当前位置:文档之家› 多层陶瓷电容器结构说明图

多层陶瓷电容器结构说明图

多层陶瓷电容器结构说明图
多层陶瓷电容器结构说明图

多层陶瓷电容器 1 介电陶瓷层 3 内电极 4 和 5 层压材料 2 层压材料 2 的端面 6 和7 外电极(Ag) 8 和9 第一电镀层(Ni, Cu)10 11 第二电镀层(Sn)12 和13

圖一、多層陶瓷技術之流程圖。

结构设计总说明识图讲解讲解

结构设计总说明识图讲解 三、自然条件: 3.1场地的工程地质及地下水条件: 各土层的信息及地下水情况确定合理的基坑支护形式; 2.基坑开挖过程中查看实际的土层是否与《岩土工程勘察报告》各土层的信息一致,如果不一致与基坑支护单位协商是否调整支护形式; (1)根据水位表信息确定基坑支护形式; (2)根据水位表信息明确降水方式; (3)对于在干湿交替条件下,注意设计对混凝土结构是否有特殊要求。(《岩土工程勘察报告》应有建议,设计应考虑。) 四、正负零绝对标高 结构说明给出中±0.000的绝对标高,核对结构图与建筑图相对标高±0.00相对应的绝对标高是否一致。 七、设计采用的荷载标准值 结构说明中给出的设计荷载标准值,作为顶板拆模后楼面堆载的依据。 八、地基基础 8.1 根据<工程地质勘察报告>,本工程整体采用天然地基,基底标高在36.00m左右,持力层土质为第四纪冲洪的粉质粘土、粘质粉土3层,局部存在的有机质粘土、有机质重粉质粘土3-2?层在验槽时视钎探情况酌情处理,综合考虑的承载力标准值(ka)为160kPa。 1. 若工程采用天然地基或复合地基,应随时掌握持力最后一步土开挖时基底的土质情况,如果达不到持力层土质要求,应及时与设计单位、勘察单位、建设单位、监理单位共同协商,从新确定开挖深度。避免二次开挖。避免施工成本加大及影响施工进度。 2.如果塔吊基础设置在基底标高,可作为地基是否满足塔吊的地基承载力要

求的参考,不满足塔基承载力要求时,需对对地基进行处理,确定处理方法。 8.1.1 天然地基基槽开挖至基底标高以上200mm时,应进行普遍钎探,并通知地质勘测、监理、设计等有关单位共同验槽,确定持力层准确无误后方可进行下一道工序。 提前绘制钎探图,钎探点布置视地基复杂情况间距1.0m-1.5m,钎探深度应符合规范《建筑地基基础工程施工质量验收规范》GB50202-2002要求。 8.2 关于施工降水 8.2.1 本场区施工时,应根据地勘报告及实际情况确定是否降低地下水位,保证正常施工,防止结构上浮,同时应采取措施防止因降低地下水位对周围建筑物、道路产生不利影响。 1.工程如果需降水,应按照相关要求进行论证。应考虑是否对建筑物、及道路产生不利影响,如有影响,制定相应的预防措施。(《勘察报告》应有建议是否需要降水) 2. 防止结构上浮问题设计应考虑。 8.2.2 本工程在完成基础底板且主体结构完成了地上六层或以上时具备停止降水条件。 1.明确了停止降水的条件,如果本工程有沉降后浇带,还需考虑其封闭时间是否影响停止降水时间。 (2)停止降水时间(对应的形象部位)应在降水方案中体现。 8.2.3 如需提前停止降水,须根据周围未降水区域水位标高和已完成结构楼层情况由相关各方(甲方、监理、设计、施工、水位监测等单位)共同商定。 8.2.4当施工组织计划先停止降水后补浇后浇带时,应采取图1-2、图1-3的先停止降水后补浇后浇带的加强措施。 (1)首先确定是否采用先停止降水后补浇后浇带 (2)如果确定采用先降水后浇筑后浇带的方法应采取图1-2、图1-3的先停止降水后补浇后浇带的加强措施。并体现在方案、交底中。 (3)停止降水及后浇带施工明确,并有书面的依据。甲方、监理、设计的认可。(因为图纸不是一种方法) 8.3 本工程基坑较深,开槽时应根据勘查报告提供的参数进行放坡,对基坑

结构设计总说明(带图完整版)分解

混凝土结构设计总说明 1.工程概况 1.1 本工程位于xx市xxxxx,总建筑面积约13万平方米,由多栋商铺组成; 主要功能层数高度(m) 结构型式基础类型商铺 4 15.400 框架结构独基、管桩 2.设计依据 2.1 本工程主体结构设计使用年限为50年。 2.2 自然条件:基本风压:0.35kN/m 2(50年重现期);基本雪压:0.45kN/m 2; 抗震设防参数:本工程最大地震影响系数αmax=0.04(第一设防水准);场地特征周期Tg=0.35秒;场地为可进行建设的一般地段。本工程抗震基本烈度为6 度,场地土类别为Ⅱ类。 2.3 xxx工程有限公司2014.10xxx一期-4号中心岩土工程详细勘察报告书工 程编号:2014-K53 2.4 本工程施工图按初步设计审查批复文件和甲方的书面要求进行设计。 2.5 本工程设计采用的现行国家标准规范规程主要有: 建筑结构可靠度设计统一标准GB50068-2001 建筑地基基础设计规范GB50007-2011 建筑工程抗震设防分类标准GB50223-2008 建筑抗震设计规范GB50011-2010 建筑结构荷载规范GB50009-2012 混凝土结构设计规范GB50010-2010 砌体结构设计规范GB50003-2011 地下工程防水技术规范GB50108-2008 工业建筑防腐蚀设计规范GB50046-2008 建筑桩基技术规范JGJ 94-2008 人民防空地下室设计规范GB50038-2005 多孔砖砌体结构技术规范JGJ137-2001(200 3年局部修订) 混凝土外加剂应用技术规范GB50119-2013 补充收缩混凝土应用技术规程JGJ/T 178-2009 建筑边坡工程技术规范GB/T50330-2013 工程建设标准强制性条文(房屋建筑部分)2013年版(涉及规范版本更新及修订的应按现行规范执行) 2.6 桩基静载荷试验报告和地基载荷板试验报告(本工程需有前述报告后方可进 行基础施工) 3.图纸说明 3.1 计量单位(除注明外):长度:mm;角度:度;标高:m;强度:N/mm 2。 3.2 本工程±0.000相当于绝对标高41.700m。 3.3 本工程施工图与国标11G101-1《混凝土结构施工图平面整体表示方法制图 规则和构造详图》配套使用。 3.4 结构专业设计图应与其它专业设计图配合施工,并采用下列标准图: 国标 11G101-1、11G101-2、11G101-3、11G329-1;中南标 12ZG002、12ZG003、12ZG313 3.5 管桩专项说明另详。 3.6 本工程在设计使用年限内未经技术鉴定或设计许可,不得改变结构的用途和 使用环境。

附录B多层瓷介电容器内电极和端电极材料选用可靠性问题

多层瓷介电容器内电极和端电极材料选用可靠性问题 季海潮 2009.12.14 内外电极是多层瓷介电容器的重要组成部分。内电极主要是用来贮存电荷,其有效面积的大小和电极层的连续性与材料特性是影响电容的质量。外电极主要是将相互平行的各层内电极并联,并使之与外围线路相连接的作用。片式电容器的外电极就是芯片端头。 用来制造内外电极的材料一般都是金属材料。 1 内电极材料 1.1 内电极种类 片式电容的内电极是通过印刷而成。因此,内电极材料在烧结前是以具有流动性的金属或金属合金的浆料的形式存在,故叫内电极浆料。由于片式多层瓷介电容器采用(钛酸钡)系列陶瓷作介质,此系列陶瓷材料一般都在950℃~1300℃左右烧成;故BaTiO 3 内电极也一般选用高熔点的贵金属Pt(铂)、Pd(钯)、Au(金)等材料(金屬的熔点详见表1),要求能够在1400℃左右高温下烧结而不致发生氧化、熔化、挥发、流失等现象。表1 几种金属的熔点 目前,常用的浆料有Ni(镍)、Ag/Pd(钯银合金)、纯Pd(钯)的浆料,Ag/Pd、纯Pd 均为贵重金属材料,价格昂贵。纯Ag(银)的内电极因烧结温度偏低,制造的产品可靠性相对较差,因此现在一般很少使用。针对银的低熔点和高温不稳定性,一般用金属Pd 和Ag的合金来提高内电极的熔点和用Pd?来抑制Ag的流动性。目前常用的内浆中Pd与Ag的比例有3/7,6/4,7/3(注:式中分子为金属Pd,分母为金属Ag),纯Pd的内电极因价格昂贵也很少使用。其中含Pd愈高,多层瓷介电容器质量愈稳定,长期以来各国航天型号使用的多层瓷介电容器的内浆

Pd与Ag的比例一般为3/7。 对于片式多层瓷介电容器而言,其内电极成本占到电容器的30%~80%,从而采用廉价的贱金属作为内电极,是降低独石电容器成本的有效措施,同时满足了当今日益苛刻的环保要求。因此,在日本和其他一些国家,早在60年代开始研制开发以贱金属(镍、铜)为内外电极的电子浆料。目前用Ni作内电极,Cu作外电极的工艺已趋于成熟。这样,高烧且用贱金属可降低成本,使得镍内电极片式电容器目前在世界上具有很强的竞争力,并在工业和民用产品上逐步得到应用。日本已将Ni电极产品投入到大生产中,并已投放市场,并有温度补偿独石电容器是用Cu作内电极的批量生产。 1.2 镍内电极特点 1.2.1 镍内电极优点 金属镍作为内电极是一种非常理想的贱金属,?而具有较好的高温性能,其作为电极的特点: a) Ni原子或原子团的电子迁移速度较Ag?和Pd/Ag都小。 b) 机械强度高。 c) 电极的浸润性和耐焊接热性能好。 d) 介质层厚薄。 e) 价格低廉,俗称贱金属。 多层瓷介电容器采用内镍电极,与相同规格(容量、直流工作电压)的钯银内电极相比较,其外形尺寸可以大为缩小,故有了薄介质、高层数、小体积、大容量多层瓷介电容器产品及被广泛应用。 1.2.2 镍内电极弱点 a) 镍在高温下易氧化成氧化亚镍,从而不能保证内电极层的质量。因此,它必须在还原气氛中烧成。但与之相反,含钛陶瓷如果在还原气氛中烧结,则Ti4+将被还原成低 含钛陶瓷的介电性价的离子而使陶瓷的绝缘下降。因此,要使Ni电极的质量和BaTiO 3 能同时得到保证的话,对共烧技术(采用N 气氛保护烧结)、设备技术提出了很高的要求, 2 当设备和操作发生不被撑控的或觉察的偏差,导致产品质量或可靠性发生下降,在后续生产和质量控制中很难百分百的被剔除。

片式多层陶瓷电容器MLCC

片式多层陶瓷电容器MLCC 多层陶瓷电容器MLCC是英文字母Multi-Layer Ceramic Capacitor的首写字母。在英文表达中又有Chip Monolithic Ceramic Capacitor。两种表达都是以此类电容器外形和内部结构特点进行,也就是内部多层、整体独石(单独细小的石头)的结构,独石电容包括多层陶瓷电容器、圆片陶瓷电容器等,由于元件小型化、贴片化的飞速发展,常规圆片陶瓷电容器逐步被多层陶瓷电容器取代,人们把多层陶瓷电容器简称为独石电容或贴片电容。 片式多层陶瓷电容器(Multi-layer Ceramic Capacitor 简称MLCC)是电子整机中主要的被动贴片元件之一,它诞生于上世纪60年代,最先由美国公司研制成功,后来在日本公司(如村田Murata、TDK、太阳诱电等)迅速发展及产业化,至今依然在全球MLCC领域保持优势,主要表现为生产出MLCC具有高可靠、高精度、高集成、高频率、智能化、低功耗、大容量、小型化和低成本等特点。 (片式多层陶瓷电容器,独石电容,片式电容,贴片电容) MLCC —简称片式电容器,是由印好电极(内电极)的陶瓷介质膜片以错位的方式叠合起来,经过一次性高温烧结形成陶瓷芯片,再在芯片的两端封上金属层(外电极),从而形成一个类似独石的结构体,故也叫独石电容器。 MLCC除有电容器“隔直通交”的通性特点外,其还有体积小,比容大,寿命长,可靠性高,适合表面安装等特点。?随着世界电子行业的飞速发展,作为电子行业的基础元件,片式电容器也以惊人的速度向前发展,?每年以10%~15%的速度递增。目前,世界片式电容的需求量在2000亿支以上,70%出自日本(如MLCC大厂村田muRata),其次是欧美和东南亚(含中国)。随着片容产品可靠性和集成度的提高,其使用的范围越来越广,?广泛地应用于各种军民用电子整机和电子设备。如电脑、电话、程控交换机、精密的测试仪器、雷达通信等。 简单的平行板电容器的基本结构是由一个绝缘的中间介质层加外两个导电的金属电极,基本结构如下: 下图-(片式多层陶瓷电容器,独石电容,片式电容,贴片电容) MLCC实物结构图

多层贴片陶瓷电容烧结原理及工艺

多层贴片陶瓷电容烧结原理及工艺 多层陶瓷电容器(MLCC)的典型结构中导体一般为Ag或AgPd,陶瓷介质一般为(SrBa)TiO3,多层陶瓷结构通过高温烧结而成。器件端头镀层一般为烧结Ag/AgPd,然后制备一层Ni阻挡层(以阻挡内部Ag/AgPd材料,防止其和外部Sn发生反应),再在Ni层上制备Sn或SnPb层用以焊接。近年来,也出现了端头使用Cu的MLCC产品。 根据MLCC的电容数值及稳定性,MLCC划分出NP1、COG、X7R、Z5U等。根据MLCC 的尺寸大小,可以分为1206,0805,0603,0402,0201等。 MLCC 的常见失效模式 多层陶瓷电容器本身的内在可靠性十分优良,可以长时间稳定使用。但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对其可靠性产生严重影响。 陶瓷多层电容器失效的原因分为外部因素和内在因素 内在因素主要有以下几种: 1.陶瓷介质内空洞(Voids) 导致空洞产生的主要因素为陶瓷粉料内的有机或无机污染,烧结过程控制不当等。空洞的产生极易导致漏电,而漏电又导致器件内部局部发热,进一步降低陶瓷介质的绝缘性能从而导致漏电增加。该过程循环发生,不断恶化,严重时导致多层陶瓷电容器开裂、爆炸,甚至燃烧等严重后果。 2.烧结裂纹(firing crack) 烧结裂纹常起源于一端电极,沿垂直方向扩展。主要原因与烧结过程中的冷却速度有关,裂纹和危害与空洞相仿。 3.分层(delamination) 多层陶瓷电容器的烧结为多层材料堆叠共烧。烧结温度可以高达1000℃以上。层间结合力不强,烧结过程中内部污染物挥发,烧结工艺控制不当都可能导致分层的发生。分层和空洞、裂纹的危害相仿,为重要的多层陶瓷电容器内在缺陷。 外部因素主要为: 1.温度冲击裂纹(thermal crack) 主要由于器件在焊接特别是波峰焊时承受温度冲击所致,不当返修也是导致温度冲击裂纹的重要原因。

陶瓷电容器的特性及选用

陶瓷电容器的特性及选用 陶瓷电容器是目前电子设备中使用最广泛的一种电容器,占整个电容器使用数量的50%左右,但由于许多人对其特性了解不足导致在使用上缺乏应有的重视。为达到部品使用的规范化和标准化要求,下面对陶瓷电容器的特性及我司使用中需要注意的事项做一概况说明: 一、陶瓷电容器特性分类: 陶瓷电容器具有耐热性能好,绝缘性能优良,结构简单,价格低廉等优点,但不同陶瓷材料其特性有非常大的差异,必须根据使用要求正确选用。陶瓷电容按频率特性分有高频瓷介电容器(1类瓷)和低频瓷介电容器(2类瓷);按耐压区分有高压瓷介电容器(1KV DC以上)和低压瓷介电容器(500V DC以下),现分述如下: 1.高频瓷介电容器(亦称1类瓷介电容器) 该类瓷介电容器的损耗在很宽的范围内随频率的变化很小,并且高频损耗值很小,(tanδ≤0.15%,f=1MHz),最高使用频率可达1000MHz以上。同时该类瓷介电容器温度特性优良,适用于高频谐振、滤波和温度补偿等对容量和稳定度要求较高的电路。其国标型号为CC1(低压)和CC81(高压),目前我司常用的温度特性组别有CH(NP0)和SL 组,其常规容量范围对应如下: 表中温度系数α C =1/C(C 2 -C 1 /t 2 -t 1 )X106(PPM/°C),是指在允许温度范围内,温度每变 化1°C,电容量的相对变化率。由上表看出,1类瓷介电容器的温度系数很小,尤其是CH特性,因此也常把1类瓷介电容器中CH电容称为温度补偿电容器。但由于该类陶瓷材

料的介电常数较小,因此其容量值难以做高。因此当需要更高容量值的电容时,则只能在下面介绍的2类瓷介电容中寻找。 2、低频瓷介电容器(亦称2类瓷介电容器) 该类瓷介电容的陶瓷材料介电常数较大,因而制成的电容器体积小,容量范围宽,但频率特性和温度特性较差,因此只适合于对容量、损耗和温度特性要求不高的低频电路做旁路、耦合、滤波等电路使用。国标型号为CT1(低压)和CT81(高压),其常用温度特性组别和常规容量范围对应如下: 中2R组为低损耗电容,由于其自身温升小,频率特性较好,因而可以用于频率较高的场合。 对低压瓷介电容,当容量大于47000pF时,则只能选择3类瓷介电容器(亦称半导体瓷介电容器),例如:我司大量使用的26-ABC104-ZFX,但该类电容温度特性更差,绝缘电阻较低,只是因高介电材料,体积可以做得很小。因此只适用要求较低的工作电路。如选用较大容量电容,而对容量和温度特性又有较高使用要求,则应选用27类有机薄膜电容器。 3、交流瓷介电容器 根据交流电源的安全性使用要求,在2类瓷介电容器中专门设计生产了一种绝缘特性和抗电强度很高的交流瓷介电容器,亦称Y电容,按绝缘等级划分为Y1、Y2、Y3三大系列,其用途和特性分类如下:

多层片式陶瓷电容器..

多层片式陶瓷电容器 执行标准 总规范:GB/T2693-2001《电子设备用固定电容器第1部分:总规范》 分规范:GB/T9324-1996《电子设备用固定电容器第10部分:分规范》GB/T9325-1996《电子设备用固定电容器第10部分:空白详细规范》 分类介绍 a、电解质种类 容量温度特性是选用电介质种类的一个重要依据。 NPO(CG):I类电介质,电气性能最稳定,基本上不随温度、电压、时间的改变;属超稳定型、低损耗电容材料类型,适用于对稳定性、可靠性要求较高的高频、特高频、甚高频的电路。 产品应用:振荡器、混频器、中频/高频/甚高频/超高频放大器、低噪声放大器、时间电路、高频滤波电路、高频耦合。 X7R(2X1):II类电介质,电气性能较稳定,随温度、电压、时间的改变,其特有性能变化并不显著,属稳定型电容材料类型,适用于隔离、耦合、旁路、滤波电路及可靠性要求较高的中高频电路。 产品应用:电源(滤波、旁路)电路、时间电路、储能电路、中频/低频放大器(隔直、耦合、阻抗匹配),高频开关电源(S.P.S)、DC/DC变换器、滤波、旁路电路、隔直、阻抗匹配电路。 Y5V(2F4):III类电介质,具有较高的介电常数,常用于生产比容比较大的、标称容量较高的大容量电容产品;由于其特有的电介质性能,因而能造出容量比NPO更大的电容器。属低频通用型电容材料类型,由于成本较低,广泛用于对容量、损耗要求偏低的电路。 产品应用:电源滤波电路、隔直、阻抗匹配电路。 b、电容量与偏差 电容量与偏差的选择取决于电路的要求,特别提示,在相同尺寸和容量规格下,偏差较大的电容器的价格相对便宜。 c、电压 额定电压的选择也取决于电路本身的要求,电容的耐压虽然在设计时已有一定的安全系数,但电容器额定电压的选择仍须高于实际工作电压。 d、片状电容器的端头电极:片状电容器端头电极的选择至关重要! 全银端头:生产工艺简单、成本较低,耐焊性较差、端头物理强度也低,焊接时温度要适当,焊接速度要快,否则会出现银锡熔融现象而损坏端头。 钯全银端头:针对全银的缺点而改进,其耐焊性能、端头强度均获改善,但可焊性随存放时间而改变。 三层电镀端头:(银、镍、锡)耐焊性性能优越,端头物理强度高,可焊性好。适用于自动贴片机焊接、波峰焊接、再流焊接及手工焊接等诸多焊接工艺,符合SMT操作条件。

结构设计总说明

结构设计总说明 一.工程概况 1.本工程九江市泰房地产开发有限公司兴建的鑫瑞华庭-1#.2# ,位于江西省瑞昌市范围内,该工程地下0层,地上6层,室内外高150 mm,建筑物高度(室内外地面至主要屋面板的板顶):19.6m.设计标高,场地绝对标高施工中确定m. 二.一般说明 1.在本说明中凡画" "符号者,为本工程设计所采用. 2.计量单位(除注明外): 1)长度: mm; 2)角度: 度; 3)标高: m; 4)强度: N/mm‘?2?. 3.本工程所注标高均指建筑完成面标高,施工时应扣除粉刷层及其它面层的厚度. 4.凡施工图中说明与本图(结构设计总说明)不一致时,一律以施工图中说明为准. 5.在施工过程中,如遇图纸不清、与其它专业图纸不一致或工程地质不良(与设计不符)等问题时请及时与我公司联系进行处理。 6.对本说明和结构施工图需作设计变更或修改时,应征得我公司结构工程师同意并办理设计变更或修改手续,否则不得随意变更或修改. 7.本套结构施工图钢筋混凝土部分采用平面整体表示方法制图,制图规则及结构构造详见国家标准图集《混凝土结构施工图平面整体表示方法制图规则和构造详图(包括修正内容)》11G101-1. 三.建筑结构的安全等级及设计使用年限 1.结构设计使用年限 2.建筑结构安全等级:二___级; 3.建筑耐火等级:____级; 4.地基基础设计等级:___级; 5.建筑桩基设计等级:___级. 四.自然条件 1.基本风压(重新期为50 年):W‘?0?=____ KN/m‘?2?,地面粗糙度:b类 2.2.基本雪压(重新期为50 年):S‘?0?=____ KN/m‘?2?. 3.本工程根据______________ 于____年__月提供的《__________岩土工程勘察报告______________ 》及《_____》进行基础及地下室设计.施工时如发现工程地质符或不良地基,请及时与我公司联系处理. 4.本工程地下水对混凝土结构__侵蚀性.抗浮设计水位为____m,防水设计水位为____ m. 5.场地土类型为___. 五.本工程结构设计采用的主要国家有关设计规范.规程 1.工程建设标准强制性条文--房屋建筑部分( ) 2.建筑工程设计文件编制深度规定( ) 3.工程结构可靠性设计统一标准 4.建筑结构荷载规范 5.建筑工程抗震设防分类标准 6.建筑抗震设计规范 7.混凝土结构设计规范 8.高层建筑混凝土结构技术规程 9.建筑地基基础设计规范 10.建筑桩基技术规范 11.建筑地基处理技术规范 12.砌体结构设计规范 13.混凝土异形柱结构技术规程 14.地下工程防水技术规范 15.住宅建筑规范

结构设计总说明

结构设计总说明 一、概述 1.1本工程为暨南大学旅游学院教学楼,6层,结构采用现浇混凝土框架结构,建筑物总高21.6米,相对标高±0.000等于于绝对设计标高28.300m 1.2本工程主要依据除另行注明者外,均按初步设计审批文件、岩土工程勘察报告和以下建筑工程现行设计规范: 1、建筑工程抗震设防分类标准(GB50223-2008); 2、建筑结构荷载规范(GB50009-2012); 3、混凝土结构设计规范(GB50010-2010); 4、建筑抗震设计规范(GB50011-2010); 5、建筑地基基础设计规范(GB50007-2011); 6、建筑地基处理技术规程(JGJ79-2012); 1.3建筑设计使用年限:50年;结构安全等级:二级;抗震设防分类:丙类 1.4本工程抗震设计的类别和等级: 1.5本工程主要使用荷载(标准值,KN/m2):荷载根据《GB50009-2012》规定按功能分区选用。基本风压:W=0.75KN/m2(50年一遇);地面粗糙度类别:C类 1.6本工程设计未考虑冬季施工措施,施工单位应根据有关施工规范自定。施工单位在整个施工过程中应严格遵守国家现行的各项施工质量验收规范,如按施工规范对跨度较大的梁、板起拱等

1.7未经技术鉴定或设计许可,不得改变结构的用途和使用环境。 1.8本工程图纸中的标高单位均为m(米),尺寸单位均为mm(毫米)。 二、材料 2.1混凝土 2.1.1混凝土强度等级:(混凝土施工中应采取有效措施防止开裂)基础垫层为C15;基础梁为C25,楼梯间梯段板为C30,基础及±0.000以下外墙混凝土抗渗等级P6,基础梁保护层:有垫层40mm 2.1.2结构混凝土环境类别及耐久性要求: 基础及与土壤接触部位、露天构件为二b类,卫生间等室内潮湿环境为二a类,其余为一类。 耐久性要求如下: 2.2钢筋:HPB300钢筋;HRB335钢筋;HRB400钢筋; 1、钢筋强度标准值应具有不小于95%的保证率。 2、抗震等级为一、二、三级的框架结构,其纵向受力钢筋采用普通钢筋时,钢筋的抗拉强度 实测值与屈服值的比值不应小于1.25;且钢筋的屈服强度实测值与强度标准值的比值不应 大于1.3;且钢筋在最大拉应力下的总伸长率实测值不应小于9%。2.3焊条: 2.4吊钩、吊环应采用 HPB235级钢筋;受力预埋件的锚筋应采用HPB235级、HRB335级或 HRB400级钢筋,均严禁采用冷加工钢筋。2.5、围护结构:内外墙均采用实心粘土砖MU10,水泥砂浆M5。

钢结构设计总说明

一、设计概况: 该工程为茂名厂房,总建筑面积972平方米。层数:1层;跨度:18米;柱距:6米;柱高:10米;柱脚:刚接。 二、设计遵循的规范、规程及规定: 1、《建筑结构荷载规范》(GB5009-2012) 2、《建筑抗震设计规范》(GB50011-2010) 3、《钢结构设计规范》(GB50017-2003) 4、《冷弯薄壁型钢结构技术规范》(GB50018-2002) 5、《门式刚架轻型房屋钢结构技术规程》(CECS102:2002) 6、《门式刚架轻型房屋钢构件》(JG144-2002) 7、《钢结构高强度螺栓连接技术规程》(JGJ82-2011) 8、《钢结构工程施工质量验收规范》(GB50205-2001) 9、《工业建筑防腐蚀设计规范》(GB50046-2008) 10、《建筑地基基础设计规范》(GB50007-2011) 11、《混凝土结构设计规范》(GB50010-2010) 三、基本设计参数: 1、本工程结构设计按设计基准周期为50年,建筑安全等级为一级。 2、本工程抗震设防类别:丙类;场地土类别:Ⅱ类;设防烈度:七度;速度:0.1g;设计地震分组:第一组。 3、设计荷载: (1)、屋面恒载:(含彩板、支撑、檩条等):0.2KN/m2 (2)、屋面活载:0.30KN/m2(计算檩条时采用0.50KN/m2) (3)、基本风压:B类地面0.35KN/m2 (4)、基本雪压:0.00KN/m2 (5)、吊车荷载:5T桥式天车 (6)、楼面恒荷载:0.00KN/m2 (7)、楼面活荷载:0.00KN/m2 (8)、刚架自重:由3D3S软件自动生成 注:施工或使用过程中不得随意改变结构的使用功能、使用环境及使用荷载。 四、结构材料要求(图中注明者除外): 1、承重结构采用的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构,尚应有碳当量的合格保证。焊接承重结构以及重要的非焊接承重结构采用的钢材还应具有冷弯实验的合格保证。钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.89,钢材应有明显的屈服台阶,且伸长率不应小于20%,钢材应有良好的焊接性和合格的冲击韧性。 2、本设计钢梁、钢柱、吊车梁及相应焊接板采用Q235B钢,所有型钢采用的Q235B钢,檩条等冷弯薄壁型钢采用Q235B钢或与之等强的材料。Q345B钢材力学性能和化学成分应符合现行国家标准《低合金高强度结构钢》(GB/T1591-2008)的规定,Q235B钢材力学性能和化学成分应符合现行国家标准《碳素结构钢》(GB/T700-2006)的规定。 3、围护材料:屋面板采用0.426mm厚840型单层压型彩板,墙面板采用0.426mm厚900型单层压型彩板。 4、焊接材料: (1)、手工焊时,若主体金属为Q235B钢采用E43XX型焊条,其性能应符合《非合金钢及细晶粒钢焊条》(GB/T5117-2012)的规定。

电解电容与陶瓷电容两种电容的不同作用

电解电容与陶瓷电容:两种电容的不同作用 电解电容与陶瓷电容一般用在IC的电源与地之间,起滤波作用,陶瓷电容单独使用去耦作用,它的使用一般在IC中会有说明,其电解值的大小与IC所需电流大小有关,陶瓷取0.01uf。 电解电容 陶瓷电容 ? 如果我要用别的电容替代某个电容的时候,是必须容量和耐压值都要满足吗有的时候,发现很难两全其美。这时候能不能舍弃其中之一呢

滤波电容范围太广了,这里简单说说电源旁路(去藕)电容。 滤波电容的选择要看你是用在局部电源还是全局电源。对局部电源来说就是要起到瞬态供电的作用。为什么要加电容来供电呢是因为器件对电流的需求随着驱动的需求快。 基于以上的理论,计算电容量就要按照电容能提供电流变化的能量去计算。选择电容的种类,就需要按照它的寄生电感去考虑--也就是寄生电感要小于电源路径的分布电感。 讨论问题必须从本质上出发。首先,可能都知道电容对直流是起隔离作用的,而电感器的作用则相反。所有的都是基于基本原理的。那这时,电容就有了最常见的两个作用。一是用于极间隔离直流,有人也叫作耦合电容,因为它隔离了直流,但要通过交流信号。直流的通路局限在几级间,这样可以简化工作点很复杂的计算,二是滤波。基本上就是这两种。作为耦合,对电容的数值要求不严,只要其阻抗不要太大,从而对信号衰减过大即可。但对于后者,就要求从滤波器的角度出发来考虑,比如输入端的电源滤波,既要求滤除低频(如有工频引起的)噪声,又要滤除高频噪声,故就需要同时使用大电容和小电容。有人会说,有了大电容,还要小的干什么这是因为大的电容,由于极板和引脚端大,导致电感也大,故对高频不起作用。而小电容则刚好相反。巨细据此可以确定电容量。而对于耐压,任何时候都必须满足,否则,就会爆炸,即使对于非电解电容,有时不爆炸,其性能也有所下降。讲起来,太多了,先谈这么多。 电解电容的作用和使用注意事项 一、电解电容在电路中的作用 1,滤波作用,在电源电路中,整流电路将交流变成脉动的直流,而在整流电路之后接入一个较大容量的电解电容,利用其充放电特性,使整流后的脉动直流电压变成相对比较稳定的直流电压。在实际中,为了防止电路各部分供电电压因负载变化而产生变化,所以在电源的输出端及负载的电源输入端一般接有数十至数百微法的电解电容.由于大容量的电解电容一般具有一定的电感,对高频及脉冲干扰信号不能有效地滤除,故在其两端并联了一只容量为0.001--0.lpF的电容,以滤除高频及脉冲干扰. 2,耦合作用:在低频信号的传递与放大过程中,为防止前后两级电路的静态工作点相互影响,常采用电容藕合.为了防止信号中韵低频分量损失过大,一般总采用容量较大的电解电容。 二、电解电容的判断方法

多层陶瓷电容器技术规格书

产品技术规格书 文件编号 产品名称多层陶瓷电容技术规格书 产品型号 产品图号

目录 1 目的和适用范围 2 1.1目的 2 1.2适用范围 2 2 引用和参考的相关标准 2 3 功能简述 3 4 要求 3 4.1一般要求 3 4.2电气要求 4 4.3环境试验要求 4 4.4安全要求测试10 4.5 包装、运输、贮存10 4.6质量与可靠性10 4.7 加工工艺说明10 5对供应商的要求11 5.1规范接收11 5.2提供资料和数据11 5.3产品更改通知(PCN)11 5.4质量控制要求11 5.5供应商承诺11 6资格认证11 6.1样本11 6.2样本试验11 6.3 资格认证试验12 7重要说明12 ------------------------------------------------------------------------------------------------------------------------------------------------------------ - Copyright ? 2006Xinwei Technologies Co. Ltd., All Rights Reserved

1.1 目的 物料技术规格书是描述公司外购或外协物料的受控性文件,是公司物料规范化管理的基石。其作用为: ·供应厂商进行产品设计、生产和检验的依据 ·质量部门验货、退货的依据 ·采购部进行采购的依据 ·对供应厂商产品质量进行技术认证的依据 ·研发部门选用物料的依据 本技术规格书的目的是让供应厂商了解信威通信公司对该物料在质量及其可靠性方面的要求,只有质量和可靠性两方面都100%达到要求的物料才被信威通信公司接受。信威通信公司有权取消不合格产品供应商的资格,有权在必要时修改本技术规范的有关内容,届时供应商会提前收到有关更改通知并给予适当的时间来做相应的更改。 1.2 适用范围 本规格书适用于供应厂商进行多层陶瓷电容器设计、生产以及检验,指导质量部对供应厂商提供的多层陶瓷电容器进行技术认证及进货检验,指导采购部采购合格产品,研发部在设计新产品时选用合格物料。 2引用和参考的相关标准 GB/T 2423.1-2001 电工电子产品环境试验第2部分:试验方法试验A:低温 GB/T 2423.2-2002 电工电子产品环境试验第2部分: 试验方法试验B: 高温 GB/T 2423.3-1993 电工电子产品基本环境试验规程试验Ca:恒定湿热试验方法 GB/T 2423.10-1995 电工电子产品环境试验第2部分:试验方法试验Fc和导则:振动 GB/T 3873-1983 通信设备产品包装通用技术条件 GB/T 2828.1-2003 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划 GB/T 2693-2001 电子设备用固定电容器第1部分:总规范 GB/T 5968-1996 电子设备用固定电容器第9部分:分规范2类瓷介固定电容器 ------------------------------------------------------------------------------------------------------------------------------------------------------------- Copyright ? 2006Xinwei Technologies Co. Ltd., All Rights Reserved

陶瓷电容失效分析

多层陶瓷电容器(MLCC)的典型结构中导体一般为Ag或AgPd,陶瓷介质一般为(SrBa)TiO3,多层陶瓷结构通过高温烧结而成。器件端头镀层一般为烧结 Ag/AgPd,然后制备一层Ni阻挡层(以阻挡内部Ag/AgPd材料,防止其和外部Sn 发生反应),再在Ni层上制备Sn或SnPb层用以焊接。近年来,也出现了端头使用Cu的MLCC产品。 根据MLCC的电容数值及稳定性,MLCC划分出NP1、COG、 X7R、 Z5U 等。根据MLCC的尺寸大小,可以分为1206,0805,0603,0402,0201等。 MLCC 的常见失效模式 多层陶瓷电容器本身的内在可靠性十分优良,可以长时间稳定使用。但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对其可靠性产生严重影响。 陶瓷多层电容器失效的原因分为外部因素和内在因素 内在因素主要有以下几种: 1.陶瓷介质内空洞 (Voids) 导致空洞产生的主要因素为陶瓷粉料内的有机或无机污染,烧结过程控制不当等。空洞的产生极易导致漏电,而漏电又导致器件内部局部发热,进一步降低陶瓷介质的绝缘性能从而导致漏电增加。该过程循环发生,不断恶化,严重时导致多层陶瓷电容器开裂、爆炸,甚至燃烧等严重后果。 2.烧结裂纹 (firing crack) 烧结裂纹常起源于一端电极,沿垂直方向扩展。主要原因与烧结过程中的冷却速度有关,裂纹和危害与空洞相仿。 3.分层 (delamination) 多层陶瓷电容器的烧结为多层材料堆叠共烧。烧结温度可以高达1000℃以上。层间结合力不强,烧结过程中内部污染物挥发,烧结工艺控制不当都可能导致分层的发生。分层和空洞、裂纹的危害相仿,为重要的多层陶瓷电容器内在缺陷。 外部因素主要为: 1.温度冲击裂纹(thermal crack) 主要由于器件在焊接特别是波峰焊时承受温度冲击所致,不当返修也是导致温度冲击裂纹的重要原因。

最新(附录b)多层瓷介电容器内电极和端电极材料选用可靠性问题(1214)7p

(附录B)多层瓷介电容器内电极和端电极材料选用可靠性问题(20091214)7P

多层瓷介电容器内电极和端电极材料选用可靠性问题 季海潮 2009.12.14 内外电极是多层瓷介电容器的重要组成部分。内电极主要是用来贮存电荷,其有效面积的大小和电极层的连续性与材料特性是影响电容的质量。外电极主要是将相互平行的各层内电极并联,并使之与外围线路相连接的作用。片式电容器的外电极就是芯片端头。 用来制造内外电极的材料一般都是金属材料。 1 内电极材料 1.1 内电极种类 片式电容的内电极是通过印刷而成。因此,内电极材料在烧结前是以具有流动性的金属或金属合金的浆料的形式存在,故叫内电极浆料。由于片式多层瓷介电容器采用(钛酸钡)系列陶瓷作介质,此系列陶瓷材料一般都在950℃~1300℃左右烧成;BaTiO 3 故内电极也一般选用高熔点的贵金属Pt(铂)、Pd(钯)、Au(金)等材料(金屬的熔点详见表1),要求能够在1400℃左右高温下烧结而不致发生氧化、熔化、挥发、流失等现象。 表1 几种金属的熔点 目前,常用的浆料有Ni(镍)、Ag/Pd(钯银合金)、纯Pd(钯)的浆料,Ag/Pd、纯Pd 均为贵重金属材料,价格昂贵。纯Ag(银)的内电极因烧结温度偏低,制造的产品可靠性相对较差,因此现在一般很少使用。针对银的低熔点和高温不稳定性,一般用金属Pd和Ag的合金来提高内电极的熔点和用Pd?来抑制Ag的流动性。目前常用的内浆中Pd与Ag的比例有3/7,6/4,7/3(注:式中分子为金属Pd,分母为金属Ag),纯Pd

的内电极因价格昂贵也很少使用。其中含Pd愈高,多层瓷介电容器质量愈稳定,长期以来各国航天型号使用的多层瓷介电容器的内浆Pd与Ag的比例一般为3/7。 对于片式多层瓷介电容器而言,其内电极成本占到电容器的30%~80%,从而采用廉价的贱金属作为内电极,是降低独石电容器成本的有效措施,同时满足了当今日益苛刻的环保要求。因此,在日本和其他一些国家,早在60年代开始研制开发以贱金属(镍、铜)为内外电极的电子浆料。目前用Ni作内电极,Cu作外电极的工艺已趋于成熟。这样,高烧且用贱金属可降低成本,使得镍内电极片式电容器目前在世界上具有很强的竞争力,并在工业和民用产品上逐步得到应用。日本已将Ni电极产品投入到大生产中,并已投放市场,并有温度补偿独石电容器是用Cu作内电极的批量生产。 1.2 镍内电极特点 1.2.1 镍内电极优点 金属镍作为内电极是一种非常理想的贱金属,?而具有较好的高温性能,其作为电极的特点: a) Ni原子或原子团的电子迁移速度较Ag?和Pd/Ag都小。 b) 机械强度高。 c) 电极的浸润性和耐焊接热性能好。 d) 介质层厚薄。 e) 价格低廉,俗称贱金属。 多层瓷介电容器采用内镍电极,与相同规格(容量、直流工作电压)的钯银内电极相比较,其外形尺寸可以大为缩小,故有了薄介质、高层数、小体积、大容量多层瓷介电容器产品及被广泛应用。 1.2.2 镍内电极弱点 a) 镍在高温下易氧化成氧化亚镍,从而不能保证内电极层的质量。因此,它必须在还原气氛中烧成。但与之相反,含钛陶瓷如果在还原气氛中烧结,则Ti4+将被还原成低价的离子而使陶瓷的绝缘下降。因此,要使Ni电极的质量和BaTiO3含钛陶瓷的介电

结构施工图设计总说明汇总

结构施工图设计总说明 一、本工程遵循下述规范和标准: 1、建筑结构可靠度设计统一标准(GB50068-2001) 2、建筑结构荷载规范(GB50009-2006) 3、建筑抗震设计规范(GB50011-2001) 4、地下工程防水技术规范(GB50101-2001) 5、建筑桩基技术规程(JGJ94-94) 6、建筑地基基础设计规范(GB50007-2002) 7、混凝土结构工程施工质量验收规范(GB50204-2002) 8、砌体结构设计规范(GB50003-2001) 9、混凝土结构设计规范(GB50010-2002) 10、高层建筑混凝土结构技术规程(JGJ3-2002) 11、建筑工程抗震设防分类标准(GB50223-2004) 二、设计总则: 1、本工程建于江苏省淮安市,业主为江苏省亿力房地产有限责任公司。本说明适用于该业主项目“亿力﹒未来城”“项目一期”钢筋混凝土结构住宅建筑。 2、按国家标准《建筑结构设计可靠度统一标准》GB50068-2001规定,本工程结构设计使用年限50年,结构设计安全等级二级,结构重要性系数为1.0。 3、根据《建筑工程抗震设防分类标准》GB50223-2004,本建筑物结构设防类别划为丙类建筑。

4、根据《抗震建筑设计规范》GB50011-2001附录A,建筑物所在地抗震设防烈度为7度;设计地震分组为第一组;设计基本加速度为0.10g;勘察报告显示该地区场地类别为III类;特征周期值为0.45s。 5、防火等级:一级。 6、本工程基本风压取用0.40KN/M(0.40KN/M,当房屋高%%13560m 时),地面粗糙度类别为B类。 7、本工程结构设计按国家及地方现行规范、规程、标准以及当地政府部门有关批文、文件的要求进行。 8、本工程采用结构体系:高层住宅为混凝土剪力墙结构;商业为框架结构。 9、本工程基础设计依据淮安市水利勘察设计研究院有限公司2008年4月完成,开发商提供的地质勘察报告,勘察报告显示该工程场地范围内,场地地下水对混凝土结构及混凝土结构中的钢筋无腐蚀性,对钢结构有弱腐蚀性;地基的液化等级属轻微液化。 10、本项目结构设计抗震等级:普通钢筋混凝土剪力墙为三级,框架为三级。 11、本工程高层住宅桩基梁筏基础,商业采用柱下条形基础。 12、本工程所注尺寸以毫米为单位,标高以米为单位。所有几何尺寸均以图上标注为准不得从图面上按比例丈量。 13、施工图梁配筋采用平面整体表示方法制图。规则和构造详图见中国建筑标准设计研究所出版的图集号:03G101-1《混凝土结构施工图平面整体表示方法制图规则和构造详图》。部分构造详图和构造详见

陶瓷可调电容的优缺点

陶瓷可调电容,陶瓷可调电容的优缺点 陶瓷可调电容的含义 可调电容由一组定片和一组动片组成,其容量随动片的转动而连续改变. 可变电容的原理非常简单,就是改变电容两个极板的接触面积从而改变其容值。 可调电容一般有陶瓷介质和薄膜介质,陶瓷介质的高频特性好,可以工作在几百MHz甚至以上,而薄膜的高频特性要差一些,但一两MHz还是可以用的。陶瓷可调电容就是介质材料为陶瓷的其容值随动片的转动而连续改变的电容器。 陶瓷可调电容的优缺点 陶瓷可调电容的高频特性好,可以工作在几百MHz甚至以上,但是陶瓷的生产加工要困难一些,所以价格高,薄膜的价格要低一些。 陶瓷可调电容一般调整到合适的容值后,就不需要经常去调节了,这时它起到的作用和普通电容器是一样的,如果调试用力不当,或调节次数过于频繁,都可能会损坏电容器。 陶瓷可调电容的容值 精密龙JML06可调电容,容值与颜色对比(黑色3PF,蓝色5PF,蓝色7PF,白色10PF,红色20PF,绿色 30PF,黄色40PF)。可调电容的电容量都标有最大电容量和最小电容量,一般有2/7P、3/10P、5/15P等规格,变化范围为3倍多一点。 下面是百斯特的一款陶瓷可调电容的具体参数: 可调电容精密龙JML05-1,容量范围:3~120P 容量范围:3~120P

额定电压 100V 最大电压:200V 绝缘电阻:10000MΩ 旋转力矩:10~ 30mN.m 大气压强:66~106KPa 可调电容在实际应用中具有和固定电容相同的作用,但是它的灵活性在于可以调整容量大小,通过改变这一数据,来实现和电感等元件实现电路的共振。通常体现可调电容的一个重要指标就是共振频率的高低,共振频率越高,其精密度就越好。

陶瓷贴片电容失效原因分析

陶瓷电容失效原因分析 多层陶瓷电容器本身的内在可靠性十分优良,可以长时间稳定使用。但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对其可靠性产生严重影响。 内在因素主要有以下几种: 1.陶瓷介质内空洞(Voids) 导致空洞产生的主要因素为陶瓷粉料内的有机或无机污染,烧结过程控制不当等。空洞的产生极易导致漏电,而漏电又导致器件内部局部发热,进一步降低陶瓷介质的绝缘性能从而导致漏电增加。该过程循环发生,不断恶化,严重时导致多层陶瓷电容器开裂、爆炸,甚至燃烧等严重后果。 2.烧结裂纹(firing crack) 烧结裂纹常起源于一端电极,沿垂直方向扩展。主要原因与烧结过程中的冷却速度有关,裂纹和危害与空洞相仿。

3.分层(delamination) 多层陶瓷电容器的烧结为多层材料堆叠共烧。烧结温度可以高达1000℃以上。层间结合力不强,烧结过程中内部污染物挥发,烧结工艺控制不当都可能导致分层的发生。分层和空洞、裂纹的危害相仿,为重要的多层陶瓷电容器内在缺陷。 外部因素主要为: 1.温度冲击裂纹(thermal crack) 主要由于器件在焊接特别是波峰焊时承受温度冲击所致,不当返修也是导致温度冲击裂纹的重要原因。

2.机械应力裂纹(flex crack) 多层陶瓷电容器的特点是能够承受较大的压应力,但抵抗弯曲能力比较差。器件组装过程中任何可能产生弯曲变形的操作都可能导致器件开裂。常见应力源有:贴片对中,工艺过程中电路板操作;流转过程中的人、设备、重力等因素;通孔元器件插入;电路测试、单板分割;电路板安装;电路板定位铆接;螺丝安装等。该类裂纹一般起源于器件上下金属化端,沿45℃角向器件内部扩展。该类缺陷也是实际发生最多的一种类型缺陷。

相关主题
文本预览
相关文档 最新文档