当前位置:文档之家› 拉力传感器品牌

拉力传感器品牌

拉力传感器品牌
拉力传感器品牌

目前市场上的拉力传感器品牌有很多,这种设备是一种将物理信号转变为可测量的电信号输出的装置,在很多测量领域都被广泛使用。下面就由在拉力传感器行业有着知名度的品牌高灵传感为大家介绍下该设备的主要运用的领域,帮助大家带来全面的了解。

运动器材运用情况:运动器材中拉力机采用机电一体化设计,主要由拉力传感器、变送器、微处理器、负荷驱动机构、计算机及彩色喷墨打印机构成。高精度电子调速电动机可设置无级试验速度。各集成构件间均采用插接方式联接。落地式机型,造型涂装均充分考虑了现代工业设计,人体工程学之相关原则。计算机显示器全程显示试验过程、曲线,微机自动传输试验设置与试验数据。用户可按各自要求修改试验报告,输出标准报告。通过对成组试验曲线的迭加分析,可准确掌握质量调控参数。多方式的数据查询功能,可使管理者清晰

把握质量控制发展变化趋势。特别设计的软件功能更能使试验者定量掌握试验材料应用过程中关键点的状态参数,准确进行工艺调整与生产控制。

建筑行业运用情况:拉力传感器,集电动机,减速机和钢丝绳卷筒等一体的小型起重设备,大多数还带有行走小车,配合单梁桥式或门式起重机,组成一个完整的起重机械。它是工矿企业,仓储码头等场所必备的起重设备。由于起重机在使用的过程中需要起吊不同吨位的重物,因此就需要配备一套拉力传感器系统对起吊重物进行实时监控,以便当前工作状况做出判断,做出相应的声光指示如正常起重状态,满载状态,超载状态等等。

蚌埠高灵传感系统工程有限公司在自主创新的基础上开发生产出力敏系列各类传感器上百个品种,各种应用仪器仪表和系统,以及各种起重机械超载保护装置,可以广泛应用于油田、化工、汽车、起重机械、建设、建材、机械加工、热电、军工、交通等领域。公司除大规模生产各种规格的高精度、高稳定性、高可靠性常规产品外,还可根据用户具体要求设计特殊的非标传感器,以满足用户的特殊要

求。如果您想进一步的了解,可以直接点击官网高灵传感进行在线了解。

传感器的主要参数特性

传感器的主要参数特性 传感器的种类繁多,测量参数、用途各异.共性能参数也各不相同。一般产品给出的性能参数主要是静态特性利动态特性。所谓静态特性,是指被测量不随时间变化或变化缓慢情况下,传感器输出值与输入值之间的犬系.一般用数学表达式、特性曲线或表格来表示。动态特性足反映传感器随时间变化的响应特性。红外碳硫仪动恋特性好的传感器,其输出量随时间变化的曲线与被测量随时间变化的曲线相近。一般产品只给出响应时间。 传感器的主要特性参数有: (1)测量范围(量程) 量程是指在正常工种:条件下传感器能够测星的被测量的总范同,通常为上限值与F 限位之差。如某温度传感器的测员范围为零下50度到+300度之间。则该传感器的量程为350摄氏度。 (2)灵敏度 传感器的灵敏度是指佑感器在稳态时输出量的变化量与输入量的变化量的比值。通常/d久表示。对于线性传感器,传感器的校准且线的斜率就是只敏度,是一个常量。而非线性传感器的灵敏度则随输入星的不同而变化,在实际应用巾.非线性传感器的灵敏度都是指输入量在一定范围内的近似值。传感器的足敏度越高.俏号处理就越简单。 (3)线性度(非线性误差) 在稳态条件下,传感器的实际输入、输出持件曲线勺理想直线之日的不吻合程度,称为线性度或非线性误差,通常用实际特性曲线与邵想直线之司的最大偏关凸h m2与满量程输出仪2M之比的百分数来表示。该系统的线性度X为 (4)不重复性 z;重复性是指在相同条件下。传感器的输人员技同——方向作全量程多次重复测量,输出曲线的不一致程度。通常用红外碳硫仪3次测量输11j的线之间的最大偏差丛m x与满量程输出值ym之比的百分数表示,1、2、3分别表示3次所得到的输出曲线.它是传感器总误差中的——项。 (5)滞后(迟滞误差) 迟滞现象是传感器正向特性曲线(输入量增大)和反向特性曲线(输入量减小)的不重合程度,通常用yH表示。

传感器分类

传感器分类 传感器有许多分类方法,但常用的分类方法有两种,一种是按被测物理量来分;另一种是按传感器的工作原理来分。 按被测物理量划分的传感器,常见的有:温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等。 按工作原理可划分为: 1.电学式传感器 电学式传感器是非电量电测技术中应用范围较广的一种传感器,常用的有电阻式传感器、电容式传感器、电感式传感器、磁电式传感器及电涡流式传感器等。 电阻式传感器是利用变阻器将被测非电量转换为电阻信号的原理制成。电阻式传感器一般有电位器式、触点变阻式、电阻应变片式及压阻式传感器等。电阻式传感器主要用于位移、压力、力、应变、力矩、气流流速、液位和液体流量等参数的测量。 电容式传感器是利用改变电容的几何尺寸或改变介质的性质和含量,从而使电容量发生变化的原理制成。主要用于压力、位移、液位、厚度、水分含量等参数的测量。 电感式传感器是利用改变磁路几何尺寸、磁体位置来改变电感或互感的电感量或压磁效应原理制成的。主要用于位移、压力、力、振动、加速度等参数的测量。 磁电式传感器是利用电磁感应原理,把被测非电量转换成电量制成。主要用于流量、转速和位移等参数的测量。 电涡流式传感器是利用金屑在磁场中运动切割磁力线,在金属内形成涡流的原理制成。主要用于位移及厚度等参数的测量。

2.磁学式传感器 磁学式传感器是利用铁磁物质的一些物理效应而制成的,主要用于位移、转矩等参数的测量。 3.光电式传感器 光电式传感器在非电量电测及自动控制技术中占有重要的地位。它是利用光电器件的光电效应和光学原理制成的,主要用于光强、光通量、位移、浓度等参数的测量。 4.电势型传感器 电势型传感器是利用热电效应、光电效应、霍尔效应等原理制成,主要用于温度、磁通、电流、速度、光强、热辐射等参数的测量。 5.电荷传感器 电荷传感器是利用压电效应原理制成的,主要用于力及加速度的测量。 6.半导体传感器 半导体传感器是利用半导体的压阻效应、内光电效应、磁电效应、半导体与气体接触产生物质变化等原理制成,主要用于温度、湿度、压力、加速度、磁场和有害气体的测量。 7.谐振式传感器 谐振式传感器是利用改变电或机械的固有参数来改变谐振频率的原理制成,主要用来测量压力。 8.电化学式传感器 电化学式传感器是以离子导电为基础制成,根据其电特性的形成不同,电化学传感器可分为电位式传感器、电导式传感器、电量式传感器、极谱式传感器和电解式传感器等。电化学式传感器主要用于分析气体、液体或溶于液体的固体成分、液体的酸碱度、电导率及氧化还原电位等参数的测量。

常用压力传感器原理分析

常用压力传感器原理分析 振膜式谐振压力传感器 振膜式压力传感器结构如图(a)所示。振膜为一个平膜片,且与环形壳体做成整体结构,它和基座构成密封的压力测量室,被测压力 p经过导压管进入压力测量室内。参考压力室可以通大气用于测量表压,也可以抽成真空测量绝压。装于基座顶部的电磁线圈作为激振源给膜片提供激振力,当激振 频率与膜片固有频率一致时,膜片产生谐振。没有压力时,膜片是平的,其谐振频率为 f0;当有压力作用时,膜片受力变形,其张紧力增加,则相应的谐振频率也随之增加,频率随压力变化且为单值函数关系。 在膜片上粘贴有应变片,它可以输出一个与谐振频率相同的信号。此信号经放大器放大后,再反馈给激振线圈以维持膜片的连续振动,构成一个闭环正反馈自激振荡系统。如图(b)所示 压电式压力传感器 某些电介质沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。当外力去掉后,它又会重新回到不带电 的状态,此现象称为“压电效应”。常用的压电材料有天然的压电晶体(如石英晶体)和压电陶瓷(如钛酸钡)两大类,它们的压电机理并不相同,压电陶瓷是人造 多晶体,压电常数比石英晶体高,但机械性能和稳定性不如石英晶体好。它们都具有较好特性,均是较理想的压电材料。 压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系: Q=kSp 式中 Q为电荷量;k为压电常数;S为作用面积;p为压力。通过测量电荷量可知被测压力大小。 图1为一种压电式压力传感器的结构示意图。压电元件夹于两个弹性膜片之间,压电元件的一个侧面与膜片接触并接地,另一侧面通过引线将电荷量引出。被测压力 均匀作用在膜片上,使压电元件受力而产生电荷。电荷量一般用电荷放大器或电压放大器放大,转换为电压或电流输出,输出信号与被测压力值相对应。 除在校准用的标准压力传感器或高精度压力传感器中采用石英晶体做压电元件外,一般压电式压力传感器的压电元件材料多为压电陶瓷,也有用高分子材料(如聚偏二氟乙稀)或复合材料的合成膜的。

传感器参数

2、TH-800温湿度传感器 特点: 属精密温湿度传感器,数码显示测量值,按钮设置温湿度告警门限值; 经可溯源标准检验,精度高并具备程序校准精度功能,低功耗、高稳定性;提供开关量输出端口或高低电平输出,供告警主机采集; 内置单片机,具备自动侦测防误报功能、掉电后设置数据不丢失功能; 输出接线无极性防呆设计,施工便捷; 阻燃绝缘纤维外壳,采用快速端子,输出光电隔离,安全可靠; 用途广泛,配备相应封装的温湿度探头可测量各种管道及特殊场合的温湿度。 技术参数、输入输出接口形式: 供电电源:24VDC;用户可订制12 VDC,48VDC 电流:< 30mA; 显示:数码显示测量值,自检显示如右图; 测湿范围:0 ~ 100 %RH; 精度:±3%RH(30 ~ 90%RH); ±5%RH(其它湿度范围); 测温范围:-10~50℃; 精度:±0.5℃(0~30℃); ±1.0℃(其它温度范围); 报警设置:高温报警设置,设置步长1℃; 低温报警设置,设置步长1℃; 报警设置:高湿报警设置,设置步长1%RH; 低湿报警设置,设置步长1%RH; 工作环境:- 20~45℃,0~100% RH; 输出形式:警戒时开路,告警时短路; 输出允许电流:48V、0.1A; 220V、0.15A; 最大尺寸:96×56×46mm; 重量:205g。 3、霍尔电流传感器.WCS1600 特性: 直径8.7mm 的电流电线通道

输出电压与交/直流电流呈线性比 在工作电压5伏特下﹐可侦测电流0 ~ 100 安培 高灵敏度 20, 30, 55 mV/A 超大工作电压范围3.0~12 伏特. 低工作电流 3mA 几乎零迟滞现象 零电流“输出电压"为1/2 工作电压 反应频宽23KHz 绝缘电压 4000V 4、 液位传感器型号:CSHQ77-ZQ-YW库号:M320385 CSHQ77-ZQ-YW 液位型压力变送器 产品简介: 采用不锈钢全封焊结构,具有良好的防潮性能和优异的介质兼容性,可用于许多 工业过程场合较弱的腐蚀性介质中;电路部分的关键元器件、压力敏感芯子,选 用国际著名品牌的元器件,使产品的技术指标和质量有了有力的保证。 技术参数: ·量程:0~200mmH2O柱...800mH2O柱 ·精度:0.1级、0.25级、0.5级 ·输出信号:4~20mA(二线制)、0~5VDC、0.5~4.5VDC、0~10VDC(三线制) ·供电电压:9~36VDC(二线制)、9~40VDC(三线制) ·介质温度:-30℃~+85℃ ·环境温度:-20℃~+85℃ ·允许过荷:200%FS ·温度漂移:≤±0.05%FS/10℃ ·稳定性:±0.1%FS/年~±0.2%FS/年 ·外壳材质:316L不锈钢 ·探头材质:316L不锈钢 ·密封级别:IP68 ·引出线:7.3外径防水通气电缆 ·标识:采用激光打标,确保产品可永久追朔性 应用范围: ·工业现场液位测量与控制 ·楼宇自控、恒压供水 ·城市供水及污水处理

传感器的技术参数说明

关于传感器的技术参数 1.额定载荷:传感器的额定载荷是指在设计此传感器时,在规定技术指标范围内能够测量的最大负荷。但实际使用时,一般只用额定量程的2/3~1/3。 2.灵敏度/额定输出:加额定载荷时和无载荷时,传感器输出信号的差值。由于传感器的输出信号与所加的激励电压有关,所以灵敏度的以单位mV/V来表示。 3.灵敏度允差:传感器实际稳定输出对应的标称灵敏度之差对该标称灵敏度的百分比。例如,某称重传感器的实际灵敏度为2.002mV/V,与之相适应的标准灵敏度则为2 mV/V,则其灵敏度允差为:((2.002-2.000)/2.000)*100%=0.1%。 4.综合误差/精度等级:根据OIML R60,±%F.S额定输出,国内一般为C3级,分度数3000。 (5)蠕变:在负荷不变(一般为额定载荷),其它测试条件也保持不变的情况下,称重传感器输出随时间的变化量对额定输出的百分比。 (6)非线性:由空载荷的输出值和额定载荷时的输出值所决定的直线和增加负荷时实测曲线之间的最大偏差对额定输出的百比分。 线性度δ=ΔYmax/Yfs*100﹪其中,ΔYmax表示输出值的最大量,Yfs表示满量程输出,注意,线性度有正负之分,因此,前面带正负号。 7)重复性误差:在相同的环境条件下,对传感器反复加载荷到额定载荷并卸载,加载荷过程中同一负荷点上输出值的最大差值对额定输出的百分比。这项特性很重要,更能反映传感器的品质。 (8)滞后允差:从无载荷逐渐加载到额定载荷然后再逐渐卸载。在同一载荷点上加载和卸载输出量的最大差值对额定输出值的百分比。 (9)零点输出/零点平衡:在推荐激励电压下,未加载荷时传感器的输出值对额定输出的百分比。 (10)零点温漂:环境温度的变化引起的零点平衡变化。一般以温度每变化10℃时,引起的零点平衡变化量对额定输出的百分比来表示。 (11)灵敏度温漂:环境温度的变化引起的灵敏度变化。一般以温度每变化10℃时,引起的灵敏度变化量对额定输出的百分比来表示。 (12)允许使用温度:规定了此传感器能适用的场合。例常温传感器一般标注为:-20℃~+70℃。高温传感器标注为:-40℃~250℃。 (13)温度补偿范围:在此温度范围内,传感器的额定输出和零点平衡均经过严密补偿,不会超出规定的范围。例:常温传感器一般标注为-10℃~+55℃。 (14)安全过载:传感器允许施加的最大负荷。允许在一定范围内超负荷工作。一般为120%~150%。

传感器的分类_传感器的原理与分类_传感器的定义和分类

传感器的分类_传感器的原理与分类_传感器的定义和分类 传感器的分类方法很多.主要有如下几种: (1)按被测量分类,可分为力学量、光学量、磁学量、几何学量、运动学量、流速与流量、液面、热学量、化学量、生物量传感器等。这种分类有利于选择传感器、应用传感器 (2)按照工作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。这种分类有利于研究、设计传感器,有利于对传感器的工作原理进行阐述。 (3)按敏感材料不同分为半导体传感器、陶瓷传感器、石英传感器、光导纤推传感器、金属传感器、有机材料传感器、高分子材料传感器等。这种分类法可分出很多种类。 (4)按照传感器输出量的性质分为摸拟传感器、数字传感器。其中数字传感器便干与计算机联用,且坑干扰性较强,例如脉冲盘式角度数字传感器、光栅传感器等。传感器数字化是今后的发展趋势。 (5)按应用场合不同分为工业用,农用、军用、医用、科研用、环保用和家电用传感器等。若按具体便用场合,还可分为汽车用、船舰用、飞机用、宇宙飞船用、防灾用传感器等。 (6)根据使用目的的不同,又可分为计测用、监视用,位查用、诊断用,控制用和分析用传感器等。 主要特点传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。微型化是建立在微电子机械系统(MEMS)技术基础上的,已成功应用在硅器件上做成硅压力传感器。 主要功能常将传感器的功能与人类5大感觉器官相比拟: 光敏传感器——视觉 声敏传感器——听觉 气敏传感器——嗅觉 化学传感器——味觉 压敏、温敏、传感器(图1) 流体传感器——触觉 敏感元件的分类: 物理类,基于力、热、光、电、磁和声等物理效应。 化学类,基于化学反应的原理。 生物类,基于酶、抗体、和激素等分子识别功能。 通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将敏感元件分46类)。 1)光纤传感器 光纤传感器技术是随着光导纤维实用化和光通信技术的发展而形成的一门崭新的技术。光纤传感器与传统的各类传感器相比有许多特点,如灵敏度高.抗电磁干扰能力强,耐腐蚀,绝缘性好,结构简单,体积小.耗电少,光路有可挠曲性,以及便于实现遥测等. 光纤传感器一般分为两大类,一类是利用光纤本身的某种敏感特性或功能制成的传感器.称为功能型传感器;另一类是光纤仅仅起传输光波的作用,必须在光纤端面或中间加装其他敏感元件才能构成传感器,称为传光型传感器。无论哪种传感器,其工作原理都是利用被测量的变化调制传输光光波的某一参数,使其随之变化,然后对已调制的光信号进行检测,从而得到被测量。

拉力测量传感器

拉力传感器的优点是精度高,测量范围广,寿命长,结构简单,频响特性好,能在恶劣条件下工作,易于实现小型化、整体化和品种多样化等。下面就由拉力测量传感器厂家高灵传感为大家科普一些传感器的知识,帮助大家更好使用。 拉力测量传感器也是一种称重传感器,在日常使用过程中会出现一些常见的故障,以下是它在日常使用过程中常见一些故障现象和判别方法: 一、传感器数据飘,不稳定 二、传感器数据不正确,数据显示偏大和偏小 三、传感器数据时而失灵,不准确。 一、传感器数据飘,不稳定判别原因: 1.机械安装部分是否碰触

2.电缆线受潮(接线盒进水)可用电吹风将其吹干; 3.电缆线受潮(接线盒进水)可用电吹风将其吹干; 4.传感器绝缘阴抗下降(<200MΩ)(用万用表分别测量色线,屏蔽线跟传感器表面); 5.传感器表面带电(用万用表测量,通过系统接地解决); 6.系统接地不良(感应电压会使传感器或仪表外壳带电); 7.仪表外壳是否接地(未接地会导致感应电压存在); 8.电源是否稳定(地线有电压否)(不可跟大功率调和共用供电系统,零线有电压会导致仪表表面带电); 9.内部电路故障(虚焊、电路器件接触不良)。 传感器数据不正确,数据显示偏大和偏小故障判别原因: 1.机械安装、限位部分是否碰触; 2.存在角差(有重复性): (1)基础不好会导致角差; (2) 零点跑:传感器空载输出>+2mV或<0mV。 3.存在角差(不具有重复性): (1)安装力矩/基础原因; (2)传感器故障(灵敏度) 传感器数据时而失灵,不准确。 1、机械安装、限位部分是否碰触,限位时碰触,时面不碰触; 2、是否存在干扰源;

广州本田发动机传感器技术参数说明

技术参数说明 发动机转速: 发动机转速 (RPM) 发动机速度从CKP技术参数说明 车速: 车速 (km/h)(MPH)单位换算类型:车速 ECU将来自车速传感器的脉冲信号转换为显示的车速(km/h)。当驱动轮速度达到2km/h或更高,ECU通过车轮速度信息控制各种功能。举例) VTEC系统的打开/关闭控制在高速行驶时的燃油切断控制在行驶期间的空燃比修正控制。 - 车速传感器也用于速度表。脉冲信号由基于车速的传感器输出,并根据特定时间内的脉冲数计算出车速(km/h)。 - 车速传感器系统通过集成在转子中的磁铁和安装在磁铁外的霍尔元件检测差速齿轮的旋转。当电压施加到霍尔元件时,磁通量发生变化,霍尔电压根据磁通量的变化而输出。由于霍尔电压在转子的一个旋转期间有四个周期的变化,因此波形产生电路输出四脉冲信号。 - 当车速提高时,在特定时间内的车速信号脉冲数也随之增加,电压的输出大致是在10km/h时7个脉冲/秒、在100km/h时为707个脉冲/秒。 - 来自车速传感器的信号电压输出是一个脉冲信号,电压的输出在0V与5V之间交替变化。当车速传感器信号为关闭,ECU计算机的参考电路输出的电压(5V)流向车速传感器并变成0V,当车速传感器信号为打开,参考电压在相同的电位下变成5V。 - 计算机是基于参考电压的打开/关闭切换来检测车速信号,而参考电压的切换又是通过车速传感器的打开/关闭切换得到的。- 车辆传感器根据变速箱处的主减速器旋转速度检测车速变化。 - 车速传感器有一个磁性感应元件,并靠它检测磁通量变化。此变化被放大并被转换成高或低电压信号。磁通量的变化取决于安装在主减速器旋转区域的磁性转子的旋转速度。

各种传感器的分类、比较和应用

传感器的定义传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的系统”。传感器是传感系统的一个组成部分,它是被测量信号输入的第一道关口。 传感器把某种形式的能量转换成另一种形式的能量。有两类:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。 无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能,传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,它将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。文档收集自网络,仅用于个人学习 传感器原理结构在一段特制的弹性轴上粘贴上专用的测扭应片并组成变桥,即为基础扭矩传感器;在轴上固定着:(1)能源环形变压器的次级线圈,(2)信号环形变压器初级线圈,(3)轴上印刷电路板,电路板上包含整流稳定电源、仪表放大电路、V/F变换电路及信号输出电路。在传感器的外壳上固定着:文档收集自网络,仅用于个人学习 (1)激磁电路,(2)能源环形变压器的初级线圈(输入),(3) 信号环形变压器次级线圈(输出),(4)信号处理电路文档收集自网络,仅用于个人学习 工作过程 向传感器提供±15V电源,激磁电路中的晶体振荡器产生400Hz的方波,经过TDA2030功率放大器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放大器AD822的工作电源;由基准电源AD589与双运放AD822组成的高精度稳压电源产生±4.5V的精密直流电源,该电源既作为电桥电源,又作为放大器及V/F转换器的工作电源。当弹性轴受扭时,应变桥检测得到的mV级的应变信号通过仪表放大器AD620放大成 1.5v±1v的强信号,再通过V/F转换器LM131变换成频率信号,通过信号环形变压器T2 从旋转的初级线圈传递至静止次级线圈,再经过外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号,该信号为TTL电平,既可提供给专用二次仪表或频率计显示也可直接送计算机处理。由于该旋转变压器动--静环之间只有零点几毫米的间隙,加之传感器轴上部分都密封在金属外壳之内,形成有效的屏蔽,因此具有很强的抗干扰能力。文档收集自网络,仅用于个人学习 传感器分类倾角传感器 倾角传感器在军事、航天航空、工业自动化、工程机械、铁路机车、消费电子、海洋船舶等领域得到广泛运用。辉格公司为国内用户提供全球最全面、最专业的产品方案和服务。提供

带你认识基本的传感器特性参数

带你认识基本的传感器特性参数 复性、精度、分辨率、零点漂移、带宽,本文将对这些参数进行一一介绍。 量程 每个传感器都有自身的测量范围,被测量处在这个范围内时,传感器的输出信号才是有一定的准确性的。 传感器的量程X FS、满量程输出值Y FS、测量上限X max、测量下限X min的关系见下图。 灵敏度 传感器的灵敏度是指其输出变化量ΔY与输入变化量ΔX的比值,可以用k表示。对于一个线性度非常高的传感器来说,也可认为等于其满量程输出值Y FS与量程X FS的比值。灵敏度高通常意味着传感器的信噪比高,这将会方便信号的传递、调理及计算。 k=ΔY ΔX

线性度 传感器的线性度又称非线性误差,是指传感器的输出与输入之间的线性程度。理想的传感器输入-输出关系应该是程线性的,这样使用起来才最为方便。但实际中的传感器都不具备这种特性,只是不同程度的接近这种线性关系。 实际中有些传感器的输入-输出关系非常接近线性,在其量程范围内可以直接用一条直线来拟合其输入-输出关系。有些传感器则有很大的偏离,但通过进行非线性补偿、差动使用等方式,也可以在工作点附近一定的范围内用直线来拟合其输入-输出关系。 选取拟合直线的方法很多,上图表示的是用最小二乘法求得的拟合直线,这是拟合精度最高的一种方法。实际特性曲线与拟合直线之间的偏差称之为传感器的非线性误差δ,其最大值与满量程输出值Y FS的比值即为线性度γL。 γL=± δ Y FS ×100% 迟滞

当输入量从小变大或从大变小时,所得到的传感器输出曲线通常是不重合的。也就是说,对于同样大小的输入信号,当传感器处于正行程或反行程时,其输出值是不一样大的,会有一个差值ΔH,这种现象称为传感器的迟滞。 产生迟滞现象的主要原因包括传感器敏感元件的材料特性、机械结构特性等,例如运动部件的摩擦、传动机构间隙、磁性敏感元件的磁滞等等。迟滞误差γH的具体数值一般由实验方法得到,用正反行程最大输出差值ΔH max的一半对其满量程输出值Y FS的比值来表示。 γH=±?H max FS ×100% 重复性 一个传感器即便是在工作条件不变的情况下,若其输入量连续多次地按同一方向(从小到大或从大到小)做满量程变化,所得到的输出曲线也是会有不同的,可以用重复性误差γR 来表示。 重复性误差是一种随机误差,常用正行程或反行程中的最大偏差ΔY max的一半对其满量程输出值Y FS的比值来表示。

传感器技术期末考试--试题库

一、填空题(每题3分) 1、传感器静态性是指 传感器在被测量的各个值处于稳定状态时 ,输出量和输入量之间的关系称为传感器的静态特性。 2、静态特性指标其中的线性度的定义是指 。 3、静态特性指标其中的灵敏度的定义是指 。 4、静态特性指标其中的精度等级的定义式是 传感器的精度等级是允许的最大绝对误差相对于其测量范围的百分数 ,即A =ΔA/Y FS *100%。 5、最小检测量和分辨力的表达式是 。 6、我们把 叫传感器的迟滞。 7、传感器是重复性的物理含意是 。 8、传感器是零点漂移是指 。 9、传感器是温度漂移是指 。 10、 传感器对随时间变化的输入量的响应特性 叫传感器动态性。 11、动态特性中对一阶传感器主要技术指标有 时间常数 。 12、动态特性中对二阶传感器主要技术指标有 固有频率 、阻尼比。 13、动态特性中对二阶传感器主要技术指标有 固有频率、 阻尼比。 14、传感器确定拟合直线有 切线法、端基法和最小二乘法 3种方法。 15、传感器确定拟合直线切线法是将 过实验曲线上的初始点的切线作为按惯例直线的方法 。 16、传感器确定拟合直线端基法是将 把传感器校准数据的零点输出的平均值a 0和滿量程输出的平均值b 0连成直线a 0b 0作为传感器特性的拟合直线 。 17、传感器确定拟合直线最小二乘法是 用最小二乘法确定拟合直线的截距和斜率从而确定拟全直线方程的方法 。 25、传感器的传递函数的定义是 H(S)=Y(S)/X(S) 。 29、幅频特性是指 传递函数的幅值随被测频率的变化规律 。 Y K X ?= ?CN M K =max max 100%100%H H F S F S H H Y Y δδ????=±?=±?2或23100%K F S Y δδδ?-=± ????0F S 100% Y Y 零漂=max 100%F S T Y ???? max *100% L F S Y Y σ??=±

传感器技术指标

传感器具有精度高、稳定好、低功耗等优良性能。 数据采集终端使用zigbee无线传感技术;采用模块化设计,可以定时休眠和唤醒,可同时滚存数百组数据。 信息数据传输采用2.4G频IEEE802.15.4传输协议完成区域自动智能组网传输,采用GPRS完成超远距传输和互联网对接传输。 管理接收主控具有USB口或串口接收环境信息数据,可以增加传感器和扩展储存。 智能控制器采用模块化设计,具有与主控数据和人机交互功能,采用嵌入式软件完成对设备的智能化管理。 主要技术指标: 传感器具有防水、抗凝、精确度高、稳定性好、寿命长、适合野外使用等优良性能。 数据采集终端使用嵌入式操作系统及无线通信收发模块集成,采用模块化设计易扩展,适应多种类型传感器,可以定时休眠和唤醒,可同时滚存数百组数据。信息数据传输采用2.4G频IEEE802.15.4传输协议完成区域自动智能组网传输,采用GPRS完成超远距传输和互联网对接传输。 能源配置有电池、太阳能和电网等多种能源支持方式。 管理接收主控具有USB口或串口接收环境信息数据,可以扩展终端机和传感器,可以增加和修改传感器公式,可以支持多品种传感器,具有网络接口可以进行互联网应用,可以数据导出,有显示接口可以接液晶显示屏,有硬盘扩展接口可以增加存储容量,有大型数据库系统可以存储和管理大流量数据。 智能控制器采用模块化设计,具有与主控数据交互功能,能完成多通道、多类型设备的管理和控制,具有人机交互功能,能完成人工控制管理,具有安全工作保障功能,使用嵌入式软件完成可选、可修订的多阶段控制系统。 传感器性能指标 灵敏度:指沿着传感器测量轴方向对单位振动量输入x 可获得的电压信号输出值u,即s=u/x。与灵敏 度相关的一个指标是分辨率,这是指输出电压变化量△u 可加辨认的最小机械振动输入变化量△x 的大小。 为了测量出微小的振动变化,传感器应有较高的灵敏度。 使用频率范围:指灵敏度随频率而变化的量值不超出给定误差的频率区间。其两端分别为频率下限和 上限。为了测量静态机械量,传感器应具有零频率响应特性。传感器的使用频率范围,除和传感器本身的 频率响应特性有关外,还和传感器安装条件有关(主要影响频率上限)。

传感器类型

传感器的种类 传感器有许多分类方法,但常用的分类方法有两种,一种是按被测物理量来分;另一种是按传感器的工作原理来分。按被测物理量划分的传感器,常见的有:温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等。 按工作原理可划分为: 1.电学式传感器 电学式传感器是非电量电测技术中应用范围较广的一种传感器,常用的有电阻式传感器、电容式传感器、电感式传感器、磁电式传感器及电涡流式传感器等。 电阻式传感器是利用变阻器将被测非电量转换为电阻信号的原理制成。电阻式传感器一般有电位器式、触点变阻式、电阻应变片式及压阻式传感器等。电阻式传感器主要用于位移、压力、力、应变、力矩、气流流速、液位和液体流量等参数的测量。 电容式传感器是利用改变电容的几何尺寸或改变介质的性质和含量,从而使电容量发生变化的原理制成。主要用于压力、位移、液位、厚度、水分含量等参数的测量。 电感式传感器是利用改变磁路几何尺寸、磁体位置来改变电感或互感的电感量或压磁效应原理制成的。主要用于位移、压力、力、振动、加速度等参数的测量。 磁电式传感器是利用电磁感应原理,把被测非电量转换成电量制成。主要用于流量、转速和位移等参数的测量。 电涡流式传感器是利用金屑在磁场中运动切割磁力线,在金属内形成涡流的原理制成。主要用于位移及厚度等参数的测量。 2.磁学式传感器 磁学式传感器是利用铁磁物质的一些物理效应而制成的,主要用于位移、转矩等参数的

测量。 3.光电式传感器 光电式传感器在非电量电测及自动控制技术中占有重要的地位。它是利用光电器件的光电效应和光学原理制成的,主要用于光强、光通量、位移、浓度等参数的测量。 4.电势型传感器 电势型传感器是利用热电效应、光电效应、霍尔效应等原理制成,主要用于温度、磁通、电流、速度、光强、热辐射等参数的测量。 5.电荷传感器 电荷传感器是利用压电效应原理制成的,主要用于力及加速度的测量。 6.半导体传感器 半导体传感器是利用半导体的压阻效应、内光电效应、磁电效应、半导体与气体接触产生物质变化等原理制成,主要用于温度、湿度、压力、加速度、磁场和有害气体的测量。 7.谐振式传感器 谐振式传感器是利用改变电或机械的固有参数来改变谐振频率的原理制成,主要用来测量压力。 8.电化学式传感器 电化学式传感器是以离子导电为基础制成,根据其电特性的形成不同,电化学传感器可分为电位式传感器、电导式传感器、电量式传感器、极谱式传感器和电解式传感器等。电化学式传感器主要用于分析气体、液体或溶于液体的固体成分、液体的酸碱度、电导率及氧化还原电位等参数的测量。 另外,根据传感器对信号的检测转换过程,传感器可划分为直接转换型传感器和间接转换型传感器两大类。前者是把输入给传感器的非电量一次性的变换为电信号输出,如光敏电

传感器的分类 及特性以及选择

一、传感器的定义 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 二、传感器的分类 目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种: 1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器 2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。 3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和"0”

或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。 三、传感器的静态特性 传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。 四、传感器的动态特性 所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。

传感器分类与代码

《传感器分类与代码》 国家标准(征求意见稿)编制说明 一、任务来源 国家标准《传感器分类与代码》由中国标准化研究院提出,2013年列入国家标准委国家标准制、修订计划,计划号为-T-469。本标准由全国信息分类与编码标准化技术委员会(TC353)归口,由中国标准化研究院负责组织起草工作。 二、背景及意义 传感器是一种能把特定的被测信号,按一定规律转换成某种可用信号输出的器件或装置,以满足信息的传输、处理、记录、显示和控制等要求。传感器位于物联网的感知层,可以独立存在,也可以与其他设备以一体方式呈现,是物联网中感知、获取与检测信息的窗口,为物联网提供系统赖以进行决策和处理所必需的原始数据。 传感器分类与代码标准是物联网的基础标准。选取合理的分类依据对物联网中各类传感器进行分类编码,有助于传感器及相关设备的管理与统计等,促进物联网传感器的生产、销售及应用等。 三、工作过程 (一)资料调研 调研相关标准及资料中关于传感器分类的现状: 1) GB/T 7665-2005 传感器通用术语:规定了传感器的产品名称和性能等特性术语,适用于传感器的生产、科学研究、教学以及其他有关领域。术语在标准中的编排基本上是按照被测量进行的。 2) GB/T 7666-2005 传感器命名法及代号:规定了传感器的命名方法、代号标记方法、代号,适用于传感器的生产、科学研究、教学以及其他有关领域。在传感器的命名法中主要反映了被测量、转换原理、特征描述以及量程、精度等主要技术指标。 3) GB/T 20521-2006 半导体器件第14-1部分半导体传感器-总则和分类:描述了有关传感器规范的基本条款,这些条款适用于由半导体材料制造的传感

拉力传感器品牌

目前市场上的拉力传感器品牌有很多,这种设备是一种将物理信号转变为可测量的电信号输出的装置,在很多测量领域都被广泛使用。下面就由在拉力传感器行业有着知名度的品牌高灵传感为大家介绍下该设备的主要运用的领域,帮助大家带来全面的了解。 运动器材运用情况:运动器材中拉力机采用机电一体化设计,主要由拉力传感器、变送器、微处理器、负荷驱动机构、计算机及彩色喷墨打印机构成。高精度电子调速电动机可设置无级试验速度。各集成构件间均采用插接方式联接。落地式机型,造型涂装均充分考虑了现代工业设计,人体工程学之相关原则。计算机显示器全程显示试验过程、曲线,微机自动传输试验设置与试验数据。用户可按各自要求修改试验报告,输出标准报告。通过对成组试验曲线的迭加分析,可准确掌握质量调控参数。多方式的数据查询功能,可使管理者清晰

把握质量控制发展变化趋势。特别设计的软件功能更能使试验者定量掌握试验材料应用过程中关键点的状态参数,准确进行工艺调整与生产控制。 建筑行业运用情况:拉力传感器,集电动机,减速机和钢丝绳卷筒等一体的小型起重设备,大多数还带有行走小车,配合单梁桥式或门式起重机,组成一个完整的起重机械。它是工矿企业,仓储码头等场所必备的起重设备。由于起重机在使用的过程中需要起吊不同吨位的重物,因此就需要配备一套拉力传感器系统对起吊重物进行实时监控,以便当前工作状况做出判断,做出相应的声光指示如正常起重状态,满载状态,超载状态等等。 蚌埠高灵传感系统工程有限公司在自主创新的基础上开发生产出力敏系列各类传感器上百个品种,各种应用仪器仪表和系统,以及各种起重机械超载保护装置,可以广泛应用于油田、化工、汽车、起重机械、建设、建材、机械加工、热电、军工、交通等领域。公司除大规模生产各种规格的高精度、高稳定性、高可靠性常规产品外,还可根据用户具体要求设计特殊的非标传感器,以满足用户的特殊要

传感器的技术参数

关于传感器的技术参数 (1)额定载荷:传感器的额定载荷是指在设计此传感器时,在规定技术指标范围内能够测量的最大负荷。但实际使用时,一般只用额定量程的2/3~1/3。 (2)灵敏度/额定输出:加额定载荷时和无载荷时,传感器输出信号的差值。由于传感器的输出信号与所加的激励电压有关,所以灵敏度的以单位mV/V来表示。 (3)灵敏度允差:传感器实际稳定输出对应的标称灵敏度之差对该标称灵敏度的百分比。例如,某称重传感器的实际灵敏度为2.002mV/V,与之相适应的标准灵敏度则为2 mV/V,则其灵敏度允差为:((2.002-2.000)/2.000)*100%=0.1%。 (4)综合误差/精度等级:根据OIML R60,±%F.S额定输出,国内一般为C3级,分度数3000。 (5)蠕变:在负荷不变(一般为额定载荷),其它测试条件也保持不变的情况下,称重传感器输出随时间的变化量对额定输出的百分比。 (6)非线性:由空载荷的输出值和额定载荷时的输出值所决定的直线和增加负荷时实测曲线之间的最大偏差对额定输出的百比分。 (7)重复性误差:在相同的环境条件下,对传感器反复加载荷到额定载荷并卸载,加载荷过程中同一负荷点上输出值的最大差值对额定输出的百分比。这项特性很重要,更能反映传感器的品质。 (8)滞后允差:从无载荷逐渐加载到额定载荷然后再逐渐卸载。在同一载荷点上加载和卸载输出量的最大差值对额定输出值的百分比。 (9)零点输出/零点平衡:在推荐激励电压下,未加载荷时传感器的输出值对额定输出的百分比。

(10)零点温漂:环境温度的变化引起的零点平衡变化。一般以温度每变化10℃时,引起的零点平衡变化量对额定输出的百分比来表示。 (11)灵敏度温漂:环境温度的变化引起的灵敏度变化。一般以温度每变化10℃时,引起的灵敏度变化量对额定输出的百分比来表示。 (12)允许使用温度:规定了此传感器能适用的场合。例常温传感器一般标注为:-20℃~+70℃。高温传感器标注为:-40℃~250℃。 (13)温度补偿范围:在此温度范围内,传感器的额定输出和零点平衡均经过严密补偿,不会超出规定的范围。例:常温传感器一般标注为-10℃~+55℃。 (14)安全过载:传感器允许施加的最大负荷。允许在一定范围内超负荷工作。一般为120%~150%。 (15)极限过载:传感器能承受的不使其丧失工作能力的最大负荷。意思是当工作超过此值时,传感器将会受到永久损坏。 (16)输出阻抗:激励输入端开路,传感器未加负荷时,从信号输出端测得的阻抗值。 (17)输入阻抗:信号输出端开路,传感器未加负荷时,从激励输入端测量的阻抗值。由于传感器的输入端补偿电阻和灵敏度系数调整电阻,所以传感器的输入电阻都大于输出电阻。 (18)绝缘阻抗:绝缘阻抗相当于传感器桥路与地之间串了一个阻值与其相当的的电阻,绝缘电阻的大小会影响传感器的各项性能。而当绝缘阻抗低于某一个值时,电桥将无法正常工作。 (19)推荐激励电压:一般为10~12伏。 (20)允许最大激励电压:为了提高输出信号,在某些情况下(例如大皮重)要求利用加大激励电压来获得较大的信号。

传感器的种类及特性分析

一、传感器地特性 ()传感器地动态性.动特性是指传感器对随时间变化地输入量地响应特性.动态特性输入 信号变化时,输出信号随时间变化而相应地变化,这个过程称为响应.传感器地动态特性是 指传感器对随时间变化地输入量地响应特性.动态特性好地传感器,当输入信号是随时间变 化地动态信号时,传感器能及时精确地跟踪输入信号,按照输入信号地变化规律输出信号. 当传感器输入信号地变化缓慢时,是容易跟踪地,但随着输入信号地变化加快,传感器地及时跟踪性能会逐渐下降.通常要求传感器不仅能精确地显示被测量地大小,而且还能复现被测量随时间变化地规律,这也是传感器地重要特性之一.文档来自于网络搜索 ()传感器地线性度.通常情况下,传感器地实际静态特性输出是条曲线而非直线.在实际 工作中,为使仪表具有均匀刻度地读数,常用一条拟合直线近似地代表实际地特性曲线、线性度(非线性误差)就是这个近似程度地一个性能指标.拟合直线地选取有多种方法.如将零输 入和满量程输出点相连地理论直线作为拟合直线;或将与特性曲线上各点偏差地平方和为最小地理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线.文档来自于网络搜索 ()传感器地灵敏度.灵敏度是指传感器在稳态工作情况下输出量变化△ 对输入量变化△ 地比值.它是输出一输入特性曲线地斜率.如果传感器地输出和输入之间显线性关系,则灵敏度是一个常数.否则,它将随输入量地变化而变化.灵敏度地量纲是输出、输入量地量纲之比.例如,某位移传感器,在位移变化时,输出电压变化为,则其灵敏度应表示为.当传感器地输 出、输入量地量纲相同时,灵敏度可理解为放大倍数.文档来自于网络搜索 ()传感器地稳定性.稳定性表示传感器在一个较长地时间内保持其性能参数地能力.理想地情况是不论什么时候,传感器地特性参数都不随时间变化.但实际上,随着时间地推移, 大多数传感器地特性会发生改变.这是因为敏感器件或构成传感器地部件,其特性会随时间发生变化,从而影响传感器地稳定性.文档来自于网络搜索 ()传感器地分辨力.分辨力是指传感器可能感受到地被测量地最小变化地能力.也就是说,如果输入量从某一非零值缓慢地变化.当输入变化值未超过某一数值时,传感器地输出 不会发生变化,即传感器对此输入量地变化是分辨不出来地.只有当输入量地变化超过分辨 力时,其输出才会发生变化.通常传感器在满量程范围内各点地分辨力并不相同,因此常用满量程中能使输出量产生阶跃变化地输入量中地最大变化值作为衡量分辨力地指标.上述指 标若用满量程地百分比表示,则称为分辨率.文档来自于网络搜索 ()传感器地迟滞性.迟滞特性表征传感器在正向(输入量增大)和反向(输入量减小)行程间输出输入特性曲线不一致地程度,通常用这两条曲线之间地最大差值△与满量程输出地百 分比表示.迟滞可由传感器内部元件存在能量地吸收造成.文档来自于网络搜索 ()传感器地重复性.重复性是指传感器在输入量按同一方向作全量程连续多次变动时所得特性曲线不一致地程度.各条特性曲线越靠近,说明重复性越好,随机误差就越小.如图所 示为输出特性曲线地重复特性,正行程地最大重复性偏差为.反行程地最大重复性偏差为.取 这两个最大偏差中地较大者为,再以其占满量程输出地百分数表示,就是重复误差,即一士X ()重复性是反映传感器精密程度地重要指标.同时,重复性地好坏也与许多随机因素有关,它 属于随机误差,要用统计规律来确定.文档来自于网络搜索 二、常见地传感器种类 .电阻式传感器电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样地一种器件.主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件.文档来自于网络搜索 .变频功率传感器 变频功率传感器通过对输入地电压、电流信号进行交流采样,再将采样值通过电缆、光

相关主题
文本预览
相关文档 最新文档