当前位置:文档之家› 核磁共振波谱作业

核磁共振波谱作业

核磁共振波谱作业
核磁共振波谱作业

文章标题:核磁共振波谱作业

发文时间:2011-11-28 21:22:08

要求于12月5日前提交。

--------------------------------------------

1.试述产生核磁共振的条件是什么?

答:①自旋核(I≠0);

②外磁场(B0);

③照射射频能量等于核磁能极差{hν=(h/2π)γB0=ΔE}。

2.三个不同质子A、B和C,它们的屏蔽系数大小次序为

。问它们在一样磁场

强度下,共振频率的大小次序为何?

答:ν C >ν A >ν B

3.某化合物C11H14O,试根据如下谱图推断其结构,并说明依据

.

4.根据如下MS和1H NMR谱图确定化合物(M=76)结构,并说明依据。

答:76-41=35,可推断含有Cl元素.有41和39的峰.76-61=15 含甲基.

5.试说明APT实验中如何区分分子中的CH3, CH2, CH和季碳原子?

6.根据下列各化合物的部分13C NMR谱,确定二甲氧基苯的取代位置。

答;

A是三个碳信号峰,是苯环上的碳,推断是邻二甲氧基苯,B是四个碳信号峰,为间二甲氧基苯,C是对二甲氧基苯。

7.化合物C4H10O,根据如下13C NMR谱图确定结构,并说明依据。

8.化合物C7H16O4根据如下13C NMR和1H NMR谱图确定结构,并说明依据。

答;

9.核磁共振波谱法, 自旋-自旋偶合是指相邻自旋态对谱带多重峰的影响。, 自旋-自旋裂分是指__由自旋-自旋偶合产生的裂分____。

10.在丙酮分子中甲基上分子的化学位移为2.1, 试问当以TMS为标准物质时, 对100MHZ 的仪器而言, 频率差为_2.1×109___HZ。

11.某化合物C9 H10 O ,试根据如下谱图推断其结构,并说明依据.

答:

12.某化合物C9H10O,试根据如下谱图推断其结构,并说明依据.

13.某化合物C4H8O3 ,根据如下1H NMR谱图推断其结构,并说明依据。

第三章_核磁共振波谱法习题集及答案

第三章、核磁共振波谱法 一、选择题 ( 共80题 ) 1. 2 分 萘不完全氢化时,混合产物中有萘、四氢化萘、十氢化萘。附图是混合产物的核磁共振谱图,A、B、C、D 四组峰面积分别为 46、70、35、168。则混合产物中,萘、四氢化萘,十氢化萘的质量分数分别如下: ( ) (1) %,%,% (2) %,%,% (3) %,%,% (4) %,%,% 2. 2 分 下图是某化合物的部分核磁共振谱。下列基团中,哪一个与该图相符( ) (1)CH3C CH2 O CH CH O CH 3 (2)CH (3)CH3CH 2 O (4)C H3O CH O CH H X:H M:H A=1:2:3

在下面四个结构式中 (1) C CH 3 H R H (2)H C CH 3H CH 3 (3)H C CH 3CH 3 CH 3 (4) H C H H H 哪个画有圈的质子有最大的屏蔽常数 ( ) 4. 1 分 一个化合物经元素分析,含碳 %,含氢 %,其氢谱只有一个单峰。它是 下列可能结构中的哪一个 ( ) 5. 1 分 下述原子核中,自旋量子数不为零的是 ( ) (1) F (2) C (3) O (4) He 6. 2 分 在 CH 3- CH 2- CH 3分子中,其亚甲基质子峰精细结构的强度比为哪一组数据 ( ) (1) 1 : 3 : 3 : 1 (2) 1 : 4 : 6 : 6 : 4 : 1 (3) 1 : 5 : 10 : 10 : 5 : 1 (4) 1 : 6 : 15 : 20 : 15 : 6 : 1 7. 2 分 ClCH 2- CH 2Cl 分子的核磁共振图在自旋-自旋分裂后,预计 ( ) (1) 质子有 6 个精细结构 (2) 有 2 个质子吸收峰 (3) 不存在裂分 (4) 有 5 个质子吸收峰 8. 2 分 在 O - H 体系中,质子受氧核自旋-自旋偶合产生多少个峰 ( ) (1) 2 (2) 1 (3) 4 (4) 3

(完整版)核磁共振氢谱练习题

核磁共振氢谱练习题 1.分子式为C2H6O的两种有机化合物的1H核磁共振谱,你能分辨出哪一幅是乙醇的核磁共振氢谱图吗? 2. 下图是某有机物的核磁共振谱图,则该有机物可能是( ) A. CH3CH2OH B. CH3CH2CH2OH C. CH3—O—CH3 D. CH3CHO 3.下列有机物在核磁共振谱图上只给出一组峰的是( ) A、HCHO B、CH3OH C、HCOOH D、CH3COOCH3 4.下列有机物中有几种H原子以及个数之比? CH3-CH-CH3 CH3 CH3 CH3-C-CH3 CH3 CH3-CH2-OH CH3-CH2-CH-CH3 3 5.下列各物质中各有几种不同环境的氢()

6.分子式为C3H6O2的二元混合物,分离后,在核磁共振氢谱上观察到氢原子给出的峰有两种情况。第一种情况峰给出的强度为1︰1;第二种情况峰给出的强度为3︰2︰1。由此推断混合物的组成可能是(写结构简式)。 3∶3 _____________ 3∶2∶1 _______________ ________________ __________________ 1:2:2:1 _________________ 7.某仅碳、氢、氧三种元素组成的有机化合物,经测定其相对分子质量为46。取该有机化合物样品 4.6g ,在纯氧中完全燃烧,将产物先后通过浓硫酸和碱石灰,两者分别增重8.8g和 5.4g。 (1)试求该有机化合物的分子式。 (2)若该有机化合物的核磁共振谱图只有一种峰,请写出该有机化合物的结构简式。 8.一个有机物的分子量为70,红外光谱表征到碳碳双键和C=O的存在,核磁共振氢谱列如下图: ①写出该有机物的分子式 ②写出该有机物的可能的结构简式: 9.下列化合物中,核磁共振氢谱只出现两组峰且峰面积之比为3∶2的是(双选)()

最新核磁共振作业参考答案

核磁共振波谱作业参考答案 核磁谱图分析有点混乱,请参考谱图分析第8题。 一、判断题 1.核磁共振波谱法与红外吸收光谱法一样,都是基于吸收电磁辐射的分析法。(√) 2.质量数为奇数,荷电荷数为偶数的原子核,其自旋量子数为零。(×) 3.自旋量子数I =2的原子核在静磁场中,相对于外磁场,可能有两种取向。(×) 4.核磁共振波谱仪的磁场越强,其分辨率越高。(√) 5.在核磁共振波谱中,偶合质子的谱线裂分数目取决于邻近氢核的个数。(√) 6.化合物CH 3CH 2OCH(CH 3)2的1H-NMR 中,各质子信号的强度比为9:2:1。(×) 7.核磁共振波谱中出现的多重峰是由于邻近核的核自旋相互作用。(√) 8.苯环和双键氢质子的共振频率出现在低场是由于π电子的磁各向异性效应。(√) 9.碳谱的相对化学位移范围较宽(0~200),所以碳谱的灵敏度高于氢谱。(×) 10.氢键对质子的化学位移影响较大,所以活泼氢的化学位移在一定范围内变化。(√) 二、选择题 1.在N 147、O 168、H 11、C 136原子中没有核磁共振信号的是(B ) A .N 147; B .O 168; C .H 11; D C 136 2.核磁共振的弛豫过程是(D ) A .自旋核加热过程; B .自旋核由低能态向高能态的跃迁过程; C .自旋核由高能态返回低能态,多余能量以电磁辐射形式发射出去; D .高能态自旋核将多余的能量以无辐射途径释放而返回低能态。 3.用频率表示的化学位移值与外加磁场强度的关系是(B ) A .无关; B .成比例; C .不成比例 4.偶合常数2J HH 值,与外加磁场强度的关系是(A ) A .无关; B .成比例; C .不成比例 5.化学全同质子(B ) A .一定属磁全同; B .不一定属磁全同; C .视情况而定 6.磁全同质子(A ) A .一定属化学全同; B .不一定属化学全同; C .视情况而定 7.TMS 的δ=0,从化合物的结构出发,它的正确含义是(B ) A .不产生化学位移; B .化学位移最大; C .化学位移最小 8.在外加磁场中,H 2C=CH 2乙烯分子中四个质子位于(B ) A .屏蔽区; B .去屏蔽区; C .屏蔽区和去屏蔽区 9.在外加磁场中HC=CH 乙炔分子的两个质子位于(A ) A .屏蔽区; B .去屏蔽区; C .屏蔽区和去屏蔽区 10.在外加磁场中醛基质子位于(C ) A .屏蔽区并受氧原子的电负性影响; B .受氧原子的电负性影响; C .去屏蔽区并受氧原子的电负性影响 11.在外加磁场中,苯环上的质子都位于(B ) A .屏蔽区; B .去屏蔽区; C .屏蔽区和去屏蔽区 12.取决于原子核外电子屏蔽效应大小的参数是(A )

磁共振波谱成像的基本原理

磁共振波谱成像的基本原理、序列设计与临床应用 磁共振波谱(MR Spectroscopy, MRS)是医学影像学近年来发展的新的检查手段,作为一种无创伤性研究活体器官组织代谢、生化变化及化合物定量分析的方法,随着MRI、MRS装置不断改进,软件开发及临床研究的不断深入,人们通过MRS对各种疾病的生化代谢的认识将不断提高,为临床的诊断、鉴别、分期、治疗和预后提供更多有重要价值的信息。1H MRS可对神经元的丢失、神经胶质增生进行定量分析,31P磁共振波谱可对心肌梗塞能量代谢变化进行评价。MRS以分子水平了解人体生理上的变化,从而对疾病的早期诊断、预后及鉴别诊断、疗效追踪等方面,做出更明确的结论。本文从MRS波谱成像的基本原理和序列设计方面简要作一介绍。 一磁共振波谱的基本原理 在理想均匀的磁场中,同一种质子(如1H)理论上应具有相同的共振频率。事实上,当频率测量精度非常高时会发现,即使同一种核处在相同磁场中,它们的共振频率也不完全相同,而是在一个有限的频率范围内。这是由于原子核外的电子对原子核有磁屏蔽作用,它使作用于原子核的磁场强度小于外加磁场的强度,其屏蔽作用大小用屏蔽系数s来表示,被这种屏蔽作用削弱掉的磁场为sB,与外加磁场方向相反。外加磁场越强sB越大,原子核实际感受到的磁场强度与外加磁场强度之差越大。此外,s还与核的特性和化学环境有关。核的化学环境指核所在的分子结构,同一种核处在不同的分子中,甚至在同一分子的不同位置或不同的原子基团中,它周围的电子数和电子的分布将有所不同。因而,受到电子的磁屏蔽作用的程度不同,如图1所示。考虑到电子的磁屏蔽作用,决定共振频率的拉莫方程应表示为:w=gBeff=gB0(1-s) 由上式可知,在相同外加磁场作用下,样品中有不同化学环境的同一种核,由于它们受磁屏蔽的程度(s的大小)不同,它们将具有不同的共振频率。如在MRS中,水、NAA(N-乙酰天门冬氨酸)、Cr(肌酸)、Cho(胆碱)、脂肪的共振峰位置不同,这种现象就称为化学位移(Chemical Shift)。即因质子所处的化学环境不同,也就是核外电子云密度不同和所受屏蔽作用的不同,而引起相同质子在磁共振波谱中吸收信号位置的不同,如图2所示。实际上,研究某种样品物质的磁共振频谱时,常选用一种物质做参考基准,以它的共振频率作为频谱图横坐标的原点。并且,将不同种原子基团中的核的共振频率相对于坐标原点的频率之差作为该基团的化学位移。显然,这种用频率之差表示的化学位移的大小与磁场强度高低有关。在正常组织中,代谢物在物质中以特定的浓度存在,当组织发生病变时,代谢物浓度会发生改变。磁共振成像主要是对水和脂肪中的氢质子共振峰进行测量和脂肪中的氢质子共振峰进行测量,在1.5T场强下水和脂肪共振频率相差220Hz (化学位移),但是在这两个峰之间还有多种浓度较低代谢物所形成的共振峰,如NAA、Cr、Cho等,这些代谢物的浓度与水和脂肪相比非常低。MRS需要通过匀场抑制水和脂肪的共振峰,才能使这些微弱的共振峰群得以显示。 下面是研究MRS谱线时常用到的参数: (1)共振峰的共振频率的中心—峰的位置V: 化学位移决定磁共振波谱中共振峰的位置。 (2)共振峰的分裂。 (3)共振峰下的面积和共振峰的高度: 在磁共振波谱中,吸收峰占有的面积与产生信号的质子数目成正比。在研究波谱时,共振峰下的面积比峰的高度更有价值,因为它不受磁场均匀度的影响,对噪音相对不敏感。 (4)半高宽: 半高宽是指吸收峰高度一半时吸收峰的宽度,它代表了波谱的分辨率。 原子核自旋磁矩之间的相互作用称为自旋自旋耦合。高分辨率磁共振频谱可以观察到自旋自旋耦合引起的共振谱线的裂分,裂分的数目和幅度是相互耦合的核的自旋和核的数目的指征。在一个氢核和一个氢核发生自旋耦合的情况下,由于一个氢核的磁矩有顺磁场和逆磁场两种可能的取向,因此它对受耦合作用的氢核可能产生两个不同的附加磁场的作用,这引起受耦合的氢核的共振由一个单峰分裂为二重峰。如此类推,在两个氢核和一个氢核发生耦合的情况下,共振谱由一个分裂为三个。 磁共振波谱仪不仅可以描绘频谱,还可以描绘频谱的积分曲线,积分曲线对应共振峰的面积。峰

核磁共振波谱法课后习题

核磁共振波谱法 思考题和习题 1.解释下列各词 (1)屏蔽效应和去屏蔽效应 (2)自旋偶合和自旋分裂 (3)化学位移和偶合常数 (4)化学等价核和磁等价核 (1)屏蔽效应:原子核外电子运动在外加磁场B 0作用下产生与外加磁场方向相反的次级磁场,造成核实际受 到的磁场强度减弱。 去屏蔽效应:烯烃、醛、芳环中,π电子在外加磁场作用下产生环流,使氢原子周围产生感应磁场,如果 感应磁场的方向与外加磁场相同,即增加了外加磁场,所以在外加磁场还没有达到Bo 时,就 发生能级的跃迁,称为去屏蔽效应,该区域称为去屏蔽区。 (2)自旋偶合:相邻核自旋产生核磁矩间的相互干扰,相互作用的现象。 自旋裂分:由自旋偶合引起的共振峰分裂现象。 (3)化学位移:在一定的辐射频率下,处于不同化学环境的有机化合物中的自旋核,产生核磁共振的磁场强 度或共振吸收频率不同的现象。 偶合常数:多重峰的峰间距;用来衡量偶合作用的大小。 (4)化学等价核:化学位移完全相同的核。 磁等价核:分子中的一组化学等价核,若它们对组外任何一个核都是以相同的大小偶合,则这一组核为磁 等价核。 2.下列哪一组原子核不产生核磁共振信号,为什么? 2 1H 、14 7N 199F 、126C 126C 、11H 126C 、168O 并不是是所有原子核都能产生核磁共振信号,原子核能产生核磁共振现象是因为具有核自旋,其自旋量子数不等于0。质量数和质子数均为偶数的原子核,自旋量子数为0 ,质量数为奇数的原子 核,自旋量子数为半整数,质量数为偶数,质子数为奇数的原子核,自旋量子数为整数。由此,12 6C 、16 8O 这一组原子核都不产生核磁共振信号。 3.为什么强射频波照射样品,会使NMR 信号消失,而UV 与IR 吸收光谱法则不消失? 自旋核在磁场作用下,能级发生分裂,处在低能态核和处于高能态核的分布服从波尔兹曼分布定律,当B 0 = 1.409 T ,温度为300K 时,高能态和低能态的1H 核数之比为处于低能级的核数比高能态核数多十万分之一,而NMR 信号就是靠这极弱过量的低能态核产生的。若以合适的射频照射处于磁场的核,核吸收能量后,由低能态跃迁到高能态,其净效应是吸收,产生共振信号。若用强射频波照射样品,高能态核不能通过有效途径释放能量回到低能态,低能态的核数越来越少,一定时间后高能态和低能态的核数相等,这时不再吸收,核磁共振信号消失。而UV 与IR 吸收光谱法是根据光线被吸收后的减弱程度来判断样品中待测元素的含量的,即使用较强辐射照射,吸收也不会消失。 4.为什么用δ值表示峰位,而不用共振频率的绝对值表示?为什么核的共振频率与仪器的磁场强度有关,而 偶合常数与磁场强度无关? 屏蔽作用产生的共振条件差异很小,共振频率的绝对差值难以精确测定, 例:100 MHz 仪器,1H 因屏蔽作用引起的共振频率差约0-1500Hz ,仅为共振频率的百万分之十几;由于磁场强度不同,导致同种化学

第三章-核磁共振波谱法作业

第三章、核磁共振波谱法 1. 在核磁共振波谱法中,常用 TMS(四甲基硅烷) 作内标来确定化学位移,这样做有什么好处? 2. 某有机化合物相对分子质量为88, 元素分析结果其质量组成为: C: 54.5%; O: 36;H: 9.1% NMR 谱图表明: a 组峰是三重峰, δ≈1.2, 相对面积=3; b 组峰是四重峰, δ≈2.3, 相对面积=2; c 组峰是单重峰, δ≈3.6, 相对面积=3; (1) 试求该化合物各元素组成比 (2) 确定该化合物的最可能结构及说明各组峰所对应基团 3. 当采用90MHz 频率照射时, TMS 和化合物中某质子之间的频率差为430Hz, 这个质子 吸收的化学位移是多少? 4. 在使用200MHz 的NMR 波谱仪中某试样中的质子化学位移值为6.8,试计算在300MHz 的NMR 仪中同一质子产生的信号所在位置为多少Hz ? 5. C 4H 8Br 2 的核磁共振谱峰数如下: δ1 = 1.7 ,双峰 δ2 = 2.3 , 四重峰 δ3 = 3.5 ,三重峰 δ4 = 4.3 ,六重峰 这四种峰的面积比依次为 3 : 2 : 2 : 1 . 试写出该化合物的结构式,并用数字 1、2、3、4 标明相应的碳原子, 并作简明解释。 6. 判断下列化合物的核磁共振谱图(氢谱)。 C CH 2Br 2Br Br CH 3 7. 5 分 化合物C 3H 6O 21H-NMR 谱图如下 (1) 有3种类型质子 (2) a. δ=1.2 三重峰 b. δ=2.4 四重峰 c. δ=10.2 单峰 (3) 峰面积之比 a:b:c =3:2:1 请写出它的结构式, 并解释原因. 8. 分子式为C 5H 11Br 有下列NMR 谱数据 δ 质子数 信号类型 0.80 6 二重峰 1.02 3 二重峰 2.05 1 多重峰 3.53 1 多重峰 该化合物结构是什么? 9. 试推测分子式为C 8H 18O 在NMR 谱中只显示一个尖锐单峰的化合物结构. 10化合物(a), (b), (c)分子式均为C 3H 6Cl 2, 它们的NMR 数据如下, 试推测(a) (b), (c)的结构.

核磁共振波谱法习题集及答案

第三章、核磁共振波谱法 一、选择题 ( 共79题 ) 1. 2 分 萘不完全氢化时,混合产物中有萘、四氢化萘、十氢化萘。附图是混合产物的核磁共 振谱图,A 、B 、C 、D 四组峰面积分别为 46、70、35、168。则混合产物中,萘、四氢化萘,十氢化萘的质量分数分别如下: ( ) (1) 25.4%,39.4%,35.1% (2) 13.8%,43.3%,43.0% (3) 17.0%,53.3%,30.0% (4) 38.4%,29.1%,32.5% 2. 2 分 下图是某化合物的部分核磁共振谱。下列基团中,哪一个与该图相符?( ) (1)CH 3C CH 2O CH CH O CH 3(2)CH (3)CH 3CH 2O (4)C H 3O CH O CH H X :H M :H A =1:2:3 3. 2 分 在下面四个结构式中 (1) C 3H (2)H C CH 3CH 3(3)H C CH 3CH 33(4) H C H H 哪个画有圈的质子有最大的屏蔽常数 ? ( )

4. 1 分 一个化合物经元素分析,含碳 88.2%,含氢 11.8%,其氢谱只有一个单峰。它是 下列可能结构中的哪一个? ( ) 5. 1 分 下述原子核中,自旋量子数不为零的是 ( ) (1) F (2) C (3) O (4) He 6. 2 分 在 CH 3- CH 2- CH 3分子中,其亚甲基质子峰精细结构的强度比为哪一组数据 ?( ) (1) 1 : 3 : 3 : 1 (2) 1 : 4 : 6 : 6 : 4 : 1 (3) 1 : 5 : 10 : 10 : 5 : 1 (4) 1 : 6 : 15 : 20 : 15 : 6 : 1 7. 2 分 ClCH 2- CH 2Cl 分子的核磁共振图在自旋-自旋分裂后,预计 ( ) (1) 质子有 6 个精细结构 (2) 有 2 个质子吸收峰 (3) 不存在裂分 (4) 有 5 个质子吸收峰 8. 2 分 在 O - H 体系中,质子受氧核自旋-自旋偶合产生多少个峰 ? ( ) (1) 2 (2) 1 (3) 4 (4) 3 9. 2 分 在 CH 3CH 2Cl 分子中何种质子 σ 值大 ? ( ) (1) CH 3- 中的 (2) CH 2- 中的 (3) 所有的 (4) 离 Cl 原子最近的 10. 2 分 在 60 MHz 仪器上,TMS 和一物质分子的某质子的吸收频率差为 120Hz ,则该质 子的化学位移为 ( ) (1) 2 (2) 0.5 (3) 2.5 (4) 4 11. 2 分 下图四种分子中,带圈质子受的屏蔽作用最大的是 ( ) C H H H H R C R R H H C R H H R C R H H (b)(c)(d)(a) 12. 2 分 质子的γ(磁旋比)为 2.67×108/(T ?s),在外场强度为 B 0 = 1.4092T时,发生核磁共 振的辐射频率应为 ( ) (1) 100MHz (2) 56.4MHz (3) 60MHz (4) 24.3MHz 13. 2 分 下述原子核没有自旋角动量的是 ( )

核磁共振氢谱专项练习及答案

核磁共振氢谱专项练习及答案 (一)判断题(正确的在括号内填“√”号;错误的在括号内填“×”号。) 1.核磁共振波谱法与红外吸收光谱法一样,都是基于吸收电磁辐射的分析法。( ) 2.质量数为奇数,核电荷数为偶数的原子核,其自旋量子数为零。( ) 3.自旋量子数I=1的原子核在静磁场中,相对于外磁场,可能有两种取向。( ) 4.氢质子在二甲基亚砜中的化学位移比在氯仿中要小。( ) 5.核磁共振波谱仪的磁场越强,其分辨率越高。( ) 6.核磁共振波谱中对于OCH3、CCH3和NCH3,NCH3的质子的化学位移最大。( ) 7.在核磁共振波谱中,耦合质子的谱线裂分数目取决于邻近氢核的个数。( ) 8.化合物CH3CH2OCH(CH3)2的1H NMR中,各质子信号的面积比为9:2:1。( ) 9.核磁共振波谱中出现的多重峰是由于邻近核的核自旋相互作用。( ) 10.化合物Cl2CH—CH2Cl的核磁共振波谱中,H的精细结构为三重峰。( ) 11.苯环和双键氢质子的共振频率出现在低场是由于π电子的磁各向异性效应。( ) 12.氢键对质子的化学位移影响较大,所以活泼氢的化学位移在一定范围内变化。( ) 13.不同的原子核产生共振条件不同,发生共振所必需的磁场强度(B0)和射频频率(v)不同。( ) 14.(CH3)4Si分子中1H核共振频率处于高场,比所有有机化合物中的1H核都高。( ) 15.羟基的化学位移随氢键的强度变化而移动,氢键越强,δ值就越小。( ) 答案 (一)判断题 1.√ 2.× 3.× 4.× 5.√ 6.× 7.√ 8.× 9.√ l0.√ 11.√ l2.√ l3.√ l4.× l5.× (二)选择题(单项选择) 1.氢谱主要通过信号的特征提供分子结构的信息,以下选项中不是信号特征的是( )。 A.峰的位置; B.峰的裂分;C.峰高;D.积分线高度。 2.以下关于“核自旋弛豫”的表述中,错误的是( )。 A.没有弛豫,就不会产生核磁共振; B.谱线宽度与弛豫时间成反比; C.通过弛豫,维持高能态核的微弱多数;D.弛豫分为纵向弛豫和横向弛豫两种。 3.具有以下自旋量子数的原子核中,目前研究最多用途最广的是( )。 A.I=1/2;B.I=0;C.I=1;D.I>1。 4.下列化合物中的质子,化学位移最小的是( )。 A.CH3Br;B.CH4;C.CH3I;D.CH3F。 5.进行已知成分的有机混合物的定量分析,宜采用( )。 A.极谱法;B.色谱法;C.红外光谱法;D.核磁共振法。 6.CH3CH2COOH在核磁共振波谱图上有几组峰最低场信号有几个氢( ) A.3(1H);B.6(1H);C.3(3H);D.6(2H)。 7.下面化合物中在核磁共振谱中出现单峰的是( 九 A.CH3CH2C1;B.CH3CH20H;C.CH3CH3;D.CH3CH(CH3)2。 8.下列4种化合物中,哪个标有*号的质子有最大的化学位移( ) 9.核磁共振波谱解析分子结构的主要参数是( )。 A.质荷比;B.波数;C.化学位移;D.保留值。

仪器分析之核磁共振波谱法试题及答案

核磁共振波谱法 一、填空题 1. NMR法中影响质子化学位移值的因素有:__________,___________,__________、,,。 2. 1H 的核磁矩是2.7927核磁子, 11B的核磁矩是2.6880核磁子, 核自旋量子数为3/2,在1.000T 磁场中, 1H 的NMR吸收频率是________MHz, 11B的自旋能级分裂为_______个, 吸收频率是________MHz (1核磁子=5.051×10-27J/T, h=6.626×10-34J·s) 3. 化合物C 6H 12 O,其红外光谱在1720cm-1附近有1个强吸收峰,1HNMR谱图上, 有两组单峰d a=0.9, d b=2.1,峰面积之比a:b =3:1, a为_______基团, b为 _________基团,其结构式是__________________。 4. 苯、乙烯、乙炔、甲醛,其1H化学位移值d最大的是_______最小的是 _________,13C的d值最大的是_________最小的是____________。 二、选择题 1. 自旋核7Li、11B、75As, 它们有相同的自旋量子数Ι=3/2, 磁矩μ单位为核磁 子,m Li =3.2560, m B=2.6880, m As =1.4349 相同频率射频照射, 所需的磁场强 度H大小顺序为 ( ) (1) B Li>B B>B As (2) B As>B B>B Li (3) B B>B Li>B As (4) B Li>B As>B Li 2.在O - H 体系中,质子受氧核自旋-自旋偶合产生多少个峰? ( ) (1) 2 (2) 1 (3) 4 (4) 3 3. 下列化合物的1HNMR谱, 各组峰全是单峰的是 ( ) (1) CH 3-OOC-CH 2 CH 3 (2) (CH 3 ) 2 CH-O-CH(CH 3 ) 2 (3) CH 3-OOC-CH 2 -COO-CH 3 (4) CH 3 CH 2 -OOC-CH 2 CH 2 -COO-CH 2 CH 3 4.一种纯净的硝基甲苯的NMR图谱中出现了3组峰, 其中一个是单峰, 一组是二重峰,一组是三重峰. 该化合物是下列结构中的 ( )

核磁共振波谱法作业题

核磁共振波谱法 讲授内容 第一节.概述 第二节.基本原理 第三节.化学位移 第四节.自旋偶合和自旋系统 第五节.核磁共振仪和实验方法 第六节.氢谱的解析方法 第七节.碳谱简介 第一节.概述 第二节.基本原理 填空题 1.原子核是否有自旋现象是由其自旋量子数Ⅰ决定的,Ⅰ为的核才有自旋,为磁场 性核。 2.进行核磁共振实验时,样品要置于磁场中,是因为。 3.对质子( =2.675×108 T-1·s-1)来说,仪器的磁场强度如为1.4092T,则激发用的射频 频率为。 选择题 1.下列原子核没有自旋角动量的是哪一种? A.14N B.28Si C.31P D.33S E.1H 2.下述核中自旋量子数I=1/2的核是 A.16O B.19F C.2H D.14N E.12C 3.1H核在外磁场中自旋取向数为 A.0 B.1 C.2 D.3 E.4 4.若外加磁场的磁场强度H逐渐增大时,则使质子从低能级E跃迁至高能级E所需的能 量: A.不发生变化 B.逐渐变小 C.逐渐变大 D.不变或逐渐变小 E.不变或逐渐变大 简答题 1.试述产生核磁共振的条件是什么? 2.一个自旋量子数为1/2的核在磁场中有多少种能态?各种能态的磁量子数取值为多 少? 3.哪些类型的核具有核磁共振现象?目前的商品核磁共振仪主要测定是哪些类型核的核 磁共振? 4.为什么强射频波照射样品会使NMR信号消失?而UV与IR吸收光谱法则不消失。 计算题 1.试计算在1.9406T的磁场中,1H、13C的共振频率。 2.试计算在25o C时,处在2.4T磁场中13C高能态核与低能态核数目的比例。

第三节.化学位移 填空题 1.有A,B,C三种质子,它们的共振磁场大小顺序为B A>B B>B C,则其化学位移δ的大 小顺序为。 2.有A,B,C三种质子,它们的屏蔽常数大小顺序为σA>σB>σC,试推测其共振磁场 B的大小顺序为。 3.在化合物CH3X中,随着卤原子X的电负性增加,质子共振信号将向磁场强度方向 位移。 选择题 1.不影响化学位移值的因素是: A.核磁共振仪的磁场强度 B.核外电子云密度 C.磁的各向异性 效应 D.所采用的内标试剂 E.使用的溶剂 2.在下列化合物中,质子化学位移(ppm)最大者为: A.CH 3Br B.CH 4 C.CH 3 OH D.CH 3 I E.CH 3 F 3.CH3X中随X电负性增大,H核信号: A.向高场位移,共振频率增加 B.向高场位移,共振频率降低 C.向低场位移,共振频率增加 D.向低场位移,共振频率降低 E.变化无规律 4.在磁场中质子周围电子云起屏蔽作用,以下几种说法正确的是: A.质子周围电子云密度越大,则屏蔽作用越小 B.屏蔽作用与质子周围的电子云密度无关 C.屏蔽越小,共振磁场越高 D.屏蔽越大,共振频率越高 E.屏蔽越大,化学位移δ越小 5.抗磁屏蔽效应和顺磁屏蔽效应对化学位移有重要贡献,结果是: A.抗磁屏蔽使质子去屏蔽,顺磁屏蔽使质子屏蔽 B.抗磁屏蔽使质子的共振信号向低场位移,顺磁屏蔽使质子的共振信号向高场位移 C.抗磁屏蔽使质子的δ值增大,顺磁屏蔽使质子的δ值减小 D.抗磁屏蔽使质子的δ值减小,即产生高场位移;顺磁屏蔽使质子的δ值增大,即产生 低场位移 E.抗磁屏蔽和顺磁场屏蔽均使质子去屏蔽 6.乙烯质子的化学位移值(δ)比乙炔质子的化学位移值大还是小?其原因是什么? A.大,因为磁的各向异性效应,使乙烯质子处在屏蔽区,乙炔质子处在去屏蔽区; B.大,因为磁的各向异性效应,使乙烯质子处在去屏蔽区,乙炔质子处在屏蔽区; C.小,因为磁的各向异性效应,使乙烯质子处在去屏蔽区,乙炔质子处在屏蔽区;

核磁共振波谱法习题集及答案学习资料

核磁共振波谱法习题 集及答案

第三章、核磁共振波谱法 一、选择题 ( 共79题 ) 1. 2 分 萘不完全氢化时,混合产物中有萘、四氢化萘、十氢化萘。附图是混合产物的核磁共 振谱图,A、B、C、D 四组峰面积分别为 46、70、35、168。则混合产物中,萘、四氢化萘,十氢化萘的质量分数分别如下: ( ) (1) 25.4%,39.4%,35.1% (2) 13.8%,43.3%,43.0% (3) 17.0%,53.3%,30.0% (4) 38.4%,29.1%,32.5% 2. 2 分 下图是某化合物的部分核磁共振谱。下列基团中,哪一个与该图相符?( ) (1)CH3C CH2 O CH CH O CH3 (2)CH (3)CH3CH 2 O (4)C H3O CH O CH

H X : H M :H A =1:2: 3 3. 2 分 在下面四个结构式中 (1) C CH 3 H R H (2)H C CH 3H CH 3(3)H C CH 3CH 3CH 3(4)H C H H H 哪个画有圈的质子有最大的屏蔽常数 ? ( ) 4. 1 分 一个化合物经元素分析,含碳 88.2%,含氢 11.8%,其氢谱只有一个单峰。它是 下列可能结构中的哪一个? ( ) 5. 1 分 下述原子核中,自旋量子数不为零的是 ( ) (1) F (2) C (3) O (4) He 6. 2 分

在 CH 3- CH 2- CH 3分子中,其亚甲基质子峰精细结构的强度比为哪一组数据 ?( ) (1) 1 : 3 : 3 : 1 (2) 1 : 4 : 6 : 6 : 4 : 1 (3) 1 : 5 : 10 : 10 : 5 : 1 (4) 1 : 6 : 15 : 20 : 15 : 6 : 1 7. 2 分 ClCH 2- CH 2Cl 分子的核磁共振图在自旋-自旋分裂后,预计 ( ) (1) 质子有 6 个精细结构 (2) 有 2 个质子吸收峰 (3) 不存在裂分 (4) 有 5 个质子吸收峰 8. 2 分 在 O - H 体系中,质子受氧核自旋-自旋偶合产生多少个峰 ? ( ) (1) 2 (2) 1 (3) 4 (4) 3 9. 2 分 在 CH 3CH 2Cl 分子中何种质子 值大 ? ( ) (1) CH 3- 中的 (2) CH 2- 中的 (3) 所有的 (4) 离 Cl 原子最近的 10. 2 分 在 60 MHz 仪器上,TMS 和一物质分子的某质子的吸收频率差为 120Hz ,则该质 子的化学位移为 ( ) (1) 2 (2) 0.5 (3) 2.5 (4) 4 11. 2 分 下图四种分子中,带圈质子受的屏蔽作用最大的是 ( ) C H H H C R C R C H (b)(c)(d)(a) 12. 2 分

《分析化学》第十四章核磁共振波谱法

第十四章核磁共振波谱法 - 经典习题1.试对照结构指出图14-1上各个峰的归属。 解:δ1.2 三重峰 3H-CH2-CH3 δ2.0 单峰 3H-CO-CH3 δ4.0 四重峰 2H-O-CH2-CH3 δ6.8~7.6 4H-C6H4- δ9.8 单峰 1H-NH- 图14-1 例题1的1H-NMR谱 2.由下述1H-NMR图谱,进行波谱解析,给出未知物的分子结构及自旋系统。(1)已知化合物的分子式为C4H10O,1H-NMR谱如图14-2所示。

图14-2 C4H10O的 1H-NMR谱 解:u=(2+2×4-10)/2=0 δ1.13 三重峰 6H -CH2-CH3(2个) δ3.38 四重峰 4H -O-CH2-CH3(2个) 可能结构式为:CH3-CH2-O-CH2-CH3 自旋系统:2个A2X3 (2)已知化合物的分子式为C9H12,1H-NMR谱如图14-3所示。 图14-3 C9H12的1H-NMR谱 解:u=(2+2×9-12)/2=4 δ1.22 二重峰 3H -CH-CH3 δ2.83 七重峰 1H -CH-(CH3)2 δ7.09 单峰 5H C6H5- 可能结构式为:

自旋系统:A6X,A5 (3)已知化合物的分子式为C10H10Br2O,1H-NMR谱如图14-4所示。 图14-4 C10H10Br2O的1H-NMR谱 解:u=(2+2×10-12)/2=5 δa 2.42 单峰 3H -CO-CH3 δb 4.88 双峰 1H

δc 5.33 双峰 1H δd 7.35 单峰 5H C6H5- 可能结构式为:

核磁共振波谱法习题集及答案

第三章、核磁共振波谱法 一、选择题( 共79题) 1. 2 分 萘不完全氢化时,混合产物中有萘、四氢化萘、十氢化萘。附图是混合产物的核磁共振谱图,A、B、C、D 四组峰面积分别为46、70、35、168。则混合产物中,萘、四氢化萘,十氢化萘的质量分数分别如下:( ) (1) 25.4%,39.4%,35.1% (2) 13.8%,43.3%,43.0% (3) 17.0%,53.3%,30.0% (4) 38.4%,29.1%,32.5% 2. 2 分 下图是某化合物的部分核磁共振谱。下列基团中,哪一个与该图相符?( ) CH (1)CH3C CH2 O CH O CH3 (2)CH (3)CH3CH O 2 (4)C H3O CH O CH

H X :H M :H A =1:2:3 3. 2 分 在下面四个结构式中 (1) C CH 3 H R H (2)H C CH 3H CH 3 (3)H C CH 3CH 3 CH 3 (4) H C H H H 哪个画有圈的质子有最大的屏蔽常数 ? ( ) 4. 1 分 一个化合物经元素分析,含碳 88.2%,含氢 11.8%,其氢谱只有一个单峰。它是 下列可能结构中的哪一个? ( ) 5. 1 分 下述原子核中,自旋量子数不为零的是 ( ) (1) F (2) C (3) O (4) He 6. 2 分 在 CH 3- CH 2- CH 3分子中,其亚甲基质子峰精细结构的强度比为哪一组数据 ?( ) (1) 1 : 3 : 3 : 1 (2) 1 : 4 : 6 : 6 : 4 : 1

(3) 1 : 5 : 10 : 10 : 5 : 1 (4) 1 : 6 : 15 : 20 : 15 : 6 : 1 7. 2 分 ClCH 2- CH 2Cl 分子的核磁共振图在自旋-自旋分裂后,预计 ( ) (1) 质子有 6 个精细结构 (2) 有 2 个质子吸收峰 (3) 不存在裂分 (4) 有 5 个质子吸收峰 8. 2 分 在 O - H 体系中,质子受氧核自旋-自旋偶合产生多少个峰 ? ( ) (1) 2 (2) 1 (3) 4 (4) 3 9. 2 分 在 CH 3CH 2Cl 分子中何种质子 σ 值大 ? ( ) (1) CH 3- 中的 (2) CH 2- 中的 (3) 所有的 (4) 离 Cl 原子最近的 10. 2 分 在 60 MHz 仪器上,TMS 和一物质分子的某质子的吸收频率差为 120Hz ,则该质 子的化学位移为 ( ) (1) 2 (2) 0.5 (3) 2.5 (4) 4 11. 2 分 下图四种分子中,带圈质子受的屏蔽作用最大的是 ( ) C H H H C R C R C H (b) (c) (d) (a) 12. 2 分 质子的γ(磁旋比)为 2.67×108/(T ?s),在外场强度为 B 0 = 1.4092T时,发生核磁共 振的辐射频率应为 ( )

仪器分析之核磁共振波谱法试题及答案演示教学

仪器分析之核磁共振波谱法试题及答案

核磁共振波谱法 一、填空题 1. NMR法中影响质子化学位移值的因素有:__________,___________, __________、,,。 2. 1H 的核磁矩是2.7927核磁子, 11B的核磁矩是2.6880核磁子, 核自旋量子数为3/2,在1.000T 磁场中, 1H 的NMR吸收频率是________MHz, 11B的自旋能级分裂为_______个, 吸收频率是________MHz (1核磁子=5.051×10-27J/T, h=6.626×10-34J·s) 3. 化合物C 6H 12 O,其红外光谱在1720cm-1附近有1个强吸收峰,1HNMR谱图上, 有两组单峰d a=0.9, d b=2.1,峰面积之比a:b =3:1, a为_______基团, b为_________基团,其结构式是__________________。 4. 苯、乙烯、乙炔、甲醛,其1H化学位移值d最大的是_______最小的是 _________,13C的d值最大的是_________最小的是____________。 二、选择题 1. 自旋核7Li、11B、75As, 它们有相同的自旋量子数Ι=3/2, 磁矩μ单位为核磁子,m Li =3.2560, m B= 2.6880, m As =1.4349 相同频率射频照射, 所需的磁场强度H大小顺序为 ( ) (1) B Li>B B>B As (2) B As>B B>B Li (3) B B>B Li>B As (4) B Li>B As>B Li 2.在 O - H 体系中,质子受氧核自旋-自旋偶合产生多少个峰 ? ( ) (1) 2 (2) 1 (3) 4 (4) 3 3. 下列化合物的1HNMR谱, 各组峰全是单峰的是 ( ) (1) CH 3-OOC-CH 2 CH 3 (2) (CH 3 ) 2 CH-O-CH(CH 3 ) 2 (3) CH 3-OOC-CH 2 -COO-CH 3 (4) CH 3 CH 2 -OOC-CH 2 CH 2 -COO-CH 2 CH 3 4.一种纯净的硝基甲苯的NMR图谱中出现了3组峰, 其中一个是单峰, 一组是二重峰,一组是三重峰. 该化合物是下列结构中的 ( )

核磁共振波谱法作业题

核磁共振波谱法 讲授容 第一节.概述 第二节.基本原理 第三节.化学位移 第四节.自旋偶合和自旋系统 第五节.核磁共振仪和实验方法 第六节.氢谱的解析方法 第七节.碳谱简介 第一节.概述 第二节.基本原理 填空题 1.原子核是否有自旋现象是由其自旋量子数Ⅰ决定的,Ⅰ为的核才有自旋,为磁 场性核。 2.进行核磁共振实验时,样品要置于磁场中,是因为。 3.对质子(=2.675×108 T-1·s-1)来说,仪器的磁场强度如为1.4092T,则激发用的射 频频率为。 选择题 1.下列原子核没有自旋角动量的是哪一种?

A.14N B.28Si C.31P D.33S E.1H 2.下述核中自旋量子数I=1/2的核是 A.16O B.19F C.2H D.14N E.12C 3.1H核在外磁场中自旋取向数为 A.0 B.1 C.2 D.3 E.4 4.若外加磁场的磁场强度H逐渐增大时,则使质子从低能级E跃迁至高能级E所需的能 量: A.不发生变化 B.逐渐变小 C.逐渐变大 D.不变或逐渐变小 E.不变或逐渐变大 简答题 1.试述产生核磁共振的条件是什么? 2.一个自旋量子数为1/2的核在磁场中有多少种能态?各种能态的磁量子数取值为多 少? 3.哪些类型的核具有核磁共振现象?目前的商品核磁共振仪主要测定是哪些类型核的核 磁共振? 4.为什么强射频波照射样品会使NMR信号消失?而UV与IR吸收光谱法则不消失。计算题 1.试计算在1.9406T的磁场中,1H、13C的共振频率。 2.试计算在25o C时,处在2.4T磁场中13C高能态核与低能态核数目的比例。

第三节.化学位移 填空题 1.有A,B,C三种质子,它们的共振磁场大小顺序为B A>B B>B C,则其化学位移δ的大 小顺序为。 2.有A,B,C三种质子,它们的屏蔽常数大小顺序为σA>σB>σC,试推测其共振磁场B 的大小顺序为。 3.在化合物CH3X中,随着卤原子X的电负性增加,质子共振信号将向磁场强度 方向位移。 选择题 1.不影响化学位移值的因素是: A.核磁共振仪的磁场强度 B.核外电子云密度 C.磁的各向异性效应 D.所采用的标试剂 E.使用的溶剂 2.在下列化合物中,质子化学位移(ppm)最大者为: A.CH3Br B.CH4 C.CH3OH D.CH3I E.CH3F 3.CH3X中随X电负性增大,H核信号: A.向高场位移,共振频率增加 B.向高场位移,共振频率降低 C.向低场位移,共振频率增加 D.向低场位移,共振频率降低

核磁共振波谱法剖析

核磁共振波谱法 一、概述 早在1924年Pauli就预见某些原子核具有自旋和磁矩的性质,它们在磁场中可以发生能级的分裂。1946年美国科学家布洛赫(Bloch,斯坦福大学)和珀塞尔(Purcell,哈佛大学)分别发现在射频区(频率0.1~100MHz,波长1~1000m)的电磁波能与暴露在强磁场中的磁性原子核(或称磁性核或自旋核)相互作用,引起磁性原子核在外磁场中发生核自旋能级的共振跃迁,从而产生吸收信号,他们把这种原子对射频辐射的吸收称为核磁共振(nuclear magnetic resonance spectroscopy,NMR),他们也因此分享了1952年的诺贝尔物理奖。所产生的波谱,叫核磁共振(波)谱。通过研究核磁共振波谱获得相关信息的方法,称为核磁共振波谱法。 NMR和红外光谱、紫外—可见光谱相同之处是微观粒子吸收电磁波后发生能级上的跃迁,但引起核磁共振的电磁波能量很低,不会引起振动或转动能级跃迁,更不会引起电子能级跃迁。. 1949年,Kight第一次发现了化学环境对核磁共振信号的影响,并发现了信号与化合物结构有一定的关系。而1951年Arnold等人也发现了乙醇分子由三组峰组成,共振吸收频率随不同基团而异,揭开了核磁共振与化学结构的关系。 1953年出现了世界上第一台商品化的核磁共振波谱仪。1956年,曾在Block实验室工作的Varian制造出第一台高分辩率的仪器,从此,核磁共振波谱法成了化学家研究化合物的有力工具,并逐步扩大其应用领域。七十年代以后,由于科学技术的发展,科学仪器的精密化、自动化,核磁共振波谱法得到迅速发展,在许多领域中已得到广泛应用,特别在有机化学、生物化学领域中的研究和应用发挥着巨大的作用。八十年代以来,又不断出现新仪器,如高强磁场的超导核磁共振波谱仪,脉冲傅里叶变换核磁共振波谱仪,大大提高灵敏度和分辨率,使灵敏度小的原子核能被测定;计算机技术的应用和多脉冲激发方法的采用,产生二维谱,对判断化合物的空间结构起重大作用。瑞士科学家恩斯特R.R.Ernst教授因对二维谱的贡献而获得1991年的Nobel化学奖(对核磁共振光谱高分辩方法发展作出重大贡献)。。瑞士科学家库尔特·维特里希因

核磁共振波谱法

第十四章核磁共振波谱法 思考题和习题 1.下列哪一组原子核不产生核磁共振信号,为什么? 2 1H、14 7 N19 9 F、12 6 C12 6 C、1 1 H12 6 C、16 8 O 并不是是所有原子核都能产生核磁共振信号,原子核能产生核磁共振是因为具有核自旋,其自旋量子数须不等于0。质量数和质子数均为偶数的原子核,自旋量子数为0 ,质量数为奇数的原子核,自旋 量子数为半整数,质量数为偶数,质子数为奇数的原子核,自旋量子数为整数。由此,126C、168O这一组原子核都不产生核磁共振信号。 2.单取代苯的取代基为烷基时,苯环上的芳氢(5个)为单峰,为什么?两取代基为极性基团(如卤素、-NH2、-OH等),苯环的芳氢变为多重峰,试说明原因,并推测是什么自旋系统。 单取代苯若取代基为饱和烷基,则构成A5系统,呈现单峰;取代基不是饱和烷基时,可能构成ABB′CC′系统;如苯酚等。 双取代苯若对位取代苯的两个取代基X≠Y,苯环上四个氢可能形成AA′BB′系统,如对氯苯胺。对取代苯的谱图具有鲜明的特点,是取代苯谱图中最易识别的。它粗看是左右对称的四重峰,中间一对峰强,外面一对峰弱,每个峰可能还有各自小的卫星峰。 3.在质子共振谱中,可以看到HF质子的双峰,而只能看到HCl的质子单峰。为什么? HF中1H与19F的自旋分裂氟(19F)自旋量子数I也等于1/2,与1H相同,在外加磁场中也应有2个方向相反的自旋取向。这2种不同的自旋取向将通过电子的传递作用,对相邻1H核实受磁场强度产生一定的影响。所以HF中1H核共振峰分裂为2个小峰(二重峰)。同理,HF中19F核也会因相邻1H核的自旋干扰,偶合裂分为2个小峰。并非所有的原子核对相邻氢核都有自旋偶合干扰作用。如35Cl、79Br核,虽然,I≠0,预期对相邻氢核有自旋偶合干扰作用,但因它们的电四极矩很大,会引起相邻氢核的自旋去偶作用,因此看不到偶合干扰现象。 4. 一个未知物的分子式为C9H10N。δa 1.22(d)、δb 2.80(sep)、δc 3.44(s)、δd 6.60(m,多重峰)及δe 7.03(m)。氢核磁共振谱如图14-24所示,试确定其结构式。 ①U=4,结构式中可能具有苯环。 ②氢分布为从右至左:a:b:c:d:e = 6H (1.8cm):1H (0.3cm):2H (0.6cm):2H (0.6cm):2H (0.6cm)。 ③根据化学位移、氢分布及峰形解析 (1) a、b为-CH(CH3)2。理由:a与6个H相邻分裂为七重峰,b与1个H相邻分裂为二重峰。 b=2.80, 可知-CH与苯环相连,可由教材表14-3计算证明。δb = 1.55 + 1.33 (Ar) = 2.88 (2) δd 6.60(2H,m)与δe 7.03(2H,m):查教材图14-3为芳氢,根据峰形与教材图14-17相似, H数又为4 H,可能是对位双取代苯环(AA‵BB‵系统) (3) δc 3.44(2H,s):由分子式C9H10N中减去(C3H7 + C6H4)余NH2(氨基),化学位移也相符。

相关主题
文本预览
相关文档 最新文档