当前位置:文档之家› 18 全面最小二乘法

18 全面最小二乘法

18 全面最小二乘法
18 全面最小二乘法

第十八讲 全面最小二乘法

一、 法向回归

一组测量数据()i i t ,s ,欲拟和直线

12s c t c =+

最小二乘法采取目标函数:()2

n

12i 1i 2i 1

E c ,c s c t c min ==--=∑

它隐含了在测量中,i t 是精确测量的,只有i s 才测得不准确,而在实际测量中,i t ,i s 都是无法准确测量的,因此,采用法向回归更有可能。

2

c

t

12

c t c

+()

,i i t s

点()i i t ,s 到直线12s c t c =+的距离为

i 1i 2s c t c --

故法向回归的目标函数为

()2

2

n

12i

1i 2i 1

E c ,c s

c t c min =??=--=∑

()()n

n

i 1i 22i 1i 2i 1

i 121

E 1

12s c t c 0c s c t c 1c n ==?=---=→=-?+∑∑

()

()

()()()()()()()()n

n

2

1i

1i 2i i 1i 22

22i 1

i 1

111

n

121i i i 1i 22i 11n

n n

1i 1i 21i i 1i 2i i 1i 22i 1

i 1

i 1

1n n

1i i 1i 2i i 12i 1i 11

2c E

2s

c t c t s c t c c 1c 1c 2c c c s t s c t c 1c 2c c s c t c c s s c t c t s c t c 1c 2c s s c t c t s c 1c ========?=--+---?++=----+?

?=--------??

+??

-=--+-+∑∑∑∑∑∑∑∑-

()i 2t c 0

??-=????

将2c 代入之,可得

1st

21c c s c t ??=

???

=-??

其中

()

()()

(

)

n

i

i 1n i

i 12

n n n 22ss i

i i i 1i 1i 1n n n n st i i i i i i i 1i 1i 1i 12n n n 22tt i i i i 1i 1i 11s s n 1t t n 1l s s s s ,n 1l s s t t s t s t n 1l t t t t n ============?=??

?

=??

????=-=- ?????

?????=--=-? ???

?????

????=-=- ?

????

∑∑∑∑∑∑∑∑∑∑∑∑ 另一种推导方法:

()()n

2

12i

1i 22

i 1

1

1

E c ,c s

c t c 1c ==--+∑

()()(

)()

n

2

i

1i n

i 1

2i 1i 1122

i 1

21

s s c t t E 1

0c s c t s c t E c ,c c n 1c ==??

---??

?=→=-=-?=?+∑∑()2

ss 1st tt 1

122

1

l 2c l l c E c ,c 1c -+=+

11

st

E

0c c ?=→=?“±”中,“-”对应的E 的最大值

作为比较,最小二乘法n

2

i 1i 2i 1s c t c min =--=∑给出

st

1tt 21

l c l c s c t ?=??

?=-? 例1. 7点测量

()()()()()()()()

i i t ,s 0,3.1,0.5,3.9,1,5.2,1.5,6.0,2,6.9, 2.5,8.0, 3.0,9.1=拟合直线12c t c s +=

解:计算结果tt ss st t 1.5,s 6.02857,l 7,l 27.8743,l 13.95=≈=== 最小二乘法给出12c 1.99286,c 3.03929==

全面最小二乘法(法向回归)给出12c 1.99709,c 3.03293==

测量数据误差小,分布合理时,两种方法效果非常接近。 二 、全面最小二乘法(Totally Least Square Method )

当方程Ax b =成为矛盾方程时,采用最小二乘法求解的观点实际上认为b 存在误差,而A 不存在误差,故应有ε,使得

Ax b =+ε

ε应尽量小以使得不至于严重得破坏方程2min →ε=

全面最小二乘法采取如下观点解决矛盾方程的问题,不仅b 存在误

差,A 也存在误差,故,存在E 和ε,使

()A E x b +=+ε

E ε、也应该尽量小,以使得不至于严重偏离原方程[]F

E |min →ε= ()[][]()x A E x b A |b E|01??

+=+ε?+ε=??-??

记[][]x c A |b ,E|,v 1??

=?=ε=??-??

,则全面最小二乘解即求如下方程

()c v 0+?=

的非零解v ,且v 的最后分量不能为零,而其中?应满足F

min ?=

引理:设m n r z C ?∈,且存在奇异值分解,1H r m n

Z U

V 0?σ????

??=σ?

????

? ,其中12r 0σ≥σ≥≥σ> 。又设

1n s m n

Y U

V (s r)0?σ????

??=<σ?

????

? 则

m n

F F z C rankz s

Z Y min Z z ?∈=-=- 首先来考虑F-范数。设H m n P UQV ,U V ?=、分别为m 阶、n 阶酉矩阵。Q 为m n ?阶矩阵(上式不一定是奇异值分解)。则

()

()()

()()()

()

m

n m

2

2H

H H ij

ij ij F

ii

i,j

i 1j 1i 1

H H H H H H H 2H H F

p

p p p PP tr PP tr P P

tr UQV VQ U tr UQQ U tr Q U UQ tr(Q Q)tr QQ Q

===??===== ???======∑∑∑∑

(按照教材上的说法,正交相抵或酉相抵的矩阵与F 范数相同)

r

22i

F

i s 1

X Y

=+-=

σ

∑,又令H H z UTV T U zV =←=,则

r

r

n

m n

2

22

2

ii i ii ij F

i 1

i 1j 1

i r 1j 1

X z

t t t ====+=-=-σ++

∑∑∑∑∑

对任意z 矩阵而言,各ij t 之间完全独立,则F x z -是可能等于零的。但是rank(z)s r =<。故F x z -不可能为零。详细论证可知

ij ii ii i t 0(i j),t 0(i s),t (i 1,2,,s)=≠=>=σ= 时,F x z -最小

下面仅考虑在实际应用中非常常见的一种情况:m n

n

A C ?∈,m n

n 1A b C ?+??∈??,即A 是列满秩的,A b ????也是列满秩的。这样,系数矩

阵与增广矩阵的秩不相等,方程Ax b =不相容。

定理1: 设m n m (n 1)

n n 1A C ,A b C ??++??∈∈??

具有如下的奇异值分解 1H 12n 1n 1C U V ,()0++σ?????

?=σ≥σ≥≥σσ?

???

??

则使方程()C v 0+?=具有非零解,且F 范数最小的?存在,并且

n 1F

+?

证明:方程()C v 0+?=要有非零解,必须rank(C )n 1+?<+,故由引理知

()()

()()F

F

rank C n 1

n 1

rank C n

min min

C C min

C C +?<+++?=?=

-+?=

-+?=σ

显然满足

H

n 10U V 0O +???????=????

σ?

?????

定理2: 设n 1+σ为C 的n-k+1重奇异值,且k 1k 2n 1v ,v ,v +++ 相应的为H C C

的属于()n k 1-+重特征值2

n 1

+σ的正交归一特征向量,则使方程()C v 0+?=具有非零的解且F 范数最小的?为

H H

s s s s Cv v v v ?=-

而方程的解则为s v v =,其中{}s c k 1k 2n 1v S span v ,v ,v ?

+++∈=

证:(1) 显然H 2

s n 1s

CC v v +=σ ()

(

)()

()

()

()()

22

2

2H H H H

H H s s s

s

s s

s s

s

s

F

F

222

H H H H n 1

n 1n 1s s

s s

s s s s 2

H H H

s s s s

s

s

2

n 1

Cv v

v v tr v v C Cv v

v v tr v v v v

tr v v tr v v v v v v v v ++++?

==σσσ=

===σ (2) ()H

s s s

s s H

s s

Cv v v C v Cv 0v v +?=-= (3) n 1v C ,+?∈有

n k 1n k 1H H k i k i n 1k i k i s T i 1i 1v v v v I v v v v v -+-+?

+++++==????=+-=+ ? ?????

∑∑

虽然,H H

n 1H H

F

vv vv C C v 0,C v v v v +??-=>σ ??

?但 -

()H H 2H 22

s T n 1s T n 1s n 1T C Cv C C v v v C Cv v v +++=+=σ+>σ+σ

()22

n 1s T n 1v v v ++=σ+=σ

∴ ()

(

)

()

()

2

2

H H H H

H H 2

n 1

n 12

2

H

H

H

F

vv

1

C tr vv C Cvv tr vv vv v v

v v v v ++σ=

>

定理3 :在定理2的条件下,全面最小二乘解存在的充要条件为:向

量T

n 1n e 001=??=?????? 个不正交于c S 。此时,c y v q q S ,0????

?∈=∈α≠????α????,

则最小二乘解为

1

x y =α

说明:(1)最小二乘解一定存在,但全面最小二乘解不一定

(2)存在全面最小二乘解时,若n 1+σ为C 的单重奇异值,全面最小二乘解唯一,否则,解不唯一

例2. 采用全面最小二乘法重新研究(上例)法向回归的问题

1

12

122n

n t 1s t 1c s Ax b

A x b c t 1s ??????????????====??

??????

??????

??

i

112

2n n 112

1

2n i i

i i 22T i

i

2

1

2n i i

i

n

n t 1s t 1s C t 1s t 1s t t t t t s t t 1s C C 1

11t n s s s s s t s s t 1s ????

??=??????????

??????

????==??????

??????????

??∑∑∑∑∑∑∑∑

T 22.7510.577.25C C 10.5742.277.2542.2282.28????=??????

,309.7754,2.249389,0.0051987257λ=

[]

T

312

v 1.990944 3.0444161c c =-↓↓(对应3λ) 与法向回归结果并不相同,但亦十分接近。值得注意的是12s c t c ≠+(全面最小二乘解)

最小二乘法及其应用..

最小二乘法及其应用 1. 引言 最小二乘法在19世纪初发明后,很快得到欧洲一些国家的天文学家和测地学家的广泛关注。据不完全统计,自1805年至1864年的60年间,有关最小二乘法的研究论文达256篇,一些百科全书包括1837年出版的大不列颠百科全书第7版,亦收入有关方法的介绍。同时,误差的分布是“正态”的,也立刻得到天文学家的关注及大量经验的支持。如贝塞尔( F. W. Bessel, 1784—1846)对几百颗星球作了三组观测,并比较了按照正态规律在给定范围内的理论误差值和实际值,对比表明它们非常接近一致。拉普拉斯在1810年也给出了正态规律的一个新的理论推导并写入其《分析概论》中。正态分布作为一种统计模型,在19世纪极为流行,一些学者甚至把19世纪的数理统计学称为正态分布的统治时代。在其影响下,最小二乘法也脱出测量数据意义之外而发展成为一个包罗极大,应用及其广泛的统计模型。到20世纪正态小样本理论充分发展后,高斯研究成果的影响更加显著。最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。正如美国统计学家斯蒂格勒( S. M. Stigler)所说,“最小二乘法之于数理统计学犹如微积分之于数学”。最小二乘法是参数回归的最基本得方法所以研究最小二乘法原理及其应用对于统计的学习有很重要的意义。 2. 最小二乘法 所谓最小二乘法就是:选择参数10,b b ,使得全部观测的残差平方和最小. 用数学公式表示为: 21022)()(m in i i i i i x b b Y Y Y e --=-=∑∑∑∧ 为了说明这个方法,先解释一下最小二乘原理,以一元线性回归方程为例. i i i x B B Y μ++=10 (一元线性回归方程)

最小二乘法曲线拟合 原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ?来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ?最好地逼近()x f ,而不必满足插值原则。因此没必要取)(i x ?=i y ,只要使i i i y x -=)(?δ尽可能地小)。 原理: 给定数据点},...2,1,0),,{(m i y x i i =。求近似曲线)(x ?。并且使得近似曲线与()x f 的偏差最小。近似曲线在该点处的偏差i i i y x -=)(?δ,i=1,2,...,m 。 常见的曲线拟合方法: 1.使偏差绝对值之和最小 2.使偏差绝对值最大的最小 3.使偏差平方和最小 最小二乘法: 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。 推导过程: 1. 设拟合多项式为: 2. 各点到这条曲线的距离之和,即偏差平方和如下: 3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到 了: ....... 4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵: 5. 将这个范德蒙得矩阵化简后可得到:

6. 也就是说X*A=Y,那么A = (X'*X)-1*X'*Y,便得到了系数矩阵A,同时,我们也就得到了拟合曲线。 MATLAB实现: MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。 调用格式:p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) [p,s,mu]=polyfit(x,y,n) x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。x必须是单调的。矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。 [p,s,mu]=polyfit(x,y,n)在拟合过程中,首先对x进行数据标准化处理,以在拟合中消除量纲等影响,mu包含标准化处理过程中使用的x的均值和标准差。 polyval( )为多项式曲线求值函数,调用格式: y=polyval(p,x) [y,DELTA]=polyval(p,x,s) y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。 [y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则Y DELTA将至少包含50%的预测值。 如下给定数据的拟合曲线: x=[0.5,1.0,1.5,2.0,2.5,3.0], y=[1.75,2.45,3.81,4.80,7.00,8.60]。 解:MATLAB程序如下: x=[0.5,1.0,1.5,2.0,2.5,3.0]; y=[1.75,2.45,3.81,4.80,7.00,8.60]; p=polyfit(x,y,2) x1=0.5:0.05:3.0; y1=polyval(p,x1); plot(x,y,'*r',x1,y1,'-b') 运行结果如图1 计算结果为: p =0.5614 0.8287 1.1560 即所得多项式为y=0.5614x^2+0.08287x+1.15560 图1 最小二乘法曲线拟合示例 对比检验拟合的有效性: 例:在[0,π]区间上对正弦函数进行拟合,然后在[0,2π]区间画出图形,比较拟合区间和非拟合区间的图形,考察拟合的有效性。 在MATLAB中输入如下代码: clear x=0:0.1:pi; y=sin(x); [p,mu]=polyfit(x,y,9)

对比分析最小二乘法与回归分析

对比分析最小二乘法与回归分析

摘要 最小二乘法是在模型确定的情况下对未知参数由观测数据来进行估计,而回归分析则是研究变量间相关关系的统计分析方法。 关键词:最小二乘法回归分析数据估计

目录 摘要 (2) 目录 (3) 一:最小二乘法 (4) 主要内容 (4) 基本原理 (4) 二:回归分析法 (6) 回归分析的主要内容 (6) 回归分析原理 (7) 三:分析与总结 (10)

一:最小二乘法 主要内容 最小二乘法又称最小平方法是一种数学优化技术。它通过定义残差平方和的方式,最小化残差的平方和以求寻找数据的最佳函数匹配,可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称 为经验公式.利用最小二乘法可以十分简便地求得未知的数据,并使 得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化 熵用最小二乘法来表达。 基本原理 考虑超定方程组(超定指未知数大于方程个数): 其中m 代表有m 个等式,n 代表有n 个未知数(m>n);将其进行向量化后为: ,

, 显然该方程组一般而言没有解,所以为了选取最合适的 让该等式"尽量成立",引入残差平方和函数S (在统计学中,残差平方和函数可以看成n 倍的均方误差当时, 取最小值,记作: 通过对进行微分求最值,可以得到: 如果矩阵非奇异则 有唯一解:

二:回归分析法 回归分析是确定两种或两种以上变量间相互依赖的相关关系的一种 统计分析方法。回归分析是应用极其广泛的数据分析方法之一。它基于观测数据建立变量间适当的依赖关系,建立不同的回归模型,确立不同的未知参数,之后使用最小二乘法等方法来估计模型中的未知参数,以分析数据间的内在联系。当自变量的个数等于一时称为一元回归,大于1时称为多元回归,当因变量个数大于1时称为多重回归,其次按自变量与因变量之间是否呈线性关系分为线性回归与非线性 回归。最简单的情形是一个自变量和一个因变量,且它们大体上有线性关系,叫一元线性回归。 回归分析的主要内容 ①从一组数据出发,确定某些变量之间的定量关系式,即建立数 学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。 ②对这些关系式的可信程度进行检验。 ③在许多自变量共同影响着一个因变量的关系中,判断哪个(或 哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影 响显著的自变量加入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。 ④利用所求的关系式对某一生产过程进行预测或控制。

最小二乘法及其应用

最小二乘法及其应用 最小二乘法是一个比较古老的方法,早在十八世纪,就由高斯首先创立并成功地应用于天文观测和大地的测量工作中。此后,近三百年来,它已被广泛应用于科学实验与工程技术中。随着现代电子计算机的普及与发展,这个古老的方法更加显示出其强大的生命力。 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可以用于曲线拟合,其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。 最小二乘法拟合曲线的基本原理是:成对等精度地测得一组数据x,只(i=l,2,…,n),试找出一条最佳的拟合曲线,使得这条拟合曲线上的各点的值与测量值的差的平方和在所有拟合曲线中最小。所谓“拟合”,即不要求所作的曲线完全通过所有的数据点,只要求所得的曲线能反映数据的基本趋势。曲线拟合的几何解释是:求一条曲线,使数据点均在离此曲线的上方或下方不远处。 用最小二乘法拟合的曲线较为精确,接近于实际曲线。因而,最小二乘法拟合曲线在实际生活和科学研究中有着重要的意义,并渗透到各个领域,在物理、气象、化学、医学等方面有着广泛的应用。例如,在物理方面,我们通常通过实验测得数据,然后根据这些实验数据拟合曲线,从而总结出某种现象的规律或者变化趋势,进而采取相应的措施避免或加强其变化程度。这对于指导我们了解物理现象,并深刻理解物理知识是非常有帮助的。又如,在气象方面,在温室效应的研究中,科学家们通过对1860年到1980年的11个地球平均温度增加值的分析,利用最小二乘法进行曲线拟合,通过精确计算,建立了地球平均温度增加值与时间之间的函数关系。从而得出在2080年左右,地球的平均温度会比1980年上升约6℃,从而会引起诸如冰川后退、海平面上升等一系列严重的环境问题。到时极地冰盖就会融化,从而引起大量的洪水泛滥和大片的陆地被淹没,这一认识对进行环境质量评价和提出保护地球的措施具有重要的理论意义。

最小二乘法的原理及其应用

最小二乘法的原理及其应用 一、研究背景 在科学研究中,为了揭示某些相关量之间的关系,找出其规律,往往需要做数据拟合,其常用方法一般有传统的插值法、最佳一致逼近多项式、最佳平方逼近、最小二乘拟合、三角函数逼近、帕德(Pade)逼近等,以及现代的神经网络逼近、模糊逼近、支持向量机函数逼近、小波理论等。 其中,最小二乘法是一种最基本、最重要的计算技巧与方法。它在建模中有着广泛的应用,用这一理论解决讨论问题简明、清晰,特别在大量数据分析的研究中具有十分重要的作用和地位。随着最小二乘理论不断的完善,其基本理论与应用已经成为一个不容忽视的研究课题。本文着重讨论最小二乘法在化学生产以及系统识别中的应用。 二、最小二乘法的原理 人们对由某一变量t或多个变量t1…..tn 构成的相关变量y感兴趣。如弹簧的形变与所用的力相关,一个企业的盈利与其营业额,投资收益和原始资本有关。为了得到这些变量同y之间的关系,便用不相关变量去构建y,使用如下函数模型 , q个相关变量或p个附加的相关变量去拟和。 通常人们将一个可能的、对不相关变量t的构成都无困难的函数类型充作函数模型(如抛物线函数或指数函数)。参数x是为了使所选择的函数模型同观测值y相匹配。(如在测量弹簧形变时,必须将所用的力与弹簧的膨胀系数联系起来)。其目标是合适地选择参数,使函数模型最好的拟合观测值。一般情况下,观测值远多于所选择的参数。 其次的问题是怎样判断不同拟合的质量。高斯和勒让德的方法是,假设测量误差的平均值为0。令每一个测量误差对应一个变量并与其它测量误差不相关(随机无关)。人们假设,在测量误差中绝对不含系统误差,它们应该是纯偶然误差,围绕真值波动。除此之外,测量误差符合正态分布,这保证了偏差值在最后的结果y上忽略不计。 确定拟合的标准应该被重视,并小心选择,较大误差的测量值应被赋予较小的权。并建立如下规则:被选择的参数,应该使算出的函数曲线与观测值之差的平方和最小。用函数表示为:

基于最小二乘法的系统参数辨识

基于最小二乘法的系统参数辨识 吴令红,熊晓燕,张涛 太原理工大学机械电子研究所,太原 (030024) E-mail lhwu0818@https://www.doczj.com/doc/4319168243.html, 摘要:系统辨识是自动控制学科的一个重要分支,由于其特殊作用,已经广泛应用于各种领域,尤其是复杂系统或参数不容易确定的系统的建模。过去,系统辨识主要用于线性系统的建模,经过多年的研究,已经形成成熟的理论。但随着社会、科学的发展,非线性系统越来越受到人们的关注,其控制与模型之间的矛盾越来越明显,因而非线性系统的辨识问题也越来越受到重视,其辨识理论不断发展和完善本。文重点介绍了系统参数辨识中最小二乘法的基本原理,并通过悬臂梁模型的辨识实例,具体说明了基于最小二乘法参数辨识在Matlab 中的实现方法。结果表明基于最小二乘法具有算法简单、精度较高等优点。 关键词:系统辨识;参数辨识;滑动平均模型(ARX);最小二乘法;Matlab 中图分类号:TH-9 1. 引言 所谓辨识就是通过测取研究对象在人为输入作用下的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。这是因为对象的动态特性被认为必然表现在它的变化着的输入输出数据之中,辨识只不过是利用数学的方法从数据序列中提炼出对象的数学模型而已[1]。 最小二乘法是系统参数辨识中最基本最常用的方法。最小二乘法因其算法简单、理论成熟和通用性强而广泛应用于系统参数辨识中。本文基于悬臂梁的实测数据,介绍了最小二乘法的参数辨识在Matlab中的实现。 2. 系统辨识 一般而言,建立系统的数学模型有两种方法:激励分析法和系统辨识法。前者是按照系统所遵循的物化(或社会、经济等)规律分析推导出模型。后者则是从实际系统运行和实验数据处理获得模型。如图1所示,系统辨识就是从系统的输入输出数据测算系统数学模型的理论和方法。更进一步的定义是L.A.Zadeh曾经与1962年给出的,即“系统辨识是在输入和输出的基础上,从系统的一类系统范围内,确立一个与所实验系统等价的系统”。另外,系统辨识还应该具有3个基本要素,即模型类、数据和准则[5]。被辨识系统模型根据模型形式可分为参数模型和非参数模型两大类。所谓参数模型是指微分方程、差分方程、状态方程等形式的数学模型;而非参数模型是指频率响应、脉冲响应、传递函数等隐含参数的数学模型。在辨识工程中,模型的确定主要根据经验对实际对象的特性进行一定程度上的假设,如对象的模型是线性的还是非线性的、是参数模型还是非参数模型等。在模型确定之后,就可以根据对象的输入输出数据,按照一定的辨识算法确定模型的参数[4]。 y 图1 被研究的动态系统

最小二乘法的编程实现

1、最小二乘法: 1)(用1 T A A 方法计算逆矩阵) #include #include #include #include #include #define N 200 #define n 9 void Getdata(double sun[N])//从txt文档中读取数据(小数){ char data; char sunpot[10]={0000000000};//为防止结果出现‘烫’字int i=0,j=0; double d; FILE *fp=fopen("新建文本文档.txt","r"); if(!fp) { printf("can't open file\n"); } while(!feof(fp)) { data=fgetc(fp); if(data!='\n') { sunpot[i]=data; i++; } else if(data=='\n') { sunpot[i]='\0';//给定结束符 d=atof(sunpot);//将字符串转换成浮点数 sun[j]=d; j++; i=0;//将i复位 } } } void Normal(double sun[N],double sun1[N])//将数据进行标准化{

double mean,temp=0,variance=0; int i; for(i=0;i

最小二乘法应用实例

数值计算方法 实际应用(论文) 题目最小二乘法原理实际生活应用 学院信息工程学院 专业软件工程 姓名张同 班级 13级2班 学号1402130235

摘要 最小二乘法(又称最小平方法)是一种数学优化技术,是利用最小化误差的平方和寻找数据的最佳函数匹配的一种计算方法[1],目前在测量学、城市道路规划、物理学、地质勘探学、概率论、统计学等领域有着广泛的应用。本文对最小二乘法进行了深入细致的研究,利用Visual C++编制程序实现最小二乘法的界面化设计,通过实验数据的输入,实现线性和二次拟合曲线的输出,并利用设计的程序实现了一些实际问题的求解和处理。 关键词:最小二乘法曲线拟合Visual C++

最小二乘法在实际生活中的应用 一.实际问题描述: 早在19世纪后期,英国生物学家Galton 在研究父母身高与子女身高关系时,观察了1078个家庭中父亲、母亲身高的平均值x 和其中一个成年儿子身高y,建立了x 与y 之间的线性关系。 二.提出问题: 通过父母平均身高推算出成年儿子身高 三.分析问题: 平时我们在实验过程中会遇到两量y x ,如果存在b ax y +=的线性关系时,其中b a ,为线性函数的参数。当实验数据存在这种线性关系时,通常我们运用作图法对其参数进行处理运算、进而求出实验结果。但是作图法很难得到好的结果,而运用最小二乘法可以得到比较好的线性拟合 [19] 。对其两种方法比较可以最小二乘法的数据处理方法是比较理想的办法。 四.实验原理: 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。 最小二乘法拟合:对给定数据点{(Xi ,Yi)}(i=0,1,…,m),在取定的函数类Φ 中,求p(x)∈Φ ,使误差的平方和E ^2最小,E^2=∑[p(Xi)-Yi]^2。从几何意义上讲,就是寻求与给定点 {(Xi ,Yi)}(i=0,1,…,m)的距离平方和为最小的曲线y=p(x)。函数p(x)称为拟合函数或最小二乘解,求拟合函数p(x)的方法称为曲线拟合的最小二乘法。 五.解决方案: 运用数值计算方法中的最小二乘法处理数据,计算出a 与b ,得到y=a+bx 关系式。 1.根据实验数据列以下表格: 表1 实验数据收集 父母平均身高x (cm ) 155 160 165 170 175 180 成年儿子身高y (cm ) 158 164 168 175 178 188 2.主要程序代码: #include #include

最小二乘法原理

最小二乘法原理 1. 概念 最小二乘法多项式曲线拟合,根据给定的m 个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。 2. 原理 给定数据点pi(xi,yi),其中i=1,2,…,m 。求近似曲线y= φ(x)。并且使得近似曲线与y=f(x)的偏差最小。近似曲线在点pi 处的偏差δi= φ(xi)-yi ,i=1,2,...,m 。 常见的曲线拟合方法: 1. 是偏差绝对值最小 11min (x )y m m i i i i i φδφ===-∑∑ 2. 是最大的偏差绝对值最小 min max (x )y i i i i φδ?=- 3. 是偏差平方和最小 2211min ((x )y )m m i i i i i φδ?===-∑∑ 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。 推导过程: 1. 设拟合多项式为: 01...k k y a a x a x =+++ 2. 各点到这条曲线的距离之和,即偏差平方和如下: 2 2 011(...)m k i i k i i R y a a x a x =??=-+++??∑ 3. 为了求得符合条件的a 值,对等式右边求ak 偏导数,因而我们得到了: 011 2(...)0m k i k i i y a a x a x =??--+++=??∑ 011 2(...)0m k i k i i y a a x a x x =??--+++=??∑

…….. 0112( 0 k k i k i i y a a x a x x =??--+++=??∑ 4. 将等式简化一下,得到下面的式子 01111...n n n k i k i i i i i a n a x a x y ===+++=∑∑∑ 2 1011111...n n n n k i i k i i i i i i i a x a x a x y x +====+++=∑∑∑∑ …… 12011111...n n n n k k k k i i k i i i i i i i a x a x a x y x +====+++=∑∑∑∑ 5. 把这些等式表示成矩阵形式,就可以得到下面的矩阵: 11102111111121111.........n n n k i i i i i i n n n n k i i i i i i i i i n n n n k k k k k i i i i i i i i i n x x y a a x x x x y a x x x x y ===+====+====??????????????????????=?????????????????????? ∑∑∑∑∑∑∑∑∑∑∑ 6. 将这个范德蒙矩阵化简后得到: 0111122 21...1...1...k k k k n n n a y x x a y x x a y x x ??????????????????=????????????????????

最小二乘法原理及应用【文献综述】

毕业论文文献综述 信息与计算科学 最小二乘法的原理及应用 一、国内外状况 国际统计学会第56届大会于2007年8月22-29日在美丽的大西洋海滨城市、葡萄牙首都里斯本如期召开。应大会组委会的邀请,以会长李德水为团长的中国统计学会代表团一行29人注册参加了这次大会。北京市统计学会、山东省统计学会,分别组团参加了这次大会。中国统计界(不含港澳台地区)共有58名代表参加了这次盛会。本届大会的特邀论文会议共涉及94个主题,每个主题一般至少有3-5位代表做学术演讲和讨论。通过对大会论文按研究内容进行归纳,特邀论文大致可以分为四类:即数理统计,经济、社会统计和官方统计,统计教育和统计应用。 数理统计方面。数理统计作为统计科学的一个重要部分,特别是随机过程和回归分析依然展现着古老理论的活力,一直受到统计界的重视并吸引着众多的研究者。本届大会也不例外。 二、进展情况 数理统计学19世纪的数理统计学史, 就是最小二乘法向各个应用领域拓展的历史席卷了统计大部分应用的几个分支——相关回归分析, 方差分析和线性模型理论等, 其灵魂都在于最小二乘法; 不少近代的统计学研究是在此法的基础上衍生出来, 作为其进一步发展或纠正其不足之处而采取的对策, 这包括回归分析中一系列修正最小二乘法而导致的估计方法。 数理统计学的发展大致可分 3 个时期。① 20 世纪以前。这个时期又可分成两段,大致上可以把高斯和勒让德关于最小二乘法用于观测数据的误差分析的工作作为分界线,前段属萌芽时期,基本上没有超出描述性统计量的范围。后一阶段可算作是数理统计学的幼年阶段。首先,强调了推断的地位,而摆脱了单纯描述的性质。由于高斯等的工作揭示了最小二乘法的重要性,学者们普遍认为,在实际问题中遇见的几乎所有的连续变量,都可以满意地用最小二乘法来刻画。这种观点使关于最小二乘法得到了深入的发展,②20世纪初到第二次世界大战结束。这是数理统计学蓬勃发展达到成熟的时期。许多重要的基本观点和方法,以及数理统计学的主要分支学科,都是在这个时期建立和发展起来的。这个时期的成就,包含了至今仍在广泛使用的大多数统计方法。在其发展中,以英国统计学家、生物学家费希尔为代表的英国学派起了主导作用。③战后时期。这一时期中,数理统计学在应用和理论两方面继续获得很大的进展。

基于最小二乘法的系统辨识的设计与开发(整理版)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 基于最小二乘法的系统辨识的设计与开发(整理版)课程(论文)题目: 基于最小二乘法的系统辨识摘要: 最小二乘法是一种经典的数据处理方法。 最小二乘的一次性完成辨识算法(也称批处理算法),他的特点是直接利用已经获得的所有(一批)观测数据进行运算处理。 在系统辨识领域中, 最小二乘法是一种得到广泛应用的估计方法, 可用于动态系统, 静态系统, 线性系统, 非线性系统。 在随机的环境下,利用最小二乘法时,并不要求观测数据提供其概率统计方面的信息,而其估计结果,却有相当好的统计特性。 关键词: 最小二乘法;系统辨识;参数估计 1 引言最小二乘理论是有高斯( K.F.Gauss)在 1795 年提出: 未知量的最大可能值是这样一个数值,它使各次实际观测值和计算值之间的差值的平方乘以度量其精度的数值以后的和最小。 这就是最小二乘法的最早思想。 最小二乘辨识方法提供一个估算方法,使之能得到一个在最小方差意义上与实验数据最好拟合的数学模型。 递推最小二乘法是在最小二乘法得到的观测数据的基础上,用新引入的数据对上一次估计的结果进行修正递推出下一个参数估计值,直到估计值达到满意的精确度为止。 1 / 10

对工程实践中测得的数据进行理论分析,用恰当的函数去模拟数据原型是一类十分重要的问题,最常用的逼近原则是让实测数据和估计数据之间的距离平方和最小,这即是最小二乘法。 最小二乘法是一种经典的数据处理方法。 在随机的环境下,利用最小二乘法时,并不要求观测数据提供其概率统计方面的信息,而其估计结果,却有相当好的统计特性。 2 最小二乘法的系统辨识设单输入单输出线性定常系统的差分方程为: 1),()()() 1()(01knkubkubnkxakxakxnn ( 1)上式中: )(ku为输入信号;)(kx为理论上的输出值。 )(kx只有通过观测才能得到,在观测过程中往往附加有随机干扰。 )(kx的观测值)(ky可表示为 ( 2)将式( 2)代入式( 1)得 1()()() 1()(101kubkubnkyakyakyn (3) 我们可能不知道)(kn的统计特性,在这种情况下,往往把)(kn看做均值为 0 的白噪声。 设 ( 4)则式( 3)可以写成 (5) 在测量)(ku时也有测量误差,系统内部也可能有噪声,应当

实验3__最小二乘法的实现

实验3 最小二乘法的实现 实验报告 哈尔滨工业大学 航天学院控制科学与工程系 专业:

1.实验题目: 实验3最小二乘法的实现 2.实验目的 理解并掌握系统辨识中的最小二乘法原理。 3?实验主要原理 给定系统 y (k)二-a i y (k -1)- a 2y (k - 2) -111 - a n y (k - n) b)u(k) bu(k-1) IH b n u(k -n) (k) ( 1) 其中a i ,a2^l,a n ,0,0,鸟,|||,0为待辨识的未知参数, (k)是不相关随机 序列。y 为系统的输出,u 为系统的输入。分别测出n ? N 个输出、n ? N 输入 值 y(1),y(2), y(3)J||y(n N),u(1),u(2)川|u(n N),则可写出 N 个方程,具体写 成矩阵形式,有 ■aj (2) 力」 则式(2)可写为 「y(n+1) 1 + + + 飞(n+1) 1 『5+2) 亠 , — a n —+2) + + t o + + + 4 R ?(n + N)_ y 二 --y(n) -y( n+1) + + III III -y(1) -y(2) ■ u( n + 1) u(n +2) + III HI + u(1)1 u(2) + y(n + N — 1) III I- -y(N) ■1 u( n + N) + HI r u(N)_ ①= 一 -y( n) - y(1) u( n+1)川 u(1) 1 -y( n+1) 出 -y(2) r u( n+2)川 ■ + u(2) —y(n + N —1) I- -y(N) u(n +N)川 卜 u(N)_ (n 1) + 勺 n+2) : 工(n + N) 一 』(n +N) 一 a n b o ■y( n+1) 1 y(n +2)

系统辨识最小二乘法大作业 (2)

系统辨识大作业 最小二乘法及其相关估值方法应用 学院:自动化学院 学号: 姓名:日期:

基于最小二乘法的多种系统辨识方法研究 一、实验原理 1.最小二乘法 在系统辨识中用得最广泛的估计方法是最小二乘法(LS)。 设单输入-单输出线性定长系统的差分方程为 (5.1.1) 式中:为随机干扰;为理论上的输出值。只有通过观测才能得到,在观测过程中往往附加有随机干扰。的观测值可表示为 (5.1.2) 式中:为随机干扰。由式(5.1.2)得 (5.1.3) 将式(5.1.3)带入式(5.1.1)得 (5.1.4) 我们可能不知道的统计特性,在这种情况下,往往把看做均值为0的白噪声。 设 (5.1.5) 则式(5.1.4)可写成 (5.1.6) 在观测时也有测量误差,系统内部也可能有噪声,应当考虑它们的影响。因此假定不仅包含了的测量误差,而且包含了的测量误差和系统内部噪声。假定是不相关随机序列(实际上是相关随机序列)。 现分别测出个随机输入值,则可写成个方程,即 上述个方程可写成向量-矩阵形式 (5.1.7) 设 则式(5.1.7)可写为

(5.1.8) 式中:为维输出向量;为维噪声向量;为维参数向量;为测量矩阵。因此式(5.1.8)是一个含有个未知参数,由个方程组成的联立方程组。如果,方程数少于未知数数目,则方程组的解是不定的,不能唯一地确定参数向量。如果,方程组正好与未知数数目相等,当噪声时,就能准确地解出 (5.1.9) 如果噪声,则 (5.1.10) 从上式可以看出噪声对参数估计是有影响的,为了尽量较小噪声对估值的影响。在给定输出向量和测量矩阵的条件下求系统参数的估值,这就是系统辨识问题。可用最小二乘法来求的估值,以下讨论最小二乘法估计。 2.最小二乘法估计算法 设表示的最优估值,表示的最优估值,则有 (5.1.11) 写出式(5.1.11)的某一行,则有 (5.1.12) 设表示与之差,即 - (5.1.13)式中 成为残差。把分别代入式(5.1.13)可得残差。设 则有 (5.1.14) 最小二乘估计要求残差的平方和为最小,即按照指数函数 (5.1.15) 为最小来确定估值。求对的偏导数并令其等于0可得 (5.1.16) (5.1.17)

普通最小二乘法(OLS)

普通最小二乘法(OLS ) 普通最小二乘法(Ordinary Least Square ,简称OLS ),是应用最多的参数估计方法,也是从最小二乘原理出发的其他估计方法的基础,是必须熟练掌握的一种方法。 在已经获得样本观测值i i x y ,(i=1,2,…,n )的情况下 (见图中的散点),假如模型()的参数估计量已经求得到, 为^0β和^ 1β,并且是最合理的参数估计量,那么直线方程(见 图中的直线) i i x y ^ 1^0^ββ+= i=1,2,…,n 应该能够最 好地拟合样本数据。其中^i y 为被解释变量的估计值,它是由参数估计量和解释变量的观测值计算得到的。那么,被解释变量的估计值与观测值应该在总体上最为接近,判断的标准是二者之差的平方和最小。 ),()(1022101ββββQ u x y Q i i n i i ==--=∑∑= ()()),(min ????1021 10212?,?1100ββββββββQ x y y y u Q n i i n i i i =--=-==∑∑∑== 为什么用平方和因为二者之差可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度。这就是最小二乘原则。那么,就可以从最小二乘原则和样本观测值出发,求得参数估计量。 由于 2 1 ^1^012 ^ ))(()(∑∑+--=n i i n i i x y y y Q ββ= 是^0β、^1β的二次函数并且非负,所以其极小值总是存在的。根据罗彼塔法则,当Q 对^0β、^ 1β的一阶偏导数为0时,Q 达到最小。即

0011001100?,?1 ?,?0 =??=??====ββββββββββQ Q 容易推得特征方程: ()0)??(0?)??(1011 10==--==-=--∑∑∑∑∑==i i i i n i i i i i i n i i e x x y x e y y x y ββββ 解得: ∑∑∑∑∑+=+=2^ 1^0^1^0i i i i i i x x x y x n y ββββ () 所以有:???? ?????-=---=--=∑∑∑∑∑∑∑=======x y x x y y x x x x n y x y x n n i i n i i i n i i n i i n i i n i i n i i i 10121 21121111??)())(()()()(?βββ () 于是得到了符合最小二乘原则的参数估计量。 为减少计算工作量,许多教科书介绍了采用样本值的离差形式的参数估计量的计算公式。由于现在计量经济学计算机软件被普遍采用,计算工作量已经不是什么问题。但离差形式的计算公式在其他方面也有应用,故在此写出有关公式,不作详细说明。记 ∑=-i x n x 1 ∑=-i y n y 1 y y y x x x i i i i -=-= ()的参数估计量可以写成

基于matlab的最小二乘法实现

基于matlab 的最小二乘法实现 程序流程图 : matlab 的程序源代码: A=[2,4,6,8;2,11,28,40]; pa=input('请输入你要的拟合多项式的次数:'); W=size(A); H=W(2); X=zeros(pa+1,1); Y=zeros(pa+1,pa+1); for i=1:pa+1 输入Xi,yi 及要拟合的最高次数n 生成法方程矩阵的左端系数矩阵 生成法方程矩阵的右端矩阵 解法方程矩阵 输出各个项的系数,即求得拟合函数 求取所求结果的均方误差 求取所求结果的最大偏差 结束程序

for j=1:pa+1 x=0; for k=1:H s=1; for b=1:i+j-2 s=s*A(1,k); end x=x+s; end Y(i,j)=x; end end a=zeros(pa+1,1); for i=1:pa+1 x=0; for k=1:H s=A(2,k); for b=1:i-1 s=s*A(1,k); end x=x+s; end a(i,1)=x; end X=inv(Y)*a; disp('从0次到你要的阶数的系数依次为:') X Z1=zeros(H,1); for i=1:H w=0; for k=1:pa+1 s=X(k,1); for j=1:k-1 s=s*A(1,i); end w=w+s; end Z1(i,1)=w; end Z1; Z2=A(2,:)'; d=Z1-Z2; s=0; for i=1:H

s=s+d(i,1)*d(i,1); end disp('均方误差为:') a=sqrtm(s) b=d(1,1); for i=1:H if d(i,1)>b b=d(i,1); else ; end end disp('最大偏差为:') b

基于最小二乘算法的RBF

基于正交最小二乘算法的RBF神经网络 一、实验环境 硬件平台Win10 64位操作系统,1.5GHZ,4G内存,软件版本MA TLAB2015b 二、实验数据 训练数据集: T F W M Y Q 1000.00130010000 20.00740.03350.00150.00320.010610000 30.00430.022300.00470.005310000 40.5520.30170.25810.30940.231601000 50.54520.27930.26110.29880.203601000 60.55020.24580.27170.31150.234701000 70.24620.15080.09470.09640.099900100 80.25350.10610.09680.09710.08100100 90.26650.08940.09370.09940.090800100 100.66150.52510.51950.471100010 110.67380.44130.52250.47320.966700010 120.66650.47490.52550.47690.975800010 13110.981210.820600001 140.97970.977710.9960.775900001 150.98460.97270.98470.98570.7600001 测试数据集: T F W M Y Q 10.00310.02350.00050.0030.004510000 20.54930.26260.26590.30880.222101000 30.25720.10060.09580.09810.08900100 40.67040.49720.52350.47410.979100010 50.9920.98990.99790.99370.797900001 三、算法介绍 RBF函数网络从结构上看是一个3层前馈网络,包括一个输入层、一个输出层和一个隐含层。输入层节点的作用是将输入数据传递到隐含层节点。隐含层节点称为RBF节点,其激活函数为辐射状函数的神经元构成,通常采用高斯型函数:Array 图1 RBF结构 RBF网络中所用的非线性函数的形式对网络性能的影响并不是至关重要的,关键因素是基函数中心的选取,中心选取不当构造出来的RBF网络的性能一般不能令人满意。例如,如果某些中心靠的太近,会产生近似线形相关,从而带来数值上的病变条件。基本的RBF 神经网络采用随机抽取固定中心的方法,在输入样本数据的分布具有某种特性的情况下,采用这种方法解决给定问题就显得简单可行了。而针对其缺陷,已经有许多改进的方法,其中 之一就是利用最小二乘法选取中心,训练网络权重。

最小二乘法的本原理和多项式拟合

第一节 最小二乘法的基本原理和多项式拟合 一 最小二乘法的基本原理 从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差 i i i y x p r -=)((i=0,1,…,m) 的大小,常用的方法有以下三种:一是误差 i i i y x p r -=)((i=0,1,…,m)绝对值的最大值i m i r ≤≤0max ,即误差 向量 T m r r r r ),,(10 =的∞—范数;二是误差绝对值的和∑=m i i r 0 ,即误差向量r 的1— 范数;三是误差平方和∑=m i i r 02 的算术平方根,即误差向量r 的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和∑=m i i r 02 来 度量误差i r (i=0,1,…,m)的整 体大小。 数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即 ∑=m i i r 0 2 =[]∑==-m i i i y x p 0 2 min )( 从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最 小的曲线)(x p y =(图6-1)。函数)(x p 称为拟合 函数或最小二乘解,求拟合函数)(x p 的方法称为曲线拟合的最小二乘法。 在曲线拟合中,函数类Φ可有不同的选取方法. 6—1 二 多项式拟合 假设给定数据点),(i i y x (i=0,1,…,m),Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一 Φ ∈=∑=n k k k n x a x p 0 )(,使得 [] min )(0 02 02 =??? ??-=-=∑∑∑===m i m i n k i k i k i i n y x a y x p I (1) 当拟合函数为多项式时,称为多项式拟合,满足式(1)的)(x p n 称为最小二乘 拟合多项式。特别地,当n=1时,称为线性拟合或直线拟合。

相关主题
文本预览
相关文档 最新文档