当前位置:文档之家› 独立重复试验与二项分布习题课

独立重复试验与二项分布习题课

随机变量及其分布列经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量、 ①随机变量就是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化、 2.表示:随机变量常用字母X ,Y,ξ,η,…表示. 3、所有取值可以一一列出的随机变量,称为离散型随机变量 ( dis cre te ran dom var ia ble ) . 二、离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,xi ,…,x n, X 取每一个值x i (i=1,2,…, n)的概率P (X =xi)=pi ,则称表: 为离散型随机变量X P(X =x i )=p i , i =1,2,…,n, 也可以用图象来表示X 的分布列、 2.离散型随机变量的分布列的性质 ①pi ≥0,i=1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X 的分布列具有上表形式,则称服从两点分布,并称p =P (X =1)为成功概率. 2、超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M,N ∈N * . 三、二项分布 一般地,在n 次独立重复试验中,用 X 表示事件A 发生的次数,设每次试验中事件A发生的概率为p ,则P (X=k )=C 错误!p k (1-p)n - k ,k=0,1,2,…,n 、此时称随机变量X服从二项分布,记作X ~B (n ,p),并称p 为成功概率.易得二项分布的分布列如下;

独立重复试验教案

独立重复试验教案 教学目的 使学生了解独立重复试验的实际背景和能利用其法则进行实际计算. 教学重点和难点 独立重复试验的概念及其公式推导. (教学方法:讲练结合) 教学过程 1.独立重复试验的意义 独立重复试验,又叫做贝努里试验,是在同样的条件下重复地、各次之间相互独立地进行的一种试验,这种试验在概率论中占有相当重要的地位,因为随机现象的统计规律只有在大量独立重复试验中才能显示出来. 在这种试验中,每一次试验只有两种结果,即某事件要么发生;要么不发生.在一定条件下,种子要么发芽;要么不发芽.在产品抽样检查中,要么抽到合格品;要么抽不到合格品.所以在n次独立重复试验中某事件恰好发生k(k=0,1,2,…,n)次,另外(n-k)次就是某事件不发生. 2.n次独立重复试验中事件恰好发生k次的概率公式. 的展开式中x m的系数.因此,我们可将概率P n(m)的分布叫做二项式分布. 3.举例 (1)某批产品中有20%的次品,进行重复抽样检查,共取5个样品,求其中次品数等于0、1、2、3、4、5的概率. 解:已知n=5 P=0.2,

(2)一批产品中有30%的一等品,进行重复抽样检查,共取5个样品,求: (i)取出的5个样品中恰有2个一等品的概率是多少? (ii)取出的5个样品中至少有2个一等品概率是多少? =1-[P5(0)+P5(1)] =1-0.52822 =0.47178≈0.472 (3)某厂大量生产的某种小零件,经抽查检验知道其次品率 为0.3%,现把这种零件每100件装成一盒.试分别计算每盒中不含次品、恰好含1件次品、含2件次品、含3件次品、含4件次品的概率.并求一盒中至少含有3件次品的概率是多少? 解:将100个零件装进盒内,可以看成是进行了100次检验零件的随机试验. 在一盒中不含次品的概率 同理,可算得 P100(1)≈0.2228≈22% P100(2)≈0.0332≈3.3% P100(3)≈0.0033≈0.3%

高考真题突破:二项分布及其应用、正态分布

专题十一 概率与统计 第三十六讲二项分布及其应用、正态分布 一、选择题 1.(2015湖北)设211(,)X N μσ:,222(,)Y N μσ:,这两个正态分布密度曲线如图所 示.下列结论中正确的是 A .21()()P Y P Y μμ≥≥≥ B .21()()P X P X σσ≤≤≤ C .对任意正数t ,()()P X t P Y t ≤≥≤ D .对任意正数t ,()()P X t P Y t ≥≥≥ 2.(2015山东)已知某批零件的长度误差(单位:毫米)服从正态分布2 (0,3)N ,从中随 机取一件,其长度误差落在区间(3,6)内的概率为 (附:若随机变量ξ服从正态分布2(,)N μσ,则()68.26%P μσξμσ-<<+=,(22)95.44%P μσξμσ-<<+=) A .4.56% B .13.59% C .27.18% D .31.74% 3.(2014新课标2)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75, 连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为 优良的概率是 A .0.8 B .0.75 C .0.6 D .0.45

4.(2011湖北)已知随机变量ξ服从正态分布()2,2σN ,且()8.04=<ξP ,则 ()=<<20ξP A .6.0 B .4.0 C .3.0 D .2.0 二、填空题 5.(2017新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放 回地抽取100次,表示抽到的二等品件数,则DX = . 6.(2016四川)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次 试验成功,则在2次试验中成功次数X 的均值是 . 7.(2015广东)已知随机变量X 服从二项分布(),n p B ,若()30E X =,()20D X =, 则p = . 8.(2012新课标)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工 作,且元件3正常工作,则部件正常工作。设三个电子元件的使用寿命(单位:小时)均服从正态分布)50,1000(2N ,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为 . 三、解答题 9.(2017新课标Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线 上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条 生产线正常状态下生产的零件的尺寸服从正态分布2 (,)N μσ. (1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3) μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望; (2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生 1 元件2元件3元件

二项分布专题练习

二项分布专题练习 1.已知随机变量X 服从二项分布,X ~B 16,3?? ??? ,则P (X =2)=( ). A . 316 B . 4243 C . 13 243 D . 80 243 2.设某批电子手表正品率为 34,次品率为1 4 ,现对该批电子手表进行测试,设第X 次首次测到正品,则P (X =3)等于( ). A .223 13C 44??? ??? B .2 2331C 44 ??? ? ?? C .2 1344 ??? ??? D .2 3144 ??? ??? 3.甲、乙两名篮球队员轮流投篮直至某人投中为止,设甲每次投篮命中的概率为0.4,乙投中的概率为0.6,而且不受其他次投篮结果的影响,设投篮的轮数为X ,若甲先投,则P (X =k )等于( ). A .0.6k - 1×0.4 B .0.24k -1×0.76 C .0.4k -1×0.6 D .0.76k - 1×0.24 4.10个球中有一个红球,有放回地抽取,每次取出一球,直到第n 次才取得k (k ≤n )次红球的概率为( ). A .2191010n k -???? ? ? ???? B . 191010k n k -???? ? ? ???? C .1119C 1010k n k k n ---???? ? ????? D .1 1119C 1010k n k k n ----???? ? ??? ?? 5.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为 65 81 ,则事件A 在1次试验中发生的概率为( ). A . 13 B . 25 C . 56 D . 34 6.某一批花生种子,如果每一粒发芽的概率为4 5 ,那么播下4粒种子恰有2粒发芽的概率是__________. 7.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为__________.(用数字作答) 8.假定人在365天中的任意一天出生的概率是一样的,某班级中有50名同学,其中有两个以上的同学生于元旦的概率是多少?(结果保留四位小数)

二项分布经典例题+测验题

二项分布 1.n 次独立重复实验 一般地,由n 次实验构成,且每次实验相互独立完成,每次实验的结果仅有两种对立的状态,即A 与A ,每次实验中()0P A p =>。我们将这样的实验称为n 次独立重复实验,也称为伯努利实验。 (1)独立重复实验满足的条件第一:每次实验是在同样条件下进行的;第二:各次实验中的事件是互相独立的;第三:每次实验都只有两种结果。 (2)n 次独立重复实验中事件A 恰好发生k 次的概率 ()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k == k k n k n C p q -,其中 0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作(,)X B n p 。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3.甲乙两人各进行3次射击,甲每次击中目标的概率为2 1,乙每次击中目标的概率为3 2 . (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】 1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且

规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和. (Ⅰ)求X的分布列。 (Ⅱ)求X的数学期望E(X). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投 篮投中的概率为1 3,乙每次投篮投中的概率为1 2 ,且各次投篮互不 影响. (Ⅰ) 求甲获胜的概率。 (Ⅱ) 求投篮结束时甲的投篮次数 的分布列与期望 3.设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜 4场则比赛宣告结束,假定,A B在每场比赛中获胜的概率都是1 2 , 试求需要比赛场数的期望. 3.(2012年高考(辽宁理))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查. 下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图。

二项分布经典例题+测验题资料

二项分布经典例题+测 验题

二项分布 1.n 次独立重复实验 一般地,由n 次实验构成,且每次实验相互独立完成,每次实验的结果仅有两种对立的状态,即A 与A ,每次实验中()0P A p =>。我们将这样的实验称为n 次独立重复实验,也称为伯努利实验。 (1)独立重复实验满足的条件第一:每次实验是在同样条件下进行的;第二:各次实验中的事件是互相独立的;第三:每次实验都只有两种结果。 (2)n 次独立重复实验中事件A 恰好发生k 次的概率 ()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k ==k k n k n C p q -,其中 0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作(,)X B n p 。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3.甲乙两人各进行3次射击,甲每次击中目标的概率为2 1,乙每次击中目标的概率为3 2. (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】

1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球, 且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和. (Ⅰ)求X的分布列。 (Ⅱ)求X的数学期望E(X). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每 次投篮投中的概率为1 3,乙每次投篮投中的概率为1 2 ,且各次投篮 互不影响. (Ⅰ) 求甲获胜的概率。 (Ⅱ) 求投篮结束时甲的投篮次数 的分布列与期望 3.设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜4场则比赛宣告结束,假定,A B在每场比赛中获胜的概率都是 1 2 ,试求需要比赛场数的期望. 3.(2012年高考(辽宁理))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图。

二项分布经典例题练习题

二项分 布 1.n 次独立重复试验 一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中()0P A p =>。我们将这样的试验称为n 次独立重复试验,也称为伯努利试验。 (1)独立重复试验满足的条件第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都只有两种结果。 (2)n 次独立重复试验中事件A 恰好发生k 次的概率()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k ==k k n k n C p q -,其中0 1.1,0,1,2,,,p p q k n <<+==L 则称X 服从参数为,n p 的二项分布,记作(,)X B n p :。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 2.一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到 红灯的事件是相互独立的,并且概率都是31 . (1)设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列; (2)设η为这名学生在首次停车前经过的路口数,求η的分布列;

(3)求这名学生在途中至少遇到一次红灯的概率. 3.甲乙两人各进行3次射击,甲每次击中目标的概率为 21,乙每次击中目标的概率为3 2. (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】 1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且规定:取出一个白球的 2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出3球所得分数之和. (Ⅰ)求X 的分布列; (Ⅱ)求X 的数学期望E (X ). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜 或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为1 3 ,乙每次投篮投中的概 率为1 2 ,且各次投篮互不影响. (Ⅰ)求甲获胜的概率; (Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望

二项分布高考试题.

二项分布练习题目: 1.某人射击一次击中目标的概率为0.6,经过3次射击,此人恰有两次击中目标的概率为 2.加工某种零件需经过三道工序。设第一、二、三道工序的合格率分别为10 9、9 8、8 7,且各道工序互不影响。 (1) 求该种零件的合格率; (2) 从该种零件中任取3件,求恰好取到一件合格品的概率和至少取到一件合格品的概率。 (Ⅰ)解:9877 109810 P = ??=; (Ⅱ)解法一: 该种零件的合格品率为10 7,由独立重复试验的概率公式得: 恰好取到一件合格品的概率为 12 373()0.1891010C ? ?=, 至少取到一件合格品的概率为 .973.0)10 3 (13=- 解法二: 恰好取到一件合格品的概率为1237 3 ()0.1891010 C ??=, 至少取到一件合格品的概率为 1 22233 33373737()()()0.973.1010101010 C C C ? ?+?+= 3. 9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种

子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种。 (Ⅰ)求甲坑不需要补种的概率; (Ⅱ)求3个坑中恰有1个坑不需要补种的概率; (Ⅲ)求有坑需要补种的概率。 (Ⅰ)解:因为甲坑内的3粒种子都不发芽的概率为 8 1)5.01(3=-,所以甲坑不需要补种的概率为 .875.08 7 8 11==- (Ⅱ)解:3个坑恰有一个坑不需要补种的概率为 .041.0)8 1(8 721 3=??C (Ⅲ)解法一:因为3个坑都不需要补种的概率为3)8 7(, 所以有坑需要补种的概率为 .330.0)8 7(13=- 解法二:3个坑中恰有1个坑需要补种的概率为 ,287.0)8 7(8 121 3=??C 恰有2个坑需要补种的概率为 ,041.087 )81(223=??C 3个坑都需要补种的概率为 .002.0)8 7()81(033 3=??C 4.某学生在上学路上要经过4个路口,假设在各路口是

正态分布及其经典习题和答案

专题:正态分布 【知识网络】 1、取有限值的离散型随机变量均值、方差的概念; 2、能计算简单离散型随机变量的均值、方差,并能解决一些实际问题; 3、通过实际问题,借助直观(如实际问题的直观图),认识正态分布、曲线的特点及曲线所表示的意义。 【典型例题】 例1:(1)已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值为 ( ) A .n=4,p=0.6 B .n=6,p=0.4 C .n=8,p=0.3 D .n=24,p=0.1 答案:B 。解析:()4.2==np X E ,()44.1)1(=-=p np X V 。 (2)正态曲线下、横轴上,从均数到∞+的面积为( )。 A .95% B .50% C .97.5% D .不能确定(与标准差的大小有关) 答案:B 。解析:由正态曲线的特点知。 (3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是 ( ) A 32 B 16 C 8 D 20 答案:B 。解析:数学成绩是X —N(80,102), 8080 9080(8090)(01)0.3413,480.34131610 10P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ???。 (4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________ 。 答案:8.5。解析:设两数之积为X , ∴E(X)=8.5. (5)如图,两个正态分布曲线图: 1为)(1 ,1x σμ?,2为)(22x σμ?, 则1μ 2μ,1σ 2σ答案:<,>。解析:由正态密度曲线图象的特征知。 例2:甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率. 答案:解:(Ⅰ)依题意,甲答对试题数ξ的概率分布如下: 甲答对试题数ξ的数学期望 E ξ=5 9 61321210313010=?+?+?+? . (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则

n次独立重复试验

n次独立重复试验 独立重复试验: (1)独立重复试验的意义:做n次试验,如果它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验. (2)一般地,在n次独立重复试验中,设事件A发生的次数为X,在每件试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次 的概率为,此时称随机变量X 服从二项分布,记作,并称p为成功概率. (3)独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的. (4)独立重复试验概率公式的特点:是n次独立 重复试验中某事件A恰好发生k次的概率.其中,n是重复试验的次数,p是一次试验中某事件A发生的概率,k是在n次独立重复试验中事件A恰好发生的次数,需要弄清公式中n,p,k的意义,才能正确运用公式. 求独立重复试验的概率: (1)在n次独立重复试验中,“在相同条件下”等价于各次试验的结果不会受其他试验的影响,即 2,…,n)是第i 次试验的结果. (2)独立重复试验是相互独立事件的特例,只要有“恰好”“恰有”字样的用独立重复试验的概率公式计算更简单,要弄清n,p,k的意义。 相互独立事件同时发生的概率 相互独立事件的定义: 如果事件A(或B)是否发生对事件B(A)发生的概率没有影响,这样的两个事件叫做相互独立事件。 若A,B是两个相互独立事件,则A与与,与B都是相互独立事件。 相互独立事件同时发生的概率:

两个相互独立事件同时发生,记做A·B,P(A·B)=P(A)·P(B)。 若A 1,A 2 ,…A n 相互独立,则n个事件同时发生的概率等于每个事件发生的 概率的积,即P(A 1·A 2 ·…·A n )=P(A 1 )·P(A 2 )·…·P(A n )。 求相互独立事件同时发生的概率的方法: (1)利用相互独立事件的概率乘法公式直接求解; (2)正面计算较繁或难以入手时,可从其对立事件入手计算。 条件概率 条件概率的定义: (1)条件概率的定义:对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示. (2)条件概率公式:称为事件A与B的交(或积). (3)条件概率的求法: ①利用条件概率公式,分别求出P(A)和P(A∩B),得P(B|A)=。 ②借助古典概型概率公式,先求出事件A包含的基本事件数n(A),再在事件A发生的条件下求出事件B包含的基本事件数,即n(A∩B),得P(B|A)= 。 P(B|A)的性质: (1)非负性:对任意的A∈Ω,; (2)规范性:P(Ω|B)=1; (3)可列可加性:如果是两个互斥事件,则。

2.2.3独立重复试验与二项分布(教学设计)

2.2.3独立重复试验与二项分布(教学设计)

2.2.3独立重复试验与二项分布(教学设计) 教学目标 知识与技能: 理解n 次独立重复试验及二项分布模型,会判断一个具体问题是否服从二项分布,培养学生的自主学习能力、数学建摸能力,并能解决相应的实际问题。 过程与方法: 通过主动探究、自主合作、相互交流,从具体事例中归纳出数学概念,使学生充分体会知识的发现过程,并渗透由特殊到一般,由具体到抽象的数学思想方法。 情感态度与价值观: 使学生体会数学的理性与严谨,了解数学来源于实际,应用于实际的唯物主义思想,培养学生对新知识的科学态度,勇于探索和敢于创新的精神。 教学重点:独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题。 教学难点:二项分布模型的构建。 教学过程: 一、复习回顾: 1、条件概率:在事件A 发生的条件下,事件B 发生的 条件概率:()(|)() P AB P B A P A

2、事件的相互独立性:事件A 与事件B 相互独立,则: P ( AB ) = P ( A ) P ( B ) , 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立 二、创设情景,新课引入: 三个臭皮匠顶个诸葛亮的故事 已知诸葛亮解出问题的概率为0.8,臭皮匠老大解出问题的概率为0.6,老二为0.6,老三为0.6,且每个人必须独立解题,问三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比较,谁大? 略解: 三个臭皮匠中至少有一人解出的概率为 三、师生互动,新课讲解: 1、分析下面的试验,它们有什么共同特点? (1)投掷一个骰子投掷5次; (2)某人射击1次,击中目标的概率是0.8,他射击10次; (3)实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛); (4)抛硬币实验。 在研究随机现象时,经常需要在相同的条件下重复 1()10.40.40.40.9360.8 P A B C -??=-??=>

二项分布与正态分布-高考理科数学试题

(五十七) 二项分布与正态分布 [一般难度题——全员必做] 1.若同时抛掷两枚骰子,当至少有5点或6点出现时,就说这次试验成功,则在3次试验中至少有1次成功的概率是( ) A.125729 B.80243 C.665729 D.100243 解析:选C 一次试验中,至少有5点或6点出现的概率为1-???1-13×???1-13=1-49=5 9 ,设X 为3次试验中成功的次数,则X ~B ????3,59,故所求概率P (X ≥1)=1-P (X =0)=1-C 03 ×????590×????493=665729,故选C. 2.设随机变量ξ服从正态分布N (μ,σ2),函数f (x )=x 2+4x +ξ没有零点的概率是1 2, 则μ=( ) A .1 B .4 C .2 D .不能确定 解析:选B 根据题意函数f (x )=x 2+4x +ξ没有零点时, Δ=16-4ξ<0,即ξ>4.根据正态曲线的对称性,当函数f (x )=x 2+4x +ξ没有零点的概率是1 2 时,μ=4. 3.为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程、20项民生类工程和10项产业建设类工程.现有3名民工相互独立地从这60个项目中任选一个项目参与建设,则这3名民工选择的项目所属类别互异的概率是( ) A.1 2 B.1 3 C.14 D.16 解析:选D 记第i 名民工选择的项目属于基础设施类、民生类、产业建设类分别为事件A i 、B i 、C i ,i =1、2、3.由题意知,事件A i 、B i 、C i (i =1、2、3)相互独立,则P (A i )= 30 60=12,P (B i )=2060=13,P (C i )=1060=1 6(i =1、2、3),故这3名民工选择的项目所属类别互异的概率是P =A 33P (A i B i C i )=6×12×13×16=16 .选D. 4.某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小

正态分布附其经典习题及答案

25.3正态分布 【知识网络】 1、取有限值的离散型随机变量均值、方差的概念; 2、能计算简单离散型随机变量的均值、方差,并能解决一些实际问题; 3、通过实际问题,借助直观(如实际问题的直观图),认识正态分布、曲线的特点及曲线所表示的意义。 【典型例题】 例1:(1)已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值为 ( ) A .n=4,p=0.6 B .n=6,p=0.4 C .n=8,p=0.3 D .n=24,p=0.1 答案:B 。解析:()4.2==np X E ,()44.1)1(=-=p np X V 。 (2)正态曲线下、横轴上,从均数到∞+的面积为( )。 A .95% B .50% C .97.5% D .不能确定(与标准差的大小有关) 答案:B 。解析:由正态曲线的特点知。 (3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是() A 32 B 16 C 8 D 20 答案:B 。解析:数学成绩是X —N(80,102 ), 8080 9080(8090)(01)0.3413,480.3413161010P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ???。 (4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________。 ∴ (5)如图,两个正态分布曲线图: 1为)(1 ,1x σμ?,2为)(22x σμ?, 则1μ2μ,1σ2σ(填大于,小于) 答案:<,>。解析:由正态密度曲线图象的特征知。 例2 :甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率. 答案:解:(Ⅰ)依题意,甲答对试题数ξ的概率分布如下: 甲答对试题数ξ的数学期望 E ξ=5 9 61321210313010=?+?+?+? . (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则

独立重复试验与二项分布

独立重复试验与二项分布 1.n 次独立重复试验 一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验. 2.二项分布 前提 在n 次独立重复试验中 字母的含义 X 事件A 发生的次数 p 每次试验中事件A 发生的概率 分布列 P (X =k )=C k n p k (1-p ) n -k ,k =0,1,2,…,n 结论 随机变量X 服从二项分布 记法 记作X ~B (n ,p ),并称p 为成功概率 明确该公式中各量表示的意义:n 为重复试验的次数;p 为在一次试验中某事件A 发生的概率;k 是在n 次独立重复试验中事件A 发生的次数. 判断正误(正确的打“√”,错误的打“×”) (1)n 次独立重复试验的每次试验结果可以有多种.( ) (2)n 次独立重复试验的每次试验的条件可以略有不同.( ) (3)二项分布与超几何分布是同一种分布.( ) (4)两点分布是二项分布的特殊情形.( ) 答案:(1)× (2)× (3)× (4)√ 已知随机变量X 服从二项分布,X ~B ? ?? ??6,13,则P (X =2)等于( ) A.316 B.4243 C.13243 D. 80243 答案:D 任意抛掷三枚均匀硬币,恰有2枚正面朝上的概率为( ) A.34 B.38 C.13 D.14 答案:B

设随机变量X ~B (2,p ),若P (X ≥1)=5 9,则p =________. 答案:13 探究点1 独立重复试验的概率 甲、乙两人各射击一次,击中目标的概率分别是23和3 4,假设每次射击是否击中目标, 相互之间没有影响.(结果须用分数作答) (1)求甲射击3次,至少1次未击中目标的概率; (2)求两人各射击2次,甲恰好击中目标2次且乙恰好击中目标1次的概率. 【解】 (1)记“甲射击3次至少有1次未击中目标”为事件A 1,由题意,射击3次,相当于3次独立重复试验,故P (A 1)=1-P (A 1)=1-(23)3=19 27 . (2)记“甲射击2次,恰有2次击中目标”为事件A 2,“乙射击2次,恰有1次击中目标”为事件B 2,则P (A 2)=C 2 2×(23)2=49,P (B 2)=C 12×(34)1×(1-34)=38, 由于甲、乙射击相互独立,故P (A 2B 2)=49×38=1 6. 1.[变问法]在本例(2)的条件下,求甲、乙均击中目标1次的概率? 解:记“甲击中目标1次”为事件A 3,“乙击中目标1次”为事件B 3,则P (A 3)=C 1 2×23×13= 49,P (B 3)=38 , 所以甲、乙均击中目标1次的概率为P (A 3B 3)=49×38=16 . 2.[变问法]在本例(2)的条件下,求甲未击中、乙击中2次的概率? 解:记“甲未击中目标”为事件A 4,“乙击中2次”为事件B 4,则P (A 4)=C 0 2(1-23)2=19,P (B 4) =C 22(34)2 =916,所以甲未击中、乙击中2次的概率为P (A 4B 4)=19×916=116 . 独立重复试验概率求法的三个步骤

独立重复试验与二项分布含解析理

课后限时集训(五十七) (建议用时:60分钟) A 组 基础达标 一、选择题 1.甲、乙、丙三人进行象棋比赛,每两人比赛一场,共赛三场.每场比赛没有平局,在每一场比赛中,甲胜乙的概率为23,甲胜丙的概率为14,乙胜丙的概率为1 5.则甲获第一名且丙 获第二名的概率为( ) A.11 12 B.16 C.130 D.215 D [设“甲胜乙”“甲胜丙”“乙胜丙”分别为事件A ,B ,C ,事件“甲获第一名且丙获第二名”为A ∩B ∩–C ,所以P (甲获第一名且丙获第二名)=P (A ∩B ∩–C )=P (A )P (B )P (– C )=23×14×45=215 .] 2.甲、乙两人练习射击,命中目标的概率分别为12和1 3,甲、乙两人各射击一次,有下列 说法:①目标恰好被命中一次的概率为12+13;②目标恰好被命中两次的概率为12×1 3;③目标 被命中的概率为12×23+12×13;④目标被命中的概率为1-12×2 3 ,以上说法正确的是( ) A .②③ B .①②③ C .②④ D .①③ C [对于说法①,目标恰好被命中一次的概率为12×23+12×13=1 2,所以①错误,结合选项 可知,排除B 、D ;对于说法③,目标被命中的概率为12×23+12×13+12×1 3,所以③错误,排除 A.故选C.] 3.两个实习生每人加工一个零件,加工为一等品的概率分别为23和3 4,两个零件是否加工 为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A.12 B.512 C.14 D.16

B [设事件A :甲实习生加工的零件为一等品; 事件B :乙实习生加工的零件为一等品, 则P (A )=23,P (B )=3 4 , 所以这两个零件中恰有一个一等品的概率为 P (A B -)+P (A -B )=P (A )P (B -)+P (A - )P (B )= 23×? ????1-34+? ????1-23×34=5 12.] 4.某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为1 5,则开关在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( ) A.1 10 B.15 C.25 D.12 C [设“开关第一次闭合后出现红灯”为事件A ,“开关第二次闭合后出现红灯”为事件B ,则“开关两次闭合后都出现红灯”为事件AB ,“在第一次闭合后出现红灯的条件下第二次闭合后出现红灯”为事件B |A ,由题意得P (B |A )= P AB P A =2 5 ,故选C.] 5.(2018·绵阳诊断)某射手每次射击击中目标的概率是2 3,且各次射击的结果互不影 响.假设这名射手射击5次,则有3次连续击中目标,另外2次未击中目标的概率为( ) A.89 B.7381 C.881 D.19 C [因为该射手每次射击击中目标的概率是23,所以每次射击不中的概率为1 3,设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“该射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3–A 4– A 5)+P (–A 1A 2A 3A 4–A 5)+P (–A 1– A 2A 3A 4A 5) =? ????233 ×? ????132 +13×? ????233 ×13+? ????132 ×? ????233 =881 .] 二、填空题 6.投掷一枚图钉,设钉尖向上的概率为P ,连续掷一枚图钉3次,若出现2次钉尖向上的概率小于3次钉尖向上的概率,则P 的取值范围为________.

二项分布经典例题复习总结练练习习题.doc

二项分布 1.n次独立重复试验 一般地,由 n 次试验构成,且每次试验相互独立完成,每次试验 的结果仅有两种对立的状态,即 A 与 A ,每次试验中P( A) p0 。我们将这样的试验称为n 次独立重复试验,也称为伯努利试验。 (1)独立重复试验满足的条件第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都 只有两种结果。 ( 2 )n次独立重复试验中事件A恰好发生k次的概率P( X k) C n k p k (1p) n k。 2.二项分布 若随机变量X的分布列为P( X k ) C n k p k q n k,其中0 p 1.p q 1,k 0,1,2,L ,n, 则称 X 服从参数为 n, p 的二项分布,记作 X : B(n, p) 。 1.一盒零件中有9 个正品和 3 个次品,每次取一个零件,如果取出 的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3. 甲乙两人各进行 3 次射击,甲每次击中目标的概率为1 ,乙每次击 中目标的概率为2 . 2 3

(1)记甲击中目标的此时为,求的分布列及数学期望; (2)求乙至多击中目标 2 次的概率; (3)求甲恰好比乙多击中目标 2 次的概率 . 【巩固练习】 1.(2012 年高考(浙江理))已知箱中装有 4 个白球和 5 个黑球 , 且 规定 : 取出一个白球的 2 分, 取出一个黑球的 1 分 . 现从该箱中任取( 无放回 , 且每球取到的机会均等 )3 个球 , 记随机变量X为取出 3 球所得分数之和 . ( Ⅰ) 求X的分布列 ; ( Ⅱ) 求X的数学期望E( X). 2.(2012 年高考(重庆理))( 本小题满分 13 分 ,( Ⅰ) 小问 5 分,( Ⅱ) 小问 8 分.) 甲、乙两人轮流投篮 , 每人每次投一球 ,. 约定甲先投且先投中者获胜, 一直到有人获胜或每人都已投球 3 次时投篮结束 . 设甲每次投 篮投中的概率为影响 . 1 3 ,乙每次投篮投中的概率为 1 2 ,且各次投篮互不 ( Ⅰ) 求甲获胜的概率 ;

统计学二项分布习习题

欢迎阅读 (一)单项选择题 1.某地人群中高血压的患病率为π,由该地区随机抽查n 人,则( ) A .样本患病率p =X /n 服从 B (n , π) B .n 人中患高血压的人数X 服从B (n , π) C .患病人数与样本患病率均不服从B (n , π) D .患病人数与样本患病率均服从B (n , π) 答案:B [评析] 本题考点:二项分布概念的理解。 二项分布中所指的随机变量X 代表n 次试验中出现某种结果的次数,具体到本题目就是指抽查的n 2 [n ,π)案为D 。3. A C [记。 4. 95% A C [评析]本题考点:Poisson 分布的正态近似性。 当X 较大(一般大于50)时,Poisson 分布近似正态分布,按照正态分布资料的计算公式计算该地区井水中平均每升细菌含量的95%可信区间,再除以1000即得平均每毫升井水中细菌的平均含量(设1000X Y =,有1000100001000==X Y S S )。 (二) 是非题 从装有红、绿、蓝三种颜色的乒乓球各500、300、200只的暗箱中随机取出10个球,以X 代表所取出球中的红色球数,则X 服从二项分布B (10,0.5)。( ) 答案:正确。 [评析] 本题考点:二项分布的定义。

二项分布成立的条件是:①每次试验只能是互斥的两个结果之一;②每次试验的条件不变;③各次试验独立。此题目所述情况完全满足后两个条件,关键在于第一个条件的判断,从表面上看,每次试验的结果有三种,但本题目所关心的试验结果是“红色与否”,因而该试验结果仍为两种互斥的情况—“红色”和“非红色”。所以,此题目所述情况满足以上三个条件,X服从二项分布B (10,0.5)。 (三)计算题 炮击命中目标的概率为0.2,共发射了14发炮弹。已知至少要两发炮弹命中目标才能摧毁之,试求摧毁目标的概率。 答案:0.802 [评析]本题的考点:二项分布概率函数的理解和应用能力。 摧毁目标的概率即有两发或两发以上炮弹命中目标的概率,此概率又等于1减去只有一发命中 1. = X1+X2 2. 4. 5. 的数量,若进行100次这样的抽查,其中的95次所得数据应在以下范围内()。 A.5~195 B.80.4~119.6 C.95~105 D.74.2~125.8 (三)简答题 1.服从二项分布及Poisson分布的条件分别是什么? 2.二项分布、Poisson分布分别在何种条件下近似正态分布? 3.在何种情况下,可以用率的标准误S p描述率的抽样误差? (四)计算题 1. 已知我国成人乙肝病毒表面抗原平均阳性率为10%,现随机抽查某地区10位成人的血清,其中3人为阳性。该地区成人乙肝表面抗原阳性率是否高于全国平均水平?

二项分布经典例题+练习题之令狐文艳创作

二项分布 令狐文艳 1.n 次独立重复试验 一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中 ()0P A p =>。我们将这样的试验称为n 次独立重复试验,也称为 伯努利试验。 (1)独立重复试验满足的条件第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都只有两种结果。 (2)n 次独立重复试验中事件 A 恰好发生k 次的概率 ()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量 X 的分布列为 ()P X k == k k n k n C p q -,其中 0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作 (,)X B n p 。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3.甲乙两人各进行3 次射击,甲每次击中目标的概率为2 1 ,乙 每次击中目标的概率为32 .

(1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望;(2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】 1.(2012年高考(浙江理))已知箱中装有4个白球和5个 黑球,且规定:取出一个白球的2分,取出一个黑球的1分. 现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和. (Ⅰ)求X的分布列; (Ⅱ)求X的数学期望E(X). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束. 设甲每次投篮投中的概率为1 3,乙每次投篮投中的概率为 1 2, 且各次投篮互不影响. (Ⅰ) 求甲获胜的概率; (Ⅱ) 求投篮结束时甲的投篮次数ξ的分布列与期望 3.设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜4场则比赛宣告结束,假定,A B在每场比赛中获胜的 概率都是1 2,试求需要比赛场数的期望. 3.(2012年高考(辽宁理))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名

相关主题
文本预览
相关文档 最新文档