切削速度对刀具耐用度影响最大,最好能使刀具在相对磨损最小的最佳切削速度下工作。切削不同牌号的钛合金,由于强度差别较大,切削速度应在刀具厂商提供的最佳切屑速 度的基础上通过试切试验适当调整。 3.2进给量f :进给量对刀具的耐用度影响较小,在保证加工表 面粗糙度的条件下,可选较大的进给量,一般取f=0.1~0.3mm/r 。 进给量太小, 使刀具在硬化层内切削,增加刀具磨损,同时极薄的切屑在高的切削温度下容易自燃,因此不允许f<0.05mm/r 。3.3切削深度αp :切削深度对刀具耐用度的影响最小,一般选用较大的切削深度, 这样不仅可以避免刀尖在硬化层内切削,减小刀具磨损, 还可增加刀刃工作长度,有利于散热,一般取αp =1~5mm 。4切屑液的选择 切削钛合金时,最大的问题就是切屑温度过高对刀具寿命的影响。为了降低切削温度,必须向切削区域内浇注大量的以冷却作用为主的切削液。 切削液应满足导热系数大、比热大、热容量大、汽化热大、汽化速度快、流量大、流速快等要求。一般说来,水比油的导热系数大 3~5倍,比热大1倍,汽化热几乎大10倍左右,故用水溶性切削液 较为合适。车、铣削钛合金时,常采用乳化液,或采用有极压添加剂的水溶性切削液。 极压乳化剂的配方见表1。极压添加剂的水溶性切削液的配方为见表2。对于钻孔、扩孔、铰孔、拉削、攻丝等工序,应该采用润滑作用较大的极压可溶性油作切削液, 如蓖麻油、油酸、硫化油、氯化油等。冷却润滑的方法最好采用高压喷雾冷却法、高压内冷却法等,这样才可起到良好的冷却、润滑作用。切削液流量不少于15~20L /min 。 结束语钛合金的切屑加工时除了合理的选择刀具、切屑参数和切屑液等, 同时还应注意切削加工中不能停止走刀,避免引起钛合金的加工硬化而损坏刀具,特别是在铣屑加工时还应多采用顺铣方式, 有效降低刀刃温度。 这些工艺措施的采用都能有效的延长切屑刀具的寿命,极大提高钛合金的切屑加工效率。摘要:论述了钛合金材料在切屑加工过程中的特点,分析了刀具、切屑参数和切削液等方面对钛合金切削加工的影响,总结了适于钛合金加工的切屑加工工艺。 关键词:钛合金;切屑;工艺;刀具;切屑液 95··

钛合金刀具选取

钛合金以优异的综合力学性能、低密度以及良好的耐腐蚀性,被誉为是一种使人类走向太空时代的战略性金属材料,不仅在航空航天及军工领域得到广泛的使用,而且开始逐渐渗透到经济生活的各个方面。随着中国航空航天事业的发展,钛合金的加工技术受到更多的关注和研究。 钛合金的分类 钛合金按照不同的方法有不同的分类,最常用的分类方法是按退火后组织特点分类,可分成α、α+β、β型钛合金[1-4]。 α型钛合金密度小,有很好的热强性和热稳定性,焊接性能好,室温、超低温和高温性能良好,但不能进行热处理强化。例如TiAl在600℃时,仍然有很高的强度,而且蠕变性能、热稳定性、疲劳性能和断裂韧性等方面都有好的表现,常用于喷气发动机涡轮盘和叶片的制造。 图1钛合金航空发动机叶轮 α+β型钛合金双相合金,组织稳定,韧性、塑性和高温变形性能随着β相稳定元素的增加而提高;有较好的热压力加工性,能进行淬火时效使合金强化,热处理后的强度约比退火状态提高50%~100%;高温强度高,可在400~500℃的温度下长期工作,其热稳定性次于α钛合金。α+β型钛合金中Ti-6Al-4V(中国牌号TC4)是钛合金中使用量最大的钛合金,在美国,其产量占钛合金产量一半以上,以其优良的综合力学性能和切削加工性大量用于航空零件制造[5-9]。图1为钛合金航空发动机叶轮。 β钛合金是β相固溶体组成的单相合金,室温的强度较高,冷加工和冷成型加工能力强,未热处理即具有较高的强度,淬火时效后合金强度得到进一步强化,室温强度可达1372~1666MPa;但热稳定性较差,不宜在高温下使用[10-13]。 钛合金切削加工的特点 钛合金本身所具有的物理和化学性能给切削加工带来了困难,具体表现有以下6点。 (1)钛合金的导热性差,是不良导热体金属材料。由于导热、导温系数小,是45号钢的1/6,所以在加工时所产生的高热量不能有效扩散,同时刀具的切削刃和切屑的接触长度短,使热量大量聚集在切削刃上,温度急剧上升,导致刀刃的红硬性下降,刀刃软化,加快刀具磨损[14]。 (2)钛合金的亲和力大。钛合金在加工中黏刀现象严重。增大了刀体与工件的摩擦,摩擦导致大量的热,降低了刀具的使用寿命。 (3)高的化学活性。在加工中,随着切屑温度的升高,容易与空气中的O、N、CO、CO2、H2O等发生反应,使间隙元素O、N的含量增加,工件的表面氧化变硬,难以加工,增大了刀具单位面积上所承受的切削力,刀尖应力变大,同时使前刀面和后刀面与工件的摩擦加

钛合金切削加工工艺

钛合金切削加工工艺 一、钛合金的材料特性 钛合金产品的比强度在金属结构材料中是很高的,它的强度与钢材相当,但其重量仅为刚材的57% 。另外,钛及其合金的耐热性强,在500℃的大气中仍能保持良好的强度和稳定性,短时间工作温度甚至还可以高些。钛合金具有比重小、热强度高、热稳定性和抗腐蚀性好等特性,但该材料切削加工困难、加工效率低。所以怎么样攻克钛合金加工难,效率低得困难一直是我们的难题。 二、钛合金的切削加工 1、车削 钛合金产品车削易获得较好的表面粗糙度,加工硬化不严重,但切削温度高,刀具磨损快。针对这些特点,主要在刀具、切削参数方面采取以下措施: 刀具材料:根据工厂现有条件选用YG6,YG8,YG10HT。 刀具几何参数:合适的刀具前后角、刀尖磨圆。 较低的切削速度,适中的进给量,较深的切削深度,充分冷却,车外圆时刀尖不能高于工件中心,否则容易扎刀,精车及车削薄壁件时,刀具主偏角要大,一般为75~90°。 三、铣削 钛合金产品铣削比车削困难,因为铣削是断续切削,并且切屑易与刀刃发生粘结,当粘屑的刀齿再次切入工件时,粘屑被碰掉并带走一小块刀具材料,形成崩刃,极大地降低了刀具的耐用度。金属加工微信,内容不错,值得关注。因此对钛合金铣削采取了3点措施: 铣削方式:一般采用顺铣。刀具材料:高速钢M42。从工件装夹及设备方面提高工艺系统刚性。 这里需要特别指出的是:一般合金钢的加工均不采用顺铣,因机床丝杠、螺母间隙的影响,顺铣时,铣刀作用在工件上,在进给方向上的分力与进给方向相同,易使工件台产生间隙性窜动,造成打刀。对顺铣而言,刀齿一开始切入就碰到硬皮而导致刀具破损。但由于逆铣切屑是由薄到厚,在最初切入时刀具易与工件发生干摩擦,加重刀具的粘屑和崩刃,就钛合金而言,后一矛盾显得更为突出。 此外,为使钛合金顺利铣削,还应注意以下几点:相对于通用标准铣刀,前角应减小,后角应加大。;铣削速度宜低。;尽量采用尖齿铣刀,避免使用铲齿铣刀;刀尖应圆滑转接;大量使用切削液。;为提高生产效率,可适当增加铣削深度与宽度,铣削深度一般粗加工为1.5~3.0mm,精加工为0.2~0.5mm。 四、磨削 磨削钛合金零件常见的问题是粘屑造成砂轮堵塞以及零件表面烧伤。其原因是钛合金的导热性差,使磨削区产生高温,从而使钛合金与磨料发生粘结、扩散以及强烈的化学反应。粘屑和砂轮堵塞导致磨削比显著下降,扩散和化学反应的结果,使工件被磨表面烧伤,导致零件疲劳强度降低,这在磨削钛合金铸件时更为明显。 为解决这一问题,采取的措施是:选用合适的砂轮材料:绿碳化硅TL。稍低的砂轮硬度:ZR1。较粗的砂轮粒度:60。稍低的砂轮速度:10~20m/s。稍小的进给量,用乳化液充分冷却。

钛合金知识

钛合金知识 [作者:本站点击次数:353 更新时间:2010-2-24 ] 钛合金是以钛为基加入其他元素组成的合金。钛有两种同质异晶体:882℃以下为密排六方结构α钛,882℃以上为体心立方的β钛。 合金元素根据它们对相变温度的影响可分为三类: ①稳定α相、提高相转变温度的元素为α稳定元素,有铝、碳、氧和氮等。其中铝是钛合金主要合金元素,它对提高合金的常温和高温强度、降低比重、增加弹性模量有明显效果。 ②稳定β相、降低相变温度的元素为β稳定元素,又可分同晶型和共析型二种。前者有钼、铌、钒等;后者有铬、锰、铜、铁、硅等。 ③对相变温度影响不大的元素为中性元素,有锆、锡等。 氧、氮、碳和氢是钛合金的主要杂质。氧和氮在α相中有较大的溶解度,对钛合金有显著强化效果,但却使塑性下降。通常规定钛中氧和氮的含量分别在0.15~0.2%和0.04~0.05%以下。氢在α相中溶解度很小,钛合金中溶解过多的氢会产生氢化物,使合金变脆。通常钛合金中氢含量控制在0.015%以下。氢在钛中的溶解是可逆的,可以用真空退火除去。 钛合金的分类 钛是同素异构体,熔点为1720℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以上呈体心立方品格结构,称为β钛。利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温度及相分含量逐渐改变而得到不同组织的钛合金(titanium alloys)。室温下,钛合金有三种基体组织,钛合金也就分为以下三类:α合金,(α+β)合金和β合金。中国分别以TA、TC、TB表示。 α钛合金 它是α相固溶体组成的单相合金,不论是在一般温度下还是在较高的实际应用温度下,均是α相,组织稳定,耐磨性高于纯钛,抗氧化能力强。在500℃~600℃的温度下,仍保持其强度和抗蠕变性能,但不能进行热处理强化,室温强度不高。 β钛合金 它是β相固溶体组成的单相合金,未热处理即具有较高的强度,淬火、时效后合金得到进一步强化,室温强度可达1372~1666 MPa;但热稳定性较差,不宜在高温下使用。 α+β钛合金 它是双相合金,具有良好的综合性能,组织稳定性好,有良好的韧性、塑性和高温变形性能,能较好地进行热压力加工,能进行淬火、时效使合金强化。热处理后的强度约比退火状态提高50%~100%;高温强度高,可在400℃~500℃的温度下长期工作,其热稳定性次于α钛合金。 三种钛合金中最常用的是α钛合金和α+β钛合金;α钛合金的切削加工性最好,α+β钛合金次之,β钛合金最差。α钛合金代号为TA,β钛合金代号为TB,α+β钛合金代号为TC。 钛合金按用途可分为耐热合金、高强合金、耐蚀合金(钛-钼,钛-钯合金等)、低温合金以及特殊功能合金(钛-铁贮氢材料和钛-镍记忆合金)等。典型合金的成分和性能见表。

航空航天用钛合金的切削加工现状及发展趋势

航空航天用钛合金的切削加工现状及发展趋势 钛合金在航空航天工业和其他工业部门有着广泛的应用前景。随着科学技术的不断进步和我国国民经济的快速发展,作为“崛起的第三代金属”钛工业必将大有作为。 航空航天用钛合金的特点及应用 作为航空航天领域不断兴起的材料,钛合金有以下优势[1-3] : (1 )比强度高。钛合金具有很高的强度,其抗拉强度为686~1176MPa ,而密度仅为钢的 60% 左右,所以比强度很高。 ( 2 )高温性能优良。钛合金在高温下仍能保持良好的机械性能,其耐热性远高于铝合金,且工作温度范围较宽。 (3)抗腐蚀性强。在550 C以下的空气中,钛表面会迅速形成薄而致密的氧化钛膜,其耐蚀性优于大多数不锈钢。 在航空工业领域,钛合金主要用于制造喷气发动机的压气机盘、涡轮盘、叶片、机匣等,以及诸如大型主起落架支撑梁、机身后段及转向梁等结构件[4] 。因钛合金具有比强度高和耐高温特点,用于制造飞机发动机和机体能够有效地提高发动机推重比和机体机构效率,有利于缓解热障现象[5]。近年来军用飞机上所用钛合金材料的比例正在不断增加[6] ,钛合金材 料的应用水平已成为衡量飞机先进性的重要标志之一。美国第四代战斗机的F-22 的机体主要承力材料大量采用钛64( Ti-6Al-4V ),约占机身总质量的36% ,钛62222 主要用于发动机周围蒙皮机构及发动机框架,约占机身总质量的3%[7] 。在民用飞机方面,钛合金的应用也较为广泛。在波音777 上大约采用了11%的钛结构,其平面钛箔的用量将达到12247 kg[8] 。在航天工业领域,钛合金主要用于制造耐高温和低温零件 [9]。如上海钢铁研究所的7 715D 用于DFH-3 卫星的FY-25 型远地点发动机喷注器;俄罗斯的BT37 合金广泛应用于宇航工业形状复杂的低温管路系统。 航空航天用钛合金的切削加工现状 航空航天用钛合金零部件主要有两类。一类是复杂曲面,如叶轮、涡轮盘和叶片等,实际生 产中采用多轴数控加工。图1 中采用多轴铣削加工的钛合金涡轮即为复杂曲面。另一类是薄壁框型件,如大型框、梁和壁板等多采用铣削加工。图2 中采用立铣加工的钛合金壁板是典型的薄壁框型件。上述两种工件的加工都必须从整块坯料中去除大量的材料,而钛合金 的切削加工性较差,其工件的加工成本占工件总成本的比重很大。切削加工困难是导致钛合金零件价格高昂的重要因素。

钛合金铣削用量选择

TA15、TB6两种钛合金材料具有重量轻、强度高、耐热、耐腐蚀、疲劳性能好等一系列 优良的力学、物理性能,成为航空航天、核能、船舶等领域理想的结构材料之一。但由于该材料价格昂贵,难加工,尤其是铣削加工制造周期长、成本高,制约了它的应用。而新一代航空产品需要具备更优异的性能新材料、新结构、新工艺被广泛应用。同时,为了竞争的需 要,研制周期短和制造成本低是取胜的关键,因此,开展对TA15、TB6两种钛合金材料切削加工的研究是必要的,特别是铣削高效加工的探索尤其显得紧迫和重要。 TA15、TB6钛合金材料主要特征 TA15α钛合金是α相固熔体组成的单相合金。该合金室温强度在930MPa以上,耐热性高于纯钛,组织稳定,抗氧化能力强,500~600 ℃下仍保持其强度,抗蠕变能力强,但不能进行热处理强化。 TB6β钛合金是β相固熔体组成的单相合金。该合金室温强度在1105MPa 以上,但热稳定性较差,不宜在高温下使用。 TA15、TB6钛合金的切削加工工艺特性 摩擦系数大,导热系数低,刀尖切削温度高。钛合金热导率仅为钢的1/4 、铝的1/14 、铜的1/25 , 因而散热慢,不利于热平衡。切削时产生的切削热都集中在刀尖上,使刀尖温度很高,易使刀尖很快熔化或粘结磨损而变钝。 弹性模量小。钛合金的弹性模量只有30CrMnSi的56% ,这说明零件的刚性差,切削 时易产生弹性变形和振动,不仅影响零件的尺寸精度和表面质量,而且还影响刀具的使用寿命;同时造成已加工面的弹性恢复较大,刀具后面摩擦增加导致刀具过快磨损。 化学活性大。在300℃以上时有强烈的吸氢、氧、氮的特性,造成加工表面易产生脆硬 的化合物,切屑形成短碎片状,使刀具极易磨损。 钛合金化学亲和力较强,极易与其他金属亲和结合。在加工中切屑与刀具的粘结现象严重,使刀具的粘结和扩散磨损加大。 TA15、TB6钛合金零件切削用量和刀具参数的选择 主要加工方法 钛合金零件的加工余量比较大,有的部位很薄(2~3mm) ,主要配合表面的尺寸精度、 形位公差又较严,因此每项结构件都必须按粗加工→半精加工→精加工的顺序分阶段安排工序。主要表面分阶段反复加工,减少表面残余应力,防止变形,最后达到设计图的要求。其主要的加工方法有铣削、车削、磨削、钻削、铰削、攻丝等。

钛合金加工性能

一,钛合金大类综述 钛合金具有强度高而密度又小,机械性能好,韧性和抗蚀性能很好。另外,钛合金的工艺性能差,切削加工困难,在热加工中,非常容易吸收氢氧氮碳等杂质。还有抗磨性差,生产工艺复杂。 钛合金是航空航天工业中使用的一种新的重要结构材料,比重、强度和使用温度介于铝和钢之间,但比强度高并具有优异的抗海水腐蚀性能和超低温性能。钛合金主要用于制作飞机发动机压气机部件,其次为火箭、导弹和高速飞机的结构件。 室温下,钛合金有三种基体组织,钛合金也就分为以下三类:α合金,(α+β)合金和β合金。中国分别以TA、TC、TB表示。 钛合金性能特点: ①使用温度高,在中等温度下仍能保持所要求的强度,可在450~500℃的温度下长期工作。②钛合金在潮湿的大气和海水介质中工作,其抗蚀性远优于不锈钢;对点蚀、酸蚀、应力腐蚀的抵抗力特别强;对碱、氯化物、氯的有机物品、硝酸、硫酸等有优良的抗腐蚀能力。但钛对具有还原性氧及铬盐介质的抗蚀性差。③钛合金在低温和超低温下,仍能保持其力学性能。低温性能好,间隙元素极低的钛合金,如TA7,在-253℃下还能保持一定的塑性。因此,钛合金也是一种重要的低温结构材料。 二,典型牌号分析 三,难加工原因 钛合金的硬度大于HB350时切削加工特别困难,小于HB300时则容易出现粘刀现象,也难于切削。 ①,变形系数小:这是钛合金切削加工的显著特点,变形系数小于或接近于1。切屑 在前刀面上滑动摩擦的路程大大增大,加速刀具磨损。 ②,切削温度高:由于钛合金的导热系数很小,切屑与前刀面的接触长度极短,切削 时产生的热不易传出,集中在切削区和切削刃附近的较小范围内,切削温度很高。 在相同的切削条件下,切削温度可比切削45号钢时高出一倍以上。 ③,单位面积上的切削力大:主切削力比切钢时约小20%,由于切屑与前刀面的接触 长度极短,单位接触面积上的切削力大大增加,容易造成崩刃。同时,由于钛合金的弹性模量小,加工时在径向力作用下容易产生弯曲变形,引起振动,加大刀具磨损并影响零件的精度。因此,要求工艺系统应具有较好的刚性。 ④,冷硬现象严重:由于钛的化学活性大,在高的切削温度下,很容易吸收空气中的 氧和氮形成硬而脆的外皮;同时切削过程中的塑性变形也会造成表面硬化。冷硬现象不仅会降低零件的疲劳强度,而且能加剧刀具磨损,是切削钛合金时的一个很重要特点。 ⑤,刀具易磨损:毛坯经过冲压、锻造、热轧等方法加工后,形成硬而脆的不均匀外 皮,极易造成崩刃现象,使得切除硬皮成为钛合金加工中最困难的工序。另外,由于钛合金对刀具材料的化学亲和性强,在切削温度高和单位面积上切削力大的条件下,刀具很容易产生粘结磨损。 四,拟采取的措施 1,刀具材料 切削加工钛合金应从降低切削温度和减少粘结两方面出发,选用红硬性好、抗弯强度高、导热性能好、与钛合金亲和性差的刀具材料,YG类硬质合金比较合适。常用的硬质合金刀具材料有YG8、YG3、YG6X、YG6A、813、643、YS2T和YD15等。2,刀具几何参数

钛合金的切削加工工艺研究

钛合金的切削加工工艺研究 摘要:钛合金具有密度小、强度高、耐高温等优良特性,在航空航天以及其他方面得到广泛的应用,但由于其加工难度大、切削效率低、刀具寿命短而影响了它的应用。本文通过对钛合金材料的特性及切削性能的分析,通过生产中的实例,对其车削和铣削工艺方法进行了工艺研究,同时对不同批次的材料加工的零件,出现色差的问题进行了分析。 关键词:钛合金实例色差分析 1、引言 钛合金是一种典型的难加工材料,其加工特性主要表现在以下几个方面:(1)钛合金强度高,硬度大,所以要求加工设备功率大,刀具应有较高的强度和硬度。(2)切屑与前刀面接触面积小,刀尖应力大。(3)钛合金摩擦因素大,导热系数低。刀具与切屑的接触长度短,切削热积聚于切削刃附近的小面积内而不易散发。这些因素使得钛合金的切削温度很高,造成刀具磨损加快,并影响加工质量。(4)由于钛合金弹性模量低,切削加工时工件回弹大,容易造成刀具后刀面磨损的加剧和工件变形。(5)钛合金高温时化学活性很高,容易与空气中的氢氧等气体杂质发生化学反应,生成硬化层,进一步加剧了刀具的磨损。(6)钛合金切削加工中,工件材料极易与刀具表面黏结,加上很高的切削温度,所以刀具容易产生扩散磨损和黏结磨损。 2、生产中管类零件切削加工工艺分析 2.1 管类零件的加工工艺 图1是某管类零件的结构图,该零件的材料选用的是TA2 M的钛合金钢管。材料规格是φ63×3.5×130,每根坯料可做一件。 在加工过程中,根据该零件的要求,用车削和铣削的方法即可完成。其加工的工艺规程如图2所示。 零件最后成型属于薄壁零件,在进行加工时,为了保证零件的几何尺寸满足使用要求,加工时不变形。所以,车削和铣削时都要用芯棒装夹。而铣削时是第二次装夹,为了减小铣削后的接刀痕,在进行芯棒装夹时,其间隙应尽量的小。铣削完成后,用锉刀和砂皮将接刀痕打掉。 2.2 刀具材料的选择 加工钛合金的刀具材料应具备如下性能:高温状态下的化学稳定性;足够的强度和韧性;良好的热传导性。加工钛合金时,应尽可能选择与钛合金亲合力小的刀具材料。刀具选用YG8硬质合金材料,没有选用YT类硬质合金材料,主要是YT类硬质合金材料中也含有Ti,这样同种元素之间会发生亲和力而出现粘刀现象,当切削温度高,摩擦系数大,就加剧了刀具的磨损。刀具的几何尺寸如表3所示。 2.3 刀具参数优选 3.3.1 车削加工 因钛合金的导热性差,为减少刀具后刀面与加工表面摩擦产生的热,刀具后角要选的大些,加工一般材料的刀具后角取α0=6°—8°;加工钛合金的刀具后角取α0=14°—17°;前角要大一些,γ0=8°—12°,以保证刀刃锋利,减小加工变形,提高加工表面质量;主偏角Kr=90°,以降低径向力,防止震动;刀尖圆弧rε≤0.8mm 合适。

钛合金加工工艺及介绍

钛合金的加工工艺及刀具介绍 为什么我们认为钛合金是一种难加工材料?因为对其加工机理和现象缺乏深刻的认识。 1.钛加工的物理现象 钛合金加工时的切削力只是略高于同等硬度的钢,但是加工钛合金的物理现象比加工钢要复杂得多,从而使钛合金加工面临巨大的困难。 大多数的钛合金的热导率很低,只有钢的1/7,铝的1/16。因此,在切削钛合金过程中产生的热量不会迅速传递给工件或被切屑带走,而集聚在切削区域,所产生的温度可高达1 000℃以上,使刀具的刃口迅速磨损、崩裂和生成积屑瘤,快速出现磨损的刀刃,又使切削 区域产生更多的热量,进一步缩短刀具的寿命。 切削过程中产生的高温同时破坏了钛合金零件的表面完整性,导致零件几何精度下降和出现严重减少其疲劳强度的加工硬化现象。 钛合金的弹性对零件性能来说可能是有益的,但是在切削过程中,工件的弹性变形是产生振动的重要原因。切削压力使“弹性”的工件离开刀具和反弹,从而使刀具与工件之间摩擦现象大于切削作用。摩擦过程也会产生热,加重了钛合金导热性不良问题。 加工薄壁或环形等易变形零件时,这个问题就更加严重,将钛合金薄壁零件加工到预期的尺寸精度不是一件容易的事。因为随着工件材料被刀具推开时,薄壁的局部变形已经超出弹性范围而产生塑性变形,切削点的材料强度和硬度明显增加。此时,按照原先确定的切削速度加工就变得过高,进一步导致刀具急剧磨损。 “热”是钛合金难加工的“罪魁祸首”! 2.加工钛合金的工艺诀窍 在理解钛合金加工机理的基础上,加上以往的经验,加工钛合金的主要工艺诀窍如下: (1) 采用正角型几何形状的刀片,以减少切削力、切削热和工件的变形。 (2) 保持恒定的进给以避免工件的硬化,在切削过程中刀具要始终处于进给状态,铣削时径向吃刀量a e应为半径的30%。 (3) 采用高压大流量切削液,以保证加工过程的热稳定性,防止因温度过高导致工件表面变性和刀具损坏。 (4) 保持刀片刃口锋利,钝的刀具是热集结和磨损的原因,容易导致刀具失效。

相关主题
文本预览
相关文档 最新文档