当前位置:文档之家› 电力电子课程设计(三相桥式全控整流电路课程设计)

电力电子课程设计(三相桥式全控整流电路课程设计)

电力电子课程设计(三相桥式全控整流电路课程设计)
电力电子课程设计(三相桥式全控整流电路课程设计)

电力电子技术课程设计——三相桥式全控整流电路课程设计

完成日期:2013年01月16日

辽宁工程技术大学

课程设计成绩评定表学期2012-2013学年第一学期姓名

专业电气工程及其自动化班级电气10-03 课程名称电力电子技术

论文题目三相桥式全控整流电路课程设计

评定标准

评定指标分值得分

知识创新性20

理论正确性20

内容难易性15

结合实际性10

知识掌握程度15

书写规范性10

工作量10

总成绩100

评语:

任课教师时间年月日备注

课程设计任务书

一、设计题目

三相桥式全控整流电路课程设计

二、设计任务

1.主电路设计与原理介绍

2.整流触发电路的选择与原理介绍

3.保护电路的设计

三、设计计划

第1天:选题,查资料;

第2天:进行方案分析,确定设计方案;

第3天:电路原理设计;

第4天:检查设计,修改设计;

第5天:编写整理设计说明书。

四、设计要求

1.所设计的电路达到设计任务要求。

2. 分析结果,写出设计说明书。

指导教师:

教研室主任:

时间:年月日

摘要

整流电路就是把交流电转换成直流电的电路。整流电路技术在工业生产中应用极其广泛,如调压调速直流电源、电解及电镀的直流电源等。目前在各种整流电路中,应用最为广泛的是三相桥式全控整流电路。由于三相桥式全控整流电路的优越性很明显,故本课程选此为题。

关键词:电力电子全控整流

目录

1. 简介及结构框图 (1)

2. 主电路设计及原理 (2)

3. 工作特点 (3)

3.1阻感负载时的工作情况 (3)

4. 定量分析与参数计算 (6)

5. 保护电路设计 (8)

5.1晶闸管的保护设计 (8)

5.1.1晶闸管的过电压保护 (8)

5.1.2晶闸管的过电流保护 (8)

5.2交流侧的保护设计 (9)

6. 总接线图 (10)

7. 总结 (11)

1. 简介及结构框图

三相桥式全控整流电路系统通过变压器与电网连接,经过变压器的耦合,晶闸管主电

路得到一个合适的输入电压,使晶闸管在较大的功率因数下运行。变流主电路和电网之间用变压器隔离,还可以抑制由变流器进入电网的谐波成分。保护电路采用RC 过电压抑制电路进行过电压保护,利用快速熔断器进行过电流保护。采用晶闸管触发装置触发晶闸管,使三相全控桥将交流整流成直流,带动直流电动机运转。

图1-1为三相桥式全控整流电路结构框图。整个设计主要分为主电路、触发电路、保护电路三个部分。当接通电源时,三相桥式全控整流电路主电路通电,同时通过同步电路连接的集成触发电路也通电工作,形成触发脉冲,使主电路中晶闸管触发导通工作,经过整流后的直流电通给直流电动机,使其工作。

电网三相交流电源

三相桥式全控整

流电路

直流电机

保护装置

触发装置

图1-1结构框图

2. 主电路设计及原理

如图2-1所示,为三相桥式全控带阻感负载,根据要求要考虑电动机的电枢电感与电

枢电阻,故为阻感负载。习惯将其中阴极连接在一起的3个晶闸管称为共阴极组;阳极连接在一起的3个晶闸管称为共阳极组。共阴极组中与a 、b 、c 三相电源相接的3个晶闸管分别为VT1、VT3、VT5, 共阳极组中与a 、b 、c 三相电源相接的3个晶闸管分别为VT4、VT6、VT2。晶闸管的导通顺序为 VT1-VT2-VT3-VT4-VT5-VT6。变压器为Y ?-型接法。变压器二次侧接成星形得到零线,而一次侧接成三角形避免3次谐波流入电网,影响电网供电的质量。

T

n

a

b

c

VT 4

VT 6

VT 2VT 1VT 3

VT 5d 2

d 1

负载

i d i a

u d

图2-1三相桥式全控带阻感负载

3. 工作特点

下面从触发角0

=α时的情况可以总结出三相桥式全控整流电路的工作特点:

(1)每个时刻均需两个晶闸管同时导通,形成向负载供电的回路,其中共阴极组和共

阳极组 各一个,且不能为同一相器件。 (2)对触发脉冲的要求:

按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差060。 共阴极 组VT1、VT3、VT5的脉冲依次差0120。 共阳极组VT4、VT6、VT2也依次差0120。

同一相的上下两个桥臂,即VT1与VT4,VT3与VT6, VT5与VT2,脉冲相差0180。 (3) 整流输出电压d u 一周期脉动六次,每次脉动的波形都一样, 故该电路为六脉波整流电路。

(4)整流电路合闸启动过程中或电流连续时,为确保电路的正常工作,需保证同时导通的两个晶闸管均有脉冲。

(5)晶闸管承受的电压波形与三相半波时相同,晶闸管承受最大正、反向电压的关系也相同。

晶闸管导通情况及整流输出电压情况如表3-1所示:

表3-1晶闸管导通情况及整流输出电压情况

时 段 1 2 3 4 5 6 共阴极组中 导通的晶闸管

VT 1 VT 1 VT 3 VT 3

VT 5

VT 5

共阳极组中 导通的晶闸管

VT 6 VT 2 VT 2 VT 4 VT 4

VT 6 整流输出电压d u u a -u b =u ab

u a -u c =u ac u b - u c =u bc

u b - u a =u ba u c - u a =u ca u c -u b =u cb 3.1阻感负载时的工作情况

三相桥式全控整流电路大多用于向阻感负载和反电动势阻感负载供电(即用于直流电机传动),下面主要分析阻感负载时的情况,对于带反电动势阻感负载的情况,只需在阻感负载的基础上掌握其特点,即可把握其工作情况。

当α≤60度时,d u 波形连续,电路的工作情况与带电阻负载时十分相似,各晶闸管的通断情况、输出整流电压d u 波形、晶闸管承受的电压波形等都一样。区别在于负载不同时,同样的整流输出电压加到负载上,得到的负载电流 d i 波形不同,电阻负载时 d u 波形与

d i 的波形形状一样。而阻感负载时,由于电感的作用,使得负载电流波形变得平直,当电

感足够大的时候,负载电流的波形可近似为一条水平线。图3-1-1和图3-1-2分别给出了三

相桥式全控整流电路带阻感负载α=0度和α=30度时的波形。

图3-1-1中除给出d u 波形和d i 波形外,还给出了晶闸管VT1电流1VT i 的波形,可与带电阻负载时的情况进行比较。由波形图可见,在晶闸管VT1导通段,1VT i 波形由负载电流

d i 波形决定,和d u 波形不同。

图3-1-2中除给出d u 波形和 d i 波形外,还给出了变压器二次侧a 相电流 d i 的波形,在此不做具体分析。

图3 -1-1触发角α=0度时的波形图

图3-1-2 触发角α=30时的波形图

当α>60度时,阻感负载时的工作情况与电阻负载时不同,电阻负载时d u 波形不会出现负的部分,而阻感负载时,由于电感L 的作用,d u 波形会出现负的部分。图3-1-3给出了α=90度时的波形。若电感L 值足够大,d u 中正负面积将基本相等,d u 平均值近似为零。这说明,带阻感负载时,三相桥式全控整流电路的α角移相范围为90度。

图3-1-3 触发角α=90时的波形图

4. 定量分析与参数计算

在以上的分析中已经说明,整流输出的波形在一周期内脉动六次,且每次脉动的波形

相同,因此在计算其平均值时,只需对一个脉波(即1/6周期)进行计算即可。此外,以

线电压的过零点为时间坐标的零点,于是可得当整流输出电压连续时(即带阻感负载时,或带电阻负载α=90o 时)的平均值为

电阻负载且α>60o 时,整流电

压平均

值为

输出电流平均值为/R U I d d =。

当整流变压器为图1中所示采用星形联结,带阻感负载时,变压器二次侧电流波形如图7中所示,为正负半周各宽120o 、前沿相差180o 的矩形波,其有效值为

晶闸管电压、电流等的定量分析与三相半波时一致。 晶闸管的参数:

①电压额定:晶闸管在三相桥式全控整流过程中承受的峰值电压:

2tn U 6U =

考虑安全裕量,一般晶闸管的额定电压为工作时所承受峰值电压的2~3倍。即

tn N 3)U ~(2U =。

例如,输出功率为2kw ,负载电阻为20Ω,理想变压器二次侧电压

200V U 2=

所以晶闸管的额定电压:

~1469.69V 80.979V 200×63)~(2U 63)~(2=U 2N =?=

②电流额定:通态平均电流d VT(AV)0.368I I =,Ud/R Id =, U22.34Ud =。考虑安全裕量,

应选用的通态平均电流为计算的)2~5.1(倍。计算得

7.36A I VT(AV)=。

③对于晶闸管我们选用可关断晶闸管CTO 。它是具有门极正信号触发导通和门极负信号关断的全控型电力电子器件。她既具有普通晶闸管耐压高、电流大的特点,同时又具有

GTR 可关断的优点。

④综上所述 ,我们选用国产50A GTO 。参数如下.选用电阻20欧姆。

正向阻断电压:1000~1500Ⅴ,受反压,阳极可关断电流:30、50A 擎柱电流0.5~2.5正向触发电流:200~800MA ,反向关断电流:6~10A ,开通时间:<6us,m 关断时间:<10us,工作频率:<3KHz,允许du/dt>500V/us,允许di/dt>100A/us,正管压降2~4V 关断增益:

⑤整流变压器的参数:很多情况下晶闸管整流装置所要求的变流供电压与电网电压往往不能一致,同时又为了减少电网与整流装置的相互干扰,可配置整流变压器。

我们假设变压器是理想的。85.5V /2.34U U d 2≈=.所以变压器的匝数比为760/171380/85.5=。变压器一、二次容量为d 2220.816I 85.53I U 3S ??==。

5. 保护电路设计

5.1晶闸管的保护设计

5.1.1晶闸管的过电压保护

晶闸管的过电压能力较差,当它承受超过反向击穿电压时,会被反向击穿而损坏。如果正向电压超过管子的正向转折电压,会造成晶闸管硬开通,不仅使电路工作失常,且多次硬开关也会损坏管子。因此必须抑制晶闸管可能出现的过电压,常采用简单有效的过电压保护措施。

对于晶闸管的过电压保护可参考主电路的过电压保护,我们使用阻容保护,电路图如图5-1-1所示。

VT R

C

图5-1-1晶闸管阻容过电压保护

5.1.2晶闸管的过电流保护

晶闸管的过电流保护:过电流可分为过载和短路两种情况,可采用多种保护措施。对于晶闸管初开通时引起的较大的di/dt,可在晶闸管的阳极回路串联入电感进行抑制;对于整流桥内部原因引起的过流以及逆变器负载回路接地时可以采用接入快速熔短器进行保护。如图5-1-2所示:

L FU

VT

图5-1-2 串联电感及熔断器抑制回路

5.2交流侧的保护设计

晶闸管设备在运行过程中会受到由交流供电电网进入的操作过电压和雷击过电压的侵袭,同时设备自身运行中以及非正常运行中也有过电压出现,所以要进行过电压保护。可采用如图5-2所示的反向阻断式过电压抑制RC 保护电路。整流电路正常工作时,保护三相桥式整流器输出端电压为变压器次级电压的峰值,输出电流很小,从而减小了保护元件的发热。过电压出现时,该整流桥用于提供吸收过电压能量的通路,电容将吸取过电压能量转换为电场能量。过电压消失后,电容经放电,将储存的电场能量释放,逐渐将电压恢复到正常值。

整流电路

D R

C

C D D

D D D

R

图5-2阻断式过电压抑制RC 保护电路

6. 总接线图

R C

T

n

a b

c

VT 4

VT 6

VT 2VT 1

VT 3

VT 5d 2

d 1

i d

i a

u d

D

C

C D

D

D D D

R

R

FU 4FU 1

FU 2FU 3

FU 5FU 6

图5-2-2总接线图

7.总结

电力电子技术是一门基础性和支持很强的技术,本次课程设计不单单只是引用文献,更应该理解其原理,掌握其真谛,做到融会贯通。整流技术广泛的应用于工业生产中,其中应用最广泛的是三相桥式全控整流技术,其优越性在于全控二字,由于这一特点,使其在工业生产生活中具有旺盛的生命力。本次课程设计中的表格与电路图均用绘图软件visio-2010绘制;原理及结构的讲解均引用于教材,为方便理解,进行了适当的改写。

个人体会

电力电子技术是一门基础性和支持很强的技术,通过本次课程设计,我对电力电子技术这门课有了更深的了解,对各个知识点有了更好的掌握。本次设计,我设计的是三相桥式全控整流电路,开始设计时我遇到了很多的问题,好在后来经过仔细查阅资料,各类图书,以及老师和同学的帮助,问题得到了很好的解决。在课程设计的过程中我培养了自己独立工作的能力,增强了自信心,为我的毕业设计积累了宝贵的经验。

参考文献

[1] 王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2008

[2] 林渭勋.现代电力电子技术[M]. 北京:机械工业出版社,2006

[3] 马建国,孟宪元.电子设计自动化技术基础[M].北京:清华大学出版社,2004

三相桥式全控整流电路课程设计.

目录 1. 绪论 (1) 2. 主电路设计及原理 (2) 2.1总体框架图 (2) 2.2三相桥式全控整流电路的原理 (2) 2.3 实验内容 (5) 3. 单元电路设计 (7) 3.1 主电路 (7) 3.2 触发电路 (7) 3.3 保护电路 (8) 3.4 硬件电路PCB版图 (11) 3.4.1 顶层视图 (11) 3.4.2 底层视图 (12) 3.4.3 顶层覆盖图 (12) 3.4.4 3D视图 (13) 4 .电路分析与仿真 (14) 4.1 带电阻负载的波形分析 (14) 4.2 三相桥式全控整流电路定量分析 (16) 4.2.1 仿真模型图 (19) 4.2.2 仿真实验结论 (19) 5. 结论 (20) 6. 参考文献 (22) 7. 附录 (23)

第一章绪论 整流电路技术在工业生产上应用极广。如调压调速直流电源、电解及电镀的直流电源等。整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。 整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 把交流电变换成大小可调的单一方向直流电的过程称为可控整流。整流器的输入端一般接在交流电网上。为了适应负载对电源电压大小的要求,或者为了提高可控整流装置的功率因数,一般可在输入端加接整流变压器,把一次电压U1,变成二次电压U2。由晶闸管等组成的全控整流主电路,其输出端的负载,我们研究是电阻性负载、电阻电感负载(如直流电动机的励磁绕组,滑差电动机的电枢线圈等)。以上负载往往要求整流能输出在一定范围内变化的直流电压。为此,只要改变触发电路所提供的触发脉冲送出的早晚,就能改变晶闸管在交流电压U2一周期内导通的时间,这样负载上直流平均值就可以得到控制。

三相桥式全控整流电路的设计

电力电子技术课程设计报告 不可逆直流电力拖动系统中三相桥式全控整流电路的设计姓名陈营 学号0317 年级03班 专业电气工程及其自动化 系(院)汽车学院 指导教师齐延兴 2011年12月24日

一、引言 整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要也是应用得最为广泛的电路, 不仅用于一般工业, 也广泛应用于交通运输、电力系统、通信系统、能源系统及其他领域. 因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义, 这不仅是电力电子电路理论学习的重要一环, 而且对工程实践的实际应用具有预测和指导作用. 因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。 二、设计任务 课程设计目的 1、培养文献检索的能力,特别是如何利用Internet检索需要的文献资料。 2、培养综合分析问题、发现问题和解决问题的能力。 3、通过对不可逆直流电力拖动系统中三相桥式全控整流电路的设计,掌握三相桥式全控整流电路的工作原理,综合运用所学知识,三相桥式全控整流电路和系统设计的能力 4、培养运用知识的能力和工程设计的能力。 5、提高课程设计报告撰写水平。 课程设计指标内容及要求 三相桥式全控整流电路设计要求: (1)电网:380V,50HZ; (2)直流电机额定功率17KW,额定电压220V,额定电流90A,额定转速1500r/min. (3)变压器漏感: 设计的步骤 ⑴根据给出的技术要求,确定总体设计方案 ⑵选择具体的元件,进行硬件系统的设计 ⑶进行相应的电路设计,完成相应的功能 ⑷进行调试与修改 ⑸撰写课程设计说明书 三、设计方案选择及论证 三相半波可控整流电路 特点:阻感负载,L值很大,i d波形基本平直: a≤30°时:整流电压波形与电阻负载时相同; a>30°时(如a=60°时的波形如图2-16所示)u2过零时,VT1不关断,直到VT2的脉冲到来,才换流,由VT2导通向负载供电,同时向VT1施加反压使其关断——u d波形中出现负的部分阻感负载时的移相范围为90°。

三相可控整流电路课程设计

二.三相晶闸管全控整流电路原理说明 2.1主电路原理说明 晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。编号如图示,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6 。 带电阻负载时的工作情况 晶闸管触发角α=0o时的情况:此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。此时电路工作波形如图所示。 α=0o时,各晶闸管均在自然换相点处换相。由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压 ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。将波形中的一个周期等分为6段,每段为60度,如图2-18所示,每一段中导通的晶闸管及输出整流电压的情况如下表所示。由该表可见,6个晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。 时段 1 2 3 4 5 6 共阴极组中 导通的晶闸 管 VT1 VT1 VT3 VT3 VT5 VT5 共阳极组中 导通的晶闸 管 VT6 VT2 VT2 VT4 VT4 VT6 整流输出电 压ud ua-ub=uab ua-uc=uac ub- uc=ubc ub- ua=uba uc- ua=uca uc-ub=ucb

电力电子三相桥式全控整流电路课程设计讲解

三相桥式全控整流电路的设计 摘要:整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 关键词:整流变压触发过电压保护电路。 1前言 整流电路技术在工业生产上应用极广。如调压调速直流电源、电解及电镀的直流电源等。整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。 整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 把交流电变换成大小可调的单一方向直流电的过程称为可控整流。整流器的输入端一般接在交流电网上。为了适应负载对电源电压大小的要求,或者为了提高可控整流装置的功率因数,一般可在输入端加接整流变压器,把一次电压U1,变成二次电压

电力电子技术课程设计-三相桥式半控整流电路的设计

目录 1初始条件 (1) 2主要任务 (1) 3设计方案 (1) 3.1主电路设计 (1) 3.2主电路原理说明 (2) 3.3触发电路的设计 (5) 3.4触发电路原理说明 (6) 3.5保护电路的设计 (7) 3.5.1 过电压保护 (7) 3.5.2 过电流保护 (9) 3.6参数计算 (11) 3.6.1 负载的参数计算 (11) 3.6.2 晶闸管的选择 (12) 3.6.3 变压器的选择 (12) 4心得体会 (13) 参考文献 (14)

三相桥式半控整流电路的设计 1初始条件 设计一个三相桥式半控整流电路,直流电动机负载,电机技术数据如下:V U nom 220= ,A I nom 308=,min 1000r n nom =,r V C e min 196.0=,Ω=18.0a R 。 2主要任务 (1) 设计方案 (2) 完成主电路的原理分析,各主要元器件的选择 (3) 触发电路、保护电路的设计 (4) 绘制主电路及触发电路(采用集成元件)电气原理图 (5) 撰写设计说明书 3设计方案 首先,技术要求设计一个三相桥式整流电路,这个在课本中讲过,可以通过三相变压器、六个晶闸管、负载构成,而对于半控桥式电路,只需把其中的三个晶闸管换成二极管即可。对于直流电动机负载,在这里我们将其简化,用电阻、电感和反电动势代替之。 3.1主电路设计 三相半控整流电路与三相全控整流电路类似,只是将全控桥中的共阳极组的三个晶闸管用二极管替换,从而简化了整个电路。图中的三个晶闸管为共阴极连接,一般习惯上按图中VT1——VT3——VT5的顺序导通晶闸管。 其原理图如图1所示。

电力电子课程设计三相可控整流电路

目录 第1章概述 (2) 第2章方案确定 (3) 2.1原始数据 (3) 2.2设计任务 (3) 2.3设计要求 (3) 2.4方案分析 (3) 2.5方案选择 (4) 第3章电路设计 (5) 3.1主电路 (5) 3.2触发电路 (9) 3.3保护电路 (10) 3.4控制电路 (13) 第4章主电路元件计算及选择 (14) 4.1变压器参数计算 (14) 4.2电力电子器件电压、电流等定额计算 (15) 4.3平波电抗器电感值的计算 (16) 4.4电容滤波的电容计算 (16) 第5章设计总结与体会 (18) 参考文献 (19) 附录 (20)

第1章概述 目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。这类整流电路结构简单,控制技术成熟,但交流侧输入功率因数低,并向电网注入大量的谐波电流。据估计,在发达国家有60%的电能经过变换后才使用,而这个数字在本世纪初达到95%。 电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。 而电能的传输中,直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。近年发展起来的柔性交流输电(FACTS)也是依靠电力电子装置才得以实现的。

最新三相桥式全控整流电路课程设计

三相桥式全控整流电路课程设计

电力电子技术课程设计说明书三相桥式全控整流电路 系、部:电气与信息工程系 专业:自动化

目录 第1章绪论 0 1. 电子技术的发展趋势 (1) 2. 本人的主要工作 (2) 第2章主电路的设计及原理 (2) 1. 总体框图 (3) 2. 主电路的设计原理 (3) 2.1带电阻负载时 (5) 2.2阻感负载时 (7) 3. 触发电路 (8) 4. 保护电路 (9) 5. 参数计算 (10) 5.1 整流变压器的选择 (10) 5.2 晶闸管的选择 (11) 5.3 输出的定量分析 (11) 第3章 MATLAB的仿真 (13) 1. MA TLAB仿真软件的简介 (13) 2. 仿真模拟图 (13) 3. 仿真结果 (13) 第4章结束语 (16) 参考文献 (17) 第1章绪论

1. 电子技术的发展趋势 当今世界能源消耗增长十分迅速。目前,在所有能源中电力能源约占40%,而电力能源中有40%是经过电力电子设备的转换才到使用者手中。预计十年后,电力能源中的80%要经过电力电子设备的转换,电力电子技术在21世纪将起到更大作用。 电力电子技术是利用电力电子器件对电能进行控制和转换的学科。它包括电力电子器件、变流电路和控制电路三个部分,是电力、电子、控制三大电气工程技术领域之间的交叉学科。随着科学技术的发展,电力电子技术由于和现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关,已逐步发展成为一门多学科相互渗透的综合性技术学科。 电力电子技术作为一门高技术学科,由于其在节能、减小环境污染、改善工作条件等方面有着重要的作用,现在已广泛的应用于传统工业(例如:电力、机械、交通、化工、冶金、轻纺等)和高新技术产业(例如:航天、现代化通信等)。下面着重讨论电力电子技术在电力系统中的一些应用。 在高压直流输电(HVDC)方面的应用 直流输电在技术方面有许多优点:(1)不存在系统稳定问题,可实现电网的非同期互联;(2)可以限制短路电流;(3)没有电容充电电流;(4)线路有功损耗小;(5)输送相同功率时,线路造价低;(6)调节速度快,运行可靠;(7)适宜于海下输电。随着大功率电子器件(如:可关断的晶闸管、MOS控制的晶闸管、绝缘门极双极性三极管等)开断能力不断提高,新的大功率电力电子器件的出现和投入应用,高压直流输电设备的性能必将进一步得以改善,设备结构得以简化,从而减少换流站的占地面积、降低工程造价。 在柔性交流输电系统(FACTS)中的应用 20世纪80年代中期,美国电力科学研究院(EPRI)N.G.Hingorani博士首次提出柔性交流输电技术的概念。近年来柔性交流输电技术在世界上发展迅速,已被国内外一些权威的输电工作者预测确定为“未来输电系统新时代的三项支持技术(柔性输电技术、先进的控制中心技术和综合自动化技术)之一”。现代电力电子技术、控制理论和通讯技术的发展为FACTS的发展提供了条件。采用IGBT

三相全控桥式整流电路

课程设计任务书 学生:专业班级:自动化0602班 指导教师:工作单位:自动化学院 题目:三相桥式全控整流电路的设计(带反电动势负载) 初始条件: 1.反电动势负载,E=60V,电阻R=10Ω,电感L无穷大使负载电流连续; 2.U2=220V,晶闸管触发角α=30°; 3.其他器件如晶闸管自己选取。 要求完成的主要任务:(包括课程设计工作得及其技术要求,以及说明书撰写待具体要求) 1.主电路的设计及原理说明; 2.触发电路设计,每个开关器件触发次序及相位分析; 3.保护电路的设计,过流保护,过电压保护原理分析; 4.各参数的计算(输出平均电压,输出平均电流,输出有功功率计算,输出波形分析); 5.应用举例; 6.心得小结。 时间安排: 7月6日查阅资料 7月7日方案设计 7月8日- 9日馔写电力电子课程设计报告 7月10日提交报告,答辩 指导教师签名:年月日 系主任(或责任教师)签名:年月日

摘要 整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 关键词:整流,变压,触发,过电压,保护电路。

三相全桥不控整流电路的设计

三相全桥不控整流电路的设计 1 三相整流的原理和参数计算 1.1 三相不控整流原理 三相桥式不控整流电路的原理图如图1-1所示。该电路中,某一对二极管导通是,输出直流电压等于交流侧线电压中最大的一个,改线电压既向电容供电,也向负载供电。当没有二极管导通时,由电容向负载供电,d u 按指数规律下降。 设二极管在距线电压过零点δ角处开始导通,并以二极管6VD 和1VD 开始同时导通的时刻为零点,则线电压为 2sin()ab u t ω+δ 在t=0时,二极管6VD 和1VD 开始导通,直流侧电压等于ab u ;下一次同时导通的一对管子是1VD 和2VD ,直流侧电压等于ac u 。着两段导通过程之间的交替有两种情况,一种是1VD 和2VD 同时导通之前和6VD 和1VD 是关断的,交流侧向直流侧的充电电流d i 是断续的;另一种是1VD 一直导通,交替时由6VD 导通换相至2VD 导通,d i 是连续的。介于两者之间的临界情况是,6VD 和1VD 同时导通的阶段与1VD 和2VD 同时导通的阶段在t πω+δ=2/3处恰好衔接起来,d i 恰好连续,可以确定临界条件 wRC = 当wRC >wRC

三相全控桥式整流电路

课程设计任务书 学生姓名:专业班级:自动化0602班 指导教师:工作单位:自动化学院 题目:三相桥式全控整流电路的设计(带反电动势负载) 初始条件: 1.反电动势负载,E=60V,电阻R=10Ω,电感L无穷大使负载电流连续; 2.U2=220V,晶闸管触发角α=30°; 3.其他器件如晶闸管自己选取。 要求完成的主要任务:(包括课程设计工作得及其技术要求,以及说明书撰写待具体要求) 1.主电路的设计及原理说明; 2.触发电路设计,每个开关器件触发次序及相位分析; 3.保护电路的设计,过流保护,过电压保护原理分析; 4.各参数的计算(输出平均电压,输出平均电流,输出有功功率计算,输出波形分析); 5.应用举例; 6.心得小结。 时间安排: 7月6日查阅资料 7月7日方案设计 7月8日- 9日馔写电力电子课程设计报告 7月10日提交报告,答辩 指导教师签名:年月日 系主任(或责任教师)签名:年月日

摘要 整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 关键词:整流,变压,触发,过电压,保护电路。

三相桥式全控整流电路设计

电气工程学院课程设计报告 课程名称:电力电子技术 设计题目:三相桥式全控整流电路设计 专业班级:自动化1班 学号: 20120220 姓名: 时间: 2015年9月2日--9月30日 ——————以下由指导教师填写——————分项成绩:出勤成品答辩及考核 总成绩:总分成绩 指导教师(签名):

前言 课程设计是《电力电子技术》课程的实践性教学环节,通过课程设计,可 使学生在综合运用所学理论知识,拓展知识面,理论分析和计算,实验研究以及系统地进行工程实践训练等方面得到训练和提高,从而培养学生具有独立解决实际问题和从事科学研究的初步能力。通过设计过程,可是学生初步建立正确的设计思想,熟悉工程设计的一般顺序呢、规范和方法,提高正确使用技术 资料、标准、手册等工具书的能力。通过设计工作还可以培养学生实事求是和一丝不苟的工作作风,树立正确的生产观点、经济观点和全局观点,为后续课程的学习和毕业设计,乃至向工程技术人员的过渡打下基础。 目录 前言 1 一课程设计的内容和具体要求 2 二变压器设计 3 三晶闸管的选择 3 四晶闸管的保护设计 4 五触发电路设计 5 六触发电路供电电源设计 6 七Matlab仿真7 八实验总结8

一.课程设计的内容和具体要求 要求设计一个完整的三相桥式全控整流电路,包括主电路、触发电路、整流变压器的设计,晶闸管的选型和保护等。 (一)技术指标 1、整流器负载为10KW 直流电动机 额定电压D C 220V,额定电流55A,电枢电阻0.5?,总电阻1? 2、输入电压A C 380V(+5~10%) 3、输入电压D C 0~220V,输出最大电流λI nom (λ=1.5) 4、最小α角为15° 5、触发电路采用K J004 6、主变压器采用Y/Y12 联接。 7、主电路采用三相桥式全控整流电路。 (二)设计要求 1、变压器 设计 1)二次相电压U 2 的计算 2)二次电流I 2 和一次电流I 1 的计算 3)变压器容量的计算 2、晶闸管的选择 3、晶闸管保护设计 1)晶闸管过流保护 2)晶闸管过压保护 4、触发电路设计 1)同步变压器设计及同步电压的相位选择2)三相触发电路设计(双窄脉冲) 5、触发脉冲供电电源设计 (三)成品要求 1、课程设 计报告一份 2、电路图一份

单相半控桥式整流电路设计

单相半控桥式整流电路 设计 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

摘要随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定。整流的基础是整流电路。由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。整流电路的应用十分广泛。广泛的应用于直流电动机、电镀、电解电源、同步发电机励磁、通信系统电源灯。 本设计研究了单相半控桥式整流电路,对整流电路的原理及特点进行了分析,对整流元件进行了参数计算并选择出了合适的器件。本设计选择KJ004集成触发器做为晶闸管的触发电路,详细的介绍了KJ004的工作原理。本设计还设计了合理的保护电路。最后利用simulink搭建仿真模型。 关键词:半控整流,驱动电路,保护电路,simulink仿真 单相半控桥式整流电路设计 1 主电路的设计 设计目的 (1)、把从电力电子技术课程中所学到的理论和实践知识,在课程设计实践中全 综合的加以运用,使这些知识得到巩固、提高,并使理论知识与实践技能密切结合起来。 (2)、初步树立起正确的设计思想,掌握一般电力电子电路设计的基本方法和技 能,培养观察、分析和解决问题及独立设计的能力,训练设计构思和创新能力。 (3)、培养具有查阅参考文献和技术资料的能力,能熟悉或较熟悉地应用相关手 册、图表、国家标准,为今后成为一名合格的电气工程技术人员进行必须的基本技能和基本素质训练。 整流电路的选择 整流电路是电力电子电路中出现最早的一种,整流电路是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。20

三相半波可控整流电路__课程设计..

《电力电子技术课程》课程设计说明书 课程名称:三相半波可控整流电路设计 学院:电气与信息工程学院 专业:电气工程及其自动化 学生姓名:黄亚娟 学号: 10401240302 指导教师:曹志平 时间: 2013年6月9日

摘要 整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 关键词:整流,变压,触发,晶闸管,额定。

目录 摘要 (2) 目录 (3) 引言 (4) 一、三相半波整流电路原理分析 (4) 1.1.1 纯电阻性半波整流电路原理组成 (4) 1.2.1主电路设计 (4) 1.3.1 电路原理波形分析 (5) 二、三相半波整流电路数量分析 (7) 2.1.1 输出值的计算 (7) 2.2.1晶闸管的有效值 (8) 三、器件额定参数计算 (8) 3.1.1 变压器参数 (8) 3.2.1 晶闸管参数 (8) 3.3.1 变压器容量 (8) 3.4.1 晶闸管额定电压 (8) 3.5.1 晶闸管额定电流 (8) 四、MATLAB软件介绍 (9) 五、MATLAB软件电脑仿真………………………………………………… 1 1 5.1.1 MATLAB软件运用电脑仿真电路模型 (11) 5.2.1纯阻性负载三相半波可控整流电路仿真图像 (11) 5.3.1 仿真结果和实际原理分析比较 (12) 六、心得体会 (12) 七、参考文献 (13) 八致谢 (14)

三相桥式全控整流电路

1主电路的原理 1.1主电路 其原理图如图1所示。 图1 三相桥式全控整理电路原理图 习惯将其中阴极连接在一起的3个晶闸管(VT1、VT3、VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。从后面的分析可知,按此编号,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。 1.2主电路原理说明 整流电路的负载为带反电动势的阻感负载。假设将电路中的晶闸管换作二极管,这种情况也就相当于晶闸管触发角α=0o时的情况。此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。此时电路工作波形如图2所示。

图2 反电动势α=0o时波形 α=0o时,各晶闸管均在自然换相点处换相。由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。在分析ud的波形时,既可从相电压波形分析,也可以从线电压波形分析。从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。

MATLAB课程设计,单相桥式全控整流电路的MATLAB设计

学号 控制系统仿真 单相桥式全控整流电路(电阻性负载) 在MATLAB中的仿真真 在MATLAB软件中的仿真应用 学生姓名 班级 成绩 控制与机械工程学院 2015年6 月19 日

绪论 Matlab以矩阵运算为基础,把计算可视化程序设计融合到了一个交互的工作环境中,可实现工程计算、算法研究、建模和仿真、数据分析及可视化、科学和工程绘图、应用程序开发等功能.Simulink是Mat2lab 所提供的用来对动态系统进行建模、仿真和分析的集成环境,是结合了框图界面和交互仿真能力的非线性动态系统仿真工具.Matlab5.3与以前的MA TLAB版本的最大区别就是增加了电力系统模块库(PowerSystemBlockset),能快速而准确地对电路及电力系统进行仿真。 1990年MathWorks软件公司为Matlab提供了新的控制系统模型图形输入与仿真工具Simulink.作为对Matlab语言运算环境的扩展,在保持Matlab的一般性能基础上,Simulink又增加了许多功能.它与Matlab及其工具箱结合使用,可以完全对连续系统、离散系统、连续和离散混合系统的动态性能进行仿真与分析. Simulink与传统的仿真软件包用微分方程和差分方程建模相比,具有更直观、方便、灵活的优点.Simulink 提供了8个子模型库:Continuous(持续环节)、Discrete(离散系统)、Function&Tables(函数及图表)、Math(数学计算)、Nonlinear(非线形环节)、Signals&System(信号及系统)、Sink(输出方式)、Source(输入源).在以上每个子模型库中还包含有相应的功能模块,如Source子模块中包含有SineWave(正弦波)、PulseGenerator(脉冲信号)、Step(阶跃信号)等,Sink子模块中包含有scope(示波器)、To Workspace(传送到工作空间)、XYGraph(X-Y图表)等. Simulink提供了动态系统建模、分析和仿真的交互环境,能够实现交互建模、交互仿真,并允许用户扩展仿真环境等功能.Simulink的专用模型库(Blocksets)提供了一些专用元件集,使得Simulink的功能进一步扩展。

三相桥式整流电路课设资料

1 绪论 电子技术包括信息电子技术和电力电子技术两大分支。通常所说的模拟电子技术和数字电子技术都属于信息电子技术。电力电子技术是应用于电力领域的电子技术。具体的说,就是使用电力电子器件对电能进行变换和控制的技术。所用的电力电子器件均用半导体制成,故也称为电力半导体器件。电力电子技术所变换的“电力”,功率可以大到数百MW甚至GW,也可以小到数W甚至1W以下。信息电子技术主要用于信息处理,而电力电子技术则主要用于电力变换。 电力电子涉及由半导体开关启动装置进行电源的控制与转换领域。半导体整流控制、半导体硅整的小型化等的出现,产生一个新的电力电子应用领域。半导体硅整流、汞弧整流器应用于控制电源,但是这样的整流回路只是工业电子的一部分,对于汞弧整流器应用范围而言是有局限的。半导体硅整流的应用涉及很多领域,如汽车、电站、航空电子、高频变频器等。 整流电路就是把交流电能转换成直流电能的电路,大多数整流电路由变压器、整流主电路和滤波器等组成,在直流电动机的调速、发电机励磁调节、电解及电镀等领域得到广泛地应用。整流电路由主电路、滤波器和变压器组成。 随着科学技术的日益发展人们对电路的要求越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可方便得到大、中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。在电能的生产和传输上,目前以交流电为主。电力网供给用户的是交流电,而在许多场合,例如电解、蓄电池的充电、直流电动机等,需要用直流电。要得到直流电,除了直流发电机外最普遍应用的是利用各种半导体元件产生直流电。这个方法中,整流是最基础的一步。整流,即利用具有单向导电性的器件,把方向和大小交变的电流变换为直流电。本设计主要是对三相桥式全控整流电路(带反电动势的负载)的研究。 三相桥式全控整流电路与三相半波电路相比,输出整流电压提高一倍,输出电压的脉动率高,基波频率为300HZ,在负载要求相同的直流电压下,晶闸管承受的最大正方向电压将比三相半波减少一半,变压器的容量也比较小,同时三相电流平衡,无须中线。所以,三相桥式全控整流电路多用于直流电动机或要求实现有源逆变的负载。

三相桥式全控整流电路的设计与仿真

三相桥式全控整流电路的设计与仿真 一.设计要求 1)完成三相桥式全控整流电路的设计、仿真; 2)设计要求: 输入AC3*110V,50Hz,输出电流连续,阻感负载,要求输出直流电压60V~200V,计算其主开关器件所承受的最大正反向电压,器件的额定电流,并建立合适的仿真模型,对主电路进行仿真。然后根据三相桥式整流电路的驱动控制要求,设计其控制电路,产生符合电路驱动所要求的触发波形。 二.题目分析 三相全控整流电路的整流负载容量较大,输出直流电压脉动较小,是目前应用最为广泛的整流电路。它是由半波整流电路发展而来的。由一组共阴极的三相半波可控整流电路(共阴极组晶闸管依次编号T1.T3.T5)和一组共阳极接法的晶闸管(依次编号T4.T6.T2)串联而成。六个晶闸管分别由按一定规律的脉冲触发导通,来实现对三相交流电的整流,当改变晶闸管的触发角时,相应的输出电压平均值也会改变,从而得到不同的输出。 根据要求的输入电压值与输出的电压范围,计算出晶闸管承受的最大正、反向电压值。然后根据三相桥式整流电路的驱动控制要求,设计其控制电路,产生符合电路驱动所要求的触发波形。再用Multisim软件进行仿真,调试,得到仿真图形。 1.主电路图原理图 图一主电路原理图

2.三相桥式全控整流电路的特点及其要求: 一般变压器一次侧接成三角型,二次侧接成星型,晶闸管分共阴极和共阳极。一般1、3、5为共阴极,2、4、6为共阳极。 ①两管同时导通形成供电回路,其中共阴极组和共阳极组各一个,且不能为同一相器件。 ②对触发脉冲的要求: a.按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60?。 b.共阴极组VT1、VT3、VT5的脉冲依次差120?,共阳极组VT4、VT6、VT2也依次差120?。 c.同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180?。 ③ U一周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。 d ④需保证同时导通的2个晶闸管均有脉冲,可采用两种方法:一种是宽脉冲触发一种是双脉冲触发(常用)。 ⑤晶闸管承受的电压波形与三相半波时相同,晶闸管承受最大正、反向电压的关系也相同。 三.主电路设计、元器件选型及计算: 1. 主电路仿真图 用的是Multisim软件进行仿真 图二主电路仿真图

单相半控桥式整流电路的设计说明

工业应用技术学院 课程设计任务书 题目单相半控桥式晶闸管整流电路的设计 专业、班级学号 主要容、基本要求、主要参考资料等: 一、主要容 (1)电源电压:交流220V/50Hz (2)输出电压围:20V-50V (3)最大输出电流:10A (4)电源效率不低于70% 二、基本要求 1、主要技术指标 (1)具有过流保护功能,动作电流为12A; (2)具有稳压功能。 2、设计要求 (1)合理选择晶闸管型号; (2)完成电路理论设计、绘制电路图、电路图典型波形并进行模拟仿真。 二、主要参考资料 [1] 王兆安,黄俊,电力电子技术(第4版)[M],北京:机械工业,2000. [2] 王兆安,明勋,电力电子设备设计和应用手册(第2版)[M],北京:机械工业,2005. [4] 康华光,大钦,电子技术基础-模拟部分(第5版)[M],北京:高等教育,2005. [4] 治明,电力电子器件基础[M],北京:机械工业,2005. [5] 吴丙申,模拟电路基础[M],北京:北京理工大学,2007.

[6] 马建国,孟宪元,电力设计自动化技术基础[M],北京:清华大学,2004. 完成期限: 指导教师签名: 课程负责人签名: 年月日

1.设计的基本要求 1.1 设计的主要参数及要求: 设计要求:1、电源电压:交流220V/50Hz 2、输出电压围:20V-50V 3、最大输出电流:10A 4、具有过流保护功能,动作电流:12A 5、具有稳压功能 6、电源效率不低于70% 1.2 设计的主要功能 单相桥式半控整流电路的工作特点是晶闸管触发导通,而整流二极管在阳极电压高于阴极电压时自然导通。单相桥式整流电路在感性负载电流连续时,当相控角α<90°时,可实现将交流电功率变为直流电功率的相控整流;在α>90°时,可实现将直流电返送至交流电网的有源逆变。在有源逆变状态工作时,相控角不应过大,以确保不发生换相(换流)失败事故。 2.总体系统的设计 2.1 主电路方案论证 方案1:单相半控桥式整流电路(含续流二极管) 单相桥式半控整流电路虽然具有电路简单、调整方便、使用元件少等优点,而且不会导致失控显现,续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。 方案2:单相半控桥式整流二极管(不含续流二极管) 不含续流二极管的电路具有自续流能力,但一旦出现异常,会导致:一只晶闸管与两只二极管之间轮流导电,其输出电压失去控制,这种情况称之为“失控”。失控时的的输出电压相当于单相半波不可控整流时的电压波形。在失控情况下工作的晶闸管由于连续导通很容易因过载而损坏。因为半导体本身具有续流作用,半控电路只能将交流电能转变为直流电能,而直流电能不能返回到交流电能中去,即能量只能单方向传递。 经过比较本设计选择方案一含续流二极管的单相半控桥式整流电路能更好的达到设计要求。 2.2 主电路结构及其工作原理

三相桥式整流电路及其MATLAB仿真..

目录 摘要....................................................................................... - 2 - Abstract .................................................................................. - 3 - 第一章引言 .......................................................................... - 4 - 1.1 设计背景....................................................................... - 4 - 1.2 设计任务....................................................................... - 4 - 第二章方案选择论证 .......................................................... - 6 - 2.1方案分析........................................................................ - 6 - 2.2方案选择........................................................................ - 6 - 第三章电路设计 ................................................................ - 7 - 3.1 主电路原理分析............................................................ - 7 - 第四章仿真分析 ................................................................ - 9 - 4.1 建立仿真模型 ............................................................... - 9 - 4.2仿真参数的设置 .......................................................... - 10 - 4.3 仿真结果及波形分析................................................... - 11 - 第五章设计总结 ................................................................ - 26 - 致谢................................................................................. - 27 - 参考文献............................................................................... - 28 -

三相桥式全控整流电路课程设计文稿

三相桥式全控整流电路课程设计文稿

湖北民族学院 三相桥式全控整流电路的设计 学生姓名:林博 指导教师:徐超 专业:电气工程及其自动化 班级: K0312416 学号; K

电子技术的应用已深入到工农业经济建设,交通运输,空间技术,国防现代化,医疗,环保,和亿万人们日常生活的各个领域,进入21世纪后电力电子技术的应用更加广泛,因此对电力电子技术的研究更为重要。近几年越来越多电力电子应用在国民工业中,一些技术先进的国家,经过电力电子技术处理的电能已得到总电能的一半以上。本文主要介绍三相桥式全控整流电路的主电路和触发电路的原理及控制电路图,由工频三相电压380V经升压变压器后由SCR(可控硅)再整流为直流供负载用。可是由于工艺要求大功率,大电流,高电压,因此控制比较复杂,特别是触发电路部分必须一一对应,否则输出的电压波动大甚至还有可能短路造成设备损坏。本电路图主要由芯片C8051-F020微控制器来控制并在不同的时刻发出不同的脉冲信号去控制6个SCR。在负载端取出整流电压,负载电流到C8051-F020模拟口,然后由MCU处理后发出信号控制SCR的导通角的大小。在本课题设计开发过程中,我们使用KEIL-C开发软件,C8051开发系统及PROTEL-99,并最终实现电路改造设计,并达到预期的效果。 关键字:MCU ; SCR; 电力电子; 导通角; KEIL-C

摘要 (2) 1、原理及方案 (4) 2、主电路的设计及器件选择 (5) 2.1三相全控桥的工作原理 (5) 2.2参数计算 (7) 3、触发电路设计 (10) 3.1集成触发电路 (10) 3.2K J004的工作原理 (10) 3.3集成触发器电路图 (11)

相关主题
文本预览
相关文档 最新文档