当前位置:文档之家› 海岸动力学复习题word资料29页

海岸动力学复习题word资料29页

海岸动力学复习题word资料29页
海岸动力学复习题word资料29页

第一章 波浪理论

1.1 建立简单波浪理论时,一般作了哪些假设?

【答】:(1)流体是均质和不可压缩的,密度ρ为一常数;

(2)流体是无粘性的理想流体; (3)自由水面的压力均匀且为常数; (4)水流运动是无旋的; (5)海底水平且不透水;

(6)作用于流体上的质量力仅为重力,表面张力和柯氏力可忽略不计; (7)波浪属于平面运动,即在xz 水平面内运动。 1.2 试写出波浪运动基本方程和定解条件,并说明其意义。

【答】:波浪运动基本方程是Laplace 方程:02222=??+??z x φ

φ或写作:02=?φ。该方程属

二元二阶偏微分方程,它有无穷多解。为了求得定解,需有包括初始条件和边界条件的定解条件:

初始条件:因波浪的自由波动是一种有规则的周期性运动,初始条件可不考虑。 边界条件:

(1)在海底表面,水质点垂直速度应为0,即

=-=h z w

或写为在z=-h 处, 0=??z

φ

(2)在波面z=η处,应满足两个边界条件,一是动力边界条件、二是运动边界条件

A 、动力边界条件

0212

2=+???

???????? ????+??? ????+??==ηφφφ

η

η

g z x t

z z

由于含有对流惯性项???

?

??????? ????+??? ????2221z x φφ,所以该边界条件是非线性的。

B 、运动边界条件,在z=η处

0=??-????+??z

x x t φφηη。该边界条件也是非线性的。

(3)波场上下两端面边界条件 ),(),,(z ct x t z x -=φφ 其中c 为波速,x -ct 表示波浪沿x 正向推进。

1.3 试写出微幅波理论的基本方程和定解条件,并说明其意义及求解方法。

【答】:微幅波理论的基本方程为:02=?φ

定解条件:z=-h 处,

0=??z

φ

z=0处, 022=??+??z g t φ

φ

z=0处,??

?

????-=t g φη1

求解方法:分离变量法 1.4 线性波的势函数为()[]()

()t kx kh z h k gH σσφ-?+?=

sin cosh cosh 2,

证明上式也可写成()[]()

()t kx kh z h k Hc σφ-?+?=

sin sinh cosh 2 【证明】: 由弥散方程:()kh gk tanh 2?=σ以及波动角频率σ和k 波数定义: T

πσ2=

, L

k π

2=

可得:()kh L

g T tanh 22π

πσ?=?

, 即 ()()kh kh L T g cosh sinh ?

?=σ 由波速c 的定义:T

L

c =

故:()()c kh g kh sinh cosh ?=?σ 将上式代入波势函数: ()[]()

()t kx kh z h k gH σσφ-?+?=

sin cosh cosh 2 得: ()[]()

()t kx kh z h k Hc σφ-?+?=

sin sinh cosh 2 即证。

1.5 由线性波势函数证明水质点的轨迹速度()[]

()

()t kx kh z h k T H u σπ-?+?

=

cos sinh cosh ,

并绘出相位()t kx σ-=0~2π时的自由表面处的质点轨迹速度变化曲线以及 相位=0,

2π,3

2π和2π时质点的轨迹速度沿水深的分布. 解:(1)证明: 已知势函数方程()[]()

()t kx kh z h k Hc σφ-?+?=

sin sinh cosh 2 则()[]()()t kx kh z h k Hck x u σφ-?+?=??=

cos sinh cosh 2 其中: T L c =,L

k π

2= 同理: ()[]()

()t kx kh z h k Hck z w σφ-?+?=??=

sin sinh sinh 2

(2) 自由表面时z=0,则()t kx kh T H

u σπ-?=

cos )

tanh(,()t kx T

H

w σπ-?=

sin

质点轨迹速度变化曲线见图.1kx-t

图.1

相位不同时速度由水深变化关系见下,其中水深z 由-h 到0。 当()t kx σ-=0时)](cosh[)

sinh(h z k kh T H

u +=π,0=w 曲线见图.2

当()t kx σ-=时0=u ,)](sinh[)

sinh(h z k kh T H

w +=

π曲线见图.3

当()t kx σ-=

时)](cosh[)

sinh(h z k kh T H

u +-

=π,0=w 曲线见图.4

)

tanh(kh T H

π

kx-t

u T

H π

kx-t

w

当()t kx σ-=3时0=u ,)](sinh[)

sinh(h z k kh T H

w +-

=π曲线见图.5

当()t kx σ-=

时)](cosh[)

sinh(h z k kh T H

u +=π,0=w 同图.2

1.6 试根据弥散方程,编制一已知周期函数T 和水深h 计算波长,波速和波数的程

序,并计算T=9s ,h 分别为25m 和15m 处的波长和波速。 解:该程序用c++语言编写如下:

#include "iostream.h" #include

const double pi=3.1415926,g=9.8; void main( )

{ double x 0,x,L,k,c,h; int i,T;

cout<<"please input T and h\n"<<"T="; cin>>T; cout<<"h="; cin>>h; x 0=1.0e-8;

x=(4*pi*pi*h)/(g*T*T*tanh(x 0)); for(i=1;(fabs(x-x 0)>1.0e-8);i++) { x 0=x;

x=(4*pi*pi*h)/(g*T*T*tanh(x 0)); L=2*pi*h/x; k=2*pi/L;

)

tanh(kh T H π

)

sinh(kh T H π 图.2z

u

T

H π

-h .3

z w

-h 0

)

sinh(kh T H

π-

图.4z

u -h 0

图.5z w

c=L/T;

cout<<"L="<

当T=9s,h=15m 时,L=95.5096m,c=10.6122m/s

1.7 证明只有水深无限深时,水质点运动轨迹才是圆。

【证明】:微幅波波浪水质点运动轨迹方程为:1)()(2

2

0220=-+-b

z z a x x 式中))

sinh()]

(cosh[2(0kh h z k H a +=

为水平长半轴,))sinh()](sinh[2(0kh h z k H b +=b 为垂直短半轴。

在深水的情况下,即h →无穷大,

有:()

)()()(00002

1

21)](sinh[h z k h z k h z k e e e h z k ++-+=-=

+, 那么,水平长半轴0

002

22)sinh()](cosh[2)(0kz kh

kh kz kh h z k e H e e e H e e H kh h z k H a ===+=+ 垂直短半轴0

002

22)sinh()](sinh[2)(0kz kh kh kz kh h z k e H e e e H e e H kh h z k H b ===+=

+ 所以当水深无限深时,长半轴a 与短半轴b 相等,水质点运动轨迹是圆。问题得证。 1.8 证明线性波单位水柱体内的平均势能和平均动能为

216

1

gh ρ 【证明】: 单位水柱体内的平均势能

dxdz gz L L E l p

??=00

ρdx g L l

??=02

21ηρ 其中: ()t kx h

ση-=cos 2

单位水柱体内的平均动能()dxdz w u L L E l h k 22

002

1+=??-ρ

其中: ()[]

()

()t kx kh z h k T H u σπ-?+?

=

cos sinh cosh

1.9 在水深为20m 处,波高H=1m,周期T=5s,用线性波理论计算深度z=-2m,-5m,-10m

处水质点轨迹直径.

【解法1】:由弥散方程:()kh gk tanh 2?=σ T πσ2=

, L

k π

2= 利用题1.6可得L=38.8m k=0.162m -1

h/L=20/38.8=0.515>0.5 为深水波 故此时质点运动轨迹为一直径D 为0

kz He 的圆

不同0z 值下的轨迹直径可见下表:

【解法2】:将弥散方程()kh gk tanh 2?=σ 可写成()0tanh 2=?-kh gk σ

编制Excel 计算表格如下,通过变化波长L 的值,满足方程=0的L 值即为所求波长。

经试算得L=38.91m ,那么,h/L=20/38.91=0.514>0.5 为深水波 后续计算与解法1相同。

1.10 在水深为10m 处,波高H=1m,周期T=6s,用线性波理论计算深度z=-2m 、-5m 、

-10m 处水质点轨迹直径。

解:将弥散方程()kh gk tanh 2?=σ 可写成()0tanh 2=?-kh gk σ

编制Excel 计算表格如下,通过变化波长L 的值,满足方程=0的L 值即为所求波长。

经试算得L=48.4m ,那么,h/L=10/48.4=0.207<0.5 为浅水波 那么,水平长半轴)sinh()](cosh[20kh h z k H a +=,垂直短半轴)

sinh()]

(sinh[20kh h z k H b +=b 。

z=-2m

例,分别计算:

()()

()

589

.121

21

21)](cosh[0384.10384.1)102(1298.0)102(1298.0)()(000=+=+=+=

+-+--+-+-+e e e e e e h z k h z k h z k

所以z=-2m 时的水平向的长轴2a=1.287m ;垂直向的短轴2b=1.372m 。 不同0z 值下的轨迹直径可见下表:

1.11在某水深处的海底设置压力式波高仪,测得周期T=5s,最大压力

p max =85250N/m 2(包括静水压力,但不包括大气压力),最小压力p min =76250N/ m 2,问当地水深波高值. 解:分析压力公式p z ()[]()

()t kx kh h z k H g gz σρ

ρ-?+?+-=cos cosh cosh 2 ()t kx σ-cos =0时压力最小,即:p min ρgz -==76250N/m 2 (1)

()t kx σ-cos =1时压力最大,

即:p max ()[]()

kh h z k H g gz cosh cosh 2+?+-=ρ

ρ=85250 N/m 2 (2)

由(1)式可得z=-7.8m 故h=-z=7.8m

由弥散方程:()kh gk tanh 2?=σ T

πσ2=, L

k π

2= T=5s,h=7.8m

利用题1.6可得L=36.6m kh=0.181*7.8=1.412

代入(2)式可得 H=4.0m.

1.12 若波浪由深水正向传到岸边,深水波高H 0=2m,周期T=10s ,问传到1km 长的海

岸上的波浪能量(以功率计)有多少?设波浪在传播中不损失能量。 解:通过1km (单宽)波峰线长度的平均能量传输率,即波能流P ,假设波浪在传播中不损失能量时,浅水区等于深水区,即P s = P 0,有:

(Ecn )0=(Ecn )s

因深水时sinh (2kh )>>2kh ,则上式左边=21

81020c gH ρ

浅水时sinh (2kh )≈2kh ,则上式右边=s s c gH 28

1

ρ

那么,P s =(Ecn )s =s s c gH 281

ρ

=(Ecn )0=2181020c gH ρ=π

ρ216120gT

gH

=102321

22g ρπ

=38310.55(N/s ) 线性波近底水质点速度)cos()

sinh(1

t kx kh T H

u σπ-=

斯托克斯波近底水质点速度

1.14 如果二阶斯托克斯波η的附加项(非线性项)的振幅小于线性项的5%时,可

以略去附加项而应用线性波理论,问在深水处应用线性波理论的最大允许波陡是多大?在相对水深h/L=0.2处应用线性波理论的最大允许波陡又是多大?

解:(1)深水区的二阶斯托克斯波η的附加项(非线性项)为:)(2cos )(4

t kx L

H

H σπ-

由题意知,附加项(非线性项)的振幅小于线性项的5%,即 根据振幅定义,可知余弦项应为1,那么上式变为 则在深水处应用线性波理论的最大允许波陡波陡 (2)在相对水深h/L=0.2处,即h=2L ,kh=

ππ

π4222==L L

h L ,并考虑振幅定义,余弦项应为1,那么,附加项(非线性项)的振幅:

线性波理论的振幅:2

)cos(2H

t kx H =-=

ση 依题意,有2

05.0)(4H

L H H ≤π

则在相对水深h/L=0.2处应用线性波理论的最大允许波陡

1.15 在水深为5m 处,H=1m ,T=8s ,试计算斯托克斯质量输移速度沿水深的分布并

计算单位长度波峰线上的质量输移流量。

解:计算波长L ,)4

.31tanh(97.99)514.32tanh(14.32881.9)tanh(222L

L kh gT L ?=????==π 利用试算法,计算得L=53.083m ,因σ=2π/T=0.785,k=2π/L=0.1183

根据下式(即教材公式(1-118))、针对不同水深z 可计算斯托克斯质量输移速

质量输移速度的垂直分布(横轴:/T

k

H 42σ;纵轴:z/h )

单位长度波峰线上的质量输移流量

098

.08

*41*42

2

==

=

ππT

H q m 3/sm 。

1.16 试述波浪频谱和波浪方向谱的意义。

答: 波浪谱可以用来描述波浪的内部结构,说明海浪内部由哪些部分所构成及其

内在关系。海浪的总能量由Δσ间隔内不同频率的组成波所提供,也即海浪的总能量就是全部组成波的能量和。所谓频谱就是波能密度(单位频率间隔内的平均波能量)在组成波频率范围内的分布。波浪谱只能描述某一固定点的波面,不能

反映波浪内部相对于方向的结构,也不足以描述大面积的波面。

实际上,波能密度(单位频率间隔内的平均波能量)在组成波的频率范围Δσ内和方向范围Δθ内均有分布。如果给定了频率时,只描述不同方向间隔的能量密度,反映海浪内部方向结构的能谱叫做方向谱。方向谱对于研究海浪预报、波浪折射、绕射以及波浪作用下的泥沙运动具有重要的意义。

1.17 已知一波浪系列的有效波高H s 为4.7m ,有效波周期为4.7m ,问:该波列的平均

波高是多少?大于6m 的波高出现的机率是多少?

解:由已知有效波高H 1/3=1.6H =4.7m 故平均波高H =2.94m

由于大波特征值和累积特征值可以相互转换,有H 1/10≈H 4% 而H 1/10=2.03H =5.97≈6m 故 大于6m 的波高出现的机率为4%.

第二章 波浪的传播、变形与破碎

2.1 试述波浪守恒和波能守恒的意义?何谓波浪浅水变形?

答: 波浪守恒:波数向量随时间的变化必为角频率的局部变化所平衡。在稳定波

场,因波数向量不随时间变化,使得浅水区周期不随水深变化而变化,周期不变的特性不但为分析波浪浅水变形提供了方便,而且为实验模拟实际波浪提供了理论依据。

波浪正向行进海岸传播时,单宽波峰线上的波能流保持不变,即为波能守恒。这为研究波浪的浅水变形提供了理论依据。

当波浪传播至水深约为波长的一半时,波浪向岸传播时,随着水深的变化其波速、波长、波高及波向都将发生变化,此现象即为浅水变形。 2.2 何谓波浪折射?斯奈尔折射定律意义何在?

答:当波浪斜向进入浅水区后,同一波峰线的不同位置将按照各自所在地点的水深决

定其波速,处于水深较大位置的波峰线推进较快,处于水深较小位置的推进较慢,波峰线就因此而弯曲并渐趋于与等深线平行,波峰线则趋于垂直于岸线,这种波峰线和波向线随水深变化而变化的现象就是波浪折射。斯奈尔定律就是对波峰线和波向线随水深变化而变化这一现象的数学描述。按此定律即可绘制波浪折射图。

2.3 若深水波高H 0=1m,周期T=5s,深水波向角α0=45°,等深线全部平行,波浪在传播

中不损失能量,计算水深h=10m,5m,2m 处的波高.(用线性波理论)

解:由弥散方程()kh gk tanh 2?=σ T

πσ2=, L

k π

2=

利用题 1.6可得当T=5s,h=10m

时,L=36.563m,c=7.313m/s,kh=1.72,h/L=0.27<0.5

h=5m

时,L=30.289m,c=6.058m/s,kh=1.035,h/L=0.165<0.5

h=2m

时,L=20.942m ,c=4.188m/s,kh=0.600,h/L=0.095<0.5

故h/L<0.5,均视为浅水区,应考虑波浪的浅水变形和折射影响。 当水深h=10m 时

浅水变形系数i

i s n c c k 20

= 其中14

.3*25

8.920*=

=

πgT c =7.8m/s i c =7.313m/s ??

????+=

)2sinh(2121kh kh n i =??????+577.1544.3121=0.61 故 61.0*313.7*28

.7=s k =0.935

波浪折射系数i

r k ααcos cos 0

= 有

0sin sin c c i i =αα 可得i α=41.5

°

故 ?

?

=5

.41cos 45cos r k =0.97 则 0H k k H r s i ==0.935×0.97×1=0.907m

同理 当水深h=5m 时,0c =7.8m/s i c =6.058m/s i n =0.765 i α=33.31°

765.0*058.6*28.7=

s k =0.917 ?

?

=31.33cos 45cos r k =0.92 0H k k H r s i ==0.917×0.92×1=0.844m

当水深h=2m 时,0c =7.8m/s i c =4.188m/s i n =0.897 i α=22.31°

897.0*188.4*28.7=

s k =1.019 ?

?

=31.22cos 45cos r k =0.87 0H k k H r s i ==1.019×0.87×1=0.886m

2.4 上题中求水深h=10m 、5m 、2m 处底部水质点轨迹速度的最大值及床面剪切应力

的最大值,假定床面平坦,泥沙粒径D=0.01mm 。 解:因z=-h 时,)cos()

sinh(1

)

cos()

sinh()]

(cosh[t kx kh T H

t kx kh h z k T

H U h

z b σπσπ-=

-+=

-=

当1)cos(=-t kx σ时,U b = U m 最大,)

sinh()sinh(12)sinh(1kh a kh T a kh T H

U m σ

ππ===

同时可得,)

sinh(kh a

U A m

m =

=

σ

根据上题中的L 、H 、T 可计算h=10m 时的

)72.1sinh(5

/283.6*2/1)sinh(==

kh a U m σ=0.232(m/s )

185.0)

72.1sinh(2

/1)sinh(===

kh a A m (m),

那么,Re=

6

10185.0*232.0-=

ν

m

m A U =4.292*104>1.26*104

,判断底层水流为紊流状态。

因相对粗糙度

3

10*01.0185.0-==D A d A m s m =18500>1.57,用(2-99a )式计算f w D A f f m w

w log 28.041

log 41+-=+→f w =0.00526

则2

2

1m w m U f ρτ=

=0.142(N/m 2) h=5m 、2m 时的可按同样的过程计算而得。如下表所示。

化学动力学基础(一、二)习题

化学动力学基础(一、二)习题

化学动力学基础(一、二)习题 一、选择题: 1、某反应的速率常数k=0.0462分-1,又知初始浓度为0.1mol.dm-3,则该反应的半衰期为: (A) 1/(6.93×10-2×0.12) (B) 15分(C) 30分(D) 1/(4.62×102×0.1)分 答案:(B) 2、某一级反应, 当反应物的浓度降为起始浓度的1%时,需要t1秒, 若将反应物的浓度提高一倍, 加快反应速率, 当反应物浓度降低为起始浓度的1%时, 需时为t2, 则: (A ) t1﹥t2(B) t1=t2 (C) t1﹤t2(D) 不能确定二者关系 答案:(B) 3、某反应物反应掉7/8所需的时间恰好是它反应掉1/2所需时间的3倍, 则该反应的级数是: (A) 零级(B) 一级反应(C) 三级反应(D) 二级反应 答案:(B )

4、反应A→B(Ⅰ);A→D(Ⅱ), 已知反应Ⅰ的活化能E1大于反应Ⅱ的活化能E2, 以下措施中哪一种不能改变获得B和D的比例: (A)提高反应温度(B) 降低反应温度 (C) 延长反应时间(D) 加入适当的催化剂 答案:C 5、由基元步骤构成的复杂反应:2A→2B+C A+C→2D,以C物质的浓度变化表示反应速率的速率方程(已知:-dC A/dt=K A1C A2-K A2C B2C c+K A3C A C C ) 则 (A)dC c/dt=K A1C A2-K A2C B2C c+K A3C A C C (B)dC c/dt=1/2K A1C A2-1/2K A2C B2C c+1/2K A3C A C C (C)dC c/dt=2K A1C A2-2K A2C B2C c+2K A3C A C C (D)dC D/dt=-K A3C A C C 答案:(B) 6、反应Ⅰ, 反应物初始浓度C0’, 半衰期t1/2’, 速率常数K1, 反应Ⅱ, 反应物初始浓度C0”, 半衰期t1/2”, 速率常数K2,

1--化学动力学基础

1--化学动力学基础 [教学要求] 1.掌握化学反应速率的基本概念及表示方法。 2.掌握反应机理概念,掌握有效碰撞理论,了解过渡状态理论,掌握活化能、活化分子的概念及其意义。 3.掌握浓度、温度、催化剂对化学反应速率的影响及浓度、温度对化学反应速率影响的定量关系:质量作用定律,化学反应的温度因子,熟悉阿仑尼乌斯方程及其应用。 [教学重点] 1.反应机理的概念,有效碰撞理论,过渡状态理论,活化能、活化分子的概念及其意义。 2.浓度、温度、催化剂对化学反应速率的影响及浓度、温度对化学反应速率影响的定量关系:质量作用定律,化学反应的温度因子,阿仑尼乌斯方程及其应用 [教学难点] 1.有效碰撞理论,过渡状态理论,活化能、活化分子的概念。 2.阿仑尼乌斯方程。 [主要内容] 1.化学反应速率的基本概念及表示方法:平均速率和瞬时速率,同一反应用不同物系表示速率时这些速率间的关系。 2.反应机理(反应历程)概念:基元反应和非基元反应、反应分子数(单分子反应、双分子反应、三分子反应)。 3.反应速率理论简介:有效碰撞理论的基本要点,有效碰撞的条件,有效碰撞、活化能、活化分子的概念,碰撞频率因子与化学反应临界能或阀能的关系公式,活化能、方位因子、碰撞频率因子与反应速率的关系,活化过渡状态理论的基本要点,活化络合物;实验活化能。 4.浓度对化学反应速率的影响:质量作用定律、反应级数、化学反应速率方程式;温度对化学反应速率的影响:阿仑尼乌斯方程式及其应用。 5.催化剂基本概念及其基本特征,催化作用,催化剂对化学反应速率的影响机制 。 [教学内容] §3.1 化学反应速率的概念 3.1.1 平均速率和瞬时速率 1. 平均速率 某一有限时间间隔内浓度的变化量。 2. 瞬时速率 时间间隔Δt 趋于无限小时的平均速率的极限。 1 2NO 2 (CCl 4) + O 2(g) 例:N 2O 5(CCl 4) 2 1 252152252) O N ()O N ()O N (t t c c r --- =t c ??- =)O N (52 lim t r r ?→=

第九章 化学动力学基本原理

第九章 化学动力学基本原理 第一次课: 课程名称:物理化学 本课内容:§9.1引言 §9.2反应速率和速率方程 授课时间: 90 分钟 一、教学目的 通过本次教学,使学生了解明确反应速率,反应级数,反应分子数等概念,掌握反应速率的表示方法方程,并能熟练应用。 二、教学意义 通过本次授课,主要使学生了解动力学的基本概念,掌握反应速率的表示方法,了解动力学研究的意义。 三、教学重点 反应速率,反应级数,反应分子数,反应速率的表示方法 四、教学难点 反应速率的表示方法 五、教学方式 以电子课件为主,辅以少量板书的课堂讲授。 六、讲授内容 §9.1引言 1.化学动力学的任务和目的 2.化学动力学发展简史 3.反应机理的概念 §9.2反应速率和速率方程 1.反应速率的表示法 2.反应速率的实验测定 3.反应速率的经验表达式 4.反应级数 5.质量作用定律 七、讲授方法 §9.1引言 1.化学动力学的任务和目的 首先讲述化学动力学基本任务即研究各种因素对反应速率的影响,进而揭示化学反应发生的具体过程(即反应机理)。 2.化学动力学发展简史 以图片的形式向学生生动的展示化学动力学发展简史,加深学生的印象。3.反应机理的概念 以实例讲述学生所熟悉的许多化学反应并不是简单的一步反应就能实现的,而是经历了一系列具体步骤而最终实现的,从而引出反应机理的概念,即组成宏观总反应的基元反应的总和及其序列,称为“反应机理”或“反应历程”。 §9.2 反应速率和速率方程 1.反应速率的表示法 重点讲述反应速率的表示方法,所谓反应速率就是化学反应进行的快慢程度。国际上已普遍采用以反应进度随时间的变化率来定义反应速率。

聚合物反应工程基础知识总结

聚合物反应工程基础知识总结 第一章(填空、选择、简答) 1.聚合物反应和聚合物生产的特点: ①反应机理多样,动力学关系复杂,重现性差,微量杂质影响大。 ②除了要考虑转化率外,还要考虑聚合度及其分布,共聚物组成及其分布和序列分布,聚合物结构和性能等。 ③要考虑反应时候的聚合物流动、混合、传热、传质等问题。 ④要考虑反应器放大的问题。 2.本课程研究内容: 1)聚合物反应器的最佳设计。 2)进行聚合反应操作的最佳设计和控制。 第二章(所有题型) 化学反应器:完成化学反应的专门容器或设备。 1、反应器分类: 1)按物料相态分类 2)按结构型式分类

3)按操作方式分类 间歇反应器:在反应之前将原料一次性加入反应器中,直到反应达到规定的转化率,即得反应物,通常带有搅拌器的釜式反应器。优点是:操作弹性大,主要用于小批量生产。 连续操作反应器:反应物连续加入反应器产物连续引出反应器,属于稳态过程,可以采用釜式、管式和塔式反应器。优点是:适宜于大规模的工业生产,生产能力较强,产品质量稳定易于实现自动化操作。 半连续操作反应器:预先将部分反应物在反应前一次加入反应器,其余的反应物在反应过程中连续或断连续加入,或者在反应过程中将某种产物连续地从反应器中取出,属于非稳态过程。优点是:反应不太快,温度易于控制,有利于提高可逆反应的转化率。 (PS:造成三种反应器中流体流动型态不同是由于物料在不同反应器中的返混程度不一样。返混:是指反应器内不同年龄的流体微元之间的混合,返混代表时间上的逆向混合。) 2、连续反应器中物料流动型态 平推流反应器: ⑴各物料微元通过反应器的停留时间相同。 ⑵物料在反应器中沿流动方向逐段向前移动,无返混。 ⑶物料组成和温度等参数沿管程递变,但是每一个截面上物料组成和温度等参数在时间进程中不变。 ⑷连续稳态操作,结构为管式结构。 理想混合流反应器: ⑴各物料微元在反应器的停留时间不相同。 ⑵物料充分混合,返混最严重。 ⑶反应器中各点物料组成和温度相同,不随时间变化。

第三章 化学动力学基础

第三章 化学动力学基础 1. 有A 气体和B 气体进行反应,若将A 气体浓度增加一倍,速率增加400%,若将B 气体的浓度增加一倍,速率增加200%,试写出反应式。 2. 下列生成NO 2的反应:2NO +O 22NO 2 其反应速率表示式为 ][O [NO]22 k =v 如果压力增加到原来的两倍,试计算速率之变化。 3. 在抽空的刚性容器中,引入一定量纯A 气体,发生如下反应: A(g)?→? B(g) + 2C(g)。设反应能进行完全,经恒温到323K 时,开始计时,测定 求该反应级数及速率常数 4. 若气体混合物体积缩小到原来的1/3,下列反应的初速率变化为多少? 2SO 2 + O 2 → 2SO 3 5. 在308K 时,反应 N 2O 5(g) → 2NO 2(g) + 1/2O 2(g) 的k = 1.35?10- 5, 在318K 时,k = 4.98?10- 5,试求这个反应的活化能? 6. CH 3CHO 的热分解反应是:CH 3CHO(g) → CH 4(g) + CO(g) 在700K 时,k =0.0105,已知E a=188.1kJ ?mol - 1,试求800K 时的k 。

7. 已知HCl(g)在1atm 和25℃时的生成热为-88.2kJ ?mol - 1,反应 H 2(g) + Cl 2(g) = 2HCl(g) 的活化能为112.9kJ ?mol - 1。试计算逆反应的活化能。 8. 某一个化学反应,当温度由300K 升高到310K 时,反应速率增加了一倍,试求这个反应的活化能。 9. 某化学反应,在300K 时,20min 内反应完成了50%,在350K 时,5min 内反应完成了50%,计算这个反应的活化能。 10. 已知在320℃时反应SO 2Cl 2(g)→SO 2(g)+Cl 2(g)是一级反应,速率常数为2.2?10- 5s - 1。试求:(1)10.0gSO 2 Cl 2分解一半需多少时间? (2)2.00gSO 2Cl 2经2h 之后还剩多少克? 11. 在人体内,被酵母催化的某生化反应的活化能为39kJ ?mol - 1。当人发烧到313K 时,此反应的速率常数增大到多少倍? 12. 蔗糖催化水解C 12H 22O 11+H 2O 催化剂?→??2C 6H 12O 6是一级反应,在25℃速率常数为 5.7?10- 5s - 1。试求: (1)浓度为1mol ?dm -3 蔗糖溶液分解10%需要多少时间? (2)若反应活化能为110kJ.mol - 1,那么在什么温度时反应速率是25℃时的十分之一? 13. 反应2NO+2H 2→N 2+2H 2O 在一定温度下,某密闭容器中等摩尔的比NO 与H 2混合物在不同初压下的半衰期为 p 0(mmHg) 355 340.5 288 251 230 202 t 1/2(min) 95 101 130 160 183 224 求反应级数。

物化课后习题第章化学动力学

第八章 化学动力学* ——课后习题解答 难度级别:基础★,基础2★,综合3★,综合4★,超纲5★ 关于作业:公式有必要牢记,但是平时作业时最好是自己动手推导出比较简单的公式,而不是直接翻书,找到公式,套公式,这样的解题方式不值得提倡。 1.(基础★)气体反应SO 2Cl 2 = SO 2 + Cl 2为一级反应。在593K 时的k = 2.20×10-5 s -1。求半衰期和反应2h 后分解的百分比。 解:1/25 ln 20.693 315002.2010 t s k -= ==?(计算有点误差31507 s ), 510 0ln 2.21023600 1.58410c kt c x --==???=?- 0000 1 1.17161 1.1716100%14.65%1.17161c x x c x c c -===?=--, 2.(基础★)镭原子蜕变成一个Rn 和一个α粒子。它的半衰期是1622年,反应是一级。问1g 无水溴化镭RaBr 2在10年内能放出多少Rn ?Rn 的量用0℃,标准压力下的体积(cm 3)来表示。 解:41 1/2ln 2/0.692/1622 4.27310k t a --===?, 430 0ln 4.2731010 4.27310c kt c x --==??=?-, 0 0 1.00428c c x ∴ =- 1g 无水溴化镭的物质的量为1 0.00259386 mol =,也就是溴离子物质的量 在同一个密闭的容器中 50.00259 1.00428 1.105100.00259x mol x -=?=?- 故1g 无水溴化镭在10年内能放出在0℃,标准大气压下Rn 的体积为 V = 1.105×10- 5×22.4×103 = 0.248 cm 3 【讨论】(1)元素周期表应该作为一个常用的工具备在身边,Ra 的原子量为226,溴的原子量为80;(2)单位是灵活的,可以根据具体的情况而定,目的则是为了方便计算;(3)无水溴化镭RaBr 2不是气体?这样在浓度表达上有问题吗? 4.(基础★★)某二级反应在a = b 时,经过500s 原始物作用了20%,问原始物作用60%时须经过多少时间? *马鞍山,尹振兴,2007,zhenxingyin@https://www.doczj.com/doc/419989142.html,

第十一章 化学动力学基础(一)习题

化学动力学基础(一) 一、简答题 1.反应Pb(C 2H 5)4=Pb+4C 2H 5是否可能为基元反应?为什么? 2.某反应物消耗掉50%和75%时所需要的时间分别为t 1/2和 t 1/4,若反应对该反应物分别是一级、二级和三级,则t 1/2: t 1/4的比值分别是多少? 3.请总结零级反应、一级反应和二级反应各有哪些特征?平行反应、对峙反应和连续反应又有哪些特征? 4.从反应机理推导速率方程时通常有哪几种近似方法?各有什么适用条件? 5.某一反应进行完全所需时间时有限的,且等于 k c 0(C 0为反应物起始浓度),则该反应是几级反应? 6. 质量作用定律对于总反应式为什么不一定正确? 7. 根据质量作用定律写出下列基元反应速率表达式: (1)A+B→2P (2)2A+B→2P (3)A+2B→P+2s (4)2Cl 2+M→Cl 2+M 8.典型复杂反应的动力学特征如何? 9.什么是链反应?有哪几种? 10.如何解释支链反应引起爆炸的高界限和低界限? 11.催化剂加速化学反应的原因是什么? 二、证明题

1、某环氧烷受热分解,反应机理如下: 稳定产物?→??+?+??→??++??→??? +??→?432134 33k k k k CH R CH R CH RH CO CH R H R RH 证明反应速率方程为()()RH kc dt CH dc =4 2、证明对理想气体系统的n 级简单反应,其速率常数()n c p RT k k -=1。 三、计算题 1、反应2222SO Cl SO +Cl →为一级气相反应,320℃时512.210s k --=?。问在320℃ 加热90min ,22SO Cl 的分解百分数为若干?[答案:11.20%] 2、某二级反应A+B C →初速度为133105---???s dm mol ,两反应物的初浓度皆为 32.0-?dm mol ,求k 。[答案:11325.1---??=s mol dm k ] 3、781K 时22H +I 2HI →,反应的速率常数3-1-1HI 80.2dm mol s k =??,求2H k 。[答 案:113min 1.41---??=mol dm k ] 4、双光气分解反应32ClCOOCCl (g)2COCl (g)→可以进行完全,将反应物置于密 闭恒容容器中,保持280℃,于不同时间测得总压p 如下: [答案: 1.1581a =≈;-14-12.112h 5.8710s k -==?] 5、有正逆反应均为一级反应的对峙反应: D-R 1R 2R 32L-R 1R 2R 3CBr 已知半衰期均为10min ,今从D-R 1R 2R 3CBr 的物质的量为1.0mol 开始,试计算10min 之后,可得L-R 1R 2R 3CBr 若干?[答案:0.375mol]

第三章化学动力学基础课后习题参考答案

1 第三章化学动力学基础课后习题参考答案 2解:(1)设速率方程为 代入数据后得: 2.8×10-5=k ×(0.002)a (0.001)b ① 1.1×10-4=k ×(0.004)a (0.001)b ② 5.6×10-5=k ×(0.002)a (0.002)b ③ 由②÷①得: 2a =4 a=2 由③÷①得: 2b =2 b=1 (2)k=7.0×103(mol/L)-2·s -1 速率方程为 (3)r=7×103×(0.0030)2×0.0015=9.45×10-5(mol ·L -1·s -1) 3解:设速率方程为 代入数据后得: 7.5×10-7=k ×(1.00×10-4)a (1.00×10-4)b ① 3.0×10-6=k ×(2.00×10-4)a (2.00×10-4)b ② 6.0×10-6=k ×(2.00×10-4)a (4.00×10-4)b ③ 由③÷②得 2=2b b=1 ②÷①得 22=2a ×21 a=1 k=75(mol -1·L ·s -1) r=75×5.00×10-5×2.00×10-5=7.5×10-8(mol ·L -1·s -1) 5解:由 得 ∴△Ea=113.78(kJ/mol ) 由RT E a e k k -=0得:9592314.81078.11301046.5498.03?=?==??e ke k RT E a 9解:由阿累尼乌斯公式:RT E k k a 101ln ln -=和RT E k k a 202ln ln -=相比得: ∴ 即加催化剂后,反应速率提高了3.4×1017倍 因△r H θm =Ea(正) -Ea(逆) Ea(逆)=Ea(正)-△r H θm =140+164.1=304.1(kJ/mol) 10解:由)11(ln 2 112T T R Ea k k -=得: )16001(314.8102621010.61000.1ln 2 384T -?=??-- T 2=698(K ) 由反应速率系数k 的单位s-1可推出,反应的总级数为1,则其速率方程为 r=kc(C 4H 8) 对于一级反应,在600K 下的)(1014.110 10.6693.0693.0781s k t ?=?== - ) ()(2O c NO kc r b a =)()(107223O c NO c r ?=) ()(355I CH c N H C kc r b a =)11(ln 2112T T R E k k a -=)627 15921(314.8498.081.1ln -=a E ) /(75.41046.5656314.81078.113903s mol L e e k k RT E a ?=??==??--36.40298314.810)140240(ln 32112=??-=-=RT E E k k a a 1712104.3ln ?=k k

化学动力学基础(一)

化学动力学基础(一) 教学目的与要求: 使学生了解和掌握化学动力学的一些基本概念,测定化学反应速率的一般方法,几种简单级数反应的动力学特征,几种典型的复杂分应的动力学特征,温度对反应速率的影响,有自由基参加的反应的动力学特征,拟定反应动力学方程的一般方法。 重点与难点: 化学动力学的一些基本概念:反应的级数与反应的分子数,基元反应与非基元反应以及反应的速率的描述方法等;简单级数反应的动力学特征,几种典型复杂反应的动力学特征,温度对反应速率的影响(反应的活化能的概念),链反应的动力学特征以及动动学方程的推导方法。 §11.1 化学动力学的任务和目的 化学反应用于生产实践所遇到的两个方面的问题和热力学的局限性以及化学动力学的必要性,它的实际意义。 化学动力学的基本任务:1.研究化学反应的速率,以及各种因素(浓度,压力,温度,催化剂)对速率的影响。2.研究反应的机理(历程)。 化学动力学与物质结构的关系:化学动力学和化学热力学的研究方法是不同的。它要研究反应速率及其影响的因素,必须了解体系的物质结构方面的知识,同时,通过对反应速率以及反应机理的研究,也可以加深人们对物质结构的认识。 化学动力学的发展过程:第一阶段,宏观动力学阶段,主要从宏观上测定化学反应的速率,确定反应的级数,在此阶段,确立了质量作用定律和阿累尼乌斯定律,并提出了活化能的概念。 第二阶段,包括从宏观动力学到微观动力学的过程,以及从微观研究化学反应的速度。在这一阶段,建立了各种反应的速度理论,如碰撞理论,过渡状态理论,链反应,单分子反应速度等理论,从二十世纪五十年代开始,分子束和激光技术应用于化学动力学的研究,使人们进入到了态--态反应的层次,研究不同量子态的反应物和产物的速率,以及反应的细节。 化学动力学理论还不能象热力 学理论那样系统和完善。 §11.2化学反应速 率表示法 反应系统中反应物的消耗和

化学动力学基础二

第十二章化学动力学基础(二) 1. 将1.0 g氧气和0.1 g氢气于300 K时在1 dm3的容器内混合,试计算每秒钟内单位体积内分子的碰撞数为若干? 设O2和H2为硬球分子,其直径分别为0.339和0.247 nm. 2. 某双原子分子分解反应的阈能为8 3.68 kJ/mol,试分别计算300 K及500 K时,具有足够能量可能分解的分子占分子总数的分数为多少? 3. 某气相双分子反应, 2A(g) ---> B(g)+C(g),能发生反应的临界能为100 kJ/mol.已知A的相对分子量为60,分子直径为0.35 nm,试计算在300 K时,该分解作用的速率常数k 值. 4. 松节油萜(液体)的消旋作用上一级反应,在457.6 K和510.1 K时的速率 常数分别为2.2×和3.07× min-1,试求反应的实验活化能E a,在平均温度时的活化焓和活化熵. 5. 在298 K时某化学反应,如加了催化剂后使其活化熵和活化焓比不加催化剂是时分别下降了10 J/(mol·K)和10 kJ/mol,试求不加催化剂与加了催化剂的两个速率常数的比值. 6. 在298 K时有两个级数相同的基元反应A和B,其活化焓相同,但速率常数k A=10k B,求两个反应的活化熵相差多少? 7. 某顺式偶氮烷烃在乙醇溶液中不稳定,通过计量其分解放出的N2气来计算其分解的速率常数k值,一系列不同温度下测定的k值如下所示: T/ k 248 252 256 260 264 k×/s-1 1.22 2.31 4.39 8.50 14.3

试计算该反应在298K时的实验活化能,活化焓,活化熵和活化吉布斯自由能. 8. 对下述几个反应,若增加溶液中的离子强度,则其反应速率常数是增大,减小还是不变? (1) NH4+ +CNO- --->CO(NH2)2 (2) 酯的皂化作用. (3) S2O82- + I- --->P 9. 在298 K时,反应N2O4(g) 2NO2(g)的速率常数k1=4.80× s-1,已知NO2和N2O4的生成吉布斯自由能分别为51.3和97.8 kJ/mol,试求 (1)298 K时, N2O4的起始压力为101.325 kPa时, NO2(g)的平衡分压? (2)该反应的弛豫时间? 10. 用温度跳跃技术测量水的离解反应: H2O H+ + OH-,在298 K时 的弛豫时间τ=37× s,试求该反应正向和逆向反应的速率常数k1和k-2. 11. 在光的影响下,蒽聚合为二蒽.由于二蒽的热分解作用而达到光化平衡.光化反应的温度系数(即温度每增加10K反应速率所增加的倍数)是1.1,热分解的温度系数是2.8,当达到光化平衡时,温度每升高10K.二蒽产量是原来的多少倍? 12. 用波长为313nm的单色光照射气态丙酮,发生下列分解反应: (CH3)2CO +hv---> C2H6 + CO ,若反应池的容量是0.059 dm3,丙酮吸收入射光的分数为0.915,在反应过程中,得到下列数据: 反应温度:840 K照射时间t=7 h

化学动力学基础

第11章化学动力学基础 重点: 基元反应的质量作用定律及其应用,速率方程的积分形式,速率方程的确定,温度对反应速率的影响,阿累尼乌斯方程的各种形式及其应用,指前因子k0、活化能Ea 的定义,典型复合反应及复合反应速率的近似处理法,链反应,气体反应的碰撞理论,势能面与过渡状态理论。 难点: 由反应机理推导速率方程的近似方法(选取控制步骤法、稳态近似法和平衡态近似法)的原理及其应用。 重要公式 2. a ln ()k E k R T T =-211211E k A RT =-+a ln 3.非基元反应的表观活化能: a a,1a,2a,3E E E E =++ 4. 1-1级对行反应:A,0A,11A A,ln ()e e c c k k t c c --=+-B 1A 1,e c ,e c k K c k -== 5. 1-1级平行反应:A,012A c ln ()k k t c =+1B 2C k c k c = 6.平衡态近似法:C 1A B 1c c k K c c k -== 7.稳态近似法:B d 0d c t =

化学动力学是物理化学的一个重要组成部分,其主要任务是 (1) 研究反应速率及其影响因素 (2) 揭示反应的历程,并研究物质结构和反应能力的关系。 动力学和热力学不同:平衡态热力学只讨论系统的平衡态,其性质不随时间而变化,因而不考虑时间这个因素;另外,热力学是用状态函数研究化学反应从始态到终态的可能性,即变化过程的方向和限度,并不涉及化学变化所经历的中间途径和中间步骤。所以,热力学对化学反应的速率和具体反应历程不能给予回答,只能说明反应进行的可能性。 例:298K ,101325Pa 时,氢氧发生反应: H 2(g )+ 1/2O 2(g ) H 2O (l ) Δr G m θ = -287.19 kJ/mol <0,表明反应可自发进行,但在上述条件下,并没有观察到氢氧的变化。 这主要是因为在上述条件下,反应速率太慢,难以达到热力学平衡。 所以,这个反应在上述条件下,从热力学角度看,是可以进行的;但从动力学角度看,则没有实际意义。 但若改变反应条件,升温到1073K 或加入合适的催化剂,反应可瞬间完成。 由此可看出,若一个反应仅从热力学角度判断是自发的,并不说明反应可以实际操作;若从动力学角度看,反应速率太慢,则没有实际意义。 因此,必须从动力学角度进行研究,改变不利状况,使反应能实现。而且,从控制反应过程而言,动力学研究非常重要。且动力学研究远比热力学复杂。它不仅涉及反应速率和反应机理本身,反应条件如:催化剂、温度、压力等对反应速率和反应机理的影响也是很复杂的。 一般可以认为: 热力学——反应的可能性;动力学——反应的可行性。 本章只讨论动力学基础,它包括以下三方面的内容: 动力学基础:反应速率——与反应物浓度、温度的关系 反应机理 反应速率理论 §11.1化学反应的反应速率及速率方程

【免费下载】第三章 化学动力学基础

- 1 -第三章 化学动力学基础 1. 有A 气体和B 气体进行反应,若将A 气体浓度增加一倍,速率增加400%,若将B 气体的浓度增加一倍,速率增加200%,试写出反应式。 2. 下列生成NO 2的反应:2NO +O 22NO 2 其反应速率表示式为 ][O [NO]22k =v 如果压力增加到原来的两倍,试计算速率之变化。 3. 在抽空的刚性容器中,引入一定量纯A 气体,发生如下反应: A(g)B(g) + 2C(g)。设反应能进行完全,经恒温到323K 时,开始计时,测定?→?体系总压随时间的变化关系如下:t / min 03050∞p 总 / kPa 53.33 73.3380.00106.66 求该反应级数及速率常数 4. 若气体混合物体积缩小到原来的1/3,下列反应的初速率变化为多少? 2SO 2 + O 2 → 2SO 3 5. 在308K 时,反应 N 2O 5(g) → 2NO 2(g) + 1/2O 2(g) 的k = 1.35?10-5,在318K 时,k = 4.98?10-5,试求这个反应的活化能? 6. CH 3CHO 的热分解反应是:CH 3CHO(g) → CH 4(g) + CO(g) 在700K 时,k =0.0105,已 知E a=188.1kJ ?mol -1,试求800K 时的k 。为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力

- 2 - 7. 已知HCl(g)在1atm 和25℃时的生成热为-88.2kJ ?mol -1,反应 H 2(g) + Cl 2(g) = 2HCl(g)的活化能为112.9kJ ?mol -1。试计算逆反应的活化能。 8. 某一个化学反应,当温度由300K 升高到310K 时,反应速率增加了一倍,试求这个反应的活化能。 9. 某化学反应,在300K 时,20min 内反应完成了50%,在350K 时,5min 内反应完成了50%,计算这个反应的活化能。 10. 已知在320℃时反应SO 2Cl 2(g)→SO 2(g)+Cl 2(g)是一级反应,速率常数为2.2?10-5s -1。试求:(1)10.0gSO 2 Cl 2分解一半需多少时间? (2)2.00gSO 2Cl 2经2h 之后还剩多少克? 11. 在人体内,被酵母催化的某生化反应的活化能为39kJ ?mol -1。当人发烧到313K 时,此反应的速率常数增大到多少倍? 12. 蔗糖催化水解C 12H 22O 11+H 2O 2C 6H 12O 6是一级反应,在25℃速率常数为催化剂?→??5.7?10-5s -1。试求: (1)浓度为1mol ?dm -3蔗糖溶液分解10%需要多少时间? (2)若反应活化能为110kJ.mol -1,那么在什么温度时反应速率是25℃时的十分之一? 13. 反应2NO+2H 2→N 2+2H 2O 在一定温度下,某密闭容器中等摩尔的比NO 与H 2混合物在不同初压下的半衰期为 p 0(mmHg) 355 340.5 288 251 230 202 t 1/2(min) 95 101 130 160 183 224求反应级数。

化学反应动力学基础(一)-学生

5202 反应 2O 3→ 3O 2的速率方程为 - d[O 3]/d t = k [O 3]2[O 2]-1 , 或者 d[O 2]/d t = k '[O 3]2[O 2]-1,则速率常数 k 和 k ' 的关系是: ( ) (A) 2k = 3k ' (B) k = k ' (C) 3k = 2k ' (D) -k /2 = k '/3 5203 气相反应 A + 2B ─→ 2C ,A 和 B 的初始压力分别为 p A 和 p B ,反应开始时 并无 C ,若 p 为体系的总压力,当时间为 t 时,A 的分压为: ( ) (A) p A - p B (B) p - 2p A (C) p - p B (D) 2(p - p A ) - p B 5204 对于反应 2NO 2= 2NO + O 2,当选用不同的反应物和产物来表示反应速率时,其相互关系为:( ) (A) -2d[NO 2]/d t = 2d[NO]/d t = d[O 2]/d t (B) - d[NO 2]/2d t = d[NO]/2d t = d[O 2]/d t = d ξ /d t (C) - d[NO 2]/d t = d[NO]/d t = d[O 2]/d t (D) - d[NO 2]/2d t = d[NO]/2d t = d[O 2]/d t = 1/V d ξ /d t 5207 气相基元反应 2A k 1 B 在一恒容的容器中进行,p 0为 A 的初始压力, p t 为时间 t 时反应 体系总压,此反应速率方程 d p t / d t = 。 - k (2p t - p 0)2 5208 有一反应 mA → nB 是一简单反应,其动力学方程为 -d c A / d t = kc A m , c A 的单位为 mol ·dm -3, 时间单位为 s ,则: (1) k 的单位为 ___________ mol 1- m ·dm 3( m -1)·s -1 (2) 以d c B /d t 表达的反应速率方程和题中给的速率方程关系为 B A A A 1d 1d 'd d m m c c k c k c n t m t m =-== 5209 反应 2N 2O 5─→ 4NO 2+ O 2 在328 K 时,O 2(g)的生成速率为0.75×10-4 mol ·dm -3·s -1。 如其间任一中间物浓度极低, 难以测出, 则该反应的总包反应速率为 _______________mol ·dm -3·s -1, N 2O 5之消耗速率为__________ mol ·dm -3·s -1,NO 2之生成速率为_______________mol ·dm -3·s -1 。0.75×10-4, 1.50×10-4, 3.00×10-4 5210 O 3分解反应为 2O 3─→3O 2 ,在一定温度下, 2.0 dm 3容器中反应。实验测出O 3每秒消耗1.50×10-2 mol, 则反应速率为_______________mol ·dm -3·s -1氧的生成速率为_______________mol ·dm -3·s -1, d ξ /d t 为_______________ 0.75×10-2, 2.25×10-2, 1.50×10-2.。 5211 2A +B =2C 已知反应某一瞬间, r A =12.72 mol ·dm -3·h -1, 则 r B = , r C =_____________r B =6.36 mol ·dm -3·h -1, r C =12.72mol ·dm -3·h -1 5212分别用反应物和生成物表示反应A +3B =2C 的反应速率, 并写出它们间关系为: 。r A = 13r B =1 2 r C 5222 有关基元反应的描述在下列诸说法中哪一个是不正确的: ( ) (A) 基元反应的级数一定是整数 (B) 基元反应是“态-态”反应的统计平均结果 (C) 基元反应进行时无中间产物,一步完成 (D) 基元反应不一定符合质量作用定律 5223 400 K 时,某气相反应的速率常数k p = 10-3(kPa)-1·s -1,如速率常数用 k C 表示,则 k C 应为: (A) 3.326 (mol ·dm -3)-1·s -1 k C = k p (RT ) (B) 3.0×10-4 (mol ·dm -3)-1·s -1 (C) 3326 (mol ·dm -3)-1·s -1 (D) 3.0×10-7 (mol ·dm -3)-1·s -1 5224 如果反应 2A + B = 2D 的速率可表示为:

化学动力学基础.

第11章 化学动力学基础 重点: 基元反应的质量作用定律及其应用,速率方程的积分形式,速率方程的确定,温度对反应速率的影响,阿累尼乌斯方程的各种形式及其应用,指前因子k0、活化能Ea 的定义,典型复合反应及复合反应速率的近似处理法,链反应,气体反应的碰撞理论,势能面与过渡状态理论。 难点: 由反应机理推导速率方程的近似方法(选取控制步骤法、稳态近似法和平衡态近似法)的原理及其应用。 重要公式 2. a ln ()k E k R T T =-211211 E k A RT =-+a ln 3.非基元反应的表观活化能: a a,1a,2a,3E E E E =++ 4. 1-1级对行反应:A,0A,11A A,ln ()e e c c k k t c c --=+- B 1A 1,e c ,e c k K c k -== 5. 1-1级平行反应:A,012A c ln ()k k t c =+ 1B 2C k c k c = 6.平衡态近似法:C 1A B 1c c k K c c k -== 7.稳态近似法:B d 0d c t =

化学动力学是物理化学的一个重要组成部分,其主要任务是 (1)研究反应速率及其影响因素 (2)揭示反应的历程,并研究物质结构和反应能力的关系。 动力学和热力学不同:平衡态热力学只讨论系统的平衡态,其性质不随时间而变化,因而不考虑时间这个因素;另外,热力学是用状态函数研究化学反应从始态到终态的可能性,即变化过程的方向和限度,并不涉及化学变化所经历的中间途径和中间步骤。所以,热力学对化学反应的速率和具体反应历程不能给予回答,只能说明反应进行的可能性。 例:298K,101325Pa时,氢氧发生反应: H2(g)+ 1/2O2(g)H2O(l) Δr G mθ = -287.19 kJ/mol < 0,表明反应可自发进行,但在上述条件下,并没有观察到氢氧的变化。 这主要是因为在上述条件下,反应速率太慢,难以达到热力学平衡。 所以,这个反应在上述条件下,从热力学角度看,是可以进行的;但从动力学角度看,则没有实际意义。 但若改变反应条件,升温到1073K或加入合适的催化剂,反应可瞬间完成。 由此可看出,若一个反应仅从热力学角度判断是自发的,并不说明反应可以实际操作;若从动力学角度看,反应速率太慢,则没有实际意义。 因此,必须从动力学角度进行研究,改变不利状况,使反应能实现。而且,从控制反应过程而言,动力学研究非常重要。且动力学研究远比热力学复杂。它不仅涉及反应速率和反应机理本身,反应条件如:催化剂、温度、压力等对反应速率和反应机理的影响也是很复杂的。 一般可以认为: 热力学——反应的可能性;动力学——反应的可行性。 本章只讨论动力学基础,它包括以下三方面的内容: 动力学基础:反应速率——与反应物浓度、温度的关系 反应机理 反应速率理论

第六章 化学动力学基础.

第六章 化学动力学基础 首 页 习题解析 本章练习 本章练习答案 章后习题答案 习题解析 [TOP] 例13-1在酸的存在下蔗糖的反应中,偏光计的读数αt 如下: t/(min) 0 30 90 150 330 630 ∞ αt 46.57 41.00 30.75 22.00 2.75 -10.00 -18.75 这个反应是一级反应,求反应速率常数。 解1 对一级反应,不仅反应物的浓度本身,如果有和浓度成比例的量,则可以用来代替浓度。αt 是蔗糖溶液的偏振面转过的角度,在t = 0时溶液中只存在蔗糖,在t = ∞时蔗糖应该完全消失,而在公式ln c A =ln c A0-kt 中,和c A0成比例的量是α0-α∞,和c A 成比例的量是αt -α∞,因此可以用ln(αt -α∞)=ln(α0-α∞)-kt 计算各时刻的k 。 min 100.375 .1800.4175 .1857.46ln min 30131-?=++= k min 101.375.1875.3075 .1857.46ln min 90132-?=++= k min 102.375.1800.2275 .1857.46ln min 150133-?=++=k min 104.375 .1875.275 .1857.46ln min 330134-?=++= k min 102.375 .1800.1275 .1857.46ln min 630135-?=+-+= k min 102.35 35 4321-?=++++= k k k k k k 解2 采用作图法,以lg(αt -α∞)对t 作图,得一直线,其斜率b = -k /2.303。 t /min 30 90 150 330 630

第十章 化学动力学基础

第十章 化学动力学基础 一、学习提示: 热力学只能预言在给定的条件下,反应发生的可能性,即在给定的条件下,反应能不能发生,发生到什么的程度。而要把可能性变成现实性,就需要化学动力学的知识,化学动力学的基本任务:一是研究反应的速率以及各种因素(如分子结构、温度、压力、浓度、介质、催化剂等)对反应速率的影响,从而给人们提供选择反应条件,使化学反应按我们所希望的速率进行。 化学动力学的基本任务之二是研究反应历程一即反应物究竟按什么途径,经过哪些步骤,才转化为最终产物。 学习中应掌握以下主要内容: 1、掌握等容反应速率的表示法以及基元反应、复杂反应、反应分子数、反应级数、反应速率方程式等基本概念; 2、简单级数反应(零级、一级、二级反应)的速率公式和它的特征,并能由实验数据确定简单反应的级数。 3、对三种复杂反应(对峙反应、平行反应和连续反应)要掌控其各自的特点并能对比较简单的反应能写出反应速率与浓度关系的微分式; 4、明确温度、活化能对反应速率的影响、理解,阿化尼乌斯经验式中各项的含意,计算Ea 。 5、掌握链反应的特点,会应用稳态近似、平衡假设等近处理方法。 二、主要公式及使用条件 1、对于反应 aA+bB →yY+zZ 有:-a 1·dt dC A =-b 1·dt dC B =y 1·dt dC y =21·dt dC z a K A =b K b =y K y =2z K

γ=B V 1·dt B d ] [ (适合物反应过程中体积恒定) γm =m 1· dt d ξ (多相催化反应) 2、A+B →C 为基元反应 γ=k[A][B] 1、1、简单级数反应的动力学方程及特征 零级反应:微分式:γ=-dt dC A =k o γ=dt d x =k o 积分式: C A ·O -C A =k o t γ=k o t 丰衰期:t 1/2=o k a 2 C A -t 作图为一直线 k o 的量纲:[浓度]·[时间]-1 一级反应: 微分式:γ=-dt dC A = dt dC p = k 1C A dt dx = k 1(a -x) (a 为起始浓度) x a dx -= k 1dt 积分式:ln(a -x)=-k 1t+C

化学动力学基础(一、二)习题

化学动力学基础(一、二)习题 一、选择题: 1、某反应的速率常数k=0.0462分-1,又知初始浓度为0.1mol.dm-3,则该反应的半衰期为: (A) 1/(6.93×10-2×0.12) (B) 15分 (C) 30分(D) 1/(4.62×102×0.1)分 答案:(B) 2、某一级反应, 当反应物的浓度降为起始浓度的1%时,需要t1秒, 若将反应物的浓度提高一倍, 加快反应速率, 当反应物浓度降低为起始浓度的1%时, 需时为t2, 则: (A ) t1﹥t2(B) t1=t2 (C) t1﹤t2(D) 不能确定二者关系 答案:(B) 3、某反应物反应掉7/8所需的时间恰好是它反应掉1/2所需时间的3倍, 则该反应的级数是: (A) 零级(B) 一级反应(C) 三级反应(D) 二级反应 答案:(B ) 4、反应A→B(Ⅰ);A→D(Ⅱ), 已知反应Ⅰ的活化能E1大于反应Ⅱ的活化能E2, 以下措施中哪一种不能改变获得B和D的比例: (A)提高反应温度(B) 降低反应温度 (C) 延长反应时间(D) 加入适当的催化剂 答案:C 5、由基元步骤构成的复杂反应:2A→2B+C A+C→2D,以C物质的浓度变化表示反应速率的速率方程(已知:-dC A/dt=K A1C A2-K A2C B2C c+K A3C A C C ) 则 (A)dC c/dt=K A1C A2-K A2C B2C c+K A3C A C C (B)dC c/dt=1/2K A1C A2-1/2K A2C B2C c+1/2K A3C A C C (C)dC c/dt=2K A1C A2-2K A2C B2C c+2K A3C A C C (D)dC D/dt=-K A3C A C C 答案:(B) 6、反应Ⅰ, 反应物初始浓度C0’, 半衰期t1/2’, 速率常数K1, 反应Ⅱ, 反应物初始浓度C0”, 半衰期t1/2”, 速率常数K2, K2/ K1=(3 t1/2’ C0’/2 t1/2” C0”2)则 (A) Ⅰ为零级, Ⅱ为二级(B) Ⅰ为一级,Ⅱ为三级 (C) Ⅰ为二级, Ⅱ为零级(D) Ⅰ为二级, Ⅱ为三级 答案:(D) 7、某反应, 以㏒(-dC/dt) 对㏒C作图得直线, 如果该反应为二级, 则直线的 (A)截距=2 (B) 截距=0.3010 (C) 斜率=2 (D) 截距/斜率=2 答案:(C) 8、微观可逆性原则不适用的反应是 (A)H2+I2=2HI (B)Cl+Cl=Cl2

相关主题
文本预览