当前位置:文档之家› 高三一轮复习导学案07 第02章 第04节——函数的奇偶性与周期性,第05节——二次函数

高三一轮复习导学案07 第02章 第04节——函数的奇偶性与周期性,第05节——二次函数

高三一轮复习导学案07 第02章 第04节——函数的奇偶性与周期性,第05节——二次函数
高三一轮复习导学案07 第02章 第04节——函数的奇偶性与周期性,第05节——二次函数

§2.4函数的奇偶性与周期性

1.奇、偶函数的概念

一般地,如果对于函数f(x)的定义域内任意一个x,都有__________,那么函数f(x)就叫做偶函数.

一般地,如果对于函数f(x)的定义域内任意一个x,都有____________,那么函数f(x)就叫做奇函数.

奇函数的图象关于原点对称;偶函数的图象关于y轴对称.

2.奇、偶函数的性质

(1)奇函数在关于原点对称的区间上的单调性__________,偶函数在关于原点对称的

区间上的单调性________.

(2)在公共定义域内,

①两个奇函数的和是________,两个奇函数的积是偶函数;

②两个偶函数的和、积都是__________;

③一个奇函数,一个偶函数的积是__________.

3.周期性

(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任

何值时,都有f(x+T)=________,那么就称函数y=f(x)为周期函数,称T为这个函数的周期.

(2)最小正周期:如果在周期函数f(x)的所有周期中____________的正数,那么这个最

小正数就叫做f(x)的最小正周期.

4.对称性

若函数f(x)满足f(a-x)=f(a+x)或f(x)=f(2a-x),则函数f(x)关于直线x=a对称. [难点正本疑点清源]

1.函数奇偶性的判断

判断函数的奇偶性主要根据定义:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x)(或f(-x)=-f(x)),那么函数f(x)就叫做偶函数(或奇函数).其中包含两个必备条件:

①定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义

域有利于准确简捷地解决问题;

②判断f (x )与f (-x )是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式(f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数))是否成立. 2.函数奇偶性的性质

(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反. (2)若f (x )为偶函数,则f (-x )=f (x )=f (|x |). (3)若奇函数f (x )定义域中含有0,则必有f (0)=0. f (0)=0是f (x )为奇函数的既不充分也不必要条件.

(4)定义在关于原点对称区间上的任意一个函数,都可表示成“一个奇函数与一个偶函数的和(或差)”.

(5)复合函数的奇偶性特点是:“内偶则偶,内奇同外”.

(6)既奇又偶的函数有无穷多个(如f (x )=0,定义域是关于原点对称的任意一个数集).

1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________.

2.下列函数中,所有奇函数的序号是________. ①f (x )=2x 4+3x 2;②f (x )=x 3-2x ; ③f (x )=x 2+1

x

;④f (x )=x 3+1.

3.(2011·广东)设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.

4.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是________.

5.定义在R 上的函数y =f (x )是奇函数,且满足f (1+x )=f (1-x ).当x ∈[-1,1]时,f (x )=x 3,则f (2 013)的值是( )

A.-1

B.0

C.1

D.2

题型一 函数奇偶性的判断 例1 判断下列函数的奇偶性. (1)f (x )=9-x 2+x 2-9; (2)f (x )=(x +1) 1-x

1+x

; (3)f (x )=4-x 2

|x +3|-3

.

探究提高 判断函数的奇偶性,其中包括两个必备条件:

(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域对解决问题是有利的;

(2)判断f (x )与f (-x )是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数))是否成立. 分段函数指在定义域的不同子集有不同对应关系的函数,分段函数奇偶性的判断,要分别从x >0或x <0来寻找等式f (-x )=f (x )或f (-x )=-f (x )成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.

判断下列函数的奇偶性.

(1)f (x )=lg

1-x

1+x

;(2)f (x )=(x -1) 2+x

2-x

; (3)f (x )={ x 2

+x (x >0), x 2

-x (x <0);(4)f (x )=lg (1-x 2)

|x 2-2|-2.

题型二 函数的单调性与奇偶性 例2 定义在(-1,1)上的函数f (x ).

(ⅰ)对任意x ,y ∈(-1,1)都有:f (x )+f (y )=f ?

??

??x +y 1+xy ;

(ⅱ)当x ∈(-∞,0)时,f (x )>0,回答下列问题. (1)判断f (x )在(-1,1)上的奇偶性,并说明理由; (2)判断函数f (x )在(0,1)上的单调性,并说明理由; (3)若f ????15=12,试求f ????12-f ????111-f ???

?119的值. 探究提高 对于抽象函数单调性和奇偶性的判断一般要紧扣定义.通过赋值要出现:f (x 1)-f (x 2)与0的大小关系,f (x )与f (-x )的关系.就本题来讲要注意运用x <0时f (x )>0的条件.

函数y =f (x )(x ≠0)是奇函数,且当x ∈(0,+∞)时是增函数,若f (1)=0,

求不等式f [x (x -1

2)]<0的解集.

题型三 函数的奇偶性与周期性

例3 设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2. (1)求证:f (x )是周期函数; (2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2 011).

探究提高 判断函数的周期只需证明f (x +T )=f (x ) (T ≠0)便可证明函数是周期函数,

且周期为T,函数的周期性常与函数的其他性质综合命题,是高考考查的重点问题.

已知f(x)是定义在R上的偶函数,并且f(x+2)=-1

f(x)

,当2≤x≤3时,f(x)=x,则f(105.5)=________.

2.等价转换要规范

试题:(12分)函数f(x)的定义域D={x|x≠0},且满足对于任意x1,x2∈D.有f(x1·x2)=f(x1)+f(x2).

(1)求f(1)的值;

(2)判断f(x)的奇偶性并证明;

(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值

范围.

学生解答展示

审题视角(1)从f(1)联想自变量的值为1,进而想到赋值x1=x2=1.(2)判断f(x)的奇偶性,就是研究f(x)、f(-x)的关系.从而想到赋值x1=-1,x2=x.即f(-x)=f(-1)+f(x).(3)就是要出现f(M)N的形式求解.

规范解答

解(1)令x1=x2=1,

有f(1×1)=f(1)+f(1),解得f(1)=0.[2分]

(2)f (x )为偶函数,证明如下:[4分] 令x 1=x 2=-1,

有f [(-1)×(-1)]=f (-1)+f (-1),解得f (-1)=0. 令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ).∴f (x )为偶函数.[7分] (3)f (4×4)=f (4)+f (4)=2, f (16×4)=f (16)+f (4)=3.[8分] 由f (3x +1)+f (2x -6)≤3, 变形为f [(3x +1)(2x -6)]≤f (64).(*) ∵f (x )为偶函数,∴f (-x )=f (x )=f (|x |).

∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).[9分] 又∵f (x )在(0,+∞)上是增函数,

∴|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0. 解得-73≤x <-13或-1

3

∴x 的取值范围是{x |-73≤x <-13或-1

3

批阅笔记 数学解题的过程就是一个转换的过程.解题质量的高低,取决于每步等价转换的规范程度.如果每一步等价转换都是正确的、规范的,那么这个解题过程就一定是规范的.等价转化要做到规范,应注意以下几点:

(1)要有明确的语言表示.如“M ”等价于“N ”,“M ”变形为“N ”.

(2)要写明转化的条件.如本例中:∵f (x )为偶函数,∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).

(3)转化的结果要等价.如本例:由于f [|(3x +1)(2x -6)|]≤f (64)?|(3x +1)(2x -6)|≤64, 且(3x +1)(2x -6)≠0.若漏掉(3x +1)(2x -6)≠0,则这个转化就不等价了.

方法与技巧

1.正确理解奇函数和偶函数的定义,必须把握好两个问题:

(1)定义域在数轴上关于原点对称是函数f (x )为奇函数或偶函数的必要非充分条件; (2)f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.

2.奇偶函数的定义是判断函数奇偶性的主要依据.为了便于判断函数的奇偶性,有时需要先将函数进行化简,或应用定义的等价形式:f (-x )=±f (x )?f (-x )±f (x )=0?f (-x )

f (x )

±1(f(x)≠0).

3.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也真.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.

失误与防范

1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.

2.判断函数f(x)是奇函数,必须对定义域内的每一个x,均有f(-x)=-f(x),而不能说存在x0使f(-x0)=-f(x0).对于偶函数的判断以此类推.

3.分段函数奇偶性判定时,要以整体的观点进行判断,不可以利用函数在定义域某一区

间上不是奇偶函数而否定函数在整个定义域上的奇偶性.

§2.4 函数的奇偶性与周期性

(时间:60分钟) A 组 专项基础训练题组

一、选择题

1.(2011·课标全国)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是 ( ) A.y =x 3

B.y =|x |+1

C.y =-x 2+1

D.y =2

-|x |

2.(2011·辽宁)若函数f (x )=x

(2x +1)(x -a )为奇函数,则a 等于

( )

A.12

B.23

C.34

D.1

3.函数f (x )在定义域R 上不是常数函数,且f (x )满足条件:对任意x ∈R ,都有f (2+x )=f (2-x ),f (1+x )=-f (x ),则f (x ) ( )

A.是奇函数但非偶函数

B.是偶函数但非奇函数

C.既是奇函数又是偶函数

D.是非奇非偶函数

4.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)等于 ( ) A.-2 B.2 C.-98 D.98

二、填空题

5.设函数f (x )=(x +1)(x +a )

x

为奇函数,则a =________.

6.(2010·江苏)设函数f (x )=x (e x +a e -

x )(x ∈R )是偶函数,则实数a 的值为________.

7.(2010·山东高考改编)设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)=______. 三、解答题

8.已知函数f (x )=x 2+a

x (x ≠0).

(1)判断f (x )的奇偶性,并说明理由;

(2)若f (1)=2,试判断f (x )在[2,+∞)上的单调性.

B 组 专项能力提升题组

一、选择题

1.(2011·安徽)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)等于( )

A.-3

B.-1

C.1

D.3

2.设奇函数f (x )的定义域为R ,最小正周期T =3,若f (1)≥1,f (2)=2a -3

a +1,则a 的取值

范围是

( )

A.a <-1或a ≥2

3

B.a <-1

C.-1

3

D.a ≤23

3.定义在R 上的函数f (x )是偶函数,且f (x )=f (2-x ).若f (x )在区间[1,2]上是减函数,则f (x )( )

A.在区间[-2,-1]上是增函数,在区间[3,4]上是增函数

B.在区间[-2,-1]上是增函数,在区间[3,4]上是减函数

C.在区间[-2,-1]上是减函数,在区间[3,4]上是增函数

D.在区间[-2,-1]上是减函数,在区间[3,4]上是减函数 二、填空题

4.已知定义在R 上的函数y =f (x )满足条件f ????x +32=-f (x ),且函数y =f ????x -34为奇函数,给出以下四个命题: (1)函数f (x )是周期函数;

(2)函数f (x )的图象关于点????-3

4,0对称; (3)函数f (x )为R 上的偶函数; (4)函数f (x )为R 上的单调函数. 其中真命题的序号为________.

5.(2011·浙江)若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.

6.对于函数f (x )=ax +1

x -1

(其中a 为实数,x ≠1),给出下列命题:

①当a =1时,f (x )在定义域上为单调函数;②f (x )的图象关于点(1,a )对称;③对任意a ∈R ,f (x )都不是奇函数;④当a =-1时,f (x )为偶函数;⑤当a =2时,对于满足条件2

7.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x =1对称. (1)求证:f (x )是周期为4的周期函数;

(2)若f (x )=x (0

8.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).

(1)求f(1)的值;

(2)判断f(x)的奇偶性并证明你的结论;

(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.

答案

要点梳理

1.f (-x )=f (x ) f (-x )=-f (x )

2.(1)相同 相反 (2)①奇函数 ②偶函数 ③奇函数 3.(1)f (x ) (2)存在一个最小 基础自测

1.1

3

2.②③

3.-9 4.(-1,0)∪(1,+∞) 5.C 题型分类·深度剖析

例1 解 (1)由?

????

9-x 2

≥0

x 2-9≥0,得x =±3.

∴f (x )的定义域为{-3,3}. 又f (3)+f (-3)=0,f (3)-f (-3)=0. 即f (x )=±f (-x ).

∴f (x )既是奇函数,又是偶函数. (2)由?????

1-x 1+x ≥0

1+x ≠0,得-1

∵f (x )的定义域(-1,1]不关于原点对称. ∴f (x )既不是奇函数,也不是偶函数.

(3)由?

????

4-x 2≥0|x +3|-3≠0,得-2≤x ≤2且x ≠0.

∴f (x )的定义域为[-2,0)∪(0,2],关于原点对称. ∴f (x )=4-x 2(x +3)-3=4-x 2

x .

∴f (x )=-f (-x ),∴f (x )是奇函数.

变式训练1 解 (1)由1-x

1+x >0?-1

又f (-x )=lg 1+x 1-x =lg ? ????1-x 1+x -1

=-lg 1-x 1+x =-f (x ),

故原函数是奇函数.

(2)由

2+x

2-x

≥0且2-x ≠0?-2≤x <2, 定义域关于原点不对称,故原函数是非奇非偶函数. (3)函数定义域为(-∞,0)∪(0,+∞),关于原点对称,

又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0,故f (-x )=x 2-x =f (x );

当x <0时,f (x )=x 2-x ,则当x >0时,-x <0,故f (-x )=x 2+x =f (x ),故原函数是偶函数.

(4)由?

????

1-x 2

>0,|x 2-2|-2≠0得定义域为(-1,0)∪(0,1),关于原点对称,

∴f (x )=lg (1-x 2)-(x 2-2)-2

=-lg (1-x 2)x 2.

∵f (-x )=-lg[1-(-x )2](-x )2=-lg (1-x 2)

x 2=f (x ),∴f (x )为偶函数.

例2 解 (1)令x =y =0?f (0)=0,

令y =-x ,则f (x )+f (-x )=0?f (-x )=-f (x )?f (x )在(-1,1)上是奇函数. (2)设0

则f (x 1)-f (x 2)=f (x 1)+f (-x 2)

=f ? ??

??x 1-x 21-x 1x 2,

而x 1-x 2<0,0

1-x 1x 2

<0

?f ? ??

??x 1-x 21-x 1x 2>0, 即当0f (x 2), ∴f (x )在(0,1)上单调递减. (3)由于f ????12-f ????

15 =f ????12+f ????-15 =f ? ??

??12-1

51-

12×5

=f ????13, 同理,f ????13-f ????111=f ????

14, f ????14-f ????119=f ????15, ∴f ????12-f ????111-f ????119

=2f ????15=2×12

=1. 变式训练2 解 ∵y =f (x )为奇函数,且在(0,+∞)上为增函数, ∴y =f (x )在(-∞,0)上也是增函数, 且由f (1)=0得f (-1)=0. 若f [x (x -1

2

)]<0=f (1),

则???

x (x -12

)>0

x (x -1

2)<1

即0

2

)<1,

解得1

2

若f [x (x -1

2

)]<0=f (-1),

则???

x (x -12

)<0

x (x -1

2)<-1

由x (x -1

2)<-1,解得x ∈?.

∴原不等式的解集是

{x |1

2

(2)解 ∵x ∈[2,4],∴-x ∈[-4,-2], ∴4-x ∈[0,2],

∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8,又f (4-x )=f (-x )=-f (x ), ∴-f (x )=-x 2+6x -8, 即f (x )=x 2-6x +8,x ∈[2,4].

(3)解 ∵f (0)=0,f (2)=0,f (1)=1,f (3)=-1.又f (x )是周期为4的周期函数, ∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2 008)+f (2 009)+f (2 010)+f (2 011)=0.

∴f (0)+f (1)+f (2)+…+f (2 011)=0. 变式训练3 2.5 课时规范训练

A 组

1.B

2.A

3.B

4.A

5.-1

6.-1 7.-3 8.解 (1)当a =0时,f (x )=x 2, f (-x )=f (x ) ,函数是偶函数.

当a ≠0时,f (x )=x 2+a

x (x ≠0,常数a ∈R ),取x =±1,得f (-1)+f (1)=2≠0;

f (-1)-f (1)=-2a ≠0, ∴f (-1)≠-f (1),f (-1)≠f (1). ∴函数f (x )既不是奇函数也不是偶函数. (2)若f (1)=2,即1+a =2,解得a =1, 这时f (x )=x 2+1

x

.

任取x 1,x 2∈[2,+∞),且x 1

x 22+1x 2 =(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2

=(x 1-x 2)????

x 1+x 2-1x 1x 2. 由于x 1≥2,x 2≥2,且x 11

x 1x 2,

所以f (x 1)

故f (x )在[2,+∞)上是单调递增函数. B 组

1.A

2.C

3.B

4.(1)(2)(3) 5.0 6.②③⑤

7.(1)证明 由函数f (x )的图象关于直线x =1对称,有f (x +1)=f (1-x ), 即有f (-x )=f (x +2).

又函数f (x )是定义在R 上的奇函数, 故有f (-x )=-f (x ). 故f (x +2)=-f (x ).

从而f (x +4)=-f (x +2)=f (x ), 即f (x )是周期为4的周期函数.

(2)解 由函数f (x )是定义在R 上的奇函数,有f (0)=0. x ∈[-1,0)时,-x ∈(0,1], f (x )=-f (-x )=--x .

故x ∈[-1,0]时,f (x )=--x . x ∈[-5,-4]时,x +4∈[-1,0], f (x )=f (x +4)=--x -4. 从而,x ∈[-5,-4]时, 函数f (x )=--x -4. 8.解 (1)∵对于任意x 1,x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2), ∴令x 1=x 2=1,得f (1)=2f (1), ∴f (1)=0.

(2)令x 1=x 2=-1, 有f (1)=f (-1)+f (-1), ∴f (-1)=1

2

f (1)=0.

令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ),∴f (x )为偶函数. (3)依题设有f (4×4)=f (4)+f (4)=2, 由(2)知,f (x )是偶函数, ∴f (x -1)<2?f (|x -1|)

解之得-15

∴x 的取值范围是{x |-15

§2.5二次函数

1.二次函数的定义与解析式

(1)二次函数的定义

形如:f(x)=ax2+bx+c (a≠0)的函数叫做二次函数.

(2)二次函数解析式的三种形式

①一般式:f(x)=______________________.

②顶点式:f(x)=________________________.

③零点式:f(x)=________________________.

2.二次函数的图象和性质

a<0

3.二次函数f(x)

M1(x1,0)、M2(x2,0),|M1M2|=|x1-x2|=

Δ|a|.

[难点正本疑点清源]

1.求二次函数解析式的方法:待定系数法.根据所给条件的特征,可选择一般式、顶点式

或零点式中的一种来求.

①已知三个点的坐标时,宜用一般式.

②已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③已知二次函数与x 轴有两个交点,且横坐标已知时,选用零点式求f (x )更方便. 2.二次函数对应的一元二次方程的区间根的分布

讨论二次函数相应的二次方程的区间根的分布情况一般需从三方面考虑:①判别式;②区间端点的函数值的符号;③对称轴与区间的相对位置. 在讨论过程中,注意应用数形结合的思想.

1.若二次函数f (x )=ax 2+bx +2满足f (x 1)=f (x 2),则f (x 1+x 2)=________.

2.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为________.

3.若函数y =x 2+(a +2)x +3,x ∈[a ,b ]的图象关于直线x =1对称,则b =________.

4.已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上是减函数,则实数a 的取值范围为____________.

5.若方程x 2-2mx +4=0的两根满足一根大于1,一根小于1,则m 的取值范围是( ) A.????-∞,-5

2 B.????5

2,+∞ C.(-∞,-2)∪(2,+∞)

D.???

?-5

2,+∞

题型一 求二次函数的解析式

例1 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此 二次函数.

探究提高 二次函数的解析式有三种形式: (1)一般式:f (x )=ax 2+bx +c (a ≠0); (2)顶点式:f (x )=a (x -h )2+k (a ≠0); (3)两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0).

已知函数的类型(模型),求其解析式,用待定系数法,根据题设恰当选用二次函数解析式的形式,可使解法简捷.

设f (x )是定义在R 上的偶函数,当0≤x ≤2时,y =x ,当x >2时,y =f (x )

的图象是顶点为P (3,4),且过点A (2,2)的抛物线的一部分.

(1)求函数f(x)在(-∞,-2)上的解析式;

(2)在下面的直角坐标系中直接画出函数f(x)的草图;

(3)写出函数f(x)的值域.

题型二二次函数的图象与性质

例2已知函数f(x)=x2+2ax+3,x∈[-4,6].

(1)当a=-2时,求f(x)的最值;

(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;

(3)当a=1时,求f(|x|)的单调区间.

探究提高(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解.

已知函数f(x)=-4x2+4ax-4a-a2在区间[0,1]内有一个最大值-5,求a 的值.

题型三二次函数的综合应用

例3若二次函数f(x)=ax2+bx+c (a≠0)满足f(x+1)-f(x)=2x,且f(0)=1.

(1)求f(x)的解析式;

(2)若在区间[-1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.

探究提高二次函数、二次方程与二次不等式统称“三个二次”,它们常有机结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.因此,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.用函数思想研究方程、不等式(尤其是恒成立)问题是高考命题的热点.

已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.

(1)求f(x)与g(x)的解析式;

(2)若F(x)=g(x)-λf(x)在(-1,1]上是增函数,求实数λ的取值范围.

2.分类讨论在二次函数中的应用

试题:(14分)设a 为实数,函数f (x )=2x 2+(x -a )|x -a |. (1)若f (0)≥1,求a 的取值范围; (2)求f (x )的最小值;

(3)设函数h (x )=f (x ),x ∈(a ,+∞),直接写出(不需给出演算步骤)不等式h (x )≥1的解集.

审题视角 (1)求a 的取值范围,是寻求关于a 的不等式,解不等式即可.(2)求f (x )的最小值,由于f (x )可化为分段函数,分段函数的最值分段求,然后综合在一起.(3)对a 讨论时,要找到恰当的分类标准. 规范解答

解 (1)因为f (0)=-a |-a |≥1,所以-a >0, 即a <0,由a 2≥1知a ≤-1,

因此,a 的取值范围为(-∞,-1].[3分] (2)记f (x )的最小值为g (a ),则有 f (x )=2x 2+(x -a )|x -a |

=???

3?

???x -a 32+2a

2

3,x >a ① (x +a )2-2a 2,x ≤a ② [5分] (ⅰ)当a ≥0时,f (-a )=-2a 2,

由①②知f (x )≥-2a 2,此时g (a )=-2a 2. [7分] (ⅱ)当a <0时,f ????a 3=23a 2,若x >a ,则由①知f (x )≥23a 2

. 若x ≤a ,由②知f (x )≥2a 2>23a 2.此时g (a )=2

3a 2,

综上,得g (a )=???

-2a 2

,a ≥0 2a 2

3,a <0.

[10分]

(3)(ⅰ)当a ∈?

???-∞,-

62∪???

?22,+∞时,解集为(a ,+∞); (ⅱ)当a ∈????-22,22时,解集为??????a +3-2a 23,+∞; (ⅲ)当a ∈?

??

?

62,-

22时,解集为 ? ????a ,a -3-2a 23∪????

??

a +3-2a 23,+∞.

[14分]

批阅笔记 分类讨论的思想是高考重点考查的数学思想方法之一.本题充分体现了分类

讨论的思想方法.

在解答本题时有两点容易造成失分:

一是求实数a 的值时,讨论的过程中没注意a 自身的取值范围,易出错;二是求函数最值时,分类讨论的结果不能写在一起,不能得出最后的结论. 除此外,解决函数问题时,以下几点容易造成失分: 1.含绝对值问题,去绝对值符号,易出现计算错误;

2.分段函数求最值时要分段求,最后写在一起时,没有比较大小或不会比较出大小关系;

3.解一元二次不等式时,不能与一元二次函数、一元二次方程联系在一起,思路受阻.

方法与技巧

1.数形结合是讨论二次函数问题的基本方法.特别是涉及二次方程、二次不等式的时候常常结合图形寻找思路.

2.含字母系数的二次函数问题经常使用的方法是分类讨论.比如讨论二次函数的对称轴与给定区间的位置关系,又例如涉及二次不等式需讨论根的大小等.

3.关于二次函数y =f (x )对称轴的判断方法

(1)对于二次函数y =f (x )对定义域内所有x ,都有f (x 1)=f (x 2),那么函数y =f (x )图象的对称轴方程为x =x 1+x 2

2

.

(2)对于二次函数y =f (x )对定义域内所有x ,都有f (a +x )=f (a -x )成立,那么函数y =f (x )图象的对称轴方程为x =a (a 为常数).

(3)对于二次函数y =f (x )对定义域内所有x ,都有f (x +2a )=f (x ),那么函数y =f (x )图象的对称轴方程为x =a (a 为常数).

注意:(2)(3)中,f (a +x )=f (a -x )与f (x +2a )=f (x )是等价的.

(4)利用配方法求二次函数y =ax 2+bx +c (a ≠0)对称轴方程为x =-b 2a

(5)利用方程根法求对称轴方程.若二次函数y =f (x )对应方程f (x )=0的两根为x 1、x 2,那么函数y =f (x )图象的对称轴方程为x =x 1+x 2

2.

失误与防范

1.求二次函数的单调区间时要经过配方法,要熟练准确利用配方法.

2.对于函数y =ax 2+bx +c 要认为它是二次函数,就必须认定a ≠0,当题目条件中未说明a ≠0时,就要讨论a =0和a ≠0两种情况.

3.对于二次函数y =ax 2+bx +c (a ≠0)给定了定义域为一个区间[k 1,k 2]时,利用配方法

求函数的最值4ac-b2

4a是极其危险的,一般要讨论函数图象的对称轴在区间外、内的

情况,有时要讨论下列四种情况:

①-b

2a

b

2a<

k1+k2

2;③

k1+k2

2≤-

b

2a

b

2a≥k2.对于这种情况,也

可以利用导数法求函数在闭区间的最值方法求最值.这两种方法运算量相当.

4.注意判别式作用,正确利用判别式.

函数的奇偶性专题复习

函数的奇偶性专题复习

函数的奇偶性专题复习 一、关于函数的奇偶性的定义 定义说明:对于函数)(x f 的定义域内任意一个x : ⑴)()(x f x f =- ?)(x f 是偶函数; ⑵)()(x f x f -=-?)(x f 奇函数; 函数的定义域关于原点对称是函数为奇(偶)函数的必要不充分条件。 二、函数的奇偶性的几个性质 ①对称性:奇(偶)函数的定义域关于原点对称; ②整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立; ③可逆性:)()(x f x f =-?)(x f 是偶函数;)()(x f x f -=-?)(x f 是奇函数; ④等价性:)()(x f x f =-?0)()(=--x f x f ;)()(x f x f -=-?0)()(=+-x f x f ⑤奇函数的图像关于原点对称,偶函数的图像关于y 轴对称; 三、函数的奇偶性的判断 判断函数的奇偶性大致有下列两种方法: 第一种方法:利用奇、偶函数的定义,考查)(x f 是否与)(x f -、)(x f 相等, 判断步骤如下:①定义域是否关于原点对称; ②数量关系)()(x f x f ±=-哪个成立; 例1:判断下列各函数是否具有奇偶性 (1)x x x f 2)(3+= (2)2 432)(x x x f += (3)1)(2 3--=x x x x f (4)2)(x x f = []2,1-∈x (5)2211)(x x x f -+-= (6)221()lg lg f x x x =+. 例2:判断函数???<≥-=)0()0()(22x x x x x f 的奇偶性。 第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集): 两个奇函数的代数和是奇函数; 两个偶函数的和是偶函数; 奇函数与偶函数的和既不非奇函数也非偶函数; 两个奇函数的积为偶函数; 两个偶函数的积为偶函数; 奇函数与偶函数的积是奇函数。 四、关于函数的奇偶性的6个结论.

函数的奇偶性练习题

函数的奇偶性 一、选择题 1.若)(x f 是奇函数,则其图象关于( ) A .x 轴对称 B .y 轴对称 C .原点对称 D .直线x y =对称 2.若函数y f x x R =∈()()是奇函数,则下列坐标表示的点一定在函数y f x =()图象 上的是( ) A . (())a f a ,- B . (())--a f a , C . (())---a f a , D .(())a f a ,- 3.下列函数中为偶函数的是( ) A .x y = B .x y = C .2x y = D .13+=x y 4. 如果奇函数)(x f 在[]7,3上是增函数,且最小值是5,那么)(x f 在[]3,7--上是( ) A .增函数,最小值是-5 B .增函数,最大值是-5 C .减函数,最小值是-5 D .减函数,最大值是-5 5. 已知函数)(1 22 2)(R x a a x f x x ∈+-+?= 是奇函数,则a 的值为( ) A .1- B .2- C .1 D .2 6.已知偶函数)(x f 在],0[π上单调递增,则下列关系式成立的是( ) A .)2()2 ()(f f f >- >-π π B .)()2 ()2(ππ ->->f f f C .)2 ()2()(π π- >>-f f f D .)()2()2 (ππ ->>- f f f 二、填空题 7.若函数)(x f y =是奇函数,3)1(=f ,则)1(-f 的值为____________ . 8.若函数)(x f y =)(R x ∈是偶函数,且)3()1(f f <,则)3(-f 与)1(-f 的大小关系为__________________________. 9.已知)(x f 是定义在[)2,0-?(]0,2上的奇函数,当0>x 时,)(x f 的图象如右图所示,那么f (x ) 的值域是 .

函数的奇偶性导学案

1.3.2奇偶性 【学习目标导航】 1.结合具体函数,了解奇函数,偶函数的定义. 2.掌握判断函数奇偶性的方法,了解奇偶性与函数图象对称性之间的关系. 3.会利用函数的奇偶性解决简单问题. 【学习重、难点】 1.根据函数奇偶性的定义判断函数的奇偶性.(重点) 2.函数奇偶性的应用.(难点) 【问题提出导入新知】 1.画出以下函数图象,观察两个图形,思考并讨论以下问题: (1)f (x)=x2(2)g(x)=|x| (1)这两个函数图象有什么共同特征吗? (2)关于y轴对称的点的坐标有什么关系吗? (3)点(x, f (x))在函数y= f (x)的图象上,关于y轴的对称点(—x, f (x))也一定在y= f (x)的图象上吗?为什么? )= ;)= 这时我们称函数f (x)=x2与g(x)=|x|为偶函数。 (5)偶函数的定义:如果对于函数f (x)的,都有,那么函数f (x)就叫做偶函数。 偶函数的图象特征:图象关于对称。 2.画出以下函数图象,观察两个图形,思考并讨论以下问题: 1 (1)f (x)=x(2)g(x)= x (1)这两个函数图象有什么共同特征吗? (2)关于原点对称的点的坐标有什么关系吗? (3)点(x, f (x))在函数y= f (x)的图象上,关于原点的对称点(—x, —f (x))也一定在y= f (x)的图象上吗?为什么?

对于R 内的任意的一个x ,都有f (—x )= ;g (—x )= 这时我们称函数f (x )=x 与g (x )= x 1 为奇函数。 (5)奇函数的定义:如果对于函数f (x )的 ,都有 ,那么函数f (x )就叫做奇函数。 奇函数的图象特征:奇函数的图象关于 对称。 3.函数是奇函数或是偶函数称为函数的单调性,回答下列问题: (1)奇函数、偶函数的定义中有“定义域内任意的x ”中的“任意”二字,说明函数的奇偶性是怎样的一个性质?与单调性有何区别? (2)-x 与x 两个数在数轴上所表示的点有何关系?具有奇偶性的函数的定义域有何特征? 得出结论: (3)如果一个函数的图象是以y 轴为对称轴的轴对称图形,能否判断它的奇偶性? 得出结论: (4)如果一个函数的图象是以坐标原点为对称中心的中心对称图形,能否判断它的奇偶性? 得出结论: 【典例分析】 【例1】 判断下列函数的奇偶性: (1) f (x )=x +x 3+x 5; (2) f (x )=x 2+1; (3) f (x )=x +1; (4) f (x )=x 2,x ∈[-1, 3]; (5) f (x )=0; (6) f (x )=5. (注意:既是奇函数又是偶函数的函数是f (x )=0常函数. 前提是定义域关于原点对称). 【归纳】1.用定义判断函数奇偶性的步骤: (1)先求定义域,看是否关于原点对称; (2)再判断f(-x)=-f(x)或f(-x)=f(x)是否恒成立. 2.对于一个函数来说,它的奇偶性有四种可能: 。 【活学活用1】判断下列函数的奇偶性: (2) f(x)=2x 4+3x 2; (5) f(x)=x 3+2x ; (6)2 211)(x x x f -+-= 【思考】讨论并判断我们已经学习过的基本初等函数的奇偶性。 (3)()f x =(4)()f x = 1(1)()f x x x =-

高三数学第一轮复习 函数的奇偶性教案 文

函数的奇偶性 一、知识梳理:(阅读教材必修1第33页—第36页) 1、 函数的奇偶性定义: 2、 利用定义判断函数奇偶性的步骤 (1) 首先确定函数的定义域,并判断定义域是否关于原点对称; (2) 确定与的关系; (3) 作出相应结论 3、 奇偶函数的性质: (1)定义域关于原点对称; (2)偶函数的图象关于y 轴对称,奇函数的图象关于原点对称; (3)为偶函数 (4)若奇函数的定义域包含0,则 (5)判断函数的奇偶性,首先要研究函数的定义域,有时还要对函数式化简整理,但必须 注意使定义域不受影响; (6)牢记奇偶函数的图象特征,有助于判断函数的奇偶性; (7)判断函数的奇偶性有时可以用定义的等价形式: 4、一些重要类型的奇偶函数 (1)、f(x)= (a>0,a) 为偶函数; f(x)= (a>0,a) 为奇函数; (2)、f(x)= (3)、f(x)= (4)、f(x)=x+ (5)、f(x)=g(|x|)为偶函数; 二、题型探究 [探究一]:判断函数的奇偶性 例1:判断下列函数的奇偶性 1. 【15年北京文科】下列函数中为偶函数的是( ) A .2sin y x x = B .2cos y x x = C .ln y x = D .2x y -= 【答案】B 【解析】 试题分析:根据偶函数的定义()()f x f x -=,A 选项为奇函数,B 选项为偶函数,C 选项定 义域为(0,)+∞不具有奇偶性,D 选项既不是奇函数,也不是偶函数,故选B. 考点:函数的奇偶性. 2. 【15年广东文科】下列函数中,既不是奇函数,也不是偶函数的是( )

A .2sin y x x =+ B .2cos y x x =- C .122x x y =+ D .sin 2y x x =+ 【答案】A 【解析】 试题分析:函数()2 sin f x x x =+的定义域为R ,关于原点对称,因为()11sin1f =+,()1sin1f x -=-,所以函数()2sin f x x x =+既不是奇函数,也不是偶函数;函数 ()2cos f x x x =-的定义域为R ,关于原点对称,因为 ()()()()2 2cos cos f x x x x x f x -=---=-=,所以函数()2cos f x x x =-是偶函数;函数()122x x f x =+的定义域为R ,关于原点对称,因为()()112222x x x x f x f x ---=+=+=,所以函数()122 x x f x =+是偶函数;函数()sin 2f x x x =+的定义域为R ,关于原点对称,因为 ()()()sin 2sin 2f x x x x x f x -=-+-=--=-,所以函数()sin 2f x x x =+是奇函 数.故选A . 考点:函数的奇偶性. 3. 【15年福建文科】下列函数为奇函数的是( ) A .y x = B .x y e = C .cos y x = D .x x y e e -=- 【答案】D 【解析】 试题分析:函数y x = 和x y e =是非奇非偶函数; cos y x =是偶函数;x x y e e -=-是奇 函数,故选D . 考点:函数的奇偶性. [探究二]:应用函数的奇偶性解题 例3、【2014高考湖南卷改编】 已知)(),(x g x f 分别是定义在R 上的偶函数和奇函数,且1)()(23++=-x x x g x f ,则=+)1()1(g f ( ) A. 3- B. 1- C. 1 D. 3

函数的奇偶性与周期性练习题

函数的奇偶性与周期性 1.奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (1)=1,则f (8)+f (9)= ( ) A. -2 B.-1 C. 0 D. 1 2.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π +=x y ,④)42tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ 3.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 4.已知()f x 是定义在R 上的奇函数,且是以2为周期的周期函数,若当(]0,1x ∈时 2()1f x x =-,则7()2 f 的值为 A 34- B 34 C 12- D 12 5.下列函数为偶函数的是 A. sin y x = B. 3y x = C. x y e = D. y = 6.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5 ()2f -= (A) -12 (B)1 4- (C)14 (D)12 7.下列函数中,既是偶函数又在()0,+∞单调递增的函数是 (A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= 8.下列函数为偶函数的是() A.()1f x x =- B.()2f x x x =+ C.()22x x f x -=- D.()22x x f x -=+ 9.偶函数y=f(x)的图像关于直线x=2对称,f(3)=3,则f(-1)=_______. 10.函数)4)(()(-+=x a x x f 为偶函数,则实数a = . 11.已知()f x 为奇函数,()()9,(2)3,(2)g x f x g f =+-==则 .

函数的奇偶性练习题及答案

函数的奇偶性练习题 一、选择题 1.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx ( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( ) A .a=1/3,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( ) A .y =x (x -2) B .y =x (|x |-1) C .y =|x |(x -2) D .y =x (|x |-2) 4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .10 5.函数1111)(22+++-++=x x x x x f 是( )A 偶函数B 奇函数C 非奇非偶函数D 既是奇函数又是偶函数 6.若)(x ?,g (x )都是奇函数,2)()(++=x bg a x f ?在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( )A .最小值-5 B .最大值-5 C .最小值-1 D .最大值-3 二、填空题 7.函数212 2)(x x x f ---=的奇偶性为________(填奇函数或偶函数) 8.若y =(m -1)x 2+2mx +3是偶函数,则m =_________ 9.已知f (x )是偶函数,g (x )是奇函数,若11 )()(-=+x x g x f ,则f (x )的解析式为_______ 10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为________ 三、解答题 11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围 12.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0, 试证f (x )是偶函数 13.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2 —1,求f (x )在R 上的表达式 14.f (x )是定义在(-∞,-5] [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明 15.设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2), 求证f (x )是偶函数

函数的奇偶性及周期性综合运用

函数的奇偶性及周期性 1. 已知定义在 R 上的奇函数 f(x) 满足 f(x+2)= -f(x) f(6) 的值为 ( ) A.-1 B.0 C.1 D.2 【答案】 B 【解析】 ∵ f(x+2)=-f(x), ∴ f(6)=f(4+2)=-f(4)=f(2)= -f(0) 又 f(x) 为R 上的奇函数 , ∴ f(0)=0. ∴ f(6)=0. 2. 函数 f ( x) x 3 sin x 1( x R), 若 f(a)=2, 则 f(-a) 的值为 ( ) A.3 B.0 C.-1 D.-2 【答案】 B 【解析】 设 g ( x) 3 sinx, 很明显 g(x) 是一个奇函数 . x ∴ f(x)=g(x)+1. ∵ f(a)=g(a)+1=2, ∴ g(a)=1. ∴ g(-a)=-1. ∴ f(-a)=g(-a)+1=-1+1=0. 3. 已知 f(x) 是定义在 R 上的偶函数 , 并满足 f(x+2)= 1 1 x 2 时 ,f(x)=x-2, 则 f ( x) f(6.5) 等于?? ( ) A.4.5 B.-4.5 C.0.5 D.-0.5 【答案】 D 【 解 析 】 由 f(x 2) 1 得 f(x 4) 1 f ( x ) f ( x 2) f(6.5)=f(2.5). 因为 f(x) 是偶函数 , 得 f(2.5)=f(-2.5)=f(1.5), 而 1 x 2 时 ,f(x)=x-2, 所以 f(1.5)=-0.5. 综上 , 知f(6.5)=-0.5. 4. 已知函数 f(x) 是定义在 R 上的奇函数 , 当 x>0时 ,f(x)= - 是 ( ) A. ( 1) B. ( 1] C. (1 ) D. [1 ) 【答案】 A 【解析】 当 x>0时 f ( x ) 1 2 x 1 1 x 2 当 x<0时,-x>0, ∴ f( x ) 1 2 x . 又∵ f(x) 为 R 上的奇函数 , ∴ f(-x)=-f(x). ∴ f ( x ) 1 2 x . ∴ f ( x ) 2 x 1 . ∴ f ( x) 2 1 1 即 2 x 1 . x ∴ x<-1. 2 2 ∴不等式 f ( x ) 1 的解集是 ( 1) . 2 5. 设 g(x) 是定义在 R 上、以 1为周期的函数 . 若函数 f(x)=x+g(x) 则f(x) 在区间 [0,3] . f ( x) 那 么 f(x) 的 周 期 是 4, 得 2 x 则不等式 f ( x) 1 的解集 2 1 2 在区间 [0,1] 上的值域为 [-2,5],

2021学年高中数学2.4.1函数的奇偶性导学案北师大版必修一.doc

第二章 函数 第4.1节 函数的奇偶性导学案 (1)掌握函数奇偶性的性质 (2)会判断函数的奇偶性 (1)一般地,设函数f (x )的定义域是A ,如果当x A ∈时,有 x A -∈,且f(-x)=-f(x),那么称函数f (x )为______函数.奇函数的图象关于____对称。 (2) 设函数f(x)的定义域是A ,如果当x A ∈时,有x A -∈,且f(-x)=f(x),那么称函数f (x )为_____函数.偶函数的图象关于_______对称 1.若函数f (x )(f (x )≠0)为奇函数,则必有( ) A .f (x )?f (﹣x )>0 B .f (x )?f (﹣x )<0 C .f (x )<f (﹣x ) D .f (x )>f (﹣x ) 2.已知函数f (x )=ax 2﹣bx ﹣3a ﹣b 是偶函数,且其定义域为[1﹣a ,2a ],则( ) A .,b =0 B .a =﹣1,b =0 C .a =1,b =1 D .,b =﹣1 3.已知函数f (x )为奇函数,g (x )为偶函数,且2x +1=f (x )+g (x ),则g (1)=( ) A . B .2 C . D .4 4.已知函数y =f (x )的图象关于原点对称,当x <0时,f (x )=x (1﹣x ),则当x >0时,函数f (x )= x (1+x ) . 1.下列函数在定义域内是奇函数的是( ) A .y =﹣x 2 B .y =x +1 C .y =x ﹣2 D . 2.下列是偶函数的是( ) A .f (x )=x 3﹣ B .f (x )= C .f (x )=(x +1) D .f (x )=|2x +5|+|2x ﹣5| 3.已知函数f (x )是定义在R 上的奇函数,当x ∈(﹣∞,0)时,f (x )=x 3﹣2x 2,则f

1.10基本初等函数奇偶性和周期性

1.10基本初等函数奇偶性和周期性 姓名___________ 本节重点:①能够正确判断函数的奇偶性和周期性;②运用基本初等函数的性质解题。 一.基础练习 1. 写出下列函数中,奇函数是________;偶函数是________;非奇非偶函数是________ ①sin 2y x = ②2cos y x = ③4221y x x =++ ④2(1)y x =- ⑤()x x f x e e -=- ⑥1()1 x f x x -=+ ⑦1()lg 1 x f x x -=+ ⑧23 ()f x x -= 2. 已知多项式函数32()f x ax bx cx d =+++,系数,,,a b c d 满足__________时,()f x 是奇函数; 满足___________时,它是偶函数. 3. 定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(2)f =________. 4. 函数sin 2y x =的周期是________;tan y x π=的周期是________. 5. 已知函数()f x 是定义在(-3,3)上的奇函数,当03x << ()f x 图象如右,则不等式 ()0f x x >的解集是____________. 二、例题讲解 例1:判断下列函数的奇偶性 (1)2 ()2||3f x x x =-- (2)22 2,0 ()2,0 x x x f x x x x ?-≥?=?--,实数a 的范围是____________.

函数奇偶性——导学案(1)

3.2.2 奇偶性 【学习目标】 1.结合具体函数,了解函数奇偶性的概念,掌握判断函数奇偶性的方法 2.了解函数奇偶性与函数图象对称性之间的关系 3.会利用函数的奇偶性解决简单问题 【重点】函数的奇偶性的概念与判定 【难点】函数奇偶性的应用 【新知探究】 偶函数、奇函数的概念. 一 偶函数的概念 在平面直角坐标系中,利用描点法作出函数f (x )=x 2的图象 观察函数2)(x x f =和x x f -=2)(的图象,思考并讨论以下问题: 思考1:这两个函数图象有什么共同特征? 思考2:相应的两个函数值对应表是如何体现这些特征的? 偶函数定义: . 1.判断下列函数是否是偶函数 2. 如何理解“I x I x I ∈-∈?都有,定义域为,”?

总结: 二 奇函数的概念 画出函数x x f =)(和 1 ( )f x x =的图象,思考并讨论以下问题: 1. 列表 2. 画图 观察两个函数的图象,思考并讨论以下问题: 思考1:这两个函数图象有什么共同特征? 思考2:相应的两个函数值对应表是如何体现这些特征的? 思考:奇函数的图象有什么特征? 形: 数: 奇函数定义: . 形: 数:

【典型例题】 例1 判断下列函数的奇偶性 总结:定义法判断函数奇偶性的基本步骤: 跟踪训练: 判断下列函数的奇偶性 (1) (2) 总结:根据奇偶性将函数分类 思考: (1)判断函数3 ()f x x x =+的奇偶性? (2)已知函数3()f x x x =+图象的一部分,你能画出剩余部分吗? (3)一般地,如果知道函数的奇偶性,那么我们可以怎样简化对它的研究? 跟踪训练: 1. 已知()f x 是偶函数,()g x 是奇函数,试将下图补充完整。 2. 已知函数()f x 是定义域为R 的奇函数,当0x ≥时,()(1)f x x x =+,求(3)f -的值. 【课堂小结】 (1)()(2)()(3)()0 (4)() f x f x x f x f x x == =1 (1)()(2)()(3)()0(4)()f x x f x x f x f x x ====4 5 2 (1)()(2)()1 1 (3)()(4)()f x x f x x f x x f x x x ===+ =

函数的奇偶性练习题[(附答案)

函数的奇偶性 1.函数f (x )=x(-1﹤x ≦1)的奇偶性是 ( ) A .奇函数非偶函数 B .偶函数非奇函数 C .奇函数且偶函数 D .非奇非偶函数 2. 已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx 是( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 3. 若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数, 且f (2)=0,则使得f (x )<0的x 的取值范围是 ( ) A.(-∞,2) B. (2,+∞) C. (-∞,-2)?(2,+∞) D. (-2,2) 4.已知函数f (x )是定义在(-∞,+∞)上的偶函数. 当x ∈(-∞,0)时,f (x )=x -x 4,则 当x ∈(0.+∞)时,f (x )= . 5. 判断下列函数的奇偶性: (1)f (x )=lg (12+x -x ); (2)f (x )=2-x +x -2 (3) f (x )=? ? ?>+<-). 0() 1(),0()1(x x x x x x 6.已知g (x )=-x 2-3,f (x )是二次函数,当x ∈[-1,2]时,f (x )的最小值是1,且f (x )+g (x )是奇函数,求f (x )的表达式。 7.定义在(-1,1)上的奇函数f (x )是减函数,且f(1-a)+f(1-a 2 )<0,求a 的取值范围 8.已知函数21 ()(,,)ax f x a b c N bx c += ∈+是奇函数,(1)2,(2)3,f f =<且()[1,)f x +∞在上是增函数, (1)求a,b,c 的值; (2)当x ∈[-1,0)时,讨论函数的单调性. 9.定义在R 上的单调函数f (x )满足f (3)=log 23且对任意x ,y ∈R 都有 f (x+y )=f (x )+f (y ). (1)求证f (x )为奇函数; (2)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围.

函数的奇偶性与周期性 知识点与题型归纳

1.结合具体函数,了解函数奇偶性的含义. 2.会运用函数的图象理解和研究函数的奇偶性. 3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. ★备考知考情 1.对函数奇偶性的考查,主要涉及函数奇偶性的判断,利用奇偶函数图象的特点解决相关问题,利用函数奇偶性求函数值,根据函数奇偶性求参数值等. 2.常与函数的求值及其图象、单调性、对称性、零点等知识交汇命题. 3.多以选择题、填空题的形式出现. 一、知识梳理《名师一号》P18 注意: 研究函数奇偶性必须先求函数的定义域 知识点一函数的奇偶性的概念与图象特征 1.一般地,如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=f(x),那么函数f(x)就叫做偶函数. 2.一般地,如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=-f(x),那么函数f(x)就叫做奇函数. 1

2 3.奇函数的图象关于原点对称; 偶函数的图象关于y 轴对称. 知识点二 奇函数、偶函数的性质 1.奇函数在关于原点对称的区间上的单调性相同, 偶函数在关于原点对称的区间上的单调性相反. 2. 若f (x )是奇函数,且在x =0处有定义,则(0)0=f . 3. 若f (x )为偶函数,则()()(||)f x f x f x =-=. 《名师一号》P19 问题探究 问题1 奇函数与偶函数的定义域有什么特点? (1)判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. (2)判断函数f (x )的奇偶性时,必须对定义域内的 每一个x , 均有f (-x )=-f (x )、f (-x )=f (x ), 而不能说存在x 0使f (-x 0)=-f (x 0)、f (-x 0)=f (x 0). (补充) 1、若奇函数()f x 的定义域包含0,则(0)0=f . (0)0=f 是()f x 为奇函数的 既不充分也不必要条件 2.判断函数的奇偶性的方法 (1)定义法: 1)首先要研究函数的定义域,

高中数学(人教b版)必修1导学案2.1.4《函数的奇偶性》 缺答案

2.1.4函数的奇偶性 【学习目标】 1.理解函数奇偶性的定义及其图象特征。 2.能根据定义判断函数的奇偶性。 3.结合函数的奇偶性研究函数的其他性质。 【自主学习】 1.作出函数f(x)=2x和g(x)=3x的图象,观察图象的对称性。 1s:列表 2s:描点作图 由图象可知,() =的图象关于对称,用式子可表达 y f x 为。 =的图象关于对称,用式子可表达为。 () y g x 2. 设函数() =的定义域为D, y f x 则这个函数叫偶函数。偶函数的图象 是。 设函数() =的定义域为D, y g x 则这个函数叫奇函数。奇函数的图象 是。 3. 函数根据奇偶性可分成四 类:。 跟踪1:判断下列函数的奇偶性 ①53 f x x =+ ()1 f x x x x () =++②2

③()1f x x =+ ④2(),[1,3]f x x x =∈- 跟踪2:研究函数21 y x =的性质(定义域,值域,单调性,奇偶性)并作出图象 跟踪3:课本49页练习A 1. 2. 3. 4. 5. 【典例示范】 例1.判断函数的奇偶性 ① ()f x ②()f x = ③()22f x x x =+-- ④2223,0()0,023,0x x x f x x x x x ?++? 总结提高: 判断函数奇偶性的步骤是: 例2.已知函数()f x 对任意实数a ,b 都有()()()f a b f a f b +=+,判断函数的奇偶性 例3:已知()f x 为R 上的奇函数,当0x >时,2()f x x x =-,求0x <时函数的解析式 【巩固拓展】

函数的奇偶性与周期性试题(答案)

函数的奇偶性与周期性 一、选择题 1.(2015·四川绵阳诊断性考试)下列函数中定义域为R ,且是奇函数的是( ) A .f(x)=x2+x B .f(x)=tan x C .f(x)=x +sin x D .f(x)=lg 1-x 1+x 2.(2014·新课标全国卷Ⅰ)设函数f(x),g(x)的定义域都为R ,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( ) A .f(x)g(x)是偶函数 B .|f(x)|g(x)是奇函数 C .f(x)|g(x)|是奇函数 D .|f(x)g(x)|是奇函数 3.(2015·长春调研)已知函数f(x)=x2+x +1x2+1,若f(a)=23 ,则f(-a)=( ) A.23 B .-23 C.43 D .-43 4.已知f(x)在R 上是奇函数,且满足f(x +4)=f(x),当x ∈(0,2)时,f(x)=2x2,则f(7)等于( ) A .-2 B .2 C .-98 D .98 5.函数f(x)是周期为4的偶函数,当x ∈[0,2]时,f(x)=x -1,则不等式xf(x)>0在[-1,3]上的解集为( ) A .(1,3) B .(-1,1) C .(-1,0)∪(1,3) D .(-1,0)∪(0,1) 6.设奇函数f(x)的定义域为R ,最小正周期T =3,若f(1)≥1,f(2)=2a -3a +1 ,则a 的取值范围是( ) A .a<-1或a≥23 B .a<-1 C .-1

高中数学必修1人教A教案导学案1.3.2函数的奇偶性

1 1. 3.2函数的奇偶性 【教学目标】 1.理解函数的奇偶性及其几何意义; 2.学会运用函数图象理解和研究函数的性质; 3.学会判断函数的奇偶性; 【教学重难点】 教学重点:函数的奇偶性及其几何意义 教学难点:判断函数的奇偶性的方法与格式 【教学过程】 (一)创设情景,揭示课题 “对称”是大自然的一种美,这种“对称美”在数学中也有大量的反映,让我们看看下列各函数有什么共性? 观察下列函数的图象,总结各函数之间的共性. 2 ()f x x = ()||1f x x =- 21 ()x x x = 通过讨论归纳:函数2 ()f x x =是定义域为全体实数的抛物线;函数()||1f x x =-是定义域为全体实数的折线;函数2 1 ()f x x = 是定义域为非零实数的两支曲线,各函数之间的共性为图象关于y 轴对称.观察一对关于y 轴对称的点的坐标有什么关系? 归纳:若点(,())x f x 在函数图象上,则相应的点(,())x f x -也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等. (二)研探新知 函数的奇偶性定义: 1.偶函数 一般地,对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=,那么()f x 就叫做偶函数.(学生活动)依照偶函数的定义给出奇函数的定义. 2.奇函数

2 一般地,对于函数()f x 的定义域的任意一个x ,都有()()f x f x -=-,那么()f x 就叫做奇函数. 注意: ①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则x -也一定是定义域内的一个自变量(即定义域关于原点对称). 3.具有奇偶性的函数的图象的特征 偶函数的图象关于y 轴对称;奇函数的图象关于原点对称. (三)质疑答辩,排难解惑,发展思维. 例1.判断下列函数是否是偶函数. (1)2 ()[1,2]f x x x =∈- (2)32()1x x f x x -=- 解:函数2 (),[1,2]f x x x =∈-不是偶函数,因为它的定义域关于原点不对称. 函数32 ()1 x x f x x -=-也不是偶函数,因为它的定义域为}{|1x x R x ∈≠且,并不关于原点对称. 点评:判断函数的奇偶性,先看函数的定义域。 变式训练1 (1)、x x x f +=3 )( (2)、1 1 ) 1()(-+-=x x x x f (3)、 2224)(x x x f -+-= 解:(1)、函数的定义域为R ,)()()()(3 3 x f x x x x x f -=--=-+-=- 所以)(x f 为奇函数 (2)、函数的定义域为}11|{-≤>x x x 或,定义域关于原点不对称,所以)(x f 为非奇非偶函数 (3)、函数的定义域为{-2,2},)()(0)(x f x f x f -===-,所以函数)(x f 既是奇函数又是偶函 数 例2.判断下列函数的奇偶性 (1)4 ()f x x = (2)5 ()f x x = (3)1()f x x x =+ (4)21 ()f x x = 分析:先验证函数定义域的对称性,再考察()()()f x f x f x --是否等于或. 解:(1)偶函数(2)奇函数(3)奇函数(4)偶函数 点评:利用定义判断函数奇偶性的格式步骤: ①首先确定函数的定义域,并判断其定义域是否关于原点对称; ②确定()()f x f x -与的关系; ③作出相应结论:

函数的奇偶性专题复习

函数的奇偶性专题复习 一、关于函数的奇偶性的定义 定义说明:对于函数)(x f 的定义域内任意一个x : ⑴)()(x f x f =- ?)(x f 是偶函数; ⑵)()(x f x f -=-?)(x f 奇函数; 二、函数的奇偶性的几个性质 ①对称性:奇(偶)函数的定义域关于原点对称; ②整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立; ③可逆性:)()(x f x f =-?)(x f 是偶函数;)()(x f x f -=-?)(x f 是奇函数; ④等价性:)()(x f x f =-?0)()(=--x f x f ;)()(x f x f -=-?0)()(=+-x f x f ⑤奇函数的图像关于原点对称,偶函数的图像关于y 轴对称; 三、函数的奇偶性的判断 判断函数的奇偶性大致有下列两种方法: 第一种方法:利用奇、偶函数的定义,考查)(x f 是否与)(x f -、)(x f 相等, 判断步骤如下:①定义域是否关于原点对称; ②数量关系)()(x f x f ±=-哪个成立; 例1:判断下列各函数是否具有奇偶性 (1)x x x f 2)(3+= (2)2 432)(x x x f += (3)1)(2 3--=x x x x f (4)2)(x x f = []2,1-∈x (5)2211)(x x x f -+-= (6)221()lg lg f x x x =+. 例2:判断函数???<≥-=)0()0()(22x x x x x f 的奇偶性。 第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集): 两个奇函数的代数和是奇函数; 两个偶函数的和是偶函数; 奇函数与偶函数的和既不非奇函数也非偶函数; 两个奇函数的积为偶函数; 两个偶函数的积为偶函数; 奇函数与偶函数的积是奇函数。 四、关于函数的奇偶性的6个结论. 结论1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分条件。

函数的奇偶性及周期性

函数的奇偶性及周期性 1.函数的奇偶性 (1)周期函数 对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x +T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期. (2)最小正周期 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. [小题体验] 1.下列函数中为偶函数的是() A.y=x2sin x B.y=x2cos x C.y=|ln x|D.y=2-x 答案:B 2.若函数f(x)是周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(8)-f(14)=________. 答案:-1 3.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(1+x),则x<0时,f(x)=________. 答案:x(1-x) 1.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. 2.判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)=-f(x)或f(-

x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0). 3.分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性. [小题纠偏] 1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .-13 B.13 C.12 D .-1 2 解析:选B ∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数, ∴a -1+2a =0,∴a =1 3.又f (-x )=f (x ), ∴b =0,∴a +b =1 3 . 2.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时, f (x )= ? ???? -4x 2+2,-1≤x <0,x , 0≤x <1,则f ????32=________. 解析:由题意得,f ????32=f ????-12=-4×????-122+2=1. 答案:1 考点一 函数奇偶性的判断(基础送分型考点——自主练透) [题组练透] 判断下列函数的奇偶性: (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3; (3)f (x )=3x -3- x ; (4)(易错题)f (x )=4-x 2 |x +3|-3 ; (5)(易错题)f (x )=????? x 2+x ,x >0, x 2-x ,x <0. 解:(1)∵由? ???? x 2-1≥0, 1-x 2≥0,得x =±1, ∴f (x )的定义域为{-1,1}. 又f (1)+f (-1)=0,f (1)-f (-1)=0,

函数的奇偶性学案

翼城中学高一( 必修一 )导学案 时间:2016年9月 周次:5 编号:13 主编:郭俊成 审核:张 霞 课 题: 函数的奇偶性 【目标引领】 课标要求:理解函数奇偶性的概念、图像和性质,并能判断一些简单函数的奇偶性 学习目标: 1、理解奇函数与偶函数概念; 2、根据定义和图像特点掌握函数奇偶性的判断方法. 学习重点:判断函数的奇偶性 【自主学习】 自主学习目标:理解一般函数奇偶性的概念及判定方法 自主学习内容 1、观察教材第33页图1.3-7 (1)你发现两个函数图像都关于什么对称? (2)从函数值对应表可以看出,当自变量取一对相反数时,相应的函数值的关系是什么? (3)你能得出偶函数的定义吗? 定义: (4)你能判断x x f =)(与2)(2 +=x x f 也是偶函数吗? 2、观察教材第34页图1.3-9 (1)你发现两个函数图像都关于什么对称? (2)当自变量x 取一对相反数时,相应的函数值的关系是什么? (3)你能得出奇函数的定义吗? 定义: 3、若一个函数具有奇偶性,它的定义域、图像有什么特点? 4、如何判断一个函数的奇偶性? 自我检测题: 1、如图是根据y=f (x )绘出来的,则表示偶函数的图象是图中的______.(把正确图象的序号都填上) 2、下面四个结论中,正确命题的个数是( ) ①偶函数的图象一定与y 轴相交 ②奇函数的图像一定通过原点 ③偶函数的图象关于y 轴对称 ④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R ) A.1 B.2 C.3 D.4 <1>

3、下列判断中正确的是( ) A .( )2f x =是偶函数 B. ( )3 f x =是奇函数 C .()[]()212,5f x x x =-∈-是偶函数 D. ( )91f x x =+是偶函数 4 、定义运算 *a b a b =⊕=,则函数()()2*22 x f x x =⊕-为( ) A. 奇函数 B. 偶函数 C. 既是奇函数又是偶函数 D. 既非奇函数又非偶函数 5、判断下列函数的奇偶性: ①y = x 1(x ≠0) ②y =x 2+1 ③y =x x 1+ ④y =2 12-+x x ⑤()f x = 自主学习问题反馈 【探究学习】 课堂探究目标:1、分段函数、含参数的函数奇偶性的判定 2、函数奇偶性的应用 问题探究: 1、判断下列分段函数的奇偶性 (1) 22-23,0()0-2-3,0x x x f x x x x ?+>?=??-

相关主题
文本预览
相关文档 最新文档