当前位置:文档之家› 二次根式和二次方程

二次根式和二次方程

二次根式和二次方程
二次根式和二次方程

二次根式和二次方程

1、若式子 2x+1x-1

在实数范围内有意义,则x 的取值范围是 ( ) (A) x ≥--12 (B) x ≠1 (C) x >--12 且x ≠1 (D) x ≥--12

且x ≠1 2、下列一元二次方程中没有实数根是 ( )

(A )x 2+3x +4=0 (B )x 2

-4x +4=0

(C )x 2-2x -5=0 (D )x 2+2x -4=0

3.要使二次根式1-x 有意义,那么x 的取值范围是( )

A .x >-1

B . x <1

C . x ≥1

D .x ≤1

(A ) 16 (B ) 23 (C ) 13 (D ) 12

4、已知关于x 的一元二次方程x 2-mx +(m -2)=0,则此方程根的情况为( )

A .有两个不相等的实数根

B .有两个相等的实数根

C .没有实数根

D .无法确定

5、下列计算正确的是( )

A .23+42=65

B .32×22=62 C.27÷3=3 D .2)3(-=-3

6、已知关于x 的方程2

60x kx --=的一个根为3x =,则实数k 的值为_______ 7、已知x 、y 是实数,3x +4 +y 2-6y +9=0,则xy 的值是

8、下列关于x 的方程中,是一元二次方程的有( )

A .221x

x + B .02=++c bx ax C .()()121=+-x x D .052322=--y xy x 9.化简132

121

++-的结果为( )

A 、23+

B 、23-

C 、322+

D 、223+

10.已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( )

A .2

B .1-

C .1

D .2-

11.要使二次根式1-x 有意义,那么x 的取值范围是( )

(A )x >-1 (B ) x <1 (C ) x ≥1 (D )x ≤1

12已知x 、y 是实数,3x +4 +y 2-6y +9=0,则xy 的值是( )

A .4

B .-4

C .94

D .-94

13若实数a 、b 满足1

112

2+-+-=a a a b ,则a+b 的值为________. 14若关于x 方程kx 2–6x+1=0有两个实数根,则k 的取值范围是 .

15.(6分)计算:13229453

21036÷-?. (6分)解方程:2(x+2)2=x 2-4

16、计算:327 ÷

32 + ( 2 -1 )2 15、解方程:2x 2+x -6=0

17.计算 :⑴13229453

21036

÷-? ⑵ 275--23

18.解方程 :(1)x 2+2x -3=0 (2)3x 2-1=6x (用配方法)

19先化简,再求值:( 1x -y -1x +y )÷xy 2

x 2-y

2 ,其中 x = 2 +1,y = 2 -1,

20、阅读下面材料:解答问题

为解方程 (x 2-1)2-5 (x 2-1)+4=0,我们可以将(x 2-1)看作一个整体,然后设 x 2-1=y , 那么原方程可化为 y 2-5y +4=0,解得y 1=1,y 2=4.当y =1时,x 2-1=1,∴x 2=2,∴x =± 2 ; 当y =4时,x 2-1=4,∴x 2=5,∴x =± 5 ,故原方程的解为 x 1= 2 ,x 2=- 2 ,x 3= 5 , x 4=- 5 .上述解题方法叫做换元法;

请利用换元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0

21、某住宅小区在住宅建设时留下一块1798平方米的空地,准备建一个矩形的露天游泳池,设计如图示,游泳池的长是宽的2倍,在游泳池的前侧留一块5米宽的空地,其它三侧各保留2米宽的道路及1米宽的绿化带

(1)请你计算出游泳池的长和宽 (2)若游泳池深3米,现要把池底和池壁(共5个面) 都贴上瓷砖,请你计算要贴瓷砖的总面积

22. 某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.

23如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种草坪,

要使草坪的面积为540m 2

,求道路的宽。

24(本小题8分)如图10,利用一面墙,用80米长的篱笆围成一个矩形场地

(1)怎样围才能使矩形场地的面积为750平方米?

(2)能否使所围的矩形场地面积为810平方米,为什么?

.25一个小球以10m/s 的速度在平坦地面上开始滚动,并且均匀减速,滚动20m 后小球停下来.

(1)小球滚动了多少时间?(2)平均每秒小球的运动速度减少多少?

(3)小球滚动到5m 时约用了多少时间(精确到0.1s )?

侧空地

26.(8分)计算:)6332(2)23(2-+

-

27.(8分)解方程x (x -1)=2.

有学生给出如下解法:

∵ x (x -1)=2=1×2=(-1)×(-2), ∴ 1,12;x x =??-=?或2,11;x x =??-=?或1,12;x x =-??-=-?或2,1 1.x x =-??-=-?

解上面第一、四方程组,无解;解第二、三方程组,得 x =2或x =-1.

∴ x =2或x =-1.

请问:这个解法对吗?试说明你的理由.如果你觉得这个解法不对,请你求出方程的解.

28在数学活动课上,同学们用一根长为1米的细绳围矩形.

(1)小芳围出了一个面积为600㎝2的矩形,请你算一算,她围成的矩形的边长是多少?

(2)小华想用这根细绳围成一个面积尽可能大的矩形,请你用所学过的知识帮他分析应该怎么围,并求出最大面积.

一元二次方程的基本解法

第一讲:一元二次方程的基本解法 【知识要点】 ① 一元二次方程及其标准形式: 只含有一个未知数,且未知数的最高次数是二次的方程叫一元二次方程。 形如ax 2+bx+c=0(a 、b 、c 为常数,且a≠0)的方程叫一元二次方程的标准形式。 任何一元二次方程都可以通过去分母、去括号、移项、合并同类项等过程,转化为标准形式。 ② 一元二次方程的解法主要有: 直接开方法、配方法、求根公式法、因式分解法。 一元二次方程的求根公式为x 1,2=)04(2422≥--±-ac b a ac b b . ③一元二次方程解(根)的含义:使方程成立的未知数的值 【经典例题】 例1、直接开平方法 (1)x 2-196=0; (2)12y 2-25=0; (3)(x +1)2-4=0; (4)12(2-x )2-9=0. 例2 、配方法: (1)x 2-2x =0; (2)2 12150x x +-= (3)24x 2x 2=+ (4)17x 3x 2+= 例3 、求根公式法: (1) 1522-=x x (2) 052222 =--x x

(3)(x +1)(x -1)=x 22 (4)3x (x -3) =2(x -1) (x +1). 例4 、因式分解法: (1) x (3x +2)-6(3x +2)=0. (2)4x 2 +19x -5=0; (3) ()()2232 -=-x x x (4)x (x +1)-5x =0. 例5、换元法解下列方程: (1)06)12(5)12(2=+---x x (2) 06)1 (5)1(2=+---x x x x 例6、配方法的应用:求证:代数式122+--x x 的值不大于 4 5.

二次函数根的分布专题

一元二次方程根的分布专题 一元二次方程根的分布是二次函数中的重要内容。这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用。下面我们将主要结合二次函数图象的性质,分两种情况系统地介绍一元二次方程实根分布的充要条件及其运用。 一.一元二次方程根的基本分布——零分布 所谓一元二次方程根的零分布,指的是方程的根相对于零的关系。比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧。 设一元二次方程20(0)ax bx c a ++=≠的两个不等实根为1x ,2x ①方程有两个不等正根 ??? ? ? ? ??? >=>-=+>-=?>>00040,0212 1221a c x x a b x x ac b x x ②方程两根一正一负 :0021<<=<-=+>-=?<<00040,02121221a c x x a b x x ac b x x 即时应用: (1)若一元二次方程 0)1(2)1(2 =-++-m x m x m 有两个不等正根,求m 的取值范围。 (2)k 在何范围内取值,一元二次方程0332 =-++k kx kx 有一个正根和一个负根?

二、一元二次方程的非零分布——k分布 设一元二次方程20(0) ax bx c a ++=>的两不等实根为1x,2x,k为常数。则一元二次方 k1x2x k 根 的 分 布 ① 12 x x k② 12 k x x③ 12 x k x 图 象 充 要 条 件 2 b k a f k 2 b k a f k f k 根 的 分 布 ④ 1122 k x x k⑤ 11223 k x k x k⑥两根有且仅有一根在 12 ,k k内 图 象 充 要 条 件 1 2 12 2 f k f k b k k a 1 2 3 ()0 ()0 ()0 f k f k f k 12 f k f k 或 1 12 1 ()0 22 f k k k b k a 或 2 12 2 ()0 22 f k k k b k a k k k 2 k 1 k 2 k 1 k 3 k 2 k 1 k

二次方程根的分布情况归纳完整版

次方程根的分布与二次函数在闭区间上的最值归纳 9 元二次方程ax + bx + C = 0根的分布情况 设方程ax 2 +bx +c =O (a H O )的不等两根为X |, X 2且X 1 < X 2,相应的二次函数为 f (x )=ax 2 +bx + c = 0,方程的 根即为二次函数图象与 X 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分布情况 两个负根即两根都小于 0 (X j <0, X 2 <0 ) 两个正根即两根都大于 0 (为 >0,X 2 A O ) 一正根一负根即一个根小于 0, 一个大于 0(X i V Oc X 2 ) 大致图象(> a 得出的结论 A >0 f (0 )>0 A >0 存0 f (0 )>0 f (0)v 0 O 大致图象(V a 得出的结论 △ >0 A >0 舌。 l f (0)<0 占。 ”(0)<0 f (0)A 0 综合结论(不讨论 a o < b a 计(0)< 0

表二:(两根与k 的大小比 较) 分布情况 两根都小于k 即 ( >0 ) yJ \ / / ■ k K a 得 出的结论 o > A - 两根都大于k 即 X i A k, X 2 A k o > A - 一个根小于k ,一个大于k 即 x , < k < X 2 y l I \ k 八 J “ f (k )v 0 o 大致图象(< a 得出的结论 O > A - I A>0 t^>k 2a f (k )<0 f (k )>0 综合 结论(不讨论 a △ >0 」0 -^>k 2a a 计(k )A 0

一元二次方程的解法例析

一元二次方程的解法例析 【要点综述】: 且未知数的最高次数是2的整式方程叫做一元二次方程,一般式为:。一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程。因此判断一个方程是否为一元二次方程,要先看它是否为整式方程,若是,再对它进行整理,如能整理为 的形式,那么这个方程就是一元二次方程。 下面再讲一元二次方程的解法。解一元二次方程的基本思想方法是通过“降次”,将它化为两个一元一次方程。 一元二次方程的基本解法有四种:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。如下表: 方法适合方程类型注意事项 直接开平方法 ≥0时有解,<0时无解。 配方法二次项系数若不为1,必须先把系数化为1, 再进行配方。 公式法 ≥0时,方程有解;<0 时,方程无解。先化为一般形式再用公式。 因式分解法方程的一边为0,另一边分 解成两个一次因式的积。方程的一边必须是0,另一边可用任何方法分解因式。 【举例解析】 例1:已知,解关于的方程。

例2:用开平方法解下面的一元二次方程。 (1);(2) (3);(4) 说明:解一元二次方程时,通常先把方程化为一般式,但如果不要求化为一般式, 像本题要求用开平方法直接求解,就不必化成一般式。用开平方法直接求解,应注意方程两边同时开方时, 只需在一边取正负号,还应注意不要丢解。 例3:用配方法解下列一元二次方程。 (1);(2) 说明:配方是一种基本的变形,解题中虽不常用,但作为一种基本方法要熟练掌握。 配方时应按下面的步骤进行:先把二次项系数化为1,并把常数项移到一边; 再在方程两边同时加上一次项系数一半的平方。最后变为完全平方式利用直接开平方法即可完成解题任务。

二次函数和一元二次方程的关系

二次函数和一元二次方程的关系教学设计一教学设计思路通过小球飞行高度问题展示二次函数与一元二次方程的联系。然后进一步举例说明,从而得出二次函数与一元二次方程的关系。最后通过例题介绍用二次函数的图象求一元二次方程的根的方法。 教学目标二 1 知识与技能(1).经历探索函数与一元二次方程的关系的过程,体会方程与函数之间的联系。总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根. (2).会利用图象法求一元二次方程的近似解。 2 过程与方法 经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系. 情感态度价值观三 通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况培养学生自主探索意识,从中体会事物普遍联系的观点,进一步体会数形结合思想. 教学重点和难点四页 1 第 重点:方程与函数之间的联系,会利用二次函数的图象求一

元二次方程的近似解。 难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。 教学方法五 讨论探索法六教学过程设计(一)问题的提出与解决问题如图,以20m/s的速度将小球沿与地面成30角的方向击出时,球的飞行路线将是一条抛物线。如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系 h=20t5t2。考虑以下问题 (1)球的飞行高度能否达到15m?如能,需要多少飞行时间? (2)球的飞行高度能否达到20m?如能,需要多少飞行时间? (3)球的飞行高度能否达到20.5m?为什么? ?(4)球从飞出到落地要用多少时间分析:由于球的飞行高度h与飞行时间t的关系是二次函数 h=20t-5t2。 所以可以将问题中h的值代入函数解析式,得到关于t的一页 2 第 元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值。 解:(1)解方程15=20t5t2。t24t+3=0。t1=1,t2=3。

一元二次方程根的分布情况归纳总结

一元二次方程02 =++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不讨论 a ) ()00200b a a f ?>???-?? ()0 0200 b a a f ?>???->???>?? ()00

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>??? - ?? ()0 20 b k a a f k ?>??? - >???>?? ()0

二次函数与二次方程、二次不等式的关系

二次函数与二次方程、二次不等式的关系 一、知识梳理 知识点1、二次函数与一元二次方程、二次不等式有着十分紧密的联系;当二次函数 y=ax 2 +bx+c(a ≠0)的函数值y=0时,就是一元二次方程,当y ≠0时,就是二次不等式。 知识点2、二次函数的图象与x 轴交点的横坐标就是一元二次方程的根,图像的交点个数与一元二次方程的根的个数是完全相同的,这是数和形有机结合的重要体现。研究二次函 数y=ax 2+bx +c 图象与x 轴交点问题从而就转化为研究一元二次方程ax 2 +bx +c=0的根的问题,这样图像问题就可以转化成方程问题,应用根的判别式、韦达定理、求根公式等解题。 知识点3、二次函数与一元二次方程、二次不等式三者之间的内在联系如下表所示: 二、精典题型剖析 例1、已知二次函数y=x 2-(m -3)x -m 的图象是抛物线,如图 (1)试求m 为何值时,抛物线与x 轴的两个交点间的距离是3? (2)当m 为何值时,方程x 2-(m -3)x -m=0的两个根均为负数? (3)设抛物线的顶点为M ,与x 轴的交点P 、Q , 求当PQ 最短时△MPQ 的面积. 变式训练:1、函数y=ax 2-bx +c 的图象过(-1,0),则b a c a c b c b a ++ +++的值是________ 2、已知二次函数y=x 2-2x+3. (1) 若它的图像永远在x 轴的上方,则x 的取值范围是__________; (2) 若它的图像永远在x 轴的下方,则x 的取值范围是__________; (3) 若它的图像与x 轴只有一个交点,则x 的取值范围是__________. 3、已知二次函数y=x 2+mx +m -2.求证:无论m 取何实数,抛物线总与x 轴有两个交点. △=b 2﹣4ac △>0 △=0 △<0 二次函数 y=ax2+bx+c(a >0)的图像 x y O x y O x y O 一元二次方程 ax2+bx+c=0(a >0)的根 a b x 22 ,1?±-= a b x 2-= 无实数根 一元二次不等式 ax 2 +bx+c >0(a >0)的解集 x < 1x 或x >2x (1x <2x ) a b x 2- ≠ x 为全体实数 一元二次不等 ax2+bx+c <0(a >0)的解集 1x <x <2x (1x <2x ) 无解 无解

二元二次方程组解法例题

二元二次方程的解法 二次方程组的基本思想和方法 方程组的基本思想是“转化”,这种转化包含“消元”和“降次”将二元转化为一元是消元,将二次转化为一次是降次,这是转化的基本方法。因法和技巧是解二元二次方程组的关键。 型是由一个二元二次方程和一个二元一次方程组成的方程组;“二·二”型是由两个二元二次方程组成的方程组。 程组的解法 元法(即代入法) 二·一”型方程组的一般方法,具体步骤是: 次方程中的一个未知数用另一个未知数的代数式表示; 数式代入二元二次方程,得到一个一元二次方程; 元二次方程,求得一个未知数的值; 的这个未知数的值代入二元一次方程,求得另一个未知数的值;如果代入二元二次方程求另一个未知数,就会出现“增解”的问题; 个未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解。 与系数的关系 二元二次方程组中形如的方程组,可以根据一元二次方程根与系数的关系,把x、y看做一根,解这个方程,求得的z1和z2的值,就是x、y的值。当x1=z1时,y1=z2;当x2=z2时,y2=z1,所以原方程组的解是两组“对称解”。注意

二·一”型方程组的一种特殊方法,它适用于解“和积形式”的方程组。 比较常用的解法。除此之外,还有加减消元法、分解降次法、换元法等,解题时要注意分析方程的结构特征,灵活选用恰当的方法。 解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组。(2)要防止漏解和增解的错误。 程组的解法 中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二型方程组,所得的解都是原方程组的解。 中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程组成新的方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程的解。 方程组最多有两个解,“二·二”型方程组最多有四个解,解方程组时,即不要漏解,也不要增解。 析:例1.解方程组 观察这个方程组,不难发现,此方程组除可用代入法解外,还可用根与系数的关系,通过构造一个以x, y为根的一元二次方程来求解。 1)得y=8-x..............(3) 把(3)代入(2),整理得x2-8x+12=0. 解得x1=2, x2=6.

一元二次方程及其解法

第2课时 一元二次方程及其解法 一·基本概念理解 1 一元二次方程的定义: 含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边加一个关于未知数x 的二次多项式,等式右边是零,其中2 ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 2、一元二次方程的解法 (1)、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。 直接开平方法适用于解形如 b a x =+2 )(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 (2)、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有2 22)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 (3)、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程 )0(02 ≠=++a c bx ax 的求根公式:

) 04(2422≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c (4)、因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 (5)、韦达定理 若1x ,2x 是一元二次方程的一般形式:)0(02≠=++a c bx ax 的两个实数根,则 a b x x -=+21,a c x x =21。以上的就称为韦达定理(或称为根与系数的关系)利用 韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=a b -,二根之积 =a c 也可以表示为a b x x -=+21,a c x x =21。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用 3、一元二次方程根的判别式 根的判别式 一元二次方程)0(02≠=++a c bx ax 中,ac b 42 -叫做一元二次方程 )0(02≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42-=?

二次函数与一元二次方程的关系及解析式求法

1.一元二次方程ax 2 +bx+c=0(a ≠0)的解的情况等价于抛物线y=ax 2 +bx+c(c ≠0)与直线y=0(即x 轴)的公共点的个数。抛物线y=ax 2 +bx+c(a ≠0)与x 轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有: (1)抛物线y=ax 2 +bx+c 与x 轴有两个公共点(x 1,0)(x 2,0)一元二次方程ax 2 +bx+c=0有两个不等实根 △ =b 2 -4ac>0。 (2)抛物线y=ax 2 +bx+c 与x 轴只有一个公共点时,此公共点即为顶点 一元二次方程ax 2 +bx+c=0有两 个相等实根, (3)抛物线y=ax 2 +bx+c 与x 轴没有公共点 一元二次方程ax 2 +bx+c=0没有实数根 △=b 2 -4ac<0. (4)事实上,抛物线y=ax 2 +bx+c 与直线y=h 的公共点情况方程ax 2 +bx+c=h 的根的情况。 抛物线y=ax 2 +bx+c 与直线y=mx+n 的公共点情况方程ax 2 +bx+c=mx+n 的根的情况。 2.二次函数解析式求法 例1、二次函数与一元二次方程 1、抛物线2 283y x x =--与x 轴有 个交点,因为其判别式2 4b ac -= 0,相应二次方程2 3280 x x -+=的根的情况为 . 2、函数2 2y mx x m =+-(m 是常数)的图像与x 轴的交点个数为( ) A .0个 B .1个 C .2个 D .1个或2个 3、关于二次函数2 y ax bx c =++的图像有下列命题:①当0c =时,函数的图像经过原点;②当0c >,且函数的图 像开口向下时,方程2 0ax bx c ++=必有两个不相等的实根;③函数图像最高点的纵坐标是244ac b a -;④当0b =时, 知识梳理 新课讲解

一元二次方程及解法

课题:复习一元二次方程及其解法 【课前热身】 1.方程3(1)0x x +=的二次项系数是 ,一次项系数是 ,常数项是 . 2.一元二次方程 x 2=3x 的根是 . 3.一元二次方程2230x x --=的根是 . 4. 关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实 数 p =( ) 5.关于x 的方程1 (3)(1)30n n x n x n +++-+=是一元二次方程,则一次项系数是 . 【课标解读】 1了解一元二次方程的有关概念,知道一元二次方程的一般形式; 2会用直接开平方法、配方法、公式法、因式分解法解简单系数的一元二次方程,并根据方程的特点,灵活选择方程的解法(重点) 【命题趋向】一元二次方程是中考的重点,一元二次方程的解法以选择题和解答题为主。 【考点精要】 1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数。(警告:判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .) 2. 一元二次方程的常用解法: (1)直接开平方法:形如 )0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法. (警告:用直接开平方的方法时要记得取正、负.) (2)配方法:用配方法解一元二次方程 ()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(警告: 用配方法时二次项系数要化1.) (3)公式法:一元二次方程 20(0)ax bx c a ++=≠的求根公式是 21,2(40)2b x b ac a -±=-≥.(警告:方程要先化成一般形式.) (4)因式分解法:1提取公因式2运用公式法(平方差公式和完全平方公式)3十字相乘法: 因式分解法的步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.(警告:方程要先化成一般形式.) 3、一元二次方程的根的判断式 若 ()02≠=++a o c bx ax , 则

二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳 1、一元二次方程 02=++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的 根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不讨论 a ) ()00200b a a f ?>???-?? ()0 0200 b a a f ?>???->? ??>?? ()00

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>???-?? ()0 20 b k a a f k ?>???->? ??>?? ()0

二次函数与一元二次方程的关系

二次函数与一元二次方程的关系 青白江区人和学校彭足琼 凡是学过初中数学的学生,你问他们初中数学中,最难的知识是什么?他们会不约而同地说:“二次函数”。没错,不仅仅是学生觉得二次函数难,包括所有从事初中数学教学的一线教师也会有同样的感受。所以,怎样才能学好二次函数,成为了初中学生和老师最最苦恼的问题。二次函数之所以难,我认为二次函数难就难在函数本身就是一个比较抽象的知识,再加上二次函数有三个参数,比一次函数和反比例函数都多,还有就是二次函数的题目不仅仅考它本身的知识,它还可以把初中所有的代数和几何知识放入其中,可见,二次函数成为各个地区中考的压轴题变成了理所当然的事。 既然二次函数题可以把初中所有的代数和几何知识放入其中,因此,把二次函数与其它知识紧密联系起来,是我们老师和学生必须掌握的本领。这里,我就浅谈一下二次函数和一元二次方程的关系及怎样运用一元二次方程的知识来解决一些二次函数的题目,希望能给同学们和老师一点点启示和收获。 1、二次函数与一元二次方程形式上的联系与区别。我们清楚的明白,形如:ax2+bx+c=0(a、b、c为常数,且a≠0)的方程是一元二次方程,而形如:y= ax2+bx+c(a、b、c为常数,a≠0)是二次函数。认真观察一元二次方程:ax2+bx+c=0(a、b、c为常数,且a ≠0)和二次函数:y= ax2+bx+c(a、b、c为常数,a≠0),不难发现,它们在形式上几乎相同,差别也只是一元二次方程的表达式等于

0,而二次函数的表达式等于y。为什么会这样?主要是因为当二次函数中的变量y取0时,二次函数就变成了一元二次方程。 2、二次函数与一元二次方程在二次函数图像上的关系。正是因为二次函数与一元二次方程在形式上的类似,使得二者在二次函数的图像上的关系格外密切。二次函数的图像是一条抛物线,在求抛物线:y= ax2+bx+c与x轴的交点坐标时,令y=0,即:ax2+bx+c=0,二次函数一下就变成了一元二次方程,再求出该方程的解,这个方程的解便是抛物线与x轴的交点坐标的横坐标。由于一元二次方程ax2+bx+c=0的根有三种情况①b2-4ac>0时有两个不等的实数根;②b2-4ac=0时有两个相等的实数根③b2-4ac<0时没有实数根,所以相应地:抛物线y= ax2+bx+c与x轴的交点情况有3种:①当b2-4ac>0时,抛物线与x轴有两个交点②当b2-4ac=0时,抛物线与x轴有一个交点③当b2-4ac<0时,抛物线与x轴有没有交点。因此,一元二次方程ax2+bx+c=0的解就是二次函数y= ax2+bx+c的图像与x轴的交点的横坐标;二次函数y= ax2+bx+c的图像与x轴的交点情况与一元二次方程:ax2+bx+c=0的根情况有关。可见二者在二次函数的图像上的关系格外密切。 3、应用一元二次方程解决二次函数问题。正是因为一元二次方程与二次函数无论在形式上,还是在图形上,关系都十分紧密,所以在解决很多二次函数题时,经常都要应用一元二次方程的知识。这里,我就列举几个典型题: 典型例题(1):求证:二次函数y=3x2+(2m+3)x+2m2+1的值

最新二元二次方程组的解法

二元二次方程的解法 一、内容综述: 1.解二元二次方程组的基本思想和方法 解二元二次方程组的基本思想是“转化”,这种转化包含“消元”和“降次”将二元转化为一元是消元,将二次转化为一次是降次,这是转化的基本方法。因此,掌握好消元和降次的一些方法和技巧是解二元二次方程组的关键。 2.二元二次方程组通常按照两个方程的组成分为“二·一”型和“二·二”型,又分别成为Ⅰ型和Ⅱ型。 “二·一”型是由一个二元二次方程和一个二元一次方程组成的方程组;“二·二”型是由两个二元二次方程组成的方程组。 “二·一”型方程组的解法 (1)代入消元法(即代入法) 代入法是解“二·一”型方程组的一般方法,具体步骤是: ①把二元一次方程中的一个未知数用另一个未知数的代数式表示; ②把这个代数式代入二元二次方程,得到一个一元二次方程; ③解这个一元二次方程,求得一个未知数的值; ④把所求得的这个未知数的值代入二元一次方程,求得另一个未知数的值;如果代入二元二次方程求另一个未知数,就会出现“增解”的问题; ⑤所得的一个未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解。 (2)逆用根与系数的关系 对“二·一”型二元二次方程组中形如的方程组,可以根据一元二次方程根与系数的关系,把x、y看做一元二次方程z2-az+b=0的两个根,解这个方程,求得的z1和z2的值,就是x、y的值。当x1=z1时,y1=z2;当x2=z2时,y2=z1,所以原方程组的解是两组“对称解”。 注意:不要丢掉一个解。 此方法是解“二·一”型方程组的一种特殊方法,它适用于解“和积形式”的方程组。

以上两种是比较常用的解法。除此之外,还有加减消元法、分解降次法、换元法等,解题时要注意分析方程的结构特征,灵活选用恰当的方法。 注意:(1)解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组。(2)要防止漏解和增解的错误。 “二·二”型方程组的解法 (i) 当方程组中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二·一”型方程组,解得这两个“二·一”型方程组,所得的解都是原方程组的解。 (ii) 当方程组中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程分解所得的每一个二元一次方程组成新的方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程的解。 注意:“二·一”型方程组最多有两个解,“二·二”型方程组最多有四个解,解方程组时,即不要漏解,也不要增解。 二、例题分析: 例1.解方程组 分析:仔细观察这个方程组,不难发现,此方程组除可用代入法解外,还可用根与系数的关系,通过构造一个以x, y为根的一元二次方程来求解。 解法一:由(1)得y=8-x (3) 把(3)代入(2),整理得x2-8x+12=0. 解得x1=2, x2=6. 把x1=2代入(3),得y1=6. 把x2=6代入(3),得y2=2. 所以原方程组的解是。 解法二:根据根与系数的关系可知:x, y是一元二次方程,

一元二次方程的实根分布问题

一元二次方程的实根分布问题 问题1. 试讨论方程02 =++c bx x 的根的情况。 (1) 根的个数:b 、c 满足什么条件时,方程有两个不等的实根?相等实根?无实根? (2) 根的大小:b 、c 满足什么条件时,方程有两个正根?两个负根?一正根、一负根? 一根为0? (3) 根的范围:b 、c 满足什么条件时,方程两根都大于1?都小于1?一根小于1,一根 大于1? 说明 对于一元二次方程)0(02≠=++a c bx ax 的根的研究,主要分为四个方面(A )有没有实数根;(B )有实数根时,两根相等还是不等;(C )根的正负;(D )根的分布范围。 利用根的判别式,可以解决(A ),(B ),结合运用韦达定理,可以解决(C )。而要解决(D ),需综合运用判别式、韦达定理及不等式的知识。 思路1 (方程思想)设c bx x x f ++=2)( (1) 方程0)(=x f 有两个大于1的实根的充要条件是: ?? ???->+-<≥-??????>-->+≥?12040)1)(1(2 022121c b b c b x x x x (2) 方程0)(=x f 有两个小于1的实根的充要条件是: ?? ???->+->≥-??????>--<+≥?12040)1)(1(2 022121c b b c b x x x x (3) 方程0)(=x f 有一根大于1,一根小于1的充要条件是.1,0)(-<++≥--++=≥-=?>-.104201)1(0 41222c b c b b c b f c b b (2) 方程0)(=x f 有两根都小于1的条件是:

高一数学二元二次方程组解法

方程 22260x xy y x y +++++= 是一个含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,这样的方程叫做二元二次方程.其中2x ,2xy ,2y 叫做这个方程的二次项,x ,y 叫做一次项,6叫做常数项. 我们看下面的两个方程组: 224310,210; x y x y x y ?-++-=?--=? 222220,560. x y x xy y ?+=??-+=?? 第一个方程组是由一个二元二次方程和一个二元一次方程组成的,第二个方程组是由两个二元二次方程组成的,像这样的方程组叫做二元二次方程组. 下面我们主要来研究由一个二元二次方程和一个二元一次方程组成的方程组的解法. 一个二元二次方程和一个二元一次方程组成的方程组一般可以用代入消元法来解. 例1 解方程组 22440,220.x y x y ?+-=?--=? 分析:二元二次方程组对我们来说较为生疏,在解此方程组时,可以将其转化为我们熟悉的形式.注意到方程②是一个一元一次方程,于是,可以利用该方程消去一个元,再代入到方程①,得到一个一元二次方程,从而将所求的较为生疏的问题转化为我们所熟悉的问题. 解:由②,得 x =2y +2, ③ 把③代入①,整理,得 8y 2+8y =0, 即 y (y +1)=0. ①

解得 y 1=0,y 2=-1. 把y 1=0代入③, 得 x 1=2; 把y 2=-1代入③, 得x 2=0. 所以原方程组的解是 112,0x y =??=?, 22 0,1.x y =??=-? 说明:在解类似于本例的二元二次方程组时,通常采用本例所介绍的代入消元法来求解. 例2 解方程组 7,12.x y xy +=??=? 解法一:由①,得 7.x y =- ③ 把③代入②,整理,得 27120y y -+= 解这个方程,得 123,4y y ==. 把13y =代入③,得14x =; 把24y =代入③,得23x =. 所以原方程的解是 114,3x y =??=?, 223,4. x y =??=? 解法二:对这个方程组,也可以根据一元二次方程的根与系数的关系,把,x y 看作一个一元二次方程的两个根,通过解这个一元二次方程来求,x y . 这个方程组的,x y 是一元二次方程 27120z z --= 的两个根,解这个方程,得 3z =,或4z =. 所以原方程组的解是 114,3;x y =?? =? 223,4. x y =??=? 练 习: ①

一元二次方程的解法—公式法

课题:1.2一元二次方程的解法 (4) 班级 姓名 【学习目标】 1、会用公式法解一元二次方程. 2、用配方法推导一元二次方程的求根公式,明确运用公式求根的前提条件是b 2 -4ac ≥0. 【重点难点】 重点:掌握一元二次方程的求根公式,并应用它熟练地解一元二次方程。 难点:掌握一元二次方程的求根公式及代入时的符号问题. 【新知导学】 读一读:阅读课本P 14-P 16 想一想: 1. 用配方法解一元二次方程的一般步骤是什么? 2. 用配方法解一元二次方程20(0)ax bx c a ++=≠ 因为0a ≠,方程两边都除以a ,得 把常数项移到方程右边,得 配方,得 即2224()24b b ac x a a -+= 当 0≥时 ,2422b b ac x a a -+=± 即42b b ac x a -±-= 。 3.在上述配方过程中,若240b ac -≥< 0时,方程有实数根吗? 练一练: 1.方程4-x 2=3x 中a= ,b= ,c= , b 2-4ac= 2. 用公式法解方程0232 =+-x x 【新知归纳】 一般的,对于一元二次方程)0(02≠=++a c bx ax

(1) 当_____________时,它的实数根是_________________.这个公式叫一元二次方程的求根 公式,利用这个公式解一元二次方程的方法叫公式法。 (2) 当_____________时,方程没有实数根。 【例题教学】 例1.用公式法解方程: (1)22330 x x -+= (2)x x 2322=- (3)a a a =-+)2)(2(51 (4)23(1)y y += 例2.已知y 1=2x 2+7x -1,y 2=6x +2,当x 取何值时y 1=y 2? 【当堂训练】 1.用公式法解方程3x 2+4=12x ,下列代入公式正确的是( ) A.x=21214412-± B. x=2 1214412-±- C. x= 21214412+± D. x=64814412-± 2.用公式法解下列方程: (1)2220x x +-=; (2)2 30x x -=

二次函数与一元二次方程知识点及经典例题

二次函数y=ax 2+bx +c 与ax 2+bx +c =0(a ≠0)的关系 1、 一元二次方程ax 2 +bx +c =0(a ≠0)的根是二次函数y=ax 2 +bx +c (a ≠0)与x 轴交 点的横坐标,反之y=ax 2+bx +c (a ≠0)与x 轴交点的横坐标是一元二次方程ax 2 +bx +c =0(a ≠0)的根; 2、 一元二次方程ax 2+bx +c =0(a ≠0)根情况的判别即二次函数y=ax 2 +bx +c (a ≠0) 与x 轴交点个数情况:①判别式?②直接看方程③平移 例1:抛物线y=ax 2 +bx +c 图像如下, 则 ① ax 2 +bx +c =0的根有 ( )个 ②ax 2 +bx +c+3=0的根有( )个 ③ax 2 +bx +c -4=0的根有( )个 x 3-≥a 例 2:若关于x 的不等式组 无解,则二次函数y=(a-2)x 2 -x +4 1与X x a 515-≤ 轴交点有( )个; 例3:一元二次方程22717 ) 83(2 -=-x y 与X 轴的交点个数为( )个; 例4:二次函数y=ax 2 +bx +c (a ≠0)的图像如图所示,根据图像解答下列问题: (1) 写出方程ax 2 +bx +c =0的两个根; (2) 写出不等式ax 2 +bx +c >0的解集; (3) 写出y 随x 的增大而减小的自变量x 的取值范值; (4) 若方程ax 2 +bx +c =k 有两个不相等的实数根,求k 的取什范围。 3、 韦达定理在二次函数y=ax2+bx +c (a ≠0)中的应用( a c a b x x x x =-=+2121,) ① 已知其中一个交点,求另一个交点: 例5:若抛物线m x y x +-= 22 与X 轴的一个交点是 (-2,0)则另一个交点是( ); ② 求两交点A,B 线段的长度x x x x AB 212 421) (-=+ 例6:若抛物线32 -+= ax y x 与X 轴的交点为A ,B ,且AB 的长度为10,求a ③ 利用韦达定理求面积:

二元二次方程组及其解法

八年级第21讲 二元二次方程组及其解法 知识点1:二元二次方程及二元二次方程组的有关概念: 1、 定义:仅含有两个未知数,并且含有未知数的项的最高次数是2次的整式方程, 叫做二元二次方程。 如:0542 2 =-+y xy x ,5=xy ,042 2 =-y x ,024522 2 =+++-y x y xy x 等。 2、 注意点: (1)二元二次方程是整式方程。(2)二元二次方程含有两个未知数。 (3)含有未知数的项的最高次数是2 3、一般式 : 220ax bxy cy dx ey f +++++=.这里,必须强调a 、b 、c 中至少有一个不是零,否则 就不是二元二次方程了。“a 、b 、c 中至少有一个不是零”也可以说成“a 、b 、c 不都为零”,但不能说成“不为零”或“都不为零”,因为它们的意义是不一样的。 4、二元二次方程的解: 能使二元二次方程左右两边的值相等的一对未知数的值,叫做二元二次方程的解。 5、二元二次方程组: 定义:仅含有两个未知数,并且含有未知数的项的最高次数是2次的整式方程所组成的方程组,叫做二元二次方程组。如: 6、二元二次方程组的解: 二元二次方程组中所含方程的公共解,叫做二元二次方程组的解。 例1、在方程组①???==-132xy y x 、②()???=-=-12232xy x x y x 、③???=-=-32232y y x 、④?????=-=+5 7xy x xy x 、 ⑤? ??-==24 yz xy 中,是二元二次方程组的共有_____个. 分析:抓住关键(1)组内方程是整式方程。(2)方程组中含有两个未知数。 (3)含有未知数的项的最高次数是2

相关主题
相关文档 最新文档