当前位置:文档之家› 行波天线方向图仿真实验报告(B5)

行波天线方向图仿真实验报告(B5)

行波天线方向图仿真实验报告(B5)
行波天线方向图仿真实验报告(B5)

天线与电波传播实验报告

08 级队区队学员姓名学号

实验组别 3 同组人实验日期2011.12.22 实验成绩

实验项目:行波天线方向图仿真实验

实验目的:

1.加深对行波天线工作原理的理解;

2.理解行波单导线的长度对天线方向性的影响;

3.了解菱形天线的参数选取。

实验器材:

1.计算机

2.MATLAB软件

实验原理阐述、实验方案:

一、实验原理

1.行波单导线的方向性

行波单导线是指天线上电流按行波分布的单导线天线。设长度为l 的导线沿z轴放置,如图2所示,导线上电流按行波分布,即天线沿线各点电流振幅相等,相位连续滞后,其馈电点置于坐标原点。设输入端电流为I0,忽略沿线电流的衰减,则线上电流分布为

'jk z 0e I )'z (I -=

(2-1)

z

o

R

r

kz cos

θ??l

dz ′

θ

图2 行波单导线及其坐标

行波单导线辐射场的分析方子相似法与对称振,即首先把天线分割成许多个电基本振子,而后取所有电基本振子辐射场的总和,故

?θ-θθλ

=l 0)cos 'z r (jk 'jk z 0

'dz e e sin r I 60j

E )cos 1(2

k l

j jk r 0e )]cos 1(2

kl sin[cos 1sin e r I 60j θ--θ-θ-θλ= (2-2)

式中,r 为原点至场点的距离;θ为射线与z 轴之间的夹角。由上式可得行波单导线的方向函数为

)

cos 1()]cos 1(2

kl

sin[

sin )(f θ-θ-θ

(2-3)

根据上式可画出行波单导线的方向图如图3所示,由图可以看出行波单导线的方向性具有如下特点:

(a)(b)(c)

θm θ =0°

z

52.5??

z

θ =0°

40.5??

z

θ =0°

29??

θm

θm

图3 行波单导线方向图

(1)沿轴线方向没有辐射。这是由于基本振子沿轴线方向无辐射之故。

(2)导线长度愈长,最大辐射方向愈靠近轴线方向,同时主瓣愈窄,副瓣愈大且副瓣数增多。

(3)当l/λ很大时,主瓣方向随l/λ变化趋缓,即天线的方向性具有宽频带特性。 二、实验方案步骤

1.行波单导线方向函数的MATLAB 程序实现;

建立坐标系,标示出天线的位置及放置方式,将图2中的坐标变量和sph2cart 函数的坐标变量之间的关系对应好,得到行波单导线的立体方向图。

2.分析行波单导线长度对天线方向性的影响;

改变行波单导线的长度(从1λ到10λ),观察行波单导线长度的变化对立体方向图的影响,并将结果生成avi 动画文件。

实验数据:

一、行波单导线的方向图

二、行波单导线长度的变化对应的立体方向图

三、行波单导线长度的变化对应的二维方向图。

实验结果分析:

1、沿导线轴线方向没有辐射。这是由于基本振子沿轴线方向无辐射

之故。

2、导线长度愈长,最大辐射方向愈靠近轴线方向,同时主瓣愈窄,副

瓣愈大且副瓣数增多。

3、当l/λ很大时,主瓣方向随 l /λ变化趋缓,即天线的方向性具有

宽频带特性。

实验小结及建议:

1、小结:行波单导线是一种结构简单、架设维护方便的弱方向性天线,

特别适用于半固定式短波电台。但其主要缺点是工作频带窄,馈线上行波系数很低,特别是在低频端尤为严重。因此,不宜在大功率电台或馈线很长的情况下使用。必要时为了改善馈线上的行波系数,应在馈线上加阻抗匹配装置。

2、建议:做实验前,能够稍微详细地对程序进行讲解,以利于更好为后续实验服务。

教员评语:

微波与天线实验报告

实验一基本辐射单元方向图 一、实验目的 基本辐射单元,指的是基本电振子(电偶极子),基本磁振子(磁偶极子),基本缝隙,惠更斯面元等。它们是构成实际天线的基本单元。通过本次实验了解这些基本辐射单元在空间产生的辐射场。二、实验指导 实验界面有三个显示区:立体方向图、E面方向图、H面方向图,分别用来显示基本辐射单元在空间产生的辐射场的立体方向图、E面方向图和H面方向图。界面下端有六个按钮:基本电振子、基本磁振子、基本缝隙、惠更斯面元、Return、Help。 点击按钮基本电振子,则基本电振子的方向图在显示区内显示出来,由显示图形可见基本电振子所辐射的电磁场强度不仅与r有关,而且与观察方向θ有关。在振子的轴线方向,场强为零;在垂直于振子轴的方向上,场强最大;在其它方向上,场强正比于sinθ。 点击按钮基本磁振子,则基本磁振子的方向图在显示区内显示

出来,由显示图形可见基本磁振子所辐射的电磁场的空间图形与基本电振子一样,这是因为基本电振子的辐射是振子上电流产生的辐射与基本磁振子的辐射是振子表面切向磁场产生的磁场是等效的。 点击按钮基本缝隙,则基本缝隙的方向图在显示区内显示出来,由显示图形可见基本缝隙所辐射的电磁场与基本磁振子完全相同,基本缝隙与基本磁振子是等效的。 点击按钮惠更斯面元,则惠更斯面元的方向图在显示区内显示出来,由显示图形可见惠更斯面元所辐射的电磁场在空间是一个对称于面元法线的心脏形方向图。

点击按钮Return ,返回天线实验总界面。 实验二对称阵子方向图分析 一、实验目的: 通过MATLAB 编程,熟悉电基本阵子和对称阵子的辐射特性,了解影响对称阵子辐射的因素及其变化对辐射造成的影响 二、实验原理: 1.电基本振子的辐射 电基本振子(Electric Short Dipole )又称电流元,它是指一段理想的高频电流直导线,其长度l 远小于波长λ,其半径a 远小于l ,同时振子沿线的电流I 处处等幅同相。用这样的电流元可以构 成实际的更复杂的天线,因而电基本振子的辐射特性是研究更复杂天y x z l O I r ? θ E θH ? E r

HFSS天线仿真实验报告

HFSS天线仿真实验报告 半波偶极子天线设计 通信0905 杨巨 U200913892 2012-3-7

半波偶极子天线仿真实验报告 一、实验目的 1、学会简单搭建天线仿真环境的方法,主要是熟悉HFSS软件的使用方法 2、了解利用HFSS仿真软件设计和仿真天线的原理、过程和方法 3、通过天线的仿真,了解天线的主要性能参数,如驻波比特性、smith圆图特性、方向图 特性等 4、通过对半波偶极子天线的仿真,学会对其他类型天线仿真的方法 二、实验仪器 1、装有windows系统的PC一台 2、HFSS13.0软件 3、截图软件 三、实验原理 1、首先明白一点:半波偶极子天线就是对称阵子天线。 2、 对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。一臂的导线半径为a,长度为l。两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=2l。对称振子的长度与波长相比拟,本身已可以构成实用天线。 3、 在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布。取图1的坐标,并忽略振子损耗,则其电流分布可以表示为: 式中,Im为天线上波腹点的电流;k=w/c为相移常数、根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心店对称;超过半波长就会出现反相电流。 4、 在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z)、长度为dz的电流元件串联而成。利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。

电流元I(z)dz所产生的辐射场为 图2 对称振子辐射场的计算 如图2 所示,电流元I(z)所产生的辐射场为 其中 5、方向函数 四、实验步骤 1、设计变量 设置求解类型为Driven Model 类型,并设置长度单位为毫米。 提前定义对称阵子天线的基本参数并初始化 2、创建偶极子天线模型,即圆柱形的天线模型。 其中偶极子天线的另外一个臂是通过坐标轴复制来实现的。 3、设置端口激励 半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面。 4、设置辐射边界条件 要在HFSS中计算分析天线的辐射场,则必须设置辐射边界条件。这里创建一个沿Z轴放置的圆柱模型,材质为空气。把圆柱体的表面设置为辐射边界条件。 5、外加激励求解设置 分析的半波偶极子天线的中心频率在3G Hz,同时添加2.5 G Hz ~3.5 G Hz频段内的扫频设置,扫频类型为快速扫频。

天线线列阵方向图

阵列方向图及MATLAB 仿真 1、线阵的方向图 2 ()22cos(cos )R φψπφ=+- MATLAB 程序如下(2元): clear; a=0:0.1:2*pi; y=sqrt(2+2*cos(pi-pi*cos(a))); polar(a,y); 图形如下: 若阵元间距为半波长的M 个阵元的输出用方向向量权重11(,,)M j j M g e g e φφ???加以组合的话,阵列的方向图为 [(1)cos()]1()m M j m m m R g e ψπφφ--==∑ MATLAB 程序如下(10个阵元): clear; f=3e10; lamda=(3e8)/f;

beta=2.*pi/lamda; n=10; t=0:0.01:2*pi; d=lamda/4; W=beta.*d.*cos(t); z1=((n/2).*W)-n/2*beta* d; z2=((1/2).*W)-1/2*beta* d; F1=sin(z1)./(n.*sin(z2));i K1=abs(F1) ; polar(t,K1); 方向图如下: 2、圆阵方向图程序如下: clc; clear all; close all; M = 16; % 行阵元数 k = 0.8090; % k = r/lambda DOA_theta = 90; % 方位角 DOA_fi = 0; % 俯仰角 % 形成方位角为theta,俯仰角位fi的波束的权值m = [0 : M-1];

w = exp(-j*2*pi*k*cos(2*pi*m'/M-DOA_theta*pi/180)*cos(DOA_fi*pi/180)); % w = exp(-j*2*pi*k*(cos(2*pi*m'/M)*cos(DOA_theta*pi/180)*cos(DOA_fi*pi/180)+sin(2*pi*m'/M)*si n(DOA_fi*pi/180))); % 竖直放置 % w = chebwin(M, 20) .* w; % 行加切比雪夫权 % 绘制水平面放置的均匀圆阵的方向图 theta = linspace(0,180,360); fi = linspace(0,90,180); for i_theta = 1 : length(theta) for i_fi = 1 : length(fi) a = exp(-j*2*pi*k*cos(2*pi*m'/M-theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180)); %a=exp(-j*2*pi*k*(cos(2*pi*m'/M)*cos(theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180)+sin(2*pi*m'/ M)*sin(fi(i_fi)*pi/180))); % 竖直放置 Y(i_theta,i_fi) = w'*a; end end Y= abs(Y); Y = Y/max(max(Y)); Y = 20*log10(Y); % Y = (Y+20) .* ((Y+20)>0) - 20; % 切图 Z = Y + 20; Z = Z .* (Z > 0); Y = Z - 20; figure; mesh(fi, theta, Y); view([66, 33]); title('水平放置时的均匀圆阵方向图'); % title('竖面放置时的均匀圆阵方向图'); % 竖直放置 axis([0 90 0 180 -20 0]); xlabel('俯仰角/(\circ)'); ylabel('方位角/(\circ)'); zlabel('P/dB'); figure; contour(fi, theta, Y); 方向图如下:

天线技术实验报告

天线技术实验报告 Harbin Institute of Technology 天线技术实验报告 姓名:班级:学号:院系:电信学院 xx年5月 实验一天线方向图的测量 一、实验目的 1、通过实验掌握天线方向图测量的一般方法。 2、喇叭口径尺寸对方向图影响,E面、角锥喇叭与圆锥喇叭的比较。 二、实验设备 发射源:信号发生器、测量线、被测天线、发射天线、天线转台、检波器或微波小功率计等。测量装置如图1所示。发射天线接收天线 匹配器衰减器信号源 图1 天线方向图测试系统 在接收端如有功率计,可直接用它测而不必用检波器,根据条件而定。

可变衰减器检波器选频放大器三、实验原理 测量方法: 1、固定天线法:被测天线不动以它为圆心在等圆周上测得场强的方式。 2、旋转天线法:标准天线不动为发射天线,而待测天线为接收天线,而自身自旋一周所测的方向图。本实验采用的是旋转天线的方法。测量步骤: 无论是固定测量或者旋转天线法,他们都是可动天线每改变一个角度记录下来一个数值,改变一周即得到360度范围内的方向图。测量要求: ①测量天线时,收发天线应该保持水平和垂直方向上的对齐; ②调节发射天线的衰减,使接受天线上的感应电流大于60mA,以保证测得方向图的明显; ③在旋转天线的测量平面时,应该将收发天线同时旋转,避免产生极化垂直的问题,使得无法测量。 四、实验步骤 本试验是3公分波长的角锥喇叭,所用的仪器是微波分光仪,采用旋转天线法,标准天线不动,并将它 固定在旋转盘上,待测天线旋转一周所测数据。 1、把待测天线即3公分波长的角锥喇叭固定在微波分光议的旋转盘上,再将标准喇叭固定在信号发生器上面,首

实验二电磁波发射天线的模拟仿真

实验二电磁波发射天线的模拟仿真电动力学实验报告电磁波发射天线的模拟仿真 学院: 应用科学学院专业班级: 学生姓名: 某某某 学号: 指导教师: 完成时间: 2013年7月2号 一、实验目的 1(熟悉并了解CST 的软件环境。 2(通过实验掌握天线的实际画法及步骤。 3(了解电磁波发射天线的模拟仿真过程,进一步了解电磁波发射现象。 二、实验原理及要求 在CST微波工作室中,通常采用瞬态求解器来计算天线,典型的天线特性,如S参量(S参数)、主瓣方向、增益、效率等,都将被自动计算和显11 示。按照如下图的天线模型形自行设计可接受2GHz左右的电磁波信号的天线并仿真出结果,同时作出一定分析。(碳纳米管的半径为R,轴向方向沿z轴,长度为L,中间馈电端口缝隙为D) 三、实验步骤 1、选择天线模板 启动CST,在弹出的“Welcome”对话框中点击“OK” 按钮,创建一个新项目。然后会看到选择模板对话框,选择 Antenna(Horn,Waveguide),并点击OK按钮。 2、设置单位

用鼠标左键单击主菜单上的按钮,在下拉菜单中 选择,然后在弹出的对话框中将单位设置值更改为: mm,GHz,ns,然后点击OK按钮。 3、设置背景材料 假设天线在理想的真空环境中。用鼠标左键单击主菜单 上的按钮,在下拉菜单中选择,然后在弹出的对话框中设置各参数。 4、定义天线结构 用鼠标左键单击主菜单上的按钮,在下拉菜单中 选择 ,然后在弹出的对话框中设置各参数。其中 a,,。 5、建立模型 天线为圆柱结构,用鼠标左键单击主菜单上的按钮,在下拉菜单中选择,在出现的子菜单中选择,然后再按下键盘上的ESC键,在出现在对话框中输入碳纳米管天线的半径、长度、材料特性等参数。设置完成后点击OK按钮。 用鼠标左键单击主菜单上的按钮,在下拉菜单中选择 ,在出现的子菜单中选择,然后再按下键盘上的ESC键,在出现在对话框中输入碳纳米管天线的半径、长度、材料特性等参数。设置完成后点击OK按钮。 6、定义激励端口 为了给天线提供馈电端口,设置柱体中间部分为馈电缝隙,采用中心馈电。用鼠标左键单击主菜单上的按钮,在下拉菜单中选择,在出现的子菜单中选择,然后再按下键盘上的ESC键,在出现在对话框中输入碳纳米管天线的半径、长度、材料特性等参数,设置完成后点击OK按钮。

天线方向图的理论分析及测量原理分析

实验四、电波天线特性测试 一、实验原理 天线的概念 无线电发射机输出的射频信号功率,通过馈线输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。 天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。 对于众多品种的天线,进行适当的分类是必要的: 按用途分类,可分为通信天线、电视天线、雷达天线等; 按工作频段分类,可分为短波天线、超短波天线、微波天线等; 按方向性分类,可分为全向天线、定向天线等; 按外形分类,可分为线状天线、面状天线等;等等分类。 选择合适的天线 天线作为通信系统的重要组成部分,其性能的好坏直接影响通信系统的指标,用户在选择天线时必须首先注重其性能。具体说有两个方面,第一选择天线类型;第二选择天线的电气性能。选择天线类型的意义是:所选天线的方向图是否符合系统设计中电波覆盖的要求;选择天线电气性能的要求是:选择天线的频率带宽、增益、额定功率等电气指标是否符合系统设计要求。 天线的方向性 发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。天线对空间不同方向具有不同的辐射或接收能力,这就是天线的方向性。衡量天线方向性通常使用方向图,在水平面上,辐射与接收无最大方向的天线称为全向天线,有一个或多个最大方向的天

线称为定向天线。全向天线由于其无方向性,所以多用在点对多点通信的中心台。定向天线由于具有最大辐射或接收方向,因此能量集中,增益相对全向天线要高,适合于远距离点对点通信,同时由于具有方向性,抗干扰能力比较强。 垂直放置的半波对称振子具有平放的“面包圈”形的立体方向图。立体方向图虽然立体感强,但绘制困难,平面方向图描述天线在某指定平面上的方向性。 天线的增益 增益是天线的主要指标之一,它是方向系数与效率的乘积,是天线辐射或接收电波大小的表现。增益大小的选择取决于系统设计对电波覆盖区域的要求,简单地说,在同等条件下,增益越高,电波传播的距离越远,一般基地台天线采用高增益天线,移动台天线采用低增益天线。 增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。可以这样来理解增益的物理含义------为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要100W的输入功率,而用增益为 G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需 100 / 20 = 5W 。换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。半波对称振子的增益为G = 2.15dBi;4个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为G = 8.15dBi(dBi,这个单位表示比较对象是各向均匀辐射的理想点源)。如果以半波对称振子作比较对象,则增益的单位是dBd。 天线的波瓣宽度 方向图通常都有两个或多个瓣,其中辐射强度最大的瓣称为主瓣,其余的瓣称为副瓣或旁瓣。在主瓣最大辐射方向两侧,辐射强度降低 3 dB(功率密度降低一半)的两点间的夹角定义为波瓣宽度(又称波束宽度或主瓣宽度或半功率角)。波瓣宽度越窄,方向性越好,作用距离越远,抗干扰能力越强。还有一种波瓣宽度,即 10dB波瓣宽度,顾名思义它是方向图中辐射强度降低 10dB

试验四天线方向图测量试验

实验四 天线方向图测量实验 一、预习要求 1、什么是天线的方向性? 2、什么是天线的方向图,描述方向图有哪些主要参数? 二、实验目的 1、通过天线方向图的测量,理解天线方向性的含义; 2、了解天线方向图形成和控制的方法; 3、掌握描述方向图的主要参数。 三、实验原理 天线的方向图是表征天线的辐射特性(场强振幅、相位、极化)与空间角度关系的图形。完整的方向图是一个空间立体图形,如图7所示。 它是以天线相位中心为球心(坐标原点),在半径足够大的球面上,逐点测定其辐射特性绘制而成的。测量场强振幅,就得到场强方向图;测量功率,就得到功率方向图;测量极化就得到极化方向图;测量相位就得到相位方向图。若不另加说明,我们所述的方向图均指场强振幅方向图。空间方向图的测绘十分麻烦,实际工作中,一般只需测得水平面和垂直面的方 向图就行了。 图7 立体方向图 天线的方向图可以用极坐标绘制,也可以用直角坐标绘制。极坐标方向图的特点是直观、简单,从方向图可以直接看出天线辐射场强的空间分布特性。但当天线方向图的主瓣窄而副瓣电平低时,直角坐标绘制法显示出更大的优点。因为表示角度的横坐标和表示辐射强度的纵坐标均可任意选取,例如即使不到1o的主瓣宽度也能清晰地表示出来,而极坐标却无法绘制。一般绘制方向图时都是经过归一化的,即径向长度(极坐标)或纵坐标值(直角坐标)是以相对场强max `)(E E ?θ表示。这里,)(`?θE 是任一方向的场强值,max E 是最大辐射方向的场强值。因此,归一化最大值是1。对于极低副瓣电平天线的方向图,大多采用分贝值表示,归一化最大值取为零分贝。图8所示为同一天线方向图的两种坐标表示法。

哈工大天线实验报告

Harbin Institute of Technology 天线原理实验报告 课程名称:天线原理 班级: 姓名: 学号: 同组人: 指导教师: 实验时间: 实验成绩: 注:本报告仅供参考 哈尔滨工业大学

一、实验目的 1. 掌握喇叭天线的原理。 2. 掌握天线方向图等电参数的意义。 3. 掌握天线测试方法。 二、实验原理 1. 天线电参数 (1).发射天线电参数 a.方向图:天线的辐射电磁场在固定距离上随空间角坐标分布的图形。 b.方向性系数:在相同辐射功率,相同距离情况下,天线在该方向上的辐射功率密度Smax与无方向性天线在该方向上的辐射功率密度S0之比值。 c.有效长度:在保持该天线最大辐射场强不变的条件下,假设天线上的电流均匀分布时的等效长度。 d.天线效率:表征天线将高频电流或导波能量转换为无线电波能量的有效程度。 e.天线增益:在相同输入功率、相同距离条件下,天线在最大辐射方向上的功率密度Smax与无方向性天线在该方向上的功率密度S0之比值。 f.输入阻抗:天线输入端呈现的阻抗值。 g.极化:天线的极化是指该天线在给定空间方向上远区无线电波的极化。 h.频带宽度:天线电参数保持在规定的技术要求范围内的工作频率范围。 (2).接收天线电参数:除了上述参数以外,接收天线还有一些特有的电参数:等效面积和等效噪声温度。 a.等效面积:天线的极化与来波极化匹配,且负载与天线阻抗共轭匹配的最佳状态下,天线在该方向上所接收的功率与入射电波功率密度之比。 b.等效噪声温度:描述天线向接收机输送噪声功率的参数。 2. 喇叭天线 由逐渐张开的波导构成,是一种应用广泛的微波天线。按口径形状可分为矩形喇叭天线与圆形喇叭天线等。波导终端开口原则上可构成波导辐射器,由于口径尺寸小,产生的波束过宽;另外,波导终端尺寸的突变除产生高次模外,反射较大,与波导匹配不良。为改善这种情况,可使波导尺寸加大,以便减少反射,又可在较大口径上使波束变窄。 (1).H面扇形喇叭:若保持矩形波导窄边尺寸不变,逐渐张开宽边可得H面扇

电磁兼容天线仿真实验报告

电磁场与电磁兼容 实验报告 学号: 姓名: 院系: 专业: 教师: 05月20日

半波对称振子天线阵最大辐射方向控制 实验工具 ?Expert MININEC Classic电磁场数值仿真软件 实验目的 根据要求的参数,利用仿真软件设计和分析自由空间或地面上的细、直线天线的电磁场数值,并完成以下要求: ?改变每幅天线馈电电流的相位控制最大增益的方向:要求的最大增益方向是:1. 00 ;2. 400;3. 800 (选择与自己学号后2位数最近的度数) ?根据运行结果指出: 1.增益方向性图; 2.最大增益; 3.最大增益方向。 实验参数 ?频率 f = 300MHz,波长λ = 1m ?四分之一波长单极子天线L=0.25λ,四个半波长对称振子排列在一条直线上,相邻两幅天线的间隔是四分之一波长 实验过程 ?建立几何模型:点—> 线,尺寸,环境,坐标等 半波对称振子放在 YOZ 平面内,相邻振子的间距是四分之一波长 0.25m。

图1 问题描述图2 –图4 几何模型 图3 图4 ?定义电特性:频率,电压,当前节点 ZENITH(DEG) 对应球坐标系中的θ, AZIMUTH (DEG) 对应球坐标系中的φ 图5 电特性—频率图6 馈电电流相位设置

图7 球坐标参数θ、ψ以及间隔设置 ?选择模式:辐射模式 ?求解项:近场 ?调试、运行 表格中出现“No detected violations ”表明设置正确 图8 选择运行平面图9 调试结果 ?显示结果 3D display 显示所设计天线的图形 天线增益方向性图中给出了最大增益值和最大增益方向、以及半功率增益带宽的计算结果。

HFSS天线仿真实验报告

[键入公司名称] [键入文档标题] 通信0905 杨巨 U2 2012-3-7 半波偶极子天线仿真实验报告 一、实验目的 1、学会简单搭建天线仿真环境的方法,主要是熟悉HFSS软件的使用方法 2、了解利用HFSS仿真软件设计和仿真天线的原理、过程和方法 3、通过天线的仿真,了解天线的主要性能参数,如驻波比特性、smith圆图特性、方向图 特性等 4、通过对半波偶极子天线的仿真,学会对其他类型天线仿真的方法 二、实验仪器 1、装有windows系统的PC一台 2、HFSS13.0软件 3、截图软件 三、实验原理 1、首先明白一点:半波偶极子天线就是对称阵子天线。

对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。一臂的导线半径为a,长度为l。两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=2l。对称振子的长度与波长相比拟,本身已可以构成实用天线。 在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布。取图1的坐标,并忽略振子损耗,则其电流分布可以表示为:式中,Im为天线上波腹点的电流;k=w/c为相移常数、根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心店对称;超过半波长就会出现反相电流。 4、 在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z)、长度为dz的电流元件串联而成。利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。 电流元I(z)dz所产生的辐射场为 图2 对称振子辐射场的计算 如图2 所示,电流元I(z)所产生的辐射场为 其中 5、方向函数 四、实验步骤 1、设计变量 设置求解类型为Driven Model 类型,并设置长度单位为毫米。 提前定义对称阵子天线的基本参数并初始化 2、创建偶极子天线模型,即圆柱形的天线模型。 其中偶极子天线的另外一个臂是通过坐标轴复制来实现的。 3、设置端口激励 半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面。 4、设置辐射边界条件 要在HFSS中计算分析天线的辐射场,则必须设置辐射边界条件。这里创建一个沿Z轴放置的圆柱模型,材质为空气。把圆柱体的表面设置为辐射边界条件。 5、外加激励求解设置 分析的半波偶极子天线的中心频率在3G Hz,同时添加2.5 G Hz ~3.5 G Hz频段内的扫频设置,扫频类型为快速扫频。 6、设计检查和运行仿真计算 7、HFSS天线问题的数据后处理 具体在实验结果中阐释。 五、实验结果 1、回波损耗S11 回波损耗回波损耗是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射,是天线设计需要关注的参数之一。 图中所示是在2.5 G Hz ~3.5 G Hz频段内的回波损耗,设计的偶极子天线中心频率约为3 G Hz,S11<-10dBd的相对带宽BW=(3.25-2.775)/3*100%=15.83%

微波与天线实验报告

课程名称微波与天线实验报告 实验项目迈克尔逊干涉实验成绩 学院信息学院专业通信工程学号姓名 实验时间实验室指导教师 一、实验目的 1、通过实验观察迈克尔逊干涉现象。 2、掌握利用迈克尔逊干涉测量平面波长的方法。 二、实验设备 DH926B型微波分光仪,DH1121B型三厘米固态信号源,喇叭天线,DH926AD型数据采集仪,反射板,半透射玻璃板。 三、实验原理 如图5.1所示,在平面电磁波前进的方向放置一块与传播方向成450夹角的半透射板(实验中用玻璃板),由于该板的作用,将入射的电磁波分成为两束,一束穿透玻璃板继续前进,向反射板B方向传播,另外一束被玻璃板反射后,向反射板A方向传播。到达可移动反射板B 的波,被反射板B反射后,又到达玻璃板,其中一部分被玻璃板反射后到达接收喇叭;而到达反射板A的波,被反射板A反射后,又到达玻璃板,其中一部分穿过玻璃板也到达接收喇叭,因此接收喇叭接收到的是这两束电磁波的和,当两束电磁波的传播路程相同,或相差波长的整数倍时,接收喇叭接收的信号最强,当他们传播的路程相差为半个波长的奇数倍时,

接收喇叭接收到的信号最弱。通过移动反射板B ,可以改变这两束电磁波的传播路程,使得接收喇叭接收到的信号由弱变强,或由强变弱,测得两个相邻最强或最弱时反射板所移动的距离L ,就可以得到电磁波的波长,即等于2L 。实验中直接观察电压表的读数,当表头指示从一次极小变到又一次极小时,则B 处的反射板就移动了2λ的距离,由此距离就可求得平面波的波长。 四、实验内容及步骤 1、如图5.2,连接仪器。 图5.2 迈克尔逊干涉实验系统 2、使两喇叭口面互成900。 3、半透射板与两喇叭轴线互成450。 4、将读数机构通过它本身上带有的两个螺钉旋入底座上,使其固定在底座上,再插上反射扳,使固定反射板的法线与接受喇叭的轴线一致,可移反射板的法钱与发射喇叭轴线一致。 5、按信号源操作规程接通电源,调节衰减器使信号电平读数指示合适值。 6、将可移反射板移到读数机构的一端,在此附近测出一个极小的位置,然后旋转读数机构上的手柄使反射板移动,从表头上测出(n +1)个极小值,并同时从读数机构上得到相应的位移读数,从而求得可移反射板的移动距离L ,则波长n L 2=λ。 五、实验记录 1、根据实验步骤,记录数据,绘制结果曲线,计算平面波波长。 L(mm) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

阵列天线方向图函数实验

阵列天线方向图函数实验 一、 实验目的 1. 设计一个均匀线阵,给定d N d ,,,λθ画出方向图)(θF 函数图; 2. 改变参数后,画出方向图)(θF 函数图,观察方向图)(θF 的变化并加以分析; 3. 分析方向图)(θF 主瓣的衰减情况以及主瓣对第一旁瓣的衰减情况,确定dB 3衰减对应的θ; 二、 实验原理 阵列输出的绝对值与来波方向之间的关系称为天线的方向图。方向图一般有两类:一类是阵列输出的直接相加(不考虑信号及其来向),即静态方向图;另一类是带指向的方向图(考虑信号指向),当然信号的指向是通过控制加权的相位来实现的。对于某一确定的M 元空间阵列,在忽略噪声的条件下,第k 个阵元的复振幅为 ),2,1(0M k e g x k j k ==-ωτ (2.1) 式中:0g 为来波的复振幅,k τ为第k 个阵元与参考点之间的延迟。设第k 个阵元的权值为k w ,那么所有阵元加权的输出得到的阵列的输出为 ) ,2,1(010M k e g w Y k j M k k ==-=∑ωτ (2.2) 对上式取绝对值并归一化后可得到空间阵列的方向图 {}00max )(Y Y F =θ (2.3) 如果),2,1(1M k w k ==式(2.3)即为静态方向图)(θF 。下面考虑均匀线阵方向图。假设均匀线阵的间距为d ,且以最左边的阵元为参考点(最左边的阵元位于原点),另假设信号入射方位角为θ,其中方位角表示与线阵法线方向的夹角,与参考点的波程差为 θθτsin )1(1)sin (1 1d k c x c k -== (2.4) 则阵列的输出为

βθλπ ωτ)1(10sin )1(210100--=--=-=∑∑∑===k j M k k d k j M k k j M k k e g w e g w e g w Y k (2.5) 式中:λθπβ/sin 2d =,λ为入射信号的波长。当式(2.5)中),2,1(1M k w k ==时,式(2.5)可以进一步简化为 ) 2/sin()2/sin(2)(00βββM M e Mg Y k M j == (2.6) 可得均匀线阵的静态方向图,即 ) 2/sin()2/sin()(0ββθM M F = (2.7) 当式(2.5)中),2,1(,/sin 2,)1(M k d e w d d k j k d ===-λθπββ时,式(2.6)可简化为 ] 2/)sin[(]2/)(sin[2)()1(00d d M j M M e Mg Y d ββββββ--=-= (2.7) 于是可得到指向为d θ的阵列方向图,即 ] 2/)sin[(]2/)(sin[)(d d M M F ββββθ--= (2.8) 三、 实验过程 1. 指向0=d θ静态方向图函数的实验 1.1均匀线阵阵元个数N 对方向图函数)(θF 的影响 sita=-pi/2:0.01:pi/2; lamda=0.03; d=lamda/2; n1=10; sita_d=0 beta=2*pi*d*sin(sita)/lamda; beta_d=2*pi*d*sin(sita_d)/lamda; z11=(n1/2)*(beta-beta_d); z21=(1/2)*(beta-beta_d); f1=sin(z11)./(n1*sin(z21)); F1=abs(f1); figure(1); plot(sita,F1,'b'); hold on ; n2=20;

阵列天线方向图的初步研究

通信信号处理实验报告 ——阵列天线方向图的初步研究 11级通信(研) 刘晓娟 113128301 一、实验原理: 1、智能天线的基本概念:智能天线是一种阵列天线,它通过调节各阵元信号的加权幅度和相位来改变阵列的方向图形状,即自适应或以预制方式控制波束幅度、指向和零点位置,使波束总是指向期望方向,而零点指向干扰方向,实现波束随着用户走,从而提高天线的增益,节省发射功率。智能天线系统主要由①天线阵列部分;②模/数或数/模转换部分;③波束形成网络部分组成。本次实验着重讨论天线阵列部分。 2、智能天线的工作原理:智能天线的基本思想是:天线以多个高增益的动态窄波束分别跟踪多个期望信号,来自窄波束以外的信号被抑制。 3、方向图的概念:以入射角为横坐标,对应的智能天线输出增益为纵坐标所作的图称为方向图,智能天线的方向图有主瓣、副瓣等,相比其他天线的方向图,智能天线通常有较窄的主瓣,较灵活的主、副瓣大小、位置关系,和较大的天线增益。与固定天线相比最大的区别是:不同的全职通常对应不同的方向图,我们可以通过改变权值来选择合适的方向图,即天线模式。方向图一般分为两类:一类是静态方向图,即不考虑信号的方向,由阵列的输出直接相加得到;另一类是带指向的方向,这类方向图需要考虑信号的指向,通过控制加权相位来实现。 二、实验目的: 1、设计一个均匀线阵,给出λ(波长),N (天线个数),d (阵元间距),画出方向图曲线,计算3dB 带宽。 2、通过控制变量法讨论λ,N ,d 对方向图曲线的影响。 3、分析旁瓣相对主瓣衰减的程度(即幅度比)。 三、实验内容: 1、公式推导与整理: 权矢量12(,,......) T N ω ωωω=,本实验旨在讨论静态方向图,所以此处选择 ω =(1,1,......1)T 。 信号源矢量(1)() [1,,...]j j N T a e e β β θ---=,2s in d πβθλ = , 幅度方向图函数()()H F a θωθ== (1)1 s in 2 s in 2 N j n n N e β ββ --== ∑ = sin (sin /)sin (sin /) n d n d πθλπθλ。

北邮电磁场与微波实验天线部分实验报告二

北邮电磁场与微波实验天线部分实验报告二

信息与通信工程学院电磁场与微波实验报告

实验二网络分析仪测试八木天线方向图 一、实验目的 1.掌握网络分析仪辅助测试方法; 2.学习测量八木天线方向图方法; 3.研究在不同频率下的八木天线方向图特性。 注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等; 二、实验步骤: (1) 调整分析仪到轨迹(方向图)模式; (2) 调整云台起点位置270°; (3) 寻找归一化点(最大值点); (4) 旋转云台一周并读取图形参数; (5) 坐标变换、变换频率(f600Mhz、900MHz、1200MHz),分析八木天线方向图特性; 三、实验测量图 不同频率下的测量图如下: 600MHz:

900MHz:

1200MHz:

四、结果分析 在实验中,分别对八木天线在600MHz、900MHz、1200MHz频率下的辐射圆图进行了测量,发现频率是900MHz的时候效果是最好的,圆图边沿的毛刺比较少,方向性比较好,主瓣的面积比较大。 当频率为600 MHz的时候,圆图四周的毛刺现象比较严重,当频率上升到1200MHz时,辐射圆图开始变得不规则,在某些角度时出现了很大的衰减,由对称转向了非对称,圆图边缘的毛刺现象就非常明显了,甚至在某些角度下衰减到了最小值。 从整体来看,八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候周围的人应该避免走动,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 由实验结果分析可知:最大辐射方向基本在90°和270°这条直线上,图中旁瓣均较小,及大部分能量集中在主瓣。 八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候应当尽量保持周边环境参数一定,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 五、实验总结

综合实验报告LTE仿真实验

综合实验报告—LTE 学号: 姓名: 日期: 2016/2017学年第一学期

实验1 LTE无线接入网设备配置 实验目的: 1. 掌握LTE无线接入网的网元名称及其作用。 2. 掌握实验中各网元的线缆名称及其作用。 实验内容: 1. 完成一个LTE无线接入网站点机房的设备配置。 实验要求: 1. 完成大型城市万绿市A站点机房的设备配置。 实验步骤: 设备配置步骤如下: 1.单击仿真平台中的“设备配置”按钮,然后选择仿真场景中的某站点机房。 2.添加设备:包括BBU、RRU、ANT、PTN、ODF、GPS。 3.连接RRU和ANT。ANT1连接到RRU1,使用“天线跳线”,将ANT1左边1脚和 RRU的1脚,同理将对应的4脚连接起来。因为默认使用的是2×2的天线模式。 注意相互对应,不能连串。 4.连接RRU和BBU。使用“成对LC-LC光纤”,把TX0-RX0~TX2-RX2与RRU1~RRU3 对应连接起来。 5.连接BBU和GPS。使用“GPS馈线”,一端将馈线与GPS连接,另一端连接到BBU的IN 口。 6.连接BBU与PTN。使用“成对LC-LC光纤”,点击设备指示图里的BBU,将光纤接到BBU 的TXRX端口上,另一端连接到设备指示图里的PTN设备槽位1的GE1端口上。 7.连接ODF和PTN。单击ODF进入到ODF架内部,使用“成对LC-FC光纤”,将某市站 点机房和该市汇聚机房连接起来。这里要使用两对LC-FC线,分别连接到PTN的端口3和4口上。 至此,该市某站点机房的设备配置就完成了,从“设备指示图”中可观察到设备间的连接情况。 设备之间连接关系表 图3-1 万绿市核心网设备配置接口使用情况

天线方向图测量

电磁场与电磁波实验报告实验内容:天线方向图的测量 学院:电子工程学院 班级:2010211207 姓名:林铭雯 学号:10210880(21)

一、实验目的 1.了解天线的基本工作原理。 2.绘制并理解天线方向图。 3.根据方向图研究天线的辐射特性。 4、通过对不同材质的天线的方向图的研究,探究其中的练习与规律。 二、实验原理 1、天线的原理 天线的作用首先在于辐射和接收无线电波,但是能辐射或接收电磁波的东西不一定都能用来作为天线。任何高频电路,只要不被完全屏蔽,都可以向周围空间或多或少地辐射电磁波,或从周围空间或多或少地接收电磁波。但是任意一个高频电路并不一定能用作天线,因为它 的辐射或接收效率可能很低。要能够有 效地辐射或者接收电磁波,天线在结构 和形式上必须满足一定的要求。图B1-1 给出由高频开路平行双导线传输线演变 为天线的过程。开始时,平行双导线传 输线之间的电场呈现驻波分布,如图 B3-1a 。在两根互相平行的导线上,电流 方向相反,线间距离又远远小于波长, 它们所激发的电磁场在两线外部的大部 分空间由于相位相反而互相抵消。如果 将两线末端逐渐张开,如图B3-1b 所示, 那么在某些方向上,两导线产生的电磁 场就不能抵消,辐射将会逐渐增强。当 两线完全张开时,如图B3-1c 所示,张开 的两臂上电流方向相同,它们在周围空 间激发的电磁场只在一定方向由于相位关系而互相抵消,在大部分方向则互相叠加,使辐射显著增强。这样的结构被称为开放式结构。由末端开路的平行双导线传输线张开而成的天线,就是通常的对称振子天线,是最简单的一种天线。 天线辐射的是无线电波,接收的也是无线电波,然而发射机通过馈线送入天线的并不是无线电波,接收天线也不能把无线电波直接经馈线送入接收机,其中必须进行能量的转换。图B3-2是进行无线电通信时,从发射机到接收机信号通 图1 传输线演变为天线 a.发射机c. b.

天线的方向图测量(设计性试验)

中国石油大学近代物理实验报告 班级:材料物理10-2 姓名:同组者:教师: 设计性实验不同材质天线的方向图测量【实验目的】 1.了解天线的基本工作原理。 2.绘制并理解天线方向图。 3.根据方向图研究天线的辐射特性。 4、通过对不同材质的天线的方向图的研究,探究其中的练习与规律。 【预习问题】 1.什么是天线? 2.AT3200天线实训系统有那几部分组成,分别都有什么作用? 3.与AT3200天线实训系统配套的软件有几个,分别有什么作用? 【实验原理】 一.天线的原理 天线的作用首先在于辐射和接收无线电波,但是能辐射或接收电磁波的东西不一定都能用来作为天线。任何高频电路,只要不被完全屏蔽,都可以向周围空间或多或少地辐射电磁波,或从周围空间或多或少地接收电磁波。但是任意一个高频电路并不一定能用作天线,因为它的辐射或接收效率可能很低。要能够有效地辐射或者接收电磁波,天线在 结构和形式上必须满足一定的要求。图B1-1给出 由高频开路平行双导线传输线演变为天线的过程。 开始时,平行双导线传输线之间的电场呈现驻波分 布,如图B3-1a。在两根互相平行的导线上,电流 方向相反,线间距离又远远小于波长,它们所激发 的电磁场在两线外部的大部分空间由于相位相反 而互相抵消。如果将两线末端逐渐张开,如图B3-1b 所示,那么在某些方向上,两导线产生的电磁场就 不能抵消,辐射将会逐渐增强。当两线完全张开时, 如图B3-1c所示,张开的两臂上电流方向相同,它 们在周围空间激发的电磁场只在一定方向由于相 位关系而互相抵消,在大部分方向则互相叠加,使 辐射显著增强。这样的结构被称为开放式结构。由 末端开路的平行双导线传输线张开而成的天线,就是通常的对称振子天线,是最简单的一种天线。 图B3-1 传输线演变为天线a. 发射机 c. b.

天线方向图测试系统操作说明

大连理工大学实验预习报告 姓名:牛玉博班级:电通1202 学号:201201203 实验六天线方向图测试 本系统主要用于线天线E面方向图测试,可动态、实时绘制极坐标和直角坐标系方向图曲线,保存测试数据用于后续分析处理。 系统使用步骤示意如图0.1所示。 图0.1 系统使用步骤示意图 1系统连接 测试系统由发射装置、接收装置和控制器三大部分组成,三部分的连接示意如图1.1所示。连接时注意信号线要根据待测工作频率接至对应端子,并将接收装置方向调整到正确姿态。

图1.1 系统连接示意图 发射装置包含400MHz 和900MHz 两个频点的发射电路和天线,如图1.2所示。接收装置包含400MHz 和900MHz 两个频点的接收电路和天线,并具有天线旋转机构,如图1.3所示。控制器利用触摸屏完成所有测试操作和方向图曲线的实时绘制,如图1.4所示。 图1.2 发射装置 图1.3 接收装置 此处少一图(图1.4 测试控制器)、待发。 2 控制器操作 2.1 打开控制器电源,等待系统启动,进入提示界面,如图2.1所示。

图2.1 方向图测试系统提示界面 2.2点击界面任意位置,进入“实测方向图”界面,如图2.2所示。 图2.2 实测方向图界面 2.3点击图2.2中的“频率选择”按钮,选择与硬件链接对应的工作频率。 2.4点击“天线长度”数字框,输入实际天线长度(单位为毫米),并按“确 定”确认,如图2.3所示。

图2.3 天线长度输入界面 2.5点击“机械回零”按钮,接收天线旋转,当到达机械零点基准点时,自 动停止旋转,如图2.4所示。注意:机械回零完成之前不要做其它操作! 图2.4 机械归零界面 2.6点击“归一化”按钮,接收天线旋转,搜索信号最大值,并提示“归一 化进行中”。当到天线旋转一周时,搜索结束,如图2.5所示。注意:归一化完成之前不要做其它操作!

双极天线方向图仿真实验报告(B5)

天线与电波传播实验报告级队区队学员姓名学号实验组别3同组人无实验日期实验成绩实验项目:双极天线方向图仿真实验 实验目的: 1.熟悉matlab 的使用。 2.加深对双极天线工作原理的理解; 3.理解双极天线的方向性及天线臂长、架设高度对 天线方向性的影响; 实验器材:计算机一台、matlab 软件。 实验原理阐述、实验方案: 双极天线可以理解成架设在地面上的对称振子,因此,研究双级天线的性质(这里主要指方向性)可以分两步进行。 1.对称振子的方向性 (1)电基本振子的远区辐射场 如果对称振子的电流分布已知,则由电基本振子的远区辐射场表达式沿对称振子几分,就可以得到对称振子的辐射场表达式。 电基本振子的远区(满足kr>>1,即πλ<<2r )辐射场表达式如下:

?????????====θλπ=θλ=?θ-θ-?0E E H H e sin r Il 60j E e sin r 2Il j H r r jkr jkr (1-1) 式中: I——电基本振子的电流; l——电基本振子的长度; r——远区中一点到电基本振子的距离。 根据远区辐射场的性质可知,Eθ和Hφ的比值为常数(称为媒质的波阻抗),所以,在研究天线的辐射场时,只需要讨论其中的一个量即可。通常总是采用电场强度作为分析的主体。 (2)对称振子的电流分布 如果将细对称振子看成是末端开路的传输线张开形成,则细对称振子的电流分布与末端开路线上的电流分布相似,即非常接近于正弦驻波分布。 以振子中心为原点,忽略振子损耗,则细对称振子的电流分布为: ???≤+≥-=-=0 z )z l (k sin I 0z )z l (k sin I )z l (k sin I )z (I m m m (1-2) (3)对称振子的辐射场及方向函数

相关主题
文本预览
相关文档 最新文档