当前位置:文档之家› 接触角原理概述

接触角原理概述

接触角原理概述
接触角原理概述

实验项目:用接触角测量仪测量材料表面的接触角

一.实验目的:

1.认识和掌握接触角测量仪测量材料表面的接触角的基本原理

2.熟悉接触角测量仪JC2000D1的操作技术

二.实验容:

1.掌握JC2000D1型接触角测量仪的工作原理和操作步骤

2.测量几种材料的表面接触角

三.实验仪器,设备及材料

设备JC2000D1型接触角测量仪,蒸馏水,解玻片,食盐水,样品木板几个

四.基本原理概述

1.接触角定义及应用

当液滴自由地处于不受力场影响的空间时,由于界面力的存在而呈圆球状。但是,当液滴与固体平面接触时,其最终形状取决于液滴部的聚力和液滴与固体间的粘附力的相对大小。当一液滴放置在固体平面上时,液滴能自动地在固体表面铺展开来,或以与固体表面成一定接触角的液滴存在,接触角通俗地说,就是液滴在固体表面自然形成的半圆形态相对于固体平面的外切线,如图1所示。

接触角的应用非常广泛,甚至可以说涉及到身边的每个细节,我们希望汽车玻璃上不沾雨水,但反之我们希望汽车钢板上的油漆永不脱落。其他比如农药和蔬菜叶面;涂料和外墙面,绝缘材料,纳米材料表面化改性等等,从教学科研工农业生产到日常生活。

图1 接触角

假定不同的界面间力可用作用在界面方向的界面力来表示,则当液滴在固体平面上处于平衡位置时,这些界面力在水平方向上的分力之和应等于零,即

(1)

式中、、分别为固-气、液-气和固-液界面力;为液体与固体间的界面和液体表面的切线所夹(包含液体)的角度,称为接触角

(contact angle),在之间。接触角是反应物质与液体润湿性关系

的重要尺度,可作为润湿与不润湿的界限,时可润湿,

时不润湿。

2.润湿

润湿(wetting)的热力学定义是,若固体与液体接触后体系(固体和液体)的自由能G降低,称为润湿。自由能降低的多少称为润湿度,用来表示。润

湿可分为三类:粘附润湿(adhesional wetting)、铺展润湿

(spreading wetting)和浸湿(immersional wetting)。可从图2看出。

图2 三类润湿

(1)粘附润湿

如果原有的1固面和1液面消失,形成1固-液界面,则此过程的

为:

(2)

(2)铺展润湿

当一液滴在1固面上铺展时,原有的1固面和一液滴(面积可忽略不计)均消失,形成1液面和1固-液界面,则此过程的为:

(3)

(3)浸湿

当1固面浸入液体中时,原有的1固面消失,形成1固-液界面,则此过程的为:

(4)

对上述三类润湿,和无法测定,如何求?分别讨论如下:

(1)粘附润湿

将(1)式代入(2)式,可得:(5)

因液体表面力为已知,故只需测定接触角即可求出。

(2)铺展润湿

将(1)式代入(3)式,可得:

因≤1,故≤0。但是自由能降低,结果表示可以有一个自由能增

加或不变的自发过程。这显然违反热力学第二定律。错误在于误用了(1)式,此式只适用于平衡态。若液滴自动铺展以完全盖住固面,这就表示液滴与固面不成平衡态,所以不能将(1)式代入(3)式中。这里应该指出,不能将铺展润湿

认为,而在此情况下根本没有接触角。的正确理解应是有一个角,恰好等于。

设有固体与压力逐渐增加的蒸气接触以吸附此蒸气,当压力达到饱和蒸气压时,固面上即有一层极薄的液体。由Gibbs吸附原理知,表面自由能降低=.因此,

(6)

③浸湿

将式(6)中的去掉,即得:

(7)

由(5)式可知,当时,=1,=,自由能降低为最大,

则认为固体完全被液体润湿;当时,=1,=0,自由能降

低为0,则固体完全不被液体润湿,即完全不润湿。这种情况是理想的,因为液体与固体之间多少有一些相互吸引力存在。

3.接触角的测定

对于理想的平固体表面,当液滴在表面达平衡后。只有一个符合Young方程的接触角。但实际固体表面是非理想的,因而会出现滞后现象,致使接触角的测量往往很难重复。但经过精心制备和处理的表面,有可能得到较重复的数据,特别是高分子的表面。表面的制备和处理的目的是要得到较光滑、干净的理想表面,但具体的手续因样品而异,这里不作更多的介绍。这里主要介绍一些常用的接触角测定方法,它们都是针对气—液—固体系的接触角而设计的。但其中有些方法,只需略加修改,亦适用于液—液—固体系接触角的测定。

1)量角法

液滴角度测量法是测量接触角的最常用的方法之一,如图F3(a,b)所示。

该方法是将固体表面上的液滴,或将浸入液体中的固体表面上形成的气泡投影到屏幕上,然后直接测量切线与相界面的夹角,直接测量接触角的大小。

(a)停滴(b)停泡

图3 量角法示意图

如果液体蒸气在固体表面发生吸附,影响固体的表面自由能,则应把样品放入带有观察窗的密封箱中,待体系达平衡后再进行测定。此法的优点是:样品用量

少,仪器简单,测量方便。准确度一般在左右。

2)量高法

如果液滴很小,重力作用引起液滴的变形可以忽略不计,这时的躺滴可认为是球形的一部分,如图4所示。接触角可通过高度的测量按下式计算:

(8)

式中h是液滴高度,d是滴底的直径。若液滴体积小于mL,此方法可用。若接触角小于,则液滴稍大亦可应用。

图4 量高法示意图

液滴在纤维上的接触角也可用量角法测量,把纤维水平拉直.置于样品槽,然后投影到电脑屏幕,直接测定液滴与纤维表面的夹角。如果液滴很小,接触角也可用量高法测量,通过式(8)来计算。

实际固体表面几乎都是非理想的,或大或小总是会出现接触角滞后现象.因此,需同时测定前进角和后退角。对于躺滴法,可用增减液滴体积的办法来测定。增加液滴体积时测出的是前进角,如图5(a)所示;减少液滴体积时为后退角,如图5(b)所示。

(a)前进角(b)后退角

图5 前进角和后退角的测定方法

为了避免增减液滴体积时可能引起液滴振动和变形,在测定时可将改变液滴体积的毛细管尖端插入液滴中,尖端插入液滴不影响接触角的数值。

决定和影响润湿作用和接触角的因素很多。如,固体和液体的性质及杂质、添加物的影响,固体表面的粗糙程度、不均匀性的影响,表面污染等。对于一定的固体表面,在液体液相中加入表面活性物质常可改善润湿性质,并且随着液体和固体表面接触时间的延长,接触角有逐渐变小趋于定值的趋势,这是由于表面活性物质在各界面上吸附的结果。

五.实验步骤:

(1)量高法测接触角的实验步骤

1.连接进样泵;

2.点击活动图象;

3.旋转平台上旋钮找到液滴;

4.上移平台使液滴接触到;

5.下移平台,分离液滴与进样管

6.冻结图象

7.点文件菜单—保存图片

8.点基准线,调整基准线完了点确定

9.用量高法测接触角,鼠标对着图片里面,三相接触的左,右及顶端各点标志,接触角测出。

(2)量角法测接触角实验步骤

1.按量角法按钮,进入量角法主界面,

2.按开始键,打开文件夹,选中需要计算的图形文件

3.量角器精度:选择0.05与0.25两个精度之一

4.量取角度:显示测量角

5.W:测量尺向上,S:测量尺向下,A:测量尺向右,D:测量尺向左,〈:测量尺左旋,〉:测量尺右旋。

6.一般选左测量角,如果选右边测量角则点补角修正

六.数据处理

1.量高法测量的接触角

蒸馏水与

平板玻璃

蒸馏水与

木板1

食盐水与

平板玻璃

2.量角法测量测接触角

蒸馏水与

平板玻璃

蒸馏水与

木板1

食盐水与

平板玻璃

七.思考题:

1.材料表面与水的接触角的大小反映了材料表面的什么性能?

注意事项

平衡时间和体系温度的恒定。当体系未达到平衡时,接触角会变化,这时的接触角称为动态接触角,动态接触角的研究对于一些粘度较大的液体在固体平面的流动或铺展有重要意义(因粘度大,平衡时间长)同时,对于温度变化较大的体系,由于表面力的变化,接触角也会变化,因此,若一已基本达平衡的体系,接触角的变化,可能与温度变化有关。简单判断影响因素的方法是,平衡时间的影响一般是单方向的,而温度的波动可能造成γ的升高或降低。除平衡时和温度外,影响接触角稳定的因素还有接触角滞后和吸附的作用。

角接触轴承安装方法

角接触轴承安装方法

FAG NSK NTN KOYO NACHI IJK 单列角接触球轴承双列角接触球轴承 FAG精密主轴轴承系列NSK精密轴承系列 QJ:四点接触球轴承推力角接触球轴承 角接触球轴承,可同时承受径向负荷和轴向负荷,也可以承受纯轴向负荷,极限转速较高。该轴 承承受轴向负荷的能力由接触角决定,接触角大,承受轴向负荷的能力高。接触角α的定义为,径向平面上连接滚球和滚道触点的线与一条同轴承轴垂直的线之间的角度。 单列角接触球轴承有以下几种结构形式: (1)分离型角接触球轴承 这种轴承的代号为S70000,其外圈滚道边没有锁口,可以与内圈、保持架、纲球组件分离,因而可以分别安装。这类多为内径小于10mm的微型轴承,用于陀螺转子、微电动机等对动平衡、噪声、振动、稳定性都有较高要求的装置中。 (2)非分离型角接触球轴承 这类轴承的套圈沟道有锁口,所以两套圈不能分离。按接触角分为三种: ①接触角α=40°,适用于承受较大的轴向载荷;

万能配对的轴承,也可按使用要求配置成有预过盈的轴承,并以后置代号GA、GB、GC表示。GA 表示配对后有较小的预过盈;GB表示配对后有中等预过盈;GC表示配对后有较大的预过盈。 因吸排液口压力不等也使并非完全对称的叶轮两侧所受液体压力不等,从而产生了轴向力。叶轮两侧液体压力假如不计轴的截面积,也不考虑叶轮旋转对压力分布的影响,则作用在叶轮上的力为轮盘受的力和轮盖受的力的差值,转化为计算式就是出口压力和进口压力差值与叶轮轮盖的面积的乘积,因为出口压力始终大于进口压力,所以,当离心泵旋转起来就一定有了一个沿轴并指向入口的力作用在转子上。 不平衡的轴向力会加重止推轴承的工作负荷,对轴承不利,同时轴向力使泵转子向吸入口窜动,造成振动并可能使叶轮口环摩擦使泵体损坏。 对于多级离心泵来说,一般出口压力远大于入口压力,所以用平衡力来消除轴向力就显得尤其重要,如何消除轴向力呢?多级泵一般采用的是平衡盘和叶轮的对称安装,单级泵一般是在叶轮上开平衡孔,当然还有在叶轮轮盘上安装平衡叶片的方式来平衡轴向力。 虽然我们要求的是消除轴向力,但假如完全消除了也会造成转子在旋转中的不稳定,所以在设计的时候,会设计出30%的量让轴承来抵消,这就是为什么多级泵非驱动端轴承通常都是角接触轴承的原因,因为它可以用来承受 如图所示,在角接触球轴承背靠背安装时,需要在两轴承之间添加垫圈吗?如果需要是如②所示还是③所示那样添加? 为角接触轴承加垫圈是给轴承施加预紧的一种方法。目的是提高轴承的刚性、使轴承实现理想的游隙。 一般轴承出厂前已经是带预紧的轴承了,通过外部构建施加预紧比较少见。 图3是提高背对背轴承预紧力的正确方式。不过要详细查轴承的预紧参数,根据参数加工合适的垫圈。普通轴承施加预紧还要计算轴承的内部游隙。 角接触球轴承为什么要成对安装 单列向心角接触球轴承,只能承受单个方向的轴向力。有的场合为了能够承受双向轴向力,需要

角接触轴承安装方法77227

角接触球轴承,可同时承受径向负荷和轴向负荷,也可以承受纯轴向负荷,极限转速较高。该轴 承承受轴向负荷的能力由接触角决定,接触角大,承受轴向负荷的能力高。接触角α的定义为,径向平面上连接滚球和滚道触点的线与一条同轴承轴垂直的线之间的角度。 单列角接触球轴承有以下几种结构形式: (1)分离型角接触球轴承 这种轴承的代号为S70000,其外圈滚道边没有锁口,可以与内圈、保持架、纲球组件分离,因而可以分别安装。这类多为内径小于10mm的微型轴承,用于陀螺转子、微电动机等对动平衡、噪声、振动、稳定性都有较高要求的装置中。 (2)非分离型角接触球轴承 这类轴承的套圈沟道有锁口,所以两套圈不能分离。按接触角分为三种: ①接触角α=40°,适用于承受较大的轴向载荷; ②接触角α=25°,多用于精密主轴轴承;

③接触角α=15°,多用于较大尺寸精密轴承。 (3)成对配置的角接触球轴承 成对配置的角接触球轴承用于同时承受径向载荷与轴向载荷的场合,也可以承受纯径向载荷和任一方向的轴向载荷。此种轴承由生产厂按一定的预载荷要求,选配组合成对,提供给用户使用。当轴承安装在机器上紧固后,完全消除了轴承中的游隙,并使套圈和纲球处于预紧状态,因而提高了组合轴承的钢性。 单列角接触球轴承以径向负荷为主的径、轴向联合负荷,也可承受纯径向负荷,除串联式配置外,其他两配置均可承受任一方向的轴向负荷。在承受径向负荷时,会引起附加轴向力。因此一般需成对使用,做任意配对的轴承组合,成对安装的轴承按其外圈不同端面的组合分为:背对背配置、面对面配置、串联配置(也称:O型配置、X型配置、T型配置)三种类型: 背对背配置O型配置面对面配置 X型配置 串联配置 T型配置 ①背对背配置,后置代号为DB(如70000/DB),背对背配对的轴承的载荷线向轴承轴分开。可承受作用于两个方向上的轴向载荷,但每个方向上的载荷只能由一个轴承承受。背对背安装的轴承提供刚性相对较高的轴承配置,而且可承受倾覆力矩。 ②面对面配置,后置代号为DF(如70000/DF),面对面配对的轴承的载荷线向轴承轴汇合。可承受作用于两个方向上的轴向载荷,但每个方向上的载荷只能由一个轴承承受。这种配置不如背对背配对的刚性高,而且不太适合承受倾覆力矩。这种配置的刚性和承受倾覆力矩的能力不如DB配置形式,轴承可承受双向轴向载荷; ③串联配置,后置代号为DT(如70000/DT),串联配置时,载荷线平行,径向和轴向载荷由轴承均匀分担。但是,轴承组只能承受作用于一个方向上的轴向载荷。如果轴向载荷作用于相反方向,或如果有复合载荷,就必须增加一个相对串联配对轴承调节的第三个轴承。这种配置也可在同一支承处串联三个或多个轴承,但只能承受单方向的轴向载荷。通常,为了平衡和限制轴的轴向位移,另一支承处需安装能承受另一方向轴向载荷的轴承。 此外,还有一种可供任意配对的单列角接触球轴承。这种轴承经特殊加工,可以两个背靠背、两个面对面或两个串联等任意方式组合,配对组合的轴向间隙可根据需要选择,后置代号CA表示轴向间隙较小,CB表示轴向间隙适中,CC表示轴向间隙较大。 万能配对的轴承,也可按使用要求配置成有预过盈的轴承,并以后置代号GA、GB、GC表示。GA 表示配对后有较小的预过盈;GB表示配对后有中等预过盈;GC表示配对后有较大的预过盈。

设计说明书角接触球轴承

课程设计 课程名称机械设计基础 题目名称带式运输机传动装置学生学院 专业班级 学号 学生姓名 指导教师 200 年月日

目录 机械设计基础课程设计任务书 (1) 一、传动方案的拟定及说明 (3) 二、电动机的选择 (3) 三、计算传动装置的运动和动力参数 (4) 四、传动件的设计计算 (6) 五、轴的设计计算 (15) 六、滚动轴承的选择及计算 (23) 七、键联接的选择及校核计算 (26) 八、高速轴的疲劳强度校核 (27) 九、铸件减速器机体结构尺寸计算表及附件的选择 (30) 十、润滑与密封方式的选择、润滑剂的选择 (31) 参考资料目录

题目名称 带式运输机传动装置 学生学院 专业班级 姓 名 学 号 一、课程设计的内容 设计一带式运输机传动装置(见 图1)。设计内容应包括:传动装置的总体设计;传动零件、轴、轴承、联轴器等的设计计算和选择;减速器装配图和零件工作图设计;设计计算说明书的编写。 图2为参考传动方案。 二、课程设计的要求与数据 已知条件: 1.运输带工作拉力: T = 450NmkN ; 2.运输带工作速度: v = 0.8m/s ; 3.卷筒直径: D =350mm ; 4.使用寿命: 8年; 5.工作情况:两班制,连续单向运转,载荷较平稳; 6.制造条件及生产批量:一般机械厂制造,小批量。 三、课程设计应完成的工作 动力及传动装置 D v F 图1 带式运输机传动装置 图2 参考传动方案

1.减速器装配图1张; 2.零件工作图2张(轴、齿轮各1张); 3.设计说明书1份。 四、课程设计进程安排 五、应收集的资料及主要参考文献 1 孙桓, 陈作模. 机械原理[M]. 北京:高等教育出版社,2001. 2 濮良贵, 纪名刚. 机械设计[M]. 北京:高等教育出版社,2001. 3 王昆, 何小柏, 汪信远. 机械设计/机械设计基础课程设计[M]. 北京:高等教育出版社, 1995. 4 机械制图、机械设计手册等书籍。 发出任务书日期:2008年6 月23日指导教师签名: 计划完成日期:2008年7 月11日基层教学单位责任人签章: 主管院长签章:

接触角

原理概述 1 接触角定义 当液滴自由地处于不受力场影响的空间时,由于界面张力的存在而呈圆球状。但是,当液滴与固体平面接触时,其最终形状取决于液滴内部的内聚力和液滴与固体间的粘附力的相对大小。当一液滴放置在固体平面上时,液滴能自动地在固体表面铺展开来,或以与固体表面成一定接触角的液滴存在,如图1所示。 图1 接触角 假定不同的界面间力可用作用在界面方向的界面张力来表示,则当液滴在固体平面上处于平衡位置时,这些界面张力在水平方向上的分力之和应等于零,即 θγγγcos ///A L L S A S += (1) 式中γS/A 、γL/A 、γS/L 分别为固-气、液-气和固-液界面张力;θ为液体与固体间的界面和液体表面的切线所夹(包含液体)的角度,称为接触角(contact angle ),θ在00-1800之间。接触角是反应物质与液体润湿性关系的重要尺度,θ=90o 可作为润湿与不润湿的界限,θ<90o 时可润湿,θ>90o 时不润湿。 2 润 湿 润湿(wetting)的热力学定义是,若固体与液体接触后体系(固体和液体)的自由能G 降低,称为润湿。自由能降低的多少称为润湿度,用W S/L 来表示。润湿可分为三类:粘附润湿(adhesional wetting )、铺展润湿(spreading wetting )和浸湿(immersional wetting )。可从图2看出。

图2 三类润湿 (1)粘附润湿 如果原有的1m2固面和1m2液面消失,形成1m2固-液界面,则此过程的 W A S/L为: W A S/L=γS/A+γL/A-γS/L (2) (2)铺展润湿 当一液滴在1m2固面上铺展时,原有的1m2固面和一液滴(面积可忽略不 计)均消失,形成1m2液面和1m2固-液界面,则此过程的W S S/L为: W S S/L=γS/A-γL/A-γS/L (3) (3)浸湿 当1m2固面浸入液体中时,原有的1m2固面消失,形成1m2固-液界面, 则此过程的W I S/L为: W I S/L=γS/A-γS/L (4) 对上述三类润湿,γS/A和γS/L无法测定,如何求W S/L?分别讨论如下: ①粘附润湿 将(1)式代入(2)式,可得:W A S/L=γL/A(1+cosθ)(5) 因液体表面张力γL/A为已知,故只需测定接触角θ即可求出W A S/L。 ②铺展润湿 将(1)式代入(3)式,可得:W S S/L=γL/A(cosθ-1) 因cos≤1,故W S S/L≤0。但W S/L是自由能降低,结果表示可以有一个自由能增加或不变的自发过程。这显然违反热力学第二定律。错误在于误用了(1)式,此式只适用于平衡态。若液滴自动铺展以完全盖住固面,这就表示液滴与固面不成平衡态,所以不能将(1)式代入(3)式中。这里应该指出,不能将铺展润湿认为θ=00,而在此情况下根本没有接触角。θ=00的正确理解应是有一个角,恰好等于 0o。 设有固体与压力逐渐增加的蒸气接触以吸附此蒸气,当压力达到饱和蒸气压P0时,固面上即有一层极薄的液体。由Gibbs吸附原理知,表面自由能降低= RT?Γ0 0ln P P d。因此,W S S/L=γS/A-γL/A-γS/L =RT?Γ0 0ln P P d(6)③浸湿 将式(6)中的γL/A去掉,即得W I S/L:

角接触轴承安装方法精编WORD版

角接触轴承安装方法精 编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

角接触球轴承,可同时承受径向负荷和轴向负荷,也可以承受纯轴向负荷,极限转速较高。该轴 承承受轴向负荷的能力由接触角决定,接触角大,承受轴向负荷的能力高。接触角α的定义为,径向平面上连接滚球和滚道触点的线与一条同轴承轴垂直的线之间的角度。 单列角接触球轴承有以下几种结构形式: (1)分离型角接触球轴承 这种轴承的代号为S70000,其外圈滚道边没有锁口,可以与内圈、保持架、纲球组件分离,因而可以分别安装。这类多为内径小于10mm的微型轴承,用于陀螺转子、微电动机等对动平衡、噪声、振动、稳定性都有较高要求的装置中。 (2)非分离型角接触球轴承 这类轴承的套圈沟道有锁口,所以两套圈不能分离。按接触角分为三种: ①接触角α=40°,适用于承受较大的轴向载荷; ②接触角α=25°,多用于精密主轴轴承;

③接触角α=15°,多用于较大尺寸精密轴承。 (3)成对配置的角接触球轴承 成对配置的角接触球轴承用于同时承受径向载荷与轴向载荷的场合,也可以承受纯径向载荷和任一方向的轴向载荷。此种轴承由生产厂按一定的预载荷要求,选配组合成对,提供给用户使用。当轴承安装在机器上紧固后,完全消除了轴承中的游隙,并使套圈和纲球处于预紧状态,因而提高了组合轴承的钢性。 单列角接触球轴承以径向负荷为主的径、轴向联合负荷,也可承受纯径向负荷,除串联式配置外,其他两配置均可承受任一方向的轴向负荷。在承受径向负荷时,会引起附加轴向力。因此一般需成对使用,做任意配对的轴承组合,成对安装的轴承按其外圈不同端面的组合分为:背对背配置、面对面配置、串联配置(也称:O型配置、X型配置、T型配置)三种类型: 背对背配置O型配置面对面配置 X型配置 串联配置 T型配置 ①背对背配置,后置代号为DB(如70000/DB),背对背配对的轴承的载荷线向轴承轴分开。可承受作用于两个方向上的轴向载荷,但每个方向上的载荷只能由一个轴承承受。背对背安装的轴承提供刚性相对较高的轴承配置,而且可承受倾覆力矩。 ②面对面配置,后置代号为DF(如70000/DF),面对面配对的轴承的载荷线向轴承轴汇合。可承受作用于两个方向上的轴向载荷,但每个方向上的载荷只能由一个轴承承受。这

角接触球轴承

角接触球轴承打滑行为的非线性动态模型 Qinkai Han , Fulei Chu.The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China. 摘要: 用一个三维非线性动态模型来预测复合载荷组合条件下角接触球轴承的打滑行为。该模型考虑了钢球的自转和公转引起的离心力和陀螺效应、钢球与内外圈之间的赫兹接触变形、钢球与保持架之间的非连续接触以及弾流动体润滑。通过对试验结果的比较,验证了该动态模型正确性。在此基础上,讨论了在复合载荷作用下,轴承钢球滑动速度随时间和位置的变化规律。该模型表明,径向载荷的变化将使钢球在内外圈之间的的滑动速度产生波动,对低负载区域的钢球影响更大。增加径向负荷将大幅增加滑移速度的幅度和范围,使打滑更加严重。当钢球在低载区时,大的滑动速度会使轴承和润滑油的温度升高,加剧轴承磨损,缩短轴承的使用寿命。因此,在旋转工件的设计和检测中应考虑径向载荷。 1.导论: 角接触球轴承是许多旋转机械的核心支撑部件,其动态特性对整个设备的使用性能、运行可靠性和使用寿命起着决定性的作用。轴承在运行过程中,滚道应为钢球提供足够大的摩擦力和摩擦力矩,以确保钢球处于纯滚动状态。否则,滚动体和内、外滚道之间可能会出相对滑移。随着现代旋转机械的高速化、重载化,轴承的滑动将使轴承和润滑油的温度升高,从而加速轴承磨损。如果轴承早期就开始打滑,它可能会导致轴承寿命减少,甚至更严重的事故。 因此,当前准确预测滚动轴承的打滑行为并提出防滑设计准则是很重要的问题。哈里斯[1,2]已经在这方面做了开创性的工作。基于沟道控制理论和准静态学,哈里斯[1,2]建立了用于高速角接触球轴承的滑行预测模型。该模型考虑了滚动体的各种受力情况(包括:接触力,摩擦力,流体力和离心力等),还考虑了轴向载荷、旋转速度、滚动体的数量对打滑的影

角接触轴承安装方法

角接触球轴承 轴承型号:7205轴承[1] 轴承系列:角接触球轴承 轴承内径:25 轴承外径:52 轴承厚度:15 (Angular Contact Ball Bearings)可同时承受径向负荷和轴向负荷。能在较高的转速下工作。接触角越大,轴向承载能力越高。高精度和高速轴承通常取15 度接触角。在轴向力作用下,接触角会增大。单列角接触球轴承只能承受一个方向的轴向负荷,在承受径向负荷时,将引起附加轴向力。并且只能限制轴或外壳在一个方向的轴向位移。成对双联球轴承 若是成对双联安装,使一对轴承的外圈相对,即宽端面对宽端面,窄端面对窄端面。这样即可避免引起附加轴向力,而且可在两个方向使轴或外壳限制在轴向游隙范围内。角接触球轴承因其内外圈的滚道可在水平轴线上有相对位移,所以可以同时承受径向负荷和轴向负荷——联合负荷(单列角接触球轴承只能承受单方向轴向负荷,因此一般都常采用成对安装)。保持架的材质有黄铜、合成树脂等,依轴承形式、使用条件而区分。 角接触球轴承的安装 角接触球轴承的安装比深沟球轴承复杂,多为成对安装,并需采用预加载荷。安装得好,可使主机的工作精度、轴承寿命大大提高;否则,不仅精度达不到要求,寿命也会受到影响。

安装形式 角接触球轴承的安装形式,有背对背、面对面和串联排列三种。背对背(两轴承的宽端面相对)安装时,轴承的接触角线沿回转轴线方向扩散,可增加其径向和轴向的支承角度刚性,抗变形能力最大;面对面(两轴承的窄端面相对)安装时,轴承的接触角线朝回转轴线方向收敛,其地承角度刚性较小。由于轴承的内圈伸出外圈,当两轴承的外圈压紧到一起时,外圈的原始间隙消除,可以增加轴承的预加载荷;串联排列(两轴承的宽端面在一个方向)安装时,轴承的接触角线同向且平行,可使两轴承分担同一方向的工作载荷。但使用这种安装形式时,为了保证安装的轴向稳定性,两对串联排列的轴承必须在轴的两端对置安装。

接触角测量仪原理介绍

光学接触角测量仪可以记录液滴图像并且自动分析液滴的形状.液滴形状是液体表面张力、重力和不同液体样品的密度差和湿度差及环境介质的函数.在固体表面上,液滴形状和接触角也依赖于固体的特性(例如表面自由能和形貌).使用液滴轮廓拟合方法对获得的图像进行分析,测定接触角和表面张力.使用几种已知表面张力的液体进行接触角测试可以计算得到材料的表面自由能. 作为光学方法,光学接触角测量仪的测量精度取决于图片质量和分析软件.Attension光学接触角测量仪使用一个高质量的单色冷LED光源以使样品蒸发量降到最低,高分辨率数码镜头、高质量的光学器件和精确的液体拟合方法确保了图片质量. 一、影像分析法接触角测试仪原理 影像分析法是通过滴出一滴满足要求体积的液体于固体表面,通过影像分析技术,测量或计算出液体与固体表面的接触角值的简易方法.作为影像分析法的仪器,其基本组成部分不外乎

光源、样品台、镜头、图像采集系统、进样系统.简单的一个影像分析法可以不含图像采购系统,而通过镜头里的十字形校正线去直接相切于镜头里观察到的接触角得到. 计算接触角的方法通常基于一特定的数学模型,如液滴可被视为球或圆椎的一部分,然后通过测量特定的参数如宽/高或通过直接拟合来计算得出接触角值.Young-Laplace方程描述了一封闭界面的内、外压力差与界面的曲率和界面张力的关系,可用来准确地描述一轴对称的液滴的外形轮廓,从而计算出其接触角. 仪器基本组成:光源、样品台、镜头、图像采集系统、进样系统. 二、插板法接触角测试仪原理 固体板插入液体时,只有板面与液体的夹角恰好为接触角时液面才直平伸至三相交界处,不出现弯曲.否则,液面将出现弯曲现象.因此,改变板的插入角度直至液面三相交界处附近无弯曲,这时,板面与液面的夹角即为接触角.

角接触轴承安装方法Word版

FAG NSK NTN KOYO NACHI IJK 单列角接触球轴承双列角接触球轴承 FAG精密主轴轴承系列NSK精密轴承系列 QJ:四点接触球轴承推力角接触球轴承 角接触球轴承,可同时承受径向负荷和轴向负荷,也可以承受纯轴向负荷,极限转速较高。该轴 承承受轴向负荷的能力由接触角决定,接触角大,承受轴向负荷的能力高。接触角α的定义为,径向平面上连接滚球和滚道触点的线与一条同轴承轴垂直的线之间的角度。 单列角接触球轴承有以下几种结构形式: (1)分离型角接触球轴承 这种轴承的代号为S70000,其外圈滚道边没有锁口,可以与内圈、保持架、纲球组件分离,因而可以分别安装。这类多为内径小于10mm的微型轴承,用于陀螺转子、微电动机等对动平衡、噪声、振动、稳定性都有较高要求的装置中。 (2)非分离型角接触球轴承 这类轴承的套圈沟道有锁口,所以两套圈不能分离。按接触角分为三种: ①接触角α=40°,适用于承受较大的轴向载荷; ②接触角α=25°,多用于精密主轴轴承;

③接触角α=15°,多用于较大尺寸精密轴承。 (3)成对配置的角接触球轴承 成对配置的角接触球轴承用于同时承受径向载荷与轴向载荷的场合,也可以承受纯径向载荷和任一方向的轴向载荷。此种轴承由生产厂按一定的预载荷要求,选配组合成对,提供给用户使用。当轴承安装在机器上紧固后,完全消除了轴承中的游隙,并使套圈和纲球处于预紧状态,因而提高了组合轴承的钢性。 单列角接触球轴承以径向负荷为主的径、轴向联合负荷,也可承受纯径向负荷,除串联式配置外,其他两配置均可承受任一方向的轴向负荷。在承受径向负荷时,会引起附加轴向力。因此一般需成对使用,做任意配对的轴承组合,成对安装的轴承按其外圈不同端面的组合分为:背对背配置、面对面配置、串联配置(也称:O型配置、X型配置、T型配置)三种类型: 背对背配置O型配置面对面配置 X型配置 串联配置 T型配置 ①背对背配置,后置代号为DB(如70000/DB),背对背配对的轴承的载荷线向轴承轴分开。可承受作用于两个方向上的轴向载荷,但每个方向上的载荷只能由一个轴承承受。背对背安装的轴承提供刚性相对较高的轴承配置,而且可承受倾覆力矩。 ②面对面配置,后置代号为DF(如70000/DF),面对面配对的轴承的载荷线向轴承轴汇合。可承受作用于两个方向上的轴向载荷,但每个方向上的载荷只能由一个轴承承受。这种配置不如背对背配对的刚性高,而且不太适合承受倾覆力矩。这种配置的刚性和承受倾覆力矩的能力不如DB配置形式,轴承可承受双向轴向载荷; ③串联配置,后置代号为DT(如70000/DT),串联配置时,载荷线平行,径向和轴向载荷由轴承均匀分担。但是,轴承组只能承受作用于一个方向上的轴向载荷。如果轴向载荷作用于相反方向,或如果有复合载荷,就必须增加一个相对串联配对轴承调节的第三个轴承。这种配置也可在同一支承处串联三个或多个轴承,但只能承受单方向的轴向载荷。通常,为了平衡和限制轴的轴向位移,另一支承处需安装能承受另一方向轴向载荷的轴承。 此外,还有一种可供任意配对的单列角接触球轴承。这种轴承经特殊加工,可以两个背靠背、两个面对面或两个串联等任意方式组合,配对组合的轴向间隙可根据需要选择,后置代号CA表示轴向间隙较小,CB表示轴向间隙适中,CC表示轴向间隙较大。 万能配对的轴承,也可按使用要求配置成有预过盈的轴承,并以后置代号GA、GB、GC表示。GA 表示配对后有较小的预过盈;GB表示配对后有中等预过盈;GC表示配对后有较大的预过盈。

6类角接触球轴承的结构特性

6类角接触球轴承的结构特性(附图) 角接触球轴承极限转速较高,可以同时承受径向载荷和轴向载荷,也可以承受纯轴向载荷,其轴向载荷能力由接触角(载荷作用线与轴承径向平面之间的夹角)决定,并随接触角增大而增大。 此类轴承适用于支承间距不大、刚性好的双支承轴上。 角接触球轴承的主要结构形式有:单列角接触球轴承、双列角接触球轴承和成对安装的角接触球轴承、四点接触球轴承。 单列角接触球轴承有分离型和不可分离型两种。分离型角接触球轴承基本型为S70000型。SN70000型为内圈可分离型,其内圈和外圈可以分别安装,适用于安装条件受限制部位。不可分离型角接触球轴承的内圈和外圈不能分开安装,其接触角分别15o、25o、和40o三种,角接触球轴承锁日可分设在内圈或外圈上。锁口在内圈上轴承的极限转速高于锁口在外圈上轴承的极限转速。 单列角接触球轴承只能承受一个方向的轴向载荷,在承受径向载荷时,会引起附加轴向力,必须施加相应的反向轴向载荷,因此该种轴承一般都成对使用。 双列角接触球轴承能承受较大的以径向载荷为主的径向、轴向联合载荷和力矩载荷,它能限制轴或外壳的双向轴向位移,接触角为30o。 成对安装角接触球轴承是由两套相同规格的单列角接触球轴承以不同的组配方式构成,按其外圈端面的组合可以分为:串联配置(70000/DT)、背靠背配置(70000/DB)和面对面配置(70000/DF)三种型式。 该种轴承能承受以径向载荷为主的径向、轴向联合载荷,也可以承受纯径向载荷。串联配置只能承受一个方向轴向载荷。其它两种配置则可承受任一方向的轴向载荷。这种类型的轴承一般由生产厂商选配组合后成对提交给用户,安装后有预压过盈,套圈和钢球处于轴向预加载荷状态,因而提高了整组轴承作为单个支承的支承刚度和旋转精度。 四点接触球轴承为可分离轴承。其中QJ0000型(17600型)具有双半内圈,QJF00口型(116000型)具有双半外圈,接触角为35o,在无载荷和纯径向载荷作用时,钢球与套圈里四点接触。在纯轴向载荷作用下,钢球与套圈为两点接触,可承受双向轴向载荷。该种轴承还可以承受力矩载荷,兼有单列和双列角接触球轴承的功能。该种轴承只有形成两点接触时才能保证正常工作。

接触角原理

2.1 接触角定义 当液滴自由地处于不受力场影响的空间时,由于界面张力的存在而呈圆球状。但是,当液滴与固体平面接触时,其最终形状取决于液滴内部的内聚力和液滴与固体间的粘附力的相对大小。当一液滴放置在固体平面上时,液滴能自动地在固体表面铺展开来,或以与固体表面成一定接触角的液滴存在,如图1所示。 图1 接触角 假定不同的界面间力可用作用在界面方向的界面张力来表示,则当液滴在固体平面上处于平衡位置时,这些界面张力在水平方向上的分力之和应等于零,即 θγγγcos ///A L L S A S += (1) 式中γS/A 、γL/A 、γS/L 分别为固-气、液-气和固-液界面张力;θ为液体与固体间的界面和液体表面的切线所夹(包含液体)的角度,称为接触角(contact angle ),θ在00-1800之间。接触角是反应物质与液体润湿性关系的重要尺度,θ=90o 可 作为润湿与不润湿的界限,θ<90o 时可润湿,θ>90o 时不润湿。 2.2 润 湿 润湿(wetting)的热力学定义是,若固体与液体接触后体系(固体和液体)的自由能G 降低,称为润湿。自由能降低的多少称为润湿度,用W S/L 来表示。润湿可分为三类:粘附润湿(adhesional wetting )、铺展润湿(spreading wetting )和浸湿(immersional wetting )。可从图2看出。 图2 三类润湿

(1)粘附润湿 如果原有的1m2固面和1m2液面消失,形成1m2固-液界面,则此过程的 W A S/L为: W A S/L=γS/A+γL/A-γS/L (2) (2)铺展润湿 当一液滴在1m2固面上铺展时,原有的1m2固面和一液滴(面积可忽略 不计)均消失,形成1m2液面和1m2固-液界面,则此过程的W S S/L为: W S S/L=γS/A-γL/A-γS/L (3) (3)浸湿 当1m2固面浸入液体中时,原有的1m2固面消失,形成1m2固-液界面,则此过程的W I S/L为: W I S/L=γS/A-γS/L (4) 对上述三类润湿,γS/A和γS/L无法测定,如何求W S/L?分别讨论如下: ①粘附润湿 将(1)式代入(2)式,可得:W A S/L=γL/A(1+cosθ)(5) 因液体表面张力γL/A为已知,故只需测定接触角θ即可求出W A S/L。 ②铺展润湿 将(1)式代入(3)式,可得:W S S/L=γL/A(cosθ-1) 因cos≤1,故W S S/L≤0。但W S/L是自由能降低,结果表示可以有一个自由能增加或不变的自发过程。这显然违反热力学第二定律。错误在于误用了(1)式,此式只适用于平衡态。若液滴自动铺展以完全盖住固面,这就表示液滴与固面不成平衡态,所以不能将(1)式代入(3)式中。这里应该指出,不能将铺展润湿认为θ=00,而在此情况下根本没有接触角。θ=00的正确理解应是有一个角,恰好等于0o。 设有固体与压力逐渐增加的蒸气接触以吸附此蒸气,当压力达到饱和蒸气压P0时,固面上即有一层极薄的液体。由Gibbs吸附原理知,表面自由能降低= RT?Γ0 0ln P P d。因此,W S S/L=γS/A-γL/A-γS/L =RT?Γ0 0ln P P d(6) ③浸湿 将式(6)中的γL/A去掉,即得W I S/L: W I S/L=γS/A -γS/L =RT?Γ0 0ln P P d(7) 由(5)式可知,当θ=0o时,cosθ=1,W A S/L=2γL/A,自由能降低为最大,则认为固体完全被液体润湿;当θ=180o时,cosθ=-1,W A S/L=0,自由能降低为0,则固体完全不被液体润湿,即完全不润湿。这种情况是理想的,因为液体与固体之间多少有一些相互吸引力存在。

角接触轴承使用方法

角接触轴承使用方法 角接触轴承的尺寸怎么测量和安装 以单套角接触球轴承为例; 外径和内径的测方法同单列深沟球轴承,角接触深沟球轴承的宽度称为装配高; AC接触类型的:以大端为基准,预紧力作用在外圈大端面上,实际受力的是在内圈的另一侧;反之,以大端为基准,预紧力作用在内圈的另一个端面上,实际受力的是在外圈的大端面。 BM接触类型的:与上述的情形类似。 角接触球轴承的特点及用途: 角接触球轴承极限转速较高,可以同时承受径向载荷和轴向载荷,也可以承受纯轴向载荷,其轴向载荷能力由接触角决定,并随接触角的增大而增大。 单列角接触球轴承只能承受一个方向的轴向载荷,在承受径向载荷时,会引起附加轴向力,必须施向相应的反向载荷,因此,该种轴承一般都成对使用。双列角接触球轴承能承受较大的以径向载荷为主的径向、轴向双向联合载荷和力矩载荷,它能限制轴或外壳双向轴向位移,接触角为30度。 成对安装角接触球轴承能承受以径向载荷为主的径向、轴向双向联合载荷,也可以承受纯径向载荷。串联配置只能承受单一方向的轴向载荷,其他两种配置则可承受任一方向的轴向载荷。这种类型的轴承一般由生产厂商选配组合成对提交用户,安装后有预压过盈,套圈和钢球处于轴向预加载荷状态,因而提高了整组轴承作为单个支承刚度和旋转精度。 具体分类及型号对照: 1、a=15o的角接触球轴承(70000 C型) 2、a=25o的角接触球轴承(70000 AC型) 3、a=40o的角接触球轴承(70000 B型) 4、a=15o的高速密封角接触球轴承(B70000 C-2RZ型) 5、a=25o的高速密封角接触球轴承(B70000 AC-2RZ型) 6、a=15o的高速密封角接触陶瓷球轴承(B70000 C-2RZ/HQ1型) 7、a=25o的高速密封角接触陶瓷球轴承(B70000 AC-2RZ/HQ1型) 8、背靠背成对双联角接触球轴承[70000 C(AC、B)/DB型] 9、面靠面成对双联角接触球轴承[70000 C(AC、B)/DF型] 10、串联成对双联角接触球轴承[70000 C(AC、B)/DT型] 11、有装球缺口的双列角接触球轴承(0000型a=30o) 12、无装球缺口的双列角接触球轴承(0000 A型a=30o) 13、一面带防尘盖的双列角接触球轴承(0000 A-Z型a=30o) 14、两面带防尘盖的双列角接触球轴承(0000 A-2Z型a=30o) 15、一面带密封圈的双列角接触球轴承(0000 A-RZ型a=30o) 16、两面带密封圈的双列角接触球轴承(0000 A-2RZ型a=30o) 17、四点接触球轴承(QJ型a=35o) 成对使用是为了增加或平衡轴承作用力,根据轴向作用力的方向,可以选择DB背对背安装,DF面对面安装,DT串联安装,对于机床主轴而言,常用到三联安装、四联安装,甚至有五联安装,通常情况下,轴向负荷都是双向的,很少有纯单向的轴向负荷,所以角接触球轴承都是成对安装的。成对安装一方面能增加径向负荷能力,另一方面也能更有针对性的提供轴承负荷能力,增加主轴的韧性。

角接触球轴承安装方法

角接触球轴承安装方法 双列角接触球轴承的安装比深沟球轴承复杂,多为成对安装,并需采用预加载荷。安装得好,可使主机的工作精度、轴承寿命大大提高;否则,不仅精度达不到要求,寿命也会受到影响。 双列角接触球轴承的安装形式有三种,分别是:背对背、面对面和串联排列三种。那么这三种安装形式各有什么特点与好处呢? 背对背(两轴承的宽端面相对)安装时,轴承的接触角线沿回转轴线方向扩散,可增加其径向和轴向的支承角度刚性,抗变形能力最大; 面对面(两轴承的窄端面相对)安装时,轴承的接触角线朝回转轴线方向收敛,其地承角度刚性较小。由于轴承的内圈伸出外圈,当两轴承的外圈压紧到一起时,外圈的原始间隙消除,可以增加轴承的预加载荷;

串联排列(两轴承的宽端面在一个方向)安装时,轴承的接触角线同向且平行,可使两轴承分担同一方向的工作载荷。但使用这种安装形式时,为了保证安装的轴向稳定性,两对串联排列的轴承必须在轴的两端对置安装。 此外,在安装的过程中要注意一个参数,预加载荷的获得。预加载荷可通过修磨轴承中一个套圈的端面,或用两个不同厚度的隔圈放在一对轴承的内、外圈之间,把轴承夹紧在一起,使钢球与滚道紧密接触而得到。 预加载荷的大小对轴承使用寿命影响很大,据有关资料介绍,当轴承装配有0.012mm过盈量时,使用寿命降低380,有0.016mm 过盈量时,使用寿命降低501;当轴承装配有0.004mm间隙时,使用寿命显着下降,有0.008mm间隙时,使用寿命下降705。 因此,对预加载荷的大小进行合理选择十分重要。一般高转速宜选用小的预加载荷,低转速宜选用大的预加载荷。同时,预

加载荷应稍大于或等于轴向工作载荷。 汇普轴承温馨提示:双列角接触球轴承经装配检验合格后,要以工作转速作空运转试验,时间不少于2h,温升应不超过15℃。

接触角原理概述

实验项目:用接触角测量仪测量材料表面的接触角 一.实验目的: 1.认识和掌握接触角测量仪测量材料表面的接触角的基本原理 2.熟悉接触角测量仪JC2000D1的操作技术 二.实验容: 1.掌握JC2000D1型接触角测量仪的工作原理和操作步骤 2.测量几种材料的表面接触角 三.实验仪器,设备及材料 设备JC2000D1型接触角测量仪,蒸馏水,解玻片,食盐水,样品木板几个 四.基本原理概述 1.接触角定义及应用 当液滴自由地处于不受力场影响的空间时,由于界面力的存在而呈圆球状。但是,当液滴与固体平面接触时,其最终形状取决于液滴部的聚力和液滴与固体间的粘附力的相对大小。当一液滴放置在固体平面上时,液滴能自动地在固体表面铺展开来,或以与固体表面成一定接触角的液滴存在,接触角通俗地说,就是液滴在固体表面自然形成的半圆形态相对于固体平面的外切线,如图1所示。 接触角的应用非常广泛,甚至可以说涉及到身边的每个细节,我们希望汽车玻璃上不沾雨水,但反之我们希望汽车钢板上的油漆永不脱落。其他比如农药和蔬菜叶面;涂料和外墙面,绝缘材料,纳米材料表面化改性等等,从教学科研工农业生产到日常生活。 图1 接触角 假定不同的界面间力可用作用在界面方向的界面力来表示,则当液滴在固体平面上处于平衡位置时,这些界面力在水平方向上的分力之和应等于零,即 (1) 式中、、分别为固-气、液-气和固-液界面力;为液体与固体间的界面和液体表面的切线所夹(包含液体)的角度,称为接触角 (contact angle),在之间。接触角是反应物质与液体润湿性关系

的重要尺度,可作为润湿与不润湿的界限,时可润湿, 时不润湿。 2.润湿 润湿(wetting)的热力学定义是,若固体与液体接触后体系(固体和液体)的自由能G降低,称为润湿。自由能降低的多少称为润湿度,用来表示。润 湿可分为三类:粘附润湿(adhesional wetting)、铺展润湿 (spreading wetting)和浸湿(immersional wetting)。可从图2看出。 图2 三类润湿 (1)粘附润湿 如果原有的1固面和1液面消失,形成1固-液界面,则此过程的 为: (2) (2)铺展润湿 当一液滴在1固面上铺展时,原有的1固面和一液滴(面积可忽略不计)均消失,形成1液面和1固-液界面,则此过程的为: (3) (3)浸湿 当1固面浸入液体中时,原有的1固面消失,形成1固-液界面,则此过程的为: (4) 对上述三类润湿,和无法测定,如何求?分别讨论如下: (1)粘附润湿

双列角接触球轴承介绍

镇江华天轴承有限公司 双列角接触球轴承介绍 双列角接触球轴承能承受较大的径向负荷为主的径向和轴向联合负荷和力矩负荷,限制轴的两方面的轴向位移。主要用于限制轴和外壳双向轴向位移的部件中。 双列角接触球轴承内、外圈之间的可倾斜性有限,允许倾斜角取决于轴承的内部间隙、轴承尺寸、内部设计及作用于轴承上的力和力矩,而最大允许倾斜角应保证轴承内不会产生过高的附加应力。 若轴承内、外圈之间存在倾斜角,将影响轴承的寿命,同时造成轴承运转精度下降,运转噪声增大。双列角接触球轴承一般采用尼龙保持架或黄铜实体保持架。双列角接触球轴承安装时应注意,虽然轴承可承受双向轴向载荷,但若一侧有装球缺口时,则应注意不要让主要轴向载荷通过有缺口的一侧沟边。在轴承使用时应注意使不带装球缺口的一侧滚道承受主要载荷。 不管怎样的轴承我们都要对他们进行定期的检查,并且注意在运行中有什么特殊的情况,下面我们来看一下双列球轴承的运行时需要注意的事项吧。 1、首先我们要检查双列球轴承的各零件是否有松动,如果有松动的话,也要对它进行调试,将它扭紧就好了。 2、我们用手转动轮子旋转几圈,看是否有光滑,有噪音,如果光滑有噪音的话,就说明轴承的运转是不正常的,此时我们就要进行相应的检查,仔细的检查,逐一排查出现这种情况的原因。 3、还有就是我们要检查轴承是不是有生锈的部分,生锈了说明轴承已经腐蚀了,此时我们需要做的就是要涂上绝缘漆。 4、要及时的检查是不是需要添加润滑脂,润滑脂完全没有的话就会导致轴承在运行的过程中出现振动的情况,所以我们要及时的给双列球轴承添加滑剂,保持它的正常运行。 5、目前已经出来一种电子听诊器可以来检测异常噪音,一般情况下,双列球轴承运行时的声音是比较低得,如果发出尖锐的嘶嘶声或者不规则声音的话,很可能就是滚动元件损坏了,这是由于滚动元件的表面损坏才会发出来的,此时我们需要做的就是立刻更换轴承。随着技术的发展,这些都不需要人工去检查,但是有时候我们不能一味的相信机器的判断,我们可以先通过机器的检查,然后再人工的检查一遍,保证它安全的运转。

角接触轴承安装方法修订稿

角接触轴承安装方法 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

角接触球轴承,可同时承受径向负荷和轴向负荷,也可以承受纯轴向负荷,极限转速较高。该轴 承承受轴向负荷的能力由接触角决定,接触角大,承受轴向负荷的能力高。接触角α的定义为,径向平面上连接滚球和滚道触点的线与一条同轴承轴垂直的线之间的角度。 单列角接触球轴承有以下几种结构形式: (1)分离型角接触球轴承 这种轴承的代号为S70000,其外圈滚道边没有锁口,可以与内圈、保持架、纲球组件分离,因而可以分别安装。这类多为内径小于10mm的微型轴承,用于陀螺转子、微电动机等对动平衡、噪声、振动、稳定性都有较高要求的装置中。 (2)非分离型角接触球轴承 这类轴承的套圈沟道有锁口,所以两套圈不能分离。按接触角分为三种: ①接触角α=40°,适用于承受较大的轴向载荷; ②接触角α=25°,多用于精密主轴轴承; ③接触角α=15°,多用于较大尺寸精密轴承。 (3)成对配置的角接触球轴承 成对配置的角接触球轴承用于同时承受径向载荷与轴向载荷的场合,也可以承受纯径向载荷和任一方向的轴向载荷。此种轴承由生产厂按一定的预载荷要求,选配组合成对,提供给用户使用。当轴承安装在机器上紧固后,完全消除了轴承中的游隙,并使套圈和纲球处于预紧状态,因而提高了组合轴承的钢性。 单列角接触球轴承以径向负荷为主的径、轴向联合负荷,也可承受纯径向负荷,除串联式配置外,其他两配置均可承受任一方向的轴向负荷。在承受径向负荷时,会引起附加轴向力。因此一般需成对使用,做任意配对的轴承组合,成对安装的轴承按其外圈不同端面的组合分为:背对背配置、面对面配置、串联配置(也称:O型配置、X型配置、T型配置)三种类型: 背对背配置O型配置面对面配置 X型配置 串联配置T型配置

角接触球轴承安装标准修订稿

角接触球轴承安装标准 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

角接触轴承安装方法标准 FAG NSK NTN KOYO NACHI IJK ? 角接触球轴承,可同时承受径向负荷和轴向负荷,也可以承受纯轴向负荷,极限转速较高。该轴 承承受轴向负荷的能力由接触角决定,接触角大,承受轴向负荷的能力高。接触角α的定义为,径向平面上连接滚球和滚道触点的线与一条同轴承轴垂直的线之间的角度。 单列角接触球轴承有以下几种结构形式: (1)分离型角接触球轴承 这种轴承的代号为S70000,其外圈滚道边没有锁口,可以与内圈、保持架、纲球组件分离,因而可以分别安装。这类多为内径小于10mm的微型轴承,用于陀螺转子、微电动机等对动平衡、噪声、振动、稳定性都有较高要求的装置中。 (2)非分离型角接触球轴承

这类轴承的套圈沟道有锁口,所以两套圈不能分离。按接触角分为三种: ①接触角α=40°,适用于承受较大的轴向载荷; ②接触角α=25°,多用于精密主轴轴承; ③接触角α=15°,多用于较大尺寸精密轴承。 (3)成对配置的角接触球轴承 成对配置的角接触球轴承用于同时承受径向载荷与轴向载荷的场合,也可以承受纯径向载荷和任一方向的轴向载荷。此种轴承由生产厂按一定的预载荷要求,选配组合成对,提供给用户使用。当轴承安装在机器上紧固后,完全消除了轴承中的游隙,并使套圈和纲球处于预紧状态,因而提高了组合轴承的钢性。 单列角接触球轴承以径向负荷为主的径、轴向联合负荷,也可承受纯径向负荷,除串联式配置外,其他两配置均可承受任一方向的轴向负荷。在承受径向负荷时,会引起附加轴向力。因此一般需成对使用,做任意配对的轴承组合,成对安装的轴承按其外圈不同端面的组合分为:背对背配置、面对面配置、串联配置(也称:O型配置、X型配置、T型配置)三种类型: 背对背配置O型配置面对面配置 X型配置 串联配置 T型配置 ①背对背配置,后置代号为DB(如70000/DB),背对背配对的轴承的载荷线向轴承轴分开。可承受作用于两个方向上的轴向载荷,但每个方向上的载荷只能由一个轴承承受。背对背安装的轴承提供刚性相对较高的轴承配置,而且可承受倾覆力矩。 ②面对面配置,后置代号为DF(如70000/DF),面对面配对的轴承的载荷线向轴承轴汇合。可承受作用于两个方向上的轴向载荷,但每个方向上的载荷只能由一个轴承承受。这种配置不如背对背配对的刚性高,而且不太适合承受倾覆力矩。这种配置的刚性和承受倾覆力矩的能力不如DB配置形式,轴承可承受双向轴向载荷; ③串联配置,后置代号为DT(如70000/DT),串联配置时,载荷线平行,径向和轴向载荷由轴承均匀分担。但是,轴承组只能承受作用于一个方向上的轴向载荷。如果轴向载荷作用于相反方向,或如果有复合载荷,就必须增加一个相对串联配对轴承调节的第三个轴承。这种配置也可在同一支承处串联三个或多个轴承,但只能承受单方向的轴向载荷。通常,为了平衡和限制轴的轴向位移,另一支承处需安装能承受另一方向轴向载荷的轴承。

相关主题
文本预览
相关文档 最新文档