当前位置:文档之家› 2014届高三数学总复习 8.4平面与平面的位置关系教案 新人教A版

2014届高三数学总复习 8.4平面与平面的位置关系教案 新人教A版

2014届高三数学总复习 8.4平面与平面的位置关系教案 新人教A版
2014届高三数学总复习 8.4平面与平面的位置关系教案 新人教A版

2014届高三数学总复习 8.4平面与平面的位置关系教案 新人

1. (必修2P 50习题1改编)设a 、b 为不重合的两条直线,α、β为不重合的两个平面,给出下列命题:

① 若a∥α且b∥α,则a∥b;② 若a⊥α且b⊥α,则a∥b;③ 若a∥α且a∥β,则α∥β;④ 若a⊥α且a⊥β,则α∥β.

其中为真命题的是________.(填序号) 答案:②④

解析:①错,a ∥α,b ∥α,直线a 与b 可能相交、平行或异面;③错,若α∩β=l ,a ∥l ,a ?α,a ?β,则a∥α,a ∥β.

2. (必修2P 49练习4改编)如果平面α⊥平面β,直线l⊥平面β,则直线l 与平面α的位置关系是________.

答案:直线l 与平面α平行或直线l 在平面α内 解析:不要忽略直线l 在平面α内的情况.

3. (必修2P 48习题12改编)已知直线a 和两个不同的平面α、β,且a⊥α,a ∥β,则α、β的位置关系是________.

答案:垂直

解析:运用两平面垂直的判定方法.

4. (必修2P 51习题16改编)已知α、β、γ是三个不同的平面,命题“α∥β,且α⊥γTβ⊥γ”是真命题,如果把α、β、γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题的个数是________.

答案:2

解析:若α、β换为直线a 、b ,则命题化为“a∥b,且a⊥γTb ⊥γ”,此命题为真命题;若α、γ换为直线a 、b ,则命题化为“a∥β,且a⊥b Tb ⊥β”,此命题为假命题;若β、γ换为直线a 、b ,则

命题化为“a ∥α,且b⊥αTa ⊥b ”,此命题为真命题,故真命题共2个.

5. (必修2P 49练习4改编)a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合平面,现给出六个命题:

① ?????a∥c,b ∥c Ta ∥b ;② ?????a∥γ,b ∥γTa ∥b ;③ ?????c∥α,c ∥βTα∥β; ④ ?????α∥γ,β∥γTα∥β;⑤ ?????α

∥c,a ∥c Tα∥a ;⑥ ?????α∥γa∥γTa ∥α. 其中正确的命题是________.(填序号) 答案:①④

解析:②错在a 、b 可能相交或异面.③错在α与β可能相交.⑤、⑥错在a 可能在α内.

1. 两平面平行的定义:如果两个平面没有公共点,那么我们就说这两个平面互相平行.

2. 两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,

那么这两个平面平行.

性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.

3. 两平面垂直的定义:如果两个平面所成的二面角是直二面角,我们就说这两个平面互相垂直.

4. 两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.

[备课札记]

题型1 两平面的平行

例1(2013·江苏)如图,在三棱锥SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E、G分别是棱SA、

SC的中点.求证:

(1) 平面EFG∥平面ABC;

(2) BC⊥SA.

证明:(1) ∵ AS=AB,AF⊥SB,

∴ F是SB的中点.

∵ E、F分别是SA、SB的中点,∴ EF∥AB.

∵ EF?平面ABC,ABí平面ABC,

∴ EF∥平面ABC.

同理FG∥平面ABC.

∵ EF∩FG=F,EF、FG?平面ABC,

∴平面EFG∥平面ABC.

(2) ∵ 平面SAB⊥平面SBC,平面SAB∩平面SBC=SB,AFí平面SAB,AF⊥SB,

∴ AF⊥平面SBC.

∵ BCí平面SBC,∴ AF⊥BC.

∵ AB⊥BC,AB∩AF=A,AB、AFí平面SAB,∴ BC⊥平面SAB.

∵ SAí平面SAB,∴ BC⊥SA.

变式训练

如图,在四棱锥PABCD中,M、N分别是侧棱PA和底面BC边的中点,O是底面平行四边形ABCD的对角线AC的中点.求证:过O、M、N三点的平面与侧面PCD平行.

证明:∵ O、M 分别是AC 、PA 的中点,连结OM ,则OM∥PC.∵ OM PCD ,PC 平面PCD ,∴ OM ∥平面PCD.同理,知ON∥CD.∵ ON 平面PCD ,CD 平面PCD ,∴ ON ∥平面PCD.又OM∩ON=O ,∴ OM 、ON 确定一个平面OMN.由两个平面平行的判定定理知平面OMN 与平面PCD 平行,即过O 、M 、N 三点的平面与侧面PCD 平行.

备选变式(教师专享)

在直四棱柱ABCDA 1B 1C 1D 1中,底面ABCD 是菱形. 求证:平面B 1AC ∥平面DC 1A 1. 证明:因为ABCDA 1B 1C 1D 1是直四棱柱, 所以A 1C 1∥AC.

又A 1C 1?平面B 1AC ,AC ì平面B 1AC , 所以A 1C 1∥平面B 1AC. 同理,A 1D ∥平面B 1AC.

因为 A 1C 1、A 1D ì平面DC 1A 1,A 1C 1∩A 1D =A 1, 所以平面B 1AC ∥平面DC 1A 1. 题型2 两平面的垂直关系

例2 如图,三棱锥A-BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,

E ,

F 分别是AC ,AD 上的动点,且AE AC =AF

AD

=λ(0<λ<1).

(1) 求证:不论λ为何值,总有平面BEF⊥平面ABC ; (2) 当λ为何值时,平面BEF⊥平面ACD. (1) 证明:∵ AB⊥平面BCD ,∴ AB ⊥CD. ∵ CD ⊥BC ,且AB∩BC=B ,∴ CD⊥平面ABC.

∵ AE AC =AF

AD

=λ(0<λ<1),

∴ 不论λ为何值,恒有EF∥CD. ∴ EF ⊥平面ABC ,EF ì平面BEF.

∴ 不论λ为何值恒有平面BEF⊥平面ABC.

(2) 解:由(1)知,BE ⊥EF ,∵ 平面BEF⊥平面ACD ,∴ BE ⊥平面ACD.∴ BE⊥AC. ∵ BC =CD =1,∠BCD =90°,∠ADB =60°, ∴ BD =2,AB =2tan60°= 6.

∴ AC =AB 2+BC 2

=7.

由AB 2

=AE·AC,得AE =67

.∴ λ=AE AC =67.

故当λ=6

7

时,平面BEF⊥平面ACD.

备选变式(教师专享)

(2013江宁高中期中)如图,直三棱柱ABC -A 1B 1C 1中,D 、E 分别是棱BC 、AB 的中点,点F 在棱CC 1上,已知AB =AC ,AA 1=3,BC =CF =2.

(1) 求证: C 1E ∥平面ADF ;

(2) 设点M 在棱BB 1上,当BM 为何值时,平面CAM⊥平面ADF? (1) 证明:连结CE 交AD 于O ,连结OF.

因为CE ,AD 为△ABC 中线,所以O 为△ABC 的重心,CF CC 1=CO CE =2

3

.

从而OF//C 1E.OF ì平面ADF ,C 1E ?平面ADF ,所以C 1E ∥平面ADF. (2) 解: 当BM =1时,平面CAM⊥平面ADF.

在直三棱柱ABC -A 1B 1C 1中,由于B 1B ⊥平面ABC ,BB 1ì平面B 1BCC 1,所以平面B 1BCC 1⊥平面ABC.由于AB =AC ,D 是BC 中点,所以AD⊥BC.又平面B 1BCC 1∩平面ABC =BC, 所以AD⊥平面B 1BCC 1.而CM ì平面B 1BCC 1,于是AD⊥CM.因为BM =CD =1,BC = CF =2,所以Rt △CBM ≌Rt △FCD ,所以CM⊥DF. DF 与AD 相交,所以CM⊥平面ADF.CM⊥平面CAM ,所以平面CAM⊥平面ADF.当BM =1时,平面CAM⊥平面ADF.

题型3 平行与垂直的综合问题

例3 如图①,E 、F 分别是直角三角形ABC 边AB 和AC 的中点,∠B =90°,沿EF 将三角形ABC 折成如图②所示的锐二面角A 1EFB ,若M 为线段A 1C 中点.求证:

(1) 直线FM∥平面A 1EB ; (2) 平面A 1FC ⊥平面A 1BC.

证明:(1) 取A 1B 中点N ,连结NE 、NM ,

则MN∥=12BC ,EF ∥=1

2

BC ,所以MN∥=FE ,

所以四边形MNEF 为平行四边形,所以FM∥EN, 因为FM ?平面A 1EB ,EN ì平面A 1EB , 所以直线FM∥平面A 1EB.

(2) 因为E 、F 分别为AB 和AC 的中点, 所以A 1F =FC ,所以FM⊥A 1C. 同理,EN ⊥A 1B.

由(1)知,FM ∥EN ,所以FM⊥A 1B.

因为A 1C∩A 1B =A 1,所以FM⊥平面A 1BC. 因为FM ì平面A 1FC ,

所以平面A 1FC ⊥平面A 1BC. 备选变式(教师专享)

如图①,E 、F 分别是直角三角形ABC 边AB 和AC 的中点,∠B =90°,沿EF 将三角形ABC 折成如图②所示的锐二面角A 1EFB ,若M 为线段A 1C 的中点.求证:

(1) 直线FM∥平面A 1EB ;

(2) 平面A 1FC ⊥平面A 1BC.

证明:(1) 取A 1B 中点N ,连结NE 、NM ,则MN∥=12BC ,EF ∥=1

2

BC ,所以MN∥=FE ,所以

四边形MNEF 为平行四边形,所以FM∥EN.又FM 平面A 1EB ,EN ì平面A 1EB ,所以直线FM∥平面A 1EB.

(2) 因为E 、F 分别为AB 和AC 的中点,所以A 1F =FC ,所以FM⊥A 1C.同理,EN ⊥A 1B.由(1)知FM∥EN,所以FM⊥A 1B.又A 1C ∩A 1B =A 1,所以FM⊥平面A 1BC.因为FM ì平面A 1FC ,所以平面A 1FC ⊥平面A 1BC.

【示例】 (本题模拟高考评分标准,满分14分)

如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB =2EF =2,EF ∥AB ,EF ⊥FB ,∠BFC =90°,BF =FC ,G 、H 分别为DC 、BC 的中点.

(1) 求证:平面FGH∥平面BDE ; (2) 求证:平面ACF⊥平面BDE. 学生错解: 证明:

(1) 如图,设AC 与BD 交于点O ,连结OE 、OH.由已知EF =12AB ,得EF∥1

2

AB.

∵ OH ∥=1

2

AB ,∴ EF ∥=OH ,

∴ 四边形OEFH 为平行四边形,∴ FH ∥EO. ∵ G 、H 分别为DC 、BC 的中点,∴ GH ∥DB. ∴ 平面FGH∥平面BDE.

(2) 由四边形ABCD 为正方形,有AB⊥BC. 又EF∥AB,∴ EF ⊥BC ,

而EF⊥FB,∴ EF ⊥平面BFC. ∵ FH ì平面BFC ,∴ EF ⊥FH.

∴ AB ⊥FH.又BF =FC ,H 为BC 的中点, ∴ FH ⊥BC ,∴ FH ⊥平面ABCD. ∴ FH ⊥AC.又FH∥EO,∴ AC ⊥EO. 又AC⊥BD,∴ AC ⊥平面BDE.

又AC ì平面ACF ,∴ 平面ACF⊥平面BDE.

审题引导: (1) 探索求解过程的关键是弄清线线平行线面平行面面平行;线线垂直线面垂直面面垂直;不要跳步造成错误,如本例(1),易出现由线线平行直接推得面面平行,从而导致证明过程错误.(2) 正确理解运用线线、线面、面面的平行、垂直关系的判定定理和性质定理,特别注意将条件写完整,不可遗漏,如本例(2)在证明线、面垂直时,没有指出线线相交,就直接写出线面垂直,造成导致证明过程不严谨.

规范解答: 证明: (1) 如图,设AC 与BD 交于点O ,连结OE 、OH ,由已知EF =1

2

AB ,

得EF∥1

2

AB.(2分)

∵ OH ∥=1

2

AB ,∴ EF ∥=OH ,

∴ 四边形OEFH 为平行四边形,∴ FH ∥EO.(4分) ∵ FH 平面BDE ,EO 平面BDE ,∴ FH ∥平面BDE. ∵ G 、H 分别为DC 、BC 的中点,∴ GH ∥DB.

∵ GH ?平面BDE ,DB ì平面BDE ,∴ GH ∥平面BDE. 又∵ FH∩GH=H ,

∴ 平面FGH∥平面BDE.(6分)

(2) 由四边形ABCD 为正方形,有AB⊥BC. 又EF∥AB,∴ EF ⊥BC ,(8分)

而EF⊥FB,BC ∩FB =B ,∴ EF ⊥平面BFC. FH ì平面BFC ,∴ EF ⊥FH.(10分)

∴ AB ⊥FH ,又BF =FC ,H 为BC 的中点, ∴ FH ⊥BC ,AB ∩BC =B ,∴ FH ⊥平面ABCD. ∴ FH ⊥AC ,又FH∥EO,∴ AC ⊥EO.(12分) 又AC⊥BD,EO ∩BD =O ,∴ AC ⊥平面BDE.

又AC ì平面ACF ,∴平面ACF⊥平面BDE.(14分) 错因分析:证明两平面平行、垂直关系时一定要正确运用两平面平行或垂直的判定定理,并将相应的条件写全.本题(1)直接由线线平行推得面面平行,不符合面面平行的判定定理,导致证明过程不严谨.(2)在证明线、面垂直时,没有指出相交的条件;导致证题过程不正确.

1. (2013·常州调研)给出下列命题:

① 若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;

② 若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ③ 若两条平行直线中的一条垂直于直线m ,那么另一条直线也与直线m 垂直;

④ 若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.

其中,真命题是________.(填序号) 答案:①③④ 解析:由面面垂直的判定定理可得若一个平面经过另一个平面的垂线,那么这两个平面相互垂直,故①正确;如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面相互平行,但两条直线平行时,得不到平面平行,故②错误;根据空间直线夹角的定义,可得两条平行直线与第三条直线的夹角相等,故若两条平行直线中的一条垂直于直线m ,那么另一条直线也与直线m 垂直,即③正确;根据面面垂直的性质定理,若两个平面垂直,那么一个平面内与它们的交线垂直的直线与另一个平面也垂直,则一个平面内与它们的交线不垂直的直线与另一个平面也不垂直,故④正确.因此真命题是①③④.

2. 下列命题错误的是________.(填序号)

① 如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β;

② 如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β; ③ 如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥平面γ; ④ 如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β. 答案:④

3. 如图所示,在四棱锥PABCD 中,PA ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一

动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)

答案:DM⊥PC(或BM⊥PC等)

解析:由已知条件可知,BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有P C⊥平面MBD.而PC属于平面PCD,∴平面MBD⊥平面PCD.

4. 如图①,在等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=60°,E是BC的中点.如图②,将△ABE沿AE折起,使二面角BAEC成直二面角,连结BC、BD,F是CD的中点,P 是棱BC的中点.求证:

(1) AE⊥BD;

(2) 平面PEF⊥平面AECD.

图①图②

证明:(1) 取AE中点M,连结BM、DM、DE.

∵在等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=60°,E是BC的中点,∴△ABE 与△ADE都是等边三角形,∴ BM⊥AE,DM⊥AE.∵ BM∩DM=M,BM,DMì平面BDM,∴AE⊥平面BDM.∵ BDì平面BDM,∴ AE⊥BD.

(2) 连结CM交EF于点N,连结PN.

∵ ME∥FC,且ME=FC,∴四边形MECF是平行四边形,∴ N是线段CM的中点.∵ P是线段BC的中点,∴ PN∥BM.∵ BM⊥平面AECD,∴ PN⊥平面AECD.∵ PNì平面PEF,∴平面PEF⊥平面AECD.

5. 如图,在直四棱柱ABCDA1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,且AB=2CD,在棱AB上是否存在一点F,使平面C1CF∥平面ADD1A1?若存在,求点F的位置;若不存在,请说明理由.

解:存在这样的点F,使平面C1CF∥平面ADD1A1,此时点F为AB的中点,证明如下:∵ AB∥CD,AB=2CD,∴ AF綊CD,∴四边形AFCD是平行四边形.∴ AD∥CF.

又ADì平面ADD1A1,CF?平面ADD1A1,

∴ CF∥平面ADD1A1.

又CC1∥DD1,CC1?平面ADD1A1,DD1ì平面ADD1A1,∴ CC1∥平面ADD1A1.

又CC1、CFì平面C1CF,CC1∩CF=C,

∴平面C1CF∥平面ADD1A1.

1. 在如图所示的多面体中,已知正三棱柱ABCA 1B 1C 1的所有棱长均为2,四边形ABDC 是菱形.

(1) 求证:平面ADC 1⊥平面BCC 1B 1; (2) 求该多面体的体积.

(1) 证明:由正三棱柱ABCA 1B 1C 1,得BB 1⊥AD. 而四边形ABDC 是菱形,所以AD⊥BC.

又BB 1ì平面BB 1C 1C ,BC ì平面BB 1C 1C ,且BC∩BB 1=B ,所以AD⊥平面BCC 1B 1. 又由AD ì平面ADC 1,得平面ADC 1⊥平面BCC 1B 1. (2) 解:因为正三棱柱ABCA 1B 1C 1的体积为 V 1=S △ABC ×AA 1=23, 四棱锥DB 1C 1CB 的体积为

V 2=13S 平面BCC 1B 1×? ????12AD =

433

, 所以该多面体的体积为V =

103

3

.

2. 如图,正方形ABCD 和三角形ACE 所在的平面互相垂直.EF∥BD,AB =2EF.求证: (1) BF∥平面ACE ; (2) BF⊥BD.

证明: (1) AC 与BD 交于O 点,连结EO.

正方形ABCD 中,2BO =AB ,又因为AB =2EF , ∴ BO =EF ,又因为EF∥BD,∴ EFBO 是平行四边形 ∴ BF ∥EO ,又∵ BF ?平面ACE ,EO ì平面ACE , ∴ BF ∥平面ACE.

(2) 正方形ABCD 中,AC ⊥BD ,又因为正方形ABCD 和三角形ACE 所在的平面互相垂直, BD ì平面ABCD ,平面ABCD∩平面ACE =AC ,∴ BD ⊥平面ACE ,∵ EO ì平面ACE ∴ BD ⊥EO ,∵ EO ∥BF ,∴ BF ⊥BD.

3. 如图,在正三棱柱ABCDEF 中,AB =2,AD =1.P 是CF 的延长线上一点,FP =t.过A 、B 、P 三点的平面交FD 于M ,交FE 于N.

(1) 求证:MN∥平面CDE ;

(2) 当平面PAB⊥平面CDE 时,求t 的值.

(1) 证明:因为AB∥DE,AB 在平面FDE 外,所以AB∥平面FDE.又MN 是平面PAB 与平面FDE 的交线,所以AB∥MN,故MN∥DE.因为MN 平面CDE ,DE ì平面CDE ,所以MN∥平面CDE.

(2) 解:取AB 中点G 、DE 中点H ,连结GH ,则由GH∥PC 知P 、C 、G 、H 在同一平面上,并且由PA =PB 知PG⊥AB.而与(1)同理可证AB 平行于平面PAB 与平面CDE 的交线,因此,PG 也垂直于该交线.又平面PAB⊥平面CDE ,所以PG⊥平面CDE ,所以PG⊥CH,于是

△CGH∽△PCG,所以PC CG =CG GH ,即1+t 3

=3

1,解得t =2.

4. (2013·徐州三模)如图,AB 、CD 均为圆O 的直径,CE ⊥圆O 所在的平面,BF ∥CE.求证:

(1) 平面BCEF⊥平面ACE ; (2) 直线DF∥平面ACE.

证明: (1) 因为CE⊥圆O 所在的平面,BC ì圆O 所在的平面,所以CE⊥BC. 因为AB 为圆O 的直径,点C 在圆O 上,所以AC⊥BC, 因为AC∩CE=C ,AC ,CE ì平面ACE ,所以BC⊥平面ACE , 因为BC ì平面BCEF ,所以平面BCEF⊥平面ACE.

(2) 由(1)AC⊥BC,又因为CD 为圆O 的直径,所以BD⊥BC, 因为AC 、BC 、BD 在同一平面内,所以AC∥BD,

因为BD ?平面ACE ,AC ì平面ACE ,所以BD∥平面ACE. 因为BF∥CE,同理可证BF∥平面ACE ,

因为BD∩BF=B ,BD 、BF ì平面BDF ,所以平面BDF∥平面ACE , 因为DF 平面BDF ,所以DF∥平面ACE.

1. 判断或证明面面平行的常用方法: (1) 利用两个平面平行的定义;

(2) 利用两个平面平行的判定定理(a ìα,b ìα,a ∩b =A ,a ∥β,b ∥βTα∥

β).

2. 判定面面垂直的方法:

(1) 利用两个平面垂直的定义,两个平面所成的二面角是直二面角; (2) 利用平面与平面垂直的判定定理(l⊥α,l ìβTα⊥β). 3. 平面与平面平行、垂直的性质的作用:

(1) 两平面平行常常用来作为判定直线与平面平行或直线与直线平行的依据;

(2) 两平面垂直常常用来作为判定直线与平面垂直的一个途径.

4. 证明平行、垂直问题时要注意“转化思想”的应用,要抓住线线、线面、面面之间平行或垂直关系的相互转化,达到解题目的.

请使用课时训练(A)第4课时(见活页).

高三数学第一轮教案简易逻辑

简易逻辑 二.教学目标:了解命题的概念和命题的构成;理解逻辑联结词“或”“且”“非”的含义;理解四 种命题及其互相关系;反证法在证明过程中的应用. 三.教学重点:复合命题的构成及其真假的判断,四种命题的关系. 四.教学过程: (一)主要知识: 1.理解由“或”“且”“非”将简单命题构成的复合命题; 2.由真值表判断复合命题的真假; 3.四种命题间的关系. (二)主要方法: 1.逻辑联结词“或”“且”“非”与集合中的并集、交集、补集有着密切的关系,解题时注意类比; 2.通常复合命题“p 或q ”的否定为“p ?且q ?”、“p 且q ”的否定为“p ?或q ?”、“全为”的否定是“不全为”、“都是”的否定为“不都是”等等; 3.有时一个命题的叙述方式比较的简略,此时应先分清条件和结论,该写成“若p ,则q ”的形式; 4.反证法中出现怎样的矛盾,要在解题的过程中随时审视推出的结论是否与题设、定义、定理、公理、公式、法则等矛盾,甚至自相矛盾. (三)例题分析: 例1.指出下列命题的构成形式及构成它的简单命题,并判断复合命题的真假: (1)菱形对角线相互垂直平分. (2)“23≤” 解:(1)这个命题是“p 且q ”形式,:p 菱形的对角线相互垂直;:q 菱形的对角线相互平分, ∵p 为真命题,q 也是真命题 ∴p 且q 为真命题. (2)这个命题是“p 或q ”形式,:p 23<;:q 23=, ∵p 为真命题,q 是假命题 ∴p 或q 为真命题. 注:判断复合命题的真假首先应看清该复合命题的构成形式,然后判断构成它的简单命题的真假,再由真值表判断复合命题的真假. 例2.分别写出命题“若220x y +=,则,x y 全为零”的逆命题、否命题和逆否命题. 解:否命题为:若220x y +≠,则,x y 不全为零 逆命题:若,x y 全为零,则220x y += 逆否命题:若,x y 不全为零,则220x y +≠ 注:写四种命题时应先分清题设和结论. 例3.命题“若0m >,则20x x m +-=有实根”的逆否命题是真命题吗?证明你的结论. 解:方法一:原命题是真命题, ∵0m >,∴140m ?=+>, 因而方程20x x m +-=有实根,故原命题“若0m >,则20x x m +-=有实根”是真命题; 又因原命题与它的逆否命题是等价的,故命题“若0m >,则20x x m +-=有实根”的逆否命题是真命题. 方法二:原命题“若0m >,则20x x m +-=有实根”的逆否命题是“若2 0x x m +-=无实根,则0m ≤”.∵20x x m +-=无实根 ∴140m ?=+<即104 m <- ≤,故原命题的逆否命题是真命题. 例4.(考点6智能训练14题)已知命题p :方程210x mx ++=有两个不相等的实负根,命题q :

平面向量基本定理教案(区公开课)

仁爱/诚信/勤奋/创新 授课教师:蒋金凤 课程名称:平面向量基本定理授课地点:高一(12)班

授课日期: 3 月 15 日星期四序号课题 2.3.1平面向量基本定理共 1 课时第 1 课时 教学目标1.了解平面向量基本定理,会运用它来解决一些简单的问题. 2.通过观察、猜想、验证、概括得到平面向量基本定理,使学生体会研究问题的过程与方法. 3.通过定理的推导使学生感受到数学思维的严谨性,体会化归转化的方法和数与形的完美结合. 重 点 平面向量基本定理 难点在平面向量基本定理探究过程中“不共线”和 “任意性”的验证 突破 方法 通过实例画图和类比平面直角 坐标系的象限归纳总结 教学模式讲授式、探究式 板书设计 平面向量基本定理 平面向量基本定理例题:定理说明:多媒体投影 小结: 教学过程 教学活动学生活动设计意图一、情景引入 两个小朋友在荡秋千,那么在所有条件都相同 的前提条件下,哪个秋千的绳子更容易断掉? 二、新课探究 1.给定向量 2 1 e,e请根据平面坐标的线性运算 (1)作出向量) e ( ) e ( 2 1 3 2+ 下面我们把刚刚的作图痕迹擦去,给定向量 2 1 e,e和 1 OC,你能将 1 OC用 2 1 e,e表示成 2 2 1 1 e eλ λ+的形式吗? 看图观察并 思考,说出自己 的判断和依据 学生口述,作图 过程得结果 独立完成,个别 展示 从实际生活 问题入手,贴近 学生的日常生 活,能很好地激 发学生的求知欲 望 复习向量的 线性运算和共线 向量定理,为后 续的向量的分解 和唯一性作铺垫 进入向量分解的 探究,刚刚作图 的过程还记忆犹 新,按照来的痕 迹寻找构造平行 四边形的方法

20高考数学平面向量的解题技巧

第二讲平面向量的解题技巧 【命题趋向】 由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0u u u r u u u r u u u r ,那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 命题意图:本题考查能够结合图形进行向量计算的能力. 解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0,u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 故选A . 例2.(2006年安徽卷)在ABCD Y 中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r ,M 为BC 的中点,则MN =u u u u r ______.(用a b r r 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12 AM a b =+u u u u r r r , 所以,3111()()4 2 4 4 MN a b a b a b =+-+=-+u u u u r r r r r r r . 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量 =CD ( ) (A )BA BC 2 1+- (B ) BA BC 2 1-- (C ) BA BC 2 1- (D )BA BC 2 1+ 命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2 1+-=+=,故选A. 例4. ( 2006年重庆卷)与向量a r =71,,22b ? ?= ???r ?? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ?? ?- ??53,5 4 (B) ?? ?- ??53,5 4或?? ? ??-53,54 (C )?? ?- ??31,3 22 (D )?? ?- ??31,3 22或?? ? ? ?- 31,3 22 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题. 解:设所求平面向量为,c r 由433,,, 1. 555c c ???? =-= ? ?????r 4或-时5 另一方面,当222274134312525,,cos ,. 55271432255a c c a c a c ?? ?+?- ?????? =-=== ????????????+++- ? ? ? ?????????r r r r r r r 时

高三数学第一轮复习教案(1)

第1页 共64页 高考数学总复习教案 第一章-集合 考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件. 考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合. (2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义. §01. 集合与简易逻辑 知识要点 一、知识结构: 本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分: 二、知识回顾: (一) 集合 1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质: ①任何一个集合是它本身的子集,记为A A ?; ②空集是任何集合的子集,记为A ?φ; ③空集是任何非空集合的真子集; 如果B A ?,同时A B ?,那么A = B. 如果C A C B B A ???,那么,. [注]:①Z = {整数}(√) Z ={全体整数} (×) ②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集. ④若集合A =集合B ,则C B A = ?, C A B = ? C S (C A B )= D ( 注 :C A B = ?). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R }二、四象限的点集. ③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集.

2.3.1平面向量基本定理教案(人教A必修4)

2.3平面向量的基本定理及坐标表示 第4课时 §2.3.1 平面向量基本定理 教学目的: (1)了解平面向量基本定理; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决 实际问题的重要思想方法; (3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理. 教学难点:平面向量基本定理的理解与应用. 授课类型:新授课 教 具:多媒体、实物投影仪 教学过程: 一、 复习引入: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时 λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b = λa . 二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内 的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e . 探究: (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;

(4) 基底给定时,分解形式惟一. λ1,λ 2是被a ,1e ,2e 唯一确定的数量 三、讲解范例: 例1 已知向量1e ,2e 求作向量-2.51e +32e . 例 2 如图 ABCD 的两条对角线交于点M ,且=a ,=b ,用a ,b 表示,,和 例3已知 ABCD 的两条对角线AC 与BD 交于E ,O 是任 意一点,求证:+++=4 例4(1)如图,,不共线,=t (t ∈R)用, 表示. (2)设OA 、OB 不共线,点P 在O 、A 、B 所在的平面内,且 (1)()OP t OA tOB t R =-+∈ .求证:A 、B 、P 三点共线. 例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实 数,d a b λμλμ=+ 、使与c 共线. 四、课堂练习: 1.设e 1、e 2是同一平面内的两个向量,则有( ) A.e 1、e 2一定平行 B .e 1、e 2的模相等 C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R ) D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R ) 2.已知矢量a = e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系 A.不共线 B .共线 C.相等 D.无法确定 3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( ) A.3 B .-3 C.0 D.2 4.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= . 5.已知λ1>0,λ2>0,e 1、e 2是一组基底,且a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填 共线或不共线). 五、小结(略)

高三数学平面向量知识点与题型总结(文科)

知识点归纳 一.向量的基本概念与基本运算 1、向量的概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行 ③单位向量:模为1个单位长度的向量 ④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量 2、向量加法:设,AB a BC b == ,则a +b =AB BC + =AC (1)a a a =+=+00;(2)向量加法满足交换律与结合律; AB BC CD PQ QR AR +++++= ,但这时必须“首尾相连” . 3、向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量 ②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a -可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点) 4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (Ⅰ)a a ?=λλ; (Ⅱ)当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a 的 方向相反;当0=λ时,0 =a λ,方向是任意的 5、两个向量共线定理:向量b 与非零向量a 共线?有且只有一个实数λ,使得b =a λ 6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 二.平面向量的坐标表示 1平面向量的坐标表示:平面内的任一向量a 可表示成a xi yj =+ ,记作a =(x,y)。 2平面向量的坐标运算: (1) 若()()1122,,,a x y b x y == ,则()1212,a b x x y y ±=±± (2) 若()()2211,,,y x B y x A ,则()2121,AB x x y y =-- (3) 若a =(x,y),则λa =(λx, λy) (4) 若()()1122,,,a x y b x y == ,则1221//0a b x y x y ?-= (5) 若()()1122,,,a x y b x y == ,则1212a b x x y y ?=?+? 若a b ⊥ ,则02121=?+?y y x x

2.3.1平面向量基本定理(教学设计)

2.3.1平面向量基本定理(教学设计) [教学目标] 一、知识与能力: 1.掌握平面向量基本定理; 2.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 二、过程与方法: 体会数形结合的数学思想方法;培养学生转化问题的能力. 三、情感、态度与价值观: 培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题. 教学重点:平面向量基本定理,向量的坐标表示;平面向量坐标运算 教学难点:平面向量基本定理. 一、复习回顾: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa . 二、师生互动,新课讲解: 思考:给定平面内任意两个向量e 1,e 2,请作出向量3e 1+2e 2、e 1-2e 2,平面内的任一向量是否都可以用形如λ1e 1+λ2e 2的向量表示呢?. 在平面内任取一点O ,作OA =e 1,OB =e 2,OC =a ,过点C 作平行于直线OB 的直线,与直线OA 交于点M ;过点C 作平行于直线OA 的直线,与直线OB 交于点N . 由向量的线性运算性质可知,存在实数λ1、λ2,使得OM =λ1e 1,ON =λ2e 2. 由于OC OM ON =+,所以a =λ1e 1+λ2e 2,也就是说任一向量a 都可以表示成λ1e 1+λ2e 2的形式. 1. 平面向量基本定理 (1)定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使得

高考数学平面向量及其应用习题及答案 百度文库

一、多选题 1.在ABC ?中,内角,,A B C 的对边分别为,,,a b c 若,2,6 A a c π ===则角C 的大小 是( ) A . 6 π B . 3 π C . 56 π D . 23 π 2.已知点()4,6A ,33,2 B ??- ?? ? ,与向量AB 平行的向量的坐标可以是( ) A .14,33?? ??? B .97,2?? ??? C .14,33?? - - ??? D .(7,9) 3.在ABC 中,AB =1AC =,6 B π =,则角A 的可能取值为( ) A . 6 π B . 3 π C . 23 π D . 2 π 4.已知向量()1,0a =,()2,2b =,则下列结论正确的是( ) A .()25,4a b += B .2b = C .a 与b 的夹角为45° D .() //2a a b + 5.已知ABC ?是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且 AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( ) A .1A B CE ?=- B .0OE O C += C .3OA OB OC ++= D .ED 在BC 方向上的投影为 76 6.ABC 中,2AB =,30ACB ∠=?,则下列叙述正确的是( ) A .ABC 的外接圆的直径为4. B .若4A C =,则满足条件的ABC 有且只有1个 C .若满足条件的ABC 有且只有1个,则4AC = D .若满足条件的ABC 有两个,则24AC << 7.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为( ) A . B . C .8 D . 8.ABC 中,4a =,5b =,面积S =c =( ) A B C D .9.八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八

高三数学第一轮复习教学案

天印中学2010届高三数学第一轮复习教学案 主备人:李松 2009-12-1立体几何2) 课题:线面平行与面面平行(B 级) 【教学目标】 1. 掌握直线与平面平行,判定定理和性质定理,并能运用它们进行论证和解决有关问题; 2. 掌握平面与平面平行,判定定理和性质定理,并能运用它们进行论证和解决有关问题。 〖走进课本〗——知识整理 1.直线与平面的位置关系有 ; ; 三种 2.直线与平面平行的判定定理: 用符号表示为 3.直线与平面平行的性质定理: 用符号表示为 4.两个平面平行的判定定理 有符号表示为 5.两个平面平行的性质定理 有符号表示为 〖基础训练〗——提神醒脑 1.直线a ⊥平面α,直线α||b ,则a 与b 的关系是( ) A.b a || B. b a ⊥ C. b a ,一定异面 D. b a ,一定相交 2.如果直线a 平行于平面α,则( ) A.平面α内有且只有一条直线与a 平行; B. 平面α内无数条直线与a 平行; C. 平面α内不存在与a 垂直的直线; D. 平面α内有且只有一条直线与a 垂直; 3.若直线a 与平面α内无数条直线平行,则a 与α的位置关系是( ) A.α||a B. α?a C.α||a 或α?a D. α?a 4.已知直线b a ,和平面α,那么b a ||的一个必要不充分的条件是( ) A.α||a ,α||b B. α⊥a ,α⊥b C. α?b 且α||a D. b a ,与α成等角 5.以下六个命题:其中正确命题的序号是 ①两个平面分别与第三个平面相交所得的两条交线平行,则这两个平面平行; ②平行于同一条直线的两个平面平行; ③平行于同一平面的两个平面平行; ④一个平面内的两相交直线与另一个平面内的两条相交直线分别平行,则这两个平面平行; ⑤与同一条直线成等角的两个平面平行; ⑥一个平面上不共线三点到另一平面的距离相等,则这两个平面平行;

2.3.1平面向量基本定理教案

2.3.1 平面向量的基本定理 教学目的: 要求学生掌握平面向量的基本定理,能用两个不共线向量表示一个向量;或一个向量分解为两个向量. 教学重点: 平面向量的基本定理及其应用. 教学难点: 平面向量的基本定理. 教学过程: 一、复习提问: 1.向量的加法运算(平行四边形法则); 2.向量的减法运算; 3.实数与向量的积; 4.向量共线定理。 二、新课: 1.提出问题:由平行四边形想到: (1)是不是每一个向量都可以分解成两个不共线向量?且分解是唯一? (2)对于平面上两个不共线向量1e ,2e 是不是平面上的所有向量都可以用它们来表示? 2.新课 1e ,2e 是不共线向量,a 是平面内任一向量, =1e ,=λ1 2e ,=a =+=λ1 1e +λ2 2e , =2e ,=λ 2 2e . 1e 2e a C

得平面向量基本定理: 如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ 1 ,λ2使a =λ 1 1e +λ2 2e . 注意几个问题: (1)1e ,2e 必须不共线,且它是这一平面内所有向量的一组基底; (2)这个定理也叫共面向量定理; (3)λ1,λ2是被a ,1e ,2e 唯一确定的数量. 例1 已知向量1e ,2e ,求作向量-2.51e +32e . 作法:(1)取点O ,作=-2.51e ,=32e , (2)作平行四边形OACB ,即为所求. 已知两个非零向量a 、b ,作OA = a ,OB = b ,则∠AOB =θ(0°≤θ≤180°),叫做向量a 与b 的夹角. 当θ=0°,a 与b 同向;当θ=180°时,a 与b 反向,如果a 与b 的夹角为90°,我们说a 与b 垂直,记作:a ⊥b . 三、小结: 平面向量基本定理,其实质在于:同一平面内任一向量都可以表示为两个不共线向量的线性组合. 1 e 2e

2020-2021年高考数学试题汇编平面向量(精华总结)

2021年高考数学试题汇编平面向量 (北京4) 已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0u u u r u u u r u u u r , 那么( A ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r (辽宁3) 若向量a 与b 不共线,0≠g a b ,且?? ??? g g a a c =a -b a b ,则向量a 与c 的夹角为( D ) A .0 B .π 6 C .π3 D .π2 (辽宁6) 若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a =( A ) A .(12)--, B .(12)-, C .(12)-, D .(12), (宁夏,海南4) 已知平面向量(11) (11)==-,,,a b ,则向量1322 -=a b ( D ) A.(21)--, B.(21)-, C.(10)-, D.(12), (福建4)

对于向量,,a b c 和实数λ,下列命题中真命题是( B ) A .若=0g a b ,则0a =或0b = B .若λ0a =,则0λ=或=0a C .若22=a b ,则=a b 或-a =b D .若g g a b =a c ,则b =c (湖北2) 将π2cos 3 6x y ??=+ ??? 的图象按向量π24 ?? =-- ??? , a 平移,则平移后所得图象的解析式为( A ) A.π2cos 234x y ??=+- ??? B.π2cos 234x y ?? =-+ ??? C.π2cos 2312x y ?? =-- ??? D.π2cos 2312x y ?? =++ ??? (湖北文9) 设(43)=,a ,a 在b 上的投影为52 2 ,b 在x 轴上的投影为2,且||14≤b ,则b 为( B ) A .(214), B .227??- ?? ? , C .227? ?- ?? ? , D .(28), (湖南4) 设,a b 是非零向量,若函数()()()f x x x =+-g a b a b 的图象是一条直线,则必有( A ) A .⊥a b B .∥a b C .||||=a b D .||||≠a b (湖南文2) 若O E F ,,是不共线的任意三点,则以下各式中成立的是( B ) A .EF OF OE =+u u u r u u u r u u u r B .EF OF OE =-u u u r u u u r u u u r

高三数学第一轮复习 函数的奇偶性教案 文

函数的奇偶性 一、知识梳理:(阅读教材必修1第33页—第36页) 1、 函数的奇偶性定义: 2、 利用定义判断函数奇偶性的步骤 (1) 首先确定函数的定义域,并判断定义域是否关于原点对称; (2) 确定与的关系; (3) 作出相应结论 3、 奇偶函数的性质: (1)定义域关于原点对称; (2)偶函数的图象关于y 轴对称,奇函数的图象关于原点对称; (3)为偶函数 (4)若奇函数的定义域包含0,则 (5)判断函数的奇偶性,首先要研究函数的定义域,有时还要对函数式化简整理,但必须 注意使定义域不受影响; (6)牢记奇偶函数的图象特征,有助于判断函数的奇偶性; (7)判断函数的奇偶性有时可以用定义的等价形式: 4、一些重要类型的奇偶函数 (1)、f(x)= (a>0,a) 为偶函数; f(x)= (a>0,a) 为奇函数; (2)、f(x)= (3)、f(x)= (4)、f(x)=x+ (5)、f(x)=g(|x|)为偶函数; 二、题型探究 [探究一]:判断函数的奇偶性 例1:判断下列函数的奇偶性 1. 【15年北京文科】下列函数中为偶函数的是( ) A .2sin y x x = B .2cos y x x = C .ln y x = D .2x y -= 【答案】B 【解析】 试题分析:根据偶函数的定义()()f x f x -=,A 选项为奇函数,B 选项为偶函数,C 选项定 义域为(0,)+∞不具有奇偶性,D 选项既不是奇函数,也不是偶函数,故选B. 考点:函数的奇偶性. 2. 【15年广东文科】下列函数中,既不是奇函数,也不是偶函数的是( )

A .2sin y x x =+ B .2cos y x x =- C .122x x y =+ D .sin 2y x x =+ 【答案】A 【解析】 试题分析:函数()2 sin f x x x =+的定义域为R ,关于原点对称,因为()11sin1f =+,()1sin1f x -=-,所以函数()2sin f x x x =+既不是奇函数,也不是偶函数;函数 ()2cos f x x x =-的定义域为R ,关于原点对称,因为 ()()()()2 2cos cos f x x x x x f x -=---=-=,所以函数()2cos f x x x =-是偶函数;函数()122x x f x =+的定义域为R ,关于原点对称,因为()()112222x x x x f x f x ---=+=+=,所以函数()122 x x f x =+是偶函数;函数()sin 2f x x x =+的定义域为R ,关于原点对称,因为 ()()()sin 2sin 2f x x x x x f x -=-+-=--=-,所以函数()sin 2f x x x =+是奇函 数.故选A . 考点:函数的奇偶性. 3. 【15年福建文科】下列函数为奇函数的是( ) A .y x = B .x y e = C .cos y x = D .x x y e e -=- 【答案】D 【解析】 试题分析:函数y x = 和x y e =是非奇非偶函数; cos y x =是偶函数;x x y e e -=-是奇 函数,故选D . 考点:函数的奇偶性. [探究二]:应用函数的奇偶性解题 例3、【2014高考湖南卷改编】 已知)(),(x g x f 分别是定义在R 上的偶函数和奇函数,且1)()(23++=-x x x g x f ,则=+)1()1(g f ( ) A. 3- B. 1- C. 1 D. 3

高中数学优质课比赛 平面向量基本定理教案

《平面向量基本定理》教学教案 ----新余一中蒋小林 一、背景分析 1.教材分析 函向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。此前的教学内容主要研究了向量的的概念和线性运算,集中反映了向量的几何特征。本节课要讲解“平面向量基本定理”的概念和应用,是研究向量的正交分解和向量的坐标运算基础,向量的坐标运算正是向量的代数形态。通过平面向量基本定理,平面中的向量与它的坐标建立起了一一对应的关系,即“数”的运算处理“形”的问题完美结合,在整个向量知识体系中处于承上启下的核心地位。本节课教学重点是“平面向量基本定理探究过程和利用平面向量基本定理进行向量的分解”。 2.学情分析 从学生知识层面看:本节课之前已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的认识。 从学生能力层面看:通过以前的学习,已经初步具备类比归纳概括的能力,能在教师的引导下解决问题。 教学中引入生活实例类比出向量的分解,让学生通过课件的直观感受和动手探索总结归纳出平面向量基本定理,尤其是将图形语言转化为文字语言,对学生的能力要求比较高.因此,我认为平面向量的分解及对这种分解唯一性的理解是本节课的教学难点. 二.学习目标 1)知识与技能目标 1、了解平面向量基本定理及其意义,会选择基底来表示平面中的任一向量。 2、能用平面向量基本定理进行简单的应用。 2)过程与方法目标 1、通过平面向量基本定理的探究,让学生体验数学定理的产生、形成过程,培

养学生观察发现问题、由特殊到一般的归纳总结问题能力。 2、通过对平面向量基本定理的运用,增强学生向量的应用意识,让学生 进一步体会向量是处理几何问题强有力的工具之一。 3)情感、态度与价值观目标 1、用现实的实例,激发学生的学习兴趣,培养学生不断发现、探索新知的精神, 发展学生的数学应用意识; 2、经历定理的产生过程,让学生体验由特殊到一般的数学思想方法,在探究活 动中形成锲而不舍的钻研精神和科学态度。 [设计意图]:这样设计目标,可操作性强,容易检测目标的达成度,同时也体现 了培养学生核心素养的要求. 三.教学过程设计 教学过程 1.创设问题、引出新课 (一)通过击鼓传花游戏复习的向量的运算及平行向量基本定理,我们知道可以用(0)a a λ≠表示任意和a 共线的向量,那么再随便画一个方向的向量b ,你还可以用a 表示出来吗?一个向量不够那么需要几个向量来表示呢?za 此问题激发了学生的学习兴趣,蕴含着本节课设计主线,即从共线定理的一维关系转向研究平面向量基本定理的二维关系。(二)情景1:火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度;情景2:斜坡上物体所受的重力G ,课分解为力沿斜坡向下的力和垂直于斜坡的力;让学生对数学中的任意向量也可以用两个不共线的向量表示,有了充分的事实根据和感性认识。总之,整个引入,是从学生熟知的数学基础知识和物理基础知识为入手点,让学生轻松接受本节课的内容,让本节课的内容新而不新,难而不难了。 [设计意图]:两个生活常景抓住学生的兴趣,完成从生活到数学的建模过程,培养了学生,在生活中感知和发现数学,即知识问题化,问题情景化,情景生活化,生活学科化。体现了数学与生活密不可分的关系,为探究定理作好铺垫。 2.问题驱动、探究新知 问题(1)给定平面内任意两个向量21,e e 请你做出2121223e e e e -+和两个向量。 [设计意图]:利用向量的加减法和数乘向量,利用平行四边形法则可以表示

高三数学复习专题平面向量

高三数学复习专题平面向量 一、考点透视 本章考试内容及要求: 平面向量的有关概念B级 平面向量的线性运算(即平面向量的加法与减法,实数与平面向量的积)C级 平面向量的数量积C级(老教材为D级) 向量的坐标表示C级 向量运算的坐标表示C级 平行向量及垂直向量的坐标关系C级 向量的度量计算C级 注: B水平:对所学数学知识有理性的认识,能用自已的语言进行叙述和解释,并能据此进行判断;知道它们的由来及其与其他知识之间的联系;知道它们的用途。对所学技能会进行独立的尝试性操作。 C水平:对所学数学知识有实质性的认识并能与已有知识建立联系,掌握其内容与形式的变化;有关技能已经形成,能用它们来解决简单的有关问题。 二、复习要求 1.理解向量、向量的模、相等向量、负向量、零向量、单位向量、平行向量等概念; 2.掌握向量的向量表示形式、几何表示形式和坐标表示形式; 3.掌握向量的加法、减法及实数与向量的乘积、数量积等运算的向量表示形式、几何表示形式和坐标表示形式; 4.能应用向量的数量积的有关知识求向量的模及两个向量的夹角,并能解决某些与垂直、平行有关简单几何问题。 概括地说,即理解向量有关概念,掌握向量基本形式(3种)及基本运算(4种),关注向量简单应用。 三、复习建议 向量是近代数学中的一个重要概念,它是沟通代数、几何与三角的一种工具。向量在数学和物理学中应用很广,在解析几何里应用更为直接,用向量方法特别便于研究空间里涉及直线和平面的各种问题。从数学发展史来看,在历史上很长一段时间,空间的向量结构并未被数学家所认识。直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系。 向量是高中数学的必修内容,也是研究其它数学问题的重要工具,利用向量知识去研究几何问题中的垂直、平行关系,计算角度和距离问题将变得简单易行,其特点兼有几何的直观性、表述的简洁性和方法的一般性,因而它也是高考必考内容。每年的平面向量的高考,除了以小题形式考查一些简单的概念之外,还常与解析几何、三角等内容结合以解答题形式进行综合考查,试题的难度一般在中、低档题水平,复习时应重视向量基本知识的掌握和运用,难度不要拔高。

2019-2020最新高三数学一轮复习第1讲集合教案

——教学资料参考参考范本——2019-2020最新高三数学一轮复习第1讲集合教案 ______年______月______日 ____________________部门

课标要 求1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。 命题走 向 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主,分值5分。 预测2017年高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体题型估计为: (1)题型是1个选择题或1个填空题; (2)热点是集合的基本概念、运算和工具作用。 教 学 准 备 多媒体

教学过程要点精讲: 1.集合:某些指定的对象集在一起成为集合。 (1)集合中的对象称元素,若a是集合A的元素,记作A a∈;若b不是集 合A的元素,记作A b?; (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成 立; 互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变 化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示 法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法: 非负整数集(或自然数集),记作N; 正整数集,记作N*或N + ; 整数集,记作Z; 有理数集,记作Q; 实数集,记作R。 2.集合的包含关系: (1)集合A的任何一个元素都是集合B的元素,则称A是B的子集(或 有的学 生对整 数包括 哪些数 还不太 清楚, 后面还 要通过 具体题 目增强 认识。

平面向量基本定理教案新部编本

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

§2.3.1 平面向量基本定理 教学目的: (1)了解平面向量基本定理; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解 决实际问题的重要思想方法; (3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理. 教学难点:平面向量基本定理的理解与应用. 授课类型:新授课 教 具:多媒体、实物投影仪 教学过程: 一、 复习引入: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使 b =λa . 二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面 内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e . 探究: (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量 三、讲解范例:

高三数学第一轮复习导数(1)教案文

导数(1) 一、 知识梳理:(阅读选修教材2-2第18页—第22页) 1、 导数及有关概念: 函数的平均变化率:设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ?时,则函数()y f x =相应地有增量)()(00x f x x f y -?+=?,如果0→?x 时,y ?与x ?的比x y ??(也叫函数的平均变化率)有极限即x y ??无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0x x y =',即0000()()()lim x f x x f x f x x ?→+?-'=? 在定义式中,设x x x ?+=0,则0x x x -=?,当x ?趋近于0时,x 趋近于0x ,因此,导数的定义式可写成 000000 ()()()()()lim lim x o x x f x x f x f x f x f x x x x ?→→+?--'==?-. 2.导数的几何意义: 导数0000()()()lim x f x x f x f x x ?→+?-'=?是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处变化.. 的快慢程度. 它的几何意义是曲线)(x f y =上点()(,00x f x )处的切线的斜率. 即0()k f x =', 要注意“过点A 的曲线的切线方程”与“在点A 处的切线方程”是不尽相同的,后者A 必为切点,前者未必是切点. 因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切

相关主题
文本预览
相关文档 最新文档