当前位置:文档之家› 生物质直燃发电机组效率计算方法和说明

生物质直燃发电机组效率计算方法和说明

生物质直燃发电机组效率计算方法和说明
生物质直燃发电机组效率计算方法和说明

生物质直燃发电机组效率计算方法和说明

生物质直燃发电机组效率计算方法和说明

本文依据现有燃煤电厂效率计算的基本方法,结合生物质直燃发电厂性能试验取得的经验数据,编制了生物质直燃发电机组效率计算方法和说明。

一、生物质锅炉效率计算 (一)基本原则

(1)采用反平衡法(热损失法)测定锅炉热效率,正平衡法(输入-输出热量法)计算作为参考。

(2)将送风机入口的空气温度作为锅炉热效率计算的基准温度,也即送风机附近的大气温度。

(3)因本文主要目的是计算实际工况下的锅炉热效率,故未进行修正。

(二)正平衡计算

1、正平衡热效率计算(η1)

%1001

1?=

r

Q Q η (1-1) 式中:1η——锅炉热效率,%;

r Q ——输入热量,kJ; 1Q ——输出热量,kJ 。

2、输入热量(Qr )

因目前大部分生物质发电厂无外来热源加热空气和燃料雾化蒸汽,为简化计算,忽略入炉燃料显热,将燃料收到基低位

发热量作为输入热量。即ar net Q ,r Q = (1-2)

式中:ar net Q ,——燃料收到基低位发热量,kJ/kg 。 3、输出热量(Q1)

)]()([1

1gs ps ps gs gr gr h h D h h D B

Q -?+-??= (1-3)

式中:

B ——燃料消耗量,kg;

gr D ——锅炉主汽流量,kg/h ; gr h ——锅炉主蒸汽出口焓值,kJ/kg ; gs h ——锅炉给水焓值,kJ/kg ; ps D ——锅炉排污水量,%; ps h ——锅炉排污水的焓值,kJ/kg 。

因连续排污和定期排污水量很少,一般约为主蒸汽流量2%左右,为简化计算,不考虑锅炉排污水量。

蒸汽和给水焓值通过水和水蒸气热力性质通用计算模型IAPWS —IF97编程实现。 (三)反平衡计算

1、入炉燃料元素成分的确定

由于现场不具备开展入炉燃料的元素分析工作,且影响燃料低位发热量的主要成分是水分和灰分,所以通过折算实际入炉燃料与典型燃料水分和灰分的差异,拟合实际入炉燃料元素分析的方法来解决。

(1)典型燃料元素分析成分

因入炉燃料种类多,所以选择国能高唐电厂性能试验时入

炉燃料作为典型燃料。具体如下:

(2)入炉燃料元素成分的拟合方法

根据现场工业分析所得的水分(Mar )和灰分(Aar)数值,按照公式(1-4)进行拟合计算入炉燃料的元素成分:

,0,ar 0,M 100A 100C ar ar ar ar ar A M C ----?

= (1-4)

式中:ar C ——拟合的入炉燃料收到基下含碳量;

ar M 、ar A ——入炉燃料工业分析收到基下水分和灰分; 0,ar C 、0,ar M 、0,ar A ——典型燃料收到基下含碳量、水分和灰分。

含氢量、含氧量、含氮量和含硫量计算同含碳量。

2、反平衡热效率计算(η2)

65432b 100q q q q q -----=η (1-5)

式中:b η——锅炉热效率,%;

2q ——排烟热损失,%;

3q ——可燃气体未完全燃烧热损失,%; 4q ——固体未完全燃烧热损失,%;

5q ——散热热损失,%;

6q ——灰渣物理热损失,%。

3、排烟热损失(q 2)

锅炉排烟热损失为末级热交换器(烟冷器)后排出烟气带走的物理显热占输入热量的百分率,按式(1-6)和式(1-7)计算:

1002

2?=

r

Q Q q (1-6) O H gy

Q Q Q 22

22+= (1-7)

式中:2q ——排烟热损失,%;

2Q ——排烟带走热量,kJ/kg;

gy Q 2——干烟气带走热量,kJ/kg; O H Q 22——烟气所含水蒸气显热,kJ/kg 。

(1)干烟气带走热量(gy Q 2)

)

(0,2t c V Q py gy p gy gy -??=θ (1-8)

式中:gy Q 2——干烟气带走热量,kJ/kg;

gy V ——干烟气体积,m3/kg;

gy p c ,——干烟气平均比热,kJ/m

3

〃℃,为简化计算,一般

选取为1.38 kJ/m 3

〃℃;

py θ——排烟温度,℃;

0t ——送风机入口空气温度,℃。

(2)干烟气体积(gy V )

c

gk py c gy gy V V V )

()1()(00?-+=α (1-9)

式中:gy V ——干烟气体积,m3/kg;

py α——排烟过量空气系数; 2

py

2121O -=α (1-10)

2O ——排烟氧量,%。

c y V )(0k ——实际燃烧碳所需理论空气量,m3/kg;

c

gy V )(0——实际燃烧碳产生理论干烟气量,m3/kg 。

(3)实际燃烧碳所需理论空气量

ar ar ar r

ar c gk O H S C V 0333.0265.0)375.0(089.0)(0-++?= (1-11)

式中:c

gy V )(0——实际燃烧碳产生理论干烟气量,m3/kg; r ar C ——实际燃碳量,%;

ar S 、ar H 和ar O ——燃料收到基下的含硫量、含氢量和含氧量,%。

(4)实际燃碳量

100

p ar ar r ar

C A C C ?-

= (1-12)

式中:r

ar C ——实际燃碳量,%;

ar C 、ar A ——燃料收到基下的含碳量、灰分含量,%;

P C ——灰渣中平均碳量与燃料灰量之比,详细计算见式

(1-13)%。

fh

fh

fh lh

lh

lh lz

lz

lz P C C C C C C -?+

-?+

-?=

100100100C ααα (1-13)

lz α、lh α和fh α——炉渣、炉灰和飞灰占灰渣总量的质量百

分数,%;根据机组性能试验结果,建议选取:130t/h 锅炉炉渣、炉灰和飞灰占灰渣总量的质量百分数分别为:60、30和10;48t/h 黄秆锅炉炉渣和飞灰占灰渣总量的质量百分数分别为:60、40;

lz C 、lh C 和fh C ——炉渣、炉灰和飞灰的含碳量,%。

(5)实际燃烧碳产生理论干烟气量

100

8.0)(79.0100375.0866.100ar c

gk ar ar r c

gy

N V S C V ?+?+?+?=)( (1-14)

式中:r

ar C ——实际燃碳量,%;

ar S 、ar N ——燃料收到基下的含硫量、含氮量,%;

c gy V )(0——实际燃烧碳产生理论干烟气量,m3/kg 。

(6)烟气所含水蒸气显热(O H Q 2

2) )(0,22

22

t c V Q py O H p O H O H -??=θ (1-15) 式中:O H Q 2

2——烟气所含水蒸气显热,kJ/kg;

O H p c 2,——水蒸气平均定压比热,kJ/m

3

〃℃,为简化计算,

一般选取为1.51 kJ/m 3

〃℃;

py θ——排烟温度,℃;

0t ——送风机入口空气温度,℃;

O H V 2——水蒸气体积,m3/kg 。

])(293.1100

9[

24.102k c

gk py ar ar O H d V M H V ???++=α (1-16) 式中:ar H 、ar M ——燃料收到基下的含氢量、水分,%;

c gy V )(0——实际燃烧碳产生理论干烟气量,m3/kg;

k d ——空气绝对湿度,选取

0.01 kg/kg 。

4、可燃气体未完全燃烧热损失(q 3)

该项热损失由排烟中的未完全燃烧产物(CO 、H2、CH4 和CmHn)的含量决定,系指这些可燃气体成分未放出其燃烧热而造成的热量损失占输入热量的百分率,按式(1-17)计算:

100)79.59098.10718.35836.126(243?++?+?=

n m r

gy H C H CH CO Q V q (1-17)

式中:3q ——可燃气体未完全燃烧热损失,%;

CO 、4

CH

、2H 和n m H C ——干烟气中一氧化碳、甲烷、氢气

和碳氢化合物的体积百分数%;

gy V ——干烟气体积,m3/kg; r Q ——输入热量,kJ 。

由于现场监测设备未配置,所以只计算CO ,根据国能高唐电厂性能试验结果, CO 体积百分数选取0.2。

5、固体未完全燃烧热损失(q 4)

灰渣可燃物造成的热量损失占总输入热量的百分率,按式(1-18)计算:

r

p

ar Q C A q ??=

27.3374 (1-18)

式中:4q ——固体未完全燃烧热损失,%;

P C ——灰渣中平均碳量与燃料灰量之比,详细计算见式

(1-19)%;

fh

fh

fh lh

lh

lh lz

lz

lz P C C C C C C -?+

-?+

-?=

100100100C ααα (1-19)

6、散热热损失(q 5)

由于锅炉本体及其范围内各种管道、附件向四周环境中散失的热量占总输入热量的百分率,先按式(1-20)求出额定蒸发量时的散热损失:

38.05)(82.5e e D q ?= (1-20)

式中:e q 5——额定蒸发量时的散热损失,%;

e D ——锅炉额定蒸发量,t/h 。

实际散热损失按式(1-21)计算: gr

e

e

D D q q ?

=55

(1-21)

式中:5q ——实际散热损失,%;

gr D ——锅炉主蒸汽流量,t/h 。

7、灰渣物理热损失(q 6)

灰渣物理热损失是指炉渣、炉灰和飞灰排出锅炉设备时所带走的显热占总输入热量的百分率,按式(1-22)计算:

]100)(100)(100c )([0006fh

fh

fh fh lh lh lh lh lz lz lz lz r ar C c t t C c t t C t t Q A q -?-?+-?-?+-?-?=

ααα (1-22)

式中:6q ——灰渣物理热损失,%;

lz t 、lh t 和fh t ——炉渣、炉灰和飞灰的温度,℃;炉渣温度

选取为600℃,炉灰温度选取为410℃,飞灰温度选取与排烟温度相同;

0t ——送风机入口空气温度,℃;

lz c 、lh c 和fh c ——炉渣、炉灰和飞灰的比热,℃;炉渣温

度在600℃时的比热为1.01kJ/(kg 〃℃),炉灰410℃时的比热为0.93kJ/(kg 〃℃),飞灰的比热为0.82kJ/(kg 〃℃)。

lz C 、lh C 和fh C ——炉渣、炉灰和飞灰的含碳量,%。

二、汽机热效率计算 (一)基本原则

因本文主要目的是计算实际工况下的汽机热耗率和汽机热效率,故未进行修正。 (二)计算方法 1、汽机热耗率

e

gs gs t P h h G H )

(0-?=

(2-1)

式中:t H ——汽机热耗率,kJ/kWh;

gs G ——给水流量,kg/h;为了简化计算,可取主蒸汽流量替代;

0h ——主蒸汽焓值,kJ/kg; gs h ——给水焓值,kJ/kg; e P ——发电机输出功率,kW 。

蒸汽和给水焓值通过水和水蒸气热力性质通用计算模型IAPWS —IF97编程实现。 2、汽机热效率

t

e H 3600

=

η (2-2) 式中:e η——汽机热效率,%。 三、电厂热效率计算

1、电厂热效率

(1)正平衡计算

r

e cp Q B P ??=

3600η (3-1)

式中:cp η——电厂热效率,%。 B ——燃料消耗量,kg;

e P ——发电机输出功率,kW; r Q ——输入热量,kJ 。

为简化计算,将燃料收到基低位发热量作为输入热量。即

ar net Q ,r Q =

(2)反平衡计算

p e b cp ηηηη??= (3-2)

式中:cp η——电厂热效率,%。

b η——锅炉热效率,%;

e η——汽机热效率,%。 P η——管道效率,一般选取为

99%;

2、发电标秆单耗 (1)正平衡计算

229271,???=

e

ar net P Q B b (3-3)

式中:b ——发电标秆单耗,g/kWh;

ar net Q ,——入炉燃料收到基的低位发热量,kJ/kg;

B ——燃料消耗量,kg;

e P ——发电机输出功率,kW;

(2)反平衡计算

2123

?=

cp

b η (3-4)

式中:b ——发电标秆单耗,g/kWh;

cp η——电厂热效率,%。

参考文献:

1、火力发电厂技术经济指标计算方法DL/T 904-2004

2、电站锅炉性能试验规程GB10184-88

3、电站汽轮机热力性能验收试验规程

4、电站锅炉试验中国电力出版社廖宏楷

5、电站锅炉原理中国电力出版社容銮恩

6、国能高唐生物发电公司30MW机组锅炉性能试验报告山东电研院 2008年6月

7、国能高唐生物发电公司30MW机组汽轮机热耗率试验报告山东电研院 2008年6月

电厂经济指标计算公式

电厂经济指标计算公式 1.正平衡供电煤耗: 供电煤耗=标煤量/供电量 =标煤量/(发电量-厂用电量) 标煤量=原煤量×(入炉低位热值/标煤热值) 反平衡供电煤耗 供电煤耗=热耗率/(×锅炉效率×管道效率)/(1-厂用电率) 2、生产厂用电率 生产厂用电率是指发电厂为发电所耗用的厂用电量与发电量的比率。 3、综合厂用电率 综合厂用电量与发电量的比率: 4.锅炉效率 % 锅炉总有效利用热量占单位时间内所消耗燃料的输入热量的百分比。分正反平衡两种计算方法,一般火电厂采用反平衡计算法,我厂#9、10机组设计锅炉效率%,实际运行在91%左右,锅炉效率1个百分点影响机组煤耗约3.5 g/ 5.排烟温度℃ 一般情况下排烟温度升高约5℃影响煤耗1g/ 6.空气预热器漏风率 % α分别为空气预热器出口、进口处烟气过量空气系数 过量空气系数计算方法:21/(21-该处的氧量) 空预器漏风对锅炉效率影响较小,它主要影响吸、送风机电耗 7.飞灰可燃物 % 飞灰1个百分点影响煤耗1.3 g/

8.制粉单耗(kWh/吨原煤) 指制粉系统(磨煤机、排粉机、一次风机、给煤机、给粉机等)每磨制1吨原煤所 消耗的电量。 制粉单耗=制粉系统耗电量/入炉原煤量 9.制粉耗电率 % 指统计期内制粉系统消耗的电量占机组发电量的百分比 10、送、引风机单耗(kWh/吨汽) 指锅炉产生每吨蒸汽送、引风机消耗的电量。 送、引风机单耗=送、引风机耗电量/∑锅炉增发量 送、引风机耗电率=送、引风机耗电量/∑发电量×100 11、一次风机单耗(kWh/吨煤) 一次风机单耗=一次风机耗电量/∑入炉煤量 12、汽轮发电机组热耗率 kj/kWh 是指汽轮发电机组每发一千瓦时电量耗用的热量。它反映汽轮发电机组热力循环的完善程度,是考核其性能的重要指标。一次中间再热汽轮机的热耗率计算公式: 13、真空度 % 真空度降低1个百分点大约影响热耗率的1%,约3 g/ 14、凝汽器端差℃ 端差增大1℃约影响真空,煤耗1 g/。 15.凝结水过冷度℃ 凝结水过冷使循环水带走过多的热量,反而使机组的经济性降低。正常运行时过冷度 一般为-1 ℃ 过冷度=排汽温度-凝结水温 16、循环水温升℃

电厂效率计算相关

电厂效率计算相关标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

火力发电厂技术经济指标计算方法(摘自《中华人民共和国电力行业标准(DL/T904-2004)》) 1 汽轮机技术经济指标 汽轮机主蒸汽流量汽轮机主蒸汽流量是指进入汽轮机的主蒸汽流量值(kg/h) 汽轮机主蒸汽压力汽轮机主蒸汽压力是指汽轮机进口的蒸汽压力值(MPa),应取靠近汽轮机自动主汽门前的蒸汽压力。如果有两路主蒸汽管道,取算术平均值。 汽轮机主蒸汽温度汽轮机主蒸汽温度是指汽轮机进口的蒸汽温度值(℃),应取靠近汽轮机自动主汽门前的蒸汽温度。如果有两路主蒸汽管道,取算术平均值。 最终给水温度最终给水温度是指汽轮机高压给水加热系统大旁路后的给水温度值(℃)。最终给水流量最终给水流量是指汽轮机高压给水加热系统大旁路后主给水管道内的流量(kg/h)。如有两路给水管道,应取两路流量之和。 凝汽器真空度凝汽器真空度是指汽轮机低压缸排汽端真空占当地大气压的百分数,即(72) 式中 : ηzk - 凝汽器真空度,%; Pby —汽轮机背压(绝对压力),kPa; Pdq —当地大气压,kPa。 排汽温度排汽温度是指通过凝汽器喉部的蒸汽温度值(℃),条件允许时取多点平均值。真空系统严密性真空系统严密性是指机组真空系统的严密程度,以真空下降速度表示,即真空系统下降速度=真空下降值(Pa)/试验时间 (min) (73) 试验时,负荷稳定在额度负荷的80%以上,关闭连接抽气器的空气阀(最好停真空泵),30s后开始每记录机组真空值一次,共记录8min,取其中后5min的真空下降值,平均每分钟应不大于400Pa。参见 DL/T50110 机组的汽耗率、热耗率、热效率 机组平均负荷机组平均负荷是指统计期间汽轮发电机组的发电量与运行小时的比值,即(74) 式中: Ppj —机组平均负荷,kW; Wf —统计期内机组发电量,; h —统计期内机组运行小时,h。

设备综合效率OEE的计算方法

OEE的计算方法 OEE(Overall Equipment Effectiveness), 即设备综合效率,其本质就是设备负荷时间内实际产量与理论产量的比值。企业在进行OEE计算时常常遇到很多迷惑的问题,如工厂停水、停电、停气、停汽使设备不能工作,等待定单、等待排产计划、等待检查、等待上一道工序造成的停机,不知如何计算。本文引入非设备因素停机的概念,修改了OEE的算法,使计算得到的OEE更能够真实反映设备维护的实际状况,让设备完全利用的情况由完全有效生产率这个指标来反映。本文同时介绍了在不同情况下如何分析设备损失的PM分析流程。 1、 OEE表述和计算实例 OEE= 时间开动率×性能开动率×合格品率 其中,时间开动率 = 开动时间/负荷时间 而,负荷时间 = 日历工作时间-计划停机时间 开动时间 = 负荷时间–故障停机时间–设备调整初始化时间 性能开动率 = 净开动率×速度开动率 而,净开动率 = 加工数量×实际加工周期/开动时间 速度开动率 = 理论加工周期/实际加工周期 合格品率 = 合格品数量/ 加工数量 在OEE公式里,时间开动率反映了设备的时间利用情况;性能开动率反映了设备的性能发挥情况;而合格品率则反映了设备的有效工作情况。反过来,时间开动率度量了设备的故障、调整等项停机损失,性能开动率度量了设备短暂停机、空转、速度降低等项性能损失;合格品率度量了设备加工废品损失。 OEE还有另一种表述方法,更适用于流动生产线的评估, 即 OEE= 时间开动率×性能开动率×合格品率 而,时间开动率 = 开动时间/计划利用时间 而,计划利用时间 = 日历工作时间-计划停机时间 开动时间 = 计划利用时间–非计划停机时间 性能开动率 = 完成的节拍数/计划节拍数 其中,计划节拍数 = 开动时间/标准节拍时间

电厂效率计算相关

火力发电厂技术经济指标计算方法(摘自《中华人民共和国电力行业标准(DL/T904-2004)》)1 汽轮机技术经济指标 1.1 汽轮机主蒸汽流量汽轮机主蒸汽流量是指进入汽轮机的主蒸汽流量值(kg/h) 1.2 汽轮机主蒸汽压力汽轮机主蒸汽压力是指汽轮机进口的蒸汽压力值(MPa),应取靠近汽轮机自动主汽门前的蒸汽压力。如果有两路主蒸汽管道,取算术平均值。 1.3 汽轮机主蒸汽温度汽轮机主蒸汽温度是指汽轮机进口的蒸汽温度值(℃),应取靠近汽轮机自动主汽门前的蒸汽温度。如果有两路主蒸汽管道,取算术平均值。 1.4 最终给水温度最终给水温度是指汽轮机高压给水加热系统大旁路后的给水温度值(℃)。 1.5 最终给水流量最终给水流量是指汽轮机高压给水加热系统大旁路后主给水管道内的流量(kg/h)。如有两路给水管道,应取两路流量之和。 1.6 凝汽器真空度凝汽器真空度是指汽轮机低压缸排汽端真空占当地大气压的百分数,即(72) 式中: ηzk - 凝汽器真空度,%; Pby —汽轮机背压(绝对压力),kPa; Pdq —当地大气压,kPa。 1.7 排汽温度排汽温度是指通过凝汽器喉部的蒸汽温度值(℃),条件允许时取多点平均值。 1.8 真空系统严密性真空系统严密性是指机组真空系统的严密程度,以真空下降速度表示,即真空系统下降速度=真空下降值(Pa)/试验时间(min) (73) 试验时,负荷稳定在额度负荷的80%以上,关闭连接抽气器的空气阀(最好停真空泵),30s后开始每0.5min记录机组真空值一次,共记录8min,取其中后5min的真空下降值,平均每分钟应不大于400Pa。参见DL/T50110 1.9 机组的汽耗率、热耗率、热效率 1.9.1 机组平均负荷机组平均负荷是指统计期间汽轮发电机组的发电量与运行小时的比值,即(74) 式中: Ppj —机组平均负荷,kW; Wf —统计期内机组发电量,kW.h; h —统计期内机组运行小时,h。 1.9.2 汽耗率汽耗率是指汽轮机组统计期内主蒸汽流量累计值与机组发电量的比值,即(75)式中: d一汽耗率,kg/(kW.h); DL 一统计期内主蒸汽流量累计值,t。 1.9.3 热耗量热耗量是指汽轮发电机组从外部热源所取得的热量。一般来说,“原因不明”的泄漏量不应超过额定负荷下主蒸汽流量0.5%。a)非再热机组热耗量的计算公式为(77)汽轮机主蒸汽流量计算公式为(78)式中: Dbl—炉侧不明泄漏量(如经不严的阀门漏至热力系统外),kg/h; Dml—锅炉明漏量(如排污等),kg/h; Dsl—汽包水位的变化当量,kg/h。 1.9.4 热耗率热耗率是指汽轮发电机组热耗量与其出线端电功率的比值,即(80) 式中: q—热耗率,kJ/(kW?h); Qgr —机组供热量,参见本标准的有关供热指标计算部分,kJ/h; Pqj —出线端电功率,kW。 1.9.5 汽轮发电机组热效率汽轮发电机组热效率是指汽轮发电机组每千瓦时发电量相当的热量占发电热耗量的百分比,即(81) 式中: ηq —汽轮发电机组热效率,%。

设备综合效率计算

设备综合效率计算 影响设备综合效率的主要原因是停机损失、速度损失和废品损失。它们分别由时间开动率、性能开动率和合格品率反映出来,故得到下面设备综合效率公式:设备综合效率=时间开动率×性能开动率×合格品率 时间开动率=(工作时间/负荷时间)×100% 这里,负荷时间为规定的作业时间除去每天的停机时间,即 负荷时间=总工作时间-计划停机时间 工作时间则是负荷时间除去那些非计划停机时间,如故障停机、设备调整和更换刀具、工夹具停机等。 【例1】若总工作时间为8h,班前计划停机时间是20min,而故障停机为20min,安装工夹具时间为20min,调整设备时间为20min。于是负荷时间=480-20=460min 开动时间=460-20-20=400min 时间开动率=速度开动率×净开动率 速度开动率=(理论加工周期/实际加工周期)×100% 净开动率=(加工数量×实际加工周期/开动时间)×100% 这里,理论加工周期是按照标准的加工进给速度计算得到的,而实际的加工周期一般要比理论加工周期长。开动时间即是设备实际用于加工的时间,也就是工作时间减去计划停机和非计划停机所得时间,或是负荷时间减去非计划停机所得时间。 实际上 性能开动率=速度开动率×净开动率= 从计算上看,用简化了的公式也可以得到同样的结果。之所以用速度开动率和净开动率共同表示性能开动率,是因为从计算过程更容易看出性能开动率的损失原因。 【例2】有400件零件加工,理论加工周期为0.5min,实际加工周期为0.8min。则 净开动率=0.8×400/400=80% 速度开动率=0.5/0.8=62.5% 性能开动率=80%×62.5%=50% 合格品率=((加工数量-不合格品数量)/加工数量)×100% 【例3】如果仍延用上面的例子,假如设备合格品率为98%,则 设备综合效率(全效率)=87%×50%×98%=42. 6% 我们把上面的公式和例子总结成以下的序列,得到 (A)每天工作时间=60×8=480min。 (B)每天计划停机时间(生产、维修计划、早晨会议等)=20min。 (C)每天负荷时间=A-B=460min。 (D)每天停机损失=60min(其中故障停机=20min,安装准备=20min,调整=20min)。 (E)每天开动时间=C-D=400min。 (F)每天生产数量=400件。

直驱型风力发电机组建模

直驱型风力发电机组建模 H56-850直驱型感应风力发电机组模型结构如图7所示,包括风力机、齿轮箱、六相同步发电机、励磁控制器、不可控整流器、PWM 逆变器等。风力机中风轮将风能转化为机械能,再通过风力机的转轴把机械能输入到发电机的转子轴上,经由发电机将机械能转变电能,最后通过发电机变流器控制,实现风电系统的变速恒频发电。由于H56-850直驱型风力发电系统控制变流器系统电机侧采用不可控整流,为此须同步发电机励磁控制维持直流母线电压,同时网侧逆变器用以控制有功功率或转速实现最佳风能跟踪控制。 图7 直驱型风力发电系统 2.1 风力机模型 风力机用于截获流动空气所具有的动能,并将其转化为有用的机械能,再驱动发电机旋转生产电能。由风力机的空气动力学特性可以得到,风力机的输出功率, 3 1(,)2 w w w P w P T AC v ωρλβ== (1) 叶尖速比λ为, w w R v ωλ?= (2) 风力机的输出转矩, 2331 (,)2w w w P w P R T AC ωρλβωλ == (3)

式中P w 为风机输出功率,ωw 为风力机转子转速,T w 为风力机输出转矩,ρ为风电场的空气密度,A=πR 2为叶片面积,C p (λ, β)为风能利用系数,β为桨距控制角,v w 为风电场风速,R 为叶片半径。下图为Matlab/Simulink 中风力机的模块结构框图。 图8 风力机模块结构 图8中风力机输入的风力机转子转速为标幺值,以风能利用系数Cp 为最大值Cpmax 时(此时桨距角β=0)的额定风速和转速为基准值,可由下式得到叶尖速比λ实际值, _max _max _1 __w pu Cp w Cp w pu w w pu rated w v K v v ωλωλω== ? (4) 风力机的风能利用系数(,)P C λβ与桨距角β和叶尖速比λ有关,可采用下式作为Cp 的近似表达式为(来源于1998年Heier 文章,系数须根据武隆的实际数据进行修正), []{} 5()1643283 7(2.5)e 1 (2.5)1(2.5)C p C C C C C C C C λβλββ-Λ=+--++ΛΛ=- ++++ (5) 由于风能利用系数Cp 为最大值Cpmax 且转子转速为ωw_pu_rated 时,风力机的输出功率标幺值P w_pu_Cpmax_rated 小于1,可得风力机输出功率为, ___max_3323 _max max w rated w pu Cp rated w p w p w w Cp p P P P K C v C v v C == (6)

【精品】热电厂经济指标释义与计算

热电经济指标释义与计算 热电厂输出的热能和电能与其消耗的能量(燃料总消耗量×燃料单位热值)之比,表示热电厂所耗燃料的有效利用程度(也可称为热电厂总热效率)。对于凝汽火电厂,汽轮机排出的已作过功的蒸汽热量完全变成了废热,虽然整个动力装置的发电量很大,便无供热的成份,故热电比为零.对背压式供热机组,其排汽热量全部被利用,可以得到很高的热电比。对于抽汽式供热机组,因抽汽量是可调节的,可随外界热负荷的变化而变化.当抽汽量最大时,凝汽流量很小,只用来维持低压缸的温度不过分升高,并不能使低压缸发出有效功来,此时机组有很高的热效率,其热电比接近于背压机。当外界无热负荷、抽汽量为零,相当于一台凝汽机组,其热电比也为零.因而用热电比和热电厂总效率来考核热电厂的是合理的、全面的、科学的. 5.1热电比 热电厂要实现热电联产,不供热就不能叫热电厂,根据我国的具体情况供多少热才能叫热电厂应有个界限,文件应提出不同容量供热机组应达到的热电比。 热电比=有效热能产出/有效电能产出 =Q/E=(各供热机组年供汽量×供汽的热焓×1000)/(各供热机组年供电量×3600) =(G×I×1000)/(N×3600) 上式中;G——供热机组年抽汽(排汽)量扣除厂用汽量的对外商业供汽量。 当热电厂有一台背压机,一台双抽机时 G=G1十C2十C3—g

G1、G2、C3为各机组不同参数的抽汽(排汽)量t/a g为热电厂的自用汽量t/a I.为供热机组年平均的抽汽(排汽)热焓千焦/公斤I1、I2、I3为各机组不同参数抽汽(排汽)热焓 i为对外商业供汽的热焓KJ/kg 有效热能产出Q=(G1I2十G2I2十G3I3—gi)1000KJ/a

直驱式和双馈式风力发电机组介绍

双馈式与直驱式风力发电机组介绍 1、双馈式发电机组 双馈式风力发电机组的叶轮通过多级齿轮增速箱驱动发电机,主要结构包括风轮、传动装置、发电机、变流器系统、控制系统等。双馈式风力发电机组系统将齿轮箱传输到发电机主轴的机械能转化为电能,通过发电机定子、转子传送给电网。发电机定子绕组直接与电网连接,转子绕组与频率、幅值、相位都可以按照要求进行调节的变流器相连。变流器控制电机在亚同步与超同步转速下都保持发电状态。在超同步发电时,通过定转子两个通道同时向电网馈送能量,这时变流器将直流侧能量馈送回电网。在亚同步发电时,通过定子向电网馈送能量、转子吸收能量产生制动力矩使电机工作在发电状态,变流系统双向馈电,故称双馈技术。 双馈风力发电变速恒频机组示意图 变流器通过对双馈异步风力发电机的转子进行励磁,使得双馈发电机的定子侧输出电压的幅值、频率与相位与电网相同,并且可根据需要进行有功与无功的独立控制。变流器控制双馈异步风力发电机实现并网,减小并网冲击电流对电机与电网造成的不利影响。提供多

种通信接口,用户可通过这些接口方便的实现变流器与系统控制器及风场远程监控系统的集成控制。提供实时监控功能,用户可以实时监控风机变流器运行状态。 变流器采用三相电压型交-直-交双向变流器技术。在发电机的转子侧变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网与最大功率点跟踪控制功能。功率模块采用高开关频率的IGBT功率器件,保证良好的输出波形,改善双馈异步发电机的运行状态与输出电能质量。这种电压型交-直-交变流器的双馈异步发电机励磁控制系统,实现了基于风机最大功率点跟踪的发电机有功与无功的解耦控制,就是目前双馈异步风力发电机组的一个代表方向。 2、直驱式发电机组 直驱式风力发电机组的风轮直接驱动发电机,主要由风轮、传动装置、发电机、变流器、控制系统等组成。为了提高低速发电机效率,直驱式风力发电机组采用大幅度增加极对数(一般极数提高到100左右)来提高风能利用率,采用全功率变流器实现风力发电机的调速。 直驱风力发电变速恒频机组示意图 直驱发电机按照励磁方式可分为电励磁与永磁两种。电励磁直驱

火力发电厂热效率计算

火力发电厂 火力发电厂简称火电厂,是利用煤、石油、天然气作为燃料生产电能的工厂,它的基本生产过程是:燃料在锅炉中燃烧加热水使成蒸汽,将燃料的化学能转变成热能,蒸汽压力推动汽轮机旋转,热能转换成机械能,然后汽轮机带动发电机旋转,将机械能转变成电能。 热电厂经济指标释义与计算 1.发电量:电能生产数量的指针。即发电机组产出的有功电能数量。计算单位:万千瓦时(1×104kwh) 2.供电量:发电厂实际向外供出电量的总和。即出线有功电量总和。计算单位:万千瓦时(1×104kwh) 3.厂用电量:厂用电量=发电量-供电量单位:万千瓦时(1×104kwh) 4.供热量:热电厂发电同时,对外供出的蒸汽或热水的热量。计量单位:GJ 5.平均负荷:计算期内瞬间负荷的平均值。计量单位:MW 6.燃料的发热量:单位量的燃料完全燃烧后所放出的热量成为燃料的发热量,亦称热值。计算单位:KJ/Kg。 7.燃料的低位发热量:单位量燃料的最大可能发热量(包括燃烧生成的水蒸气凝结成水所放出的汽化热)扣除水蒸汽的汽化热后的发热量。计量单位:KJ/Kg。 8.原煤与标准煤的折算总和能耗计算通则(GB2589-81)中规定:低位发热量等于29271kj (7000大卡)的固体燃料,称为1kg标准煤。标准煤是指低位发热量为29271kj/kg的煤。不同发热量下的耗煤量(原煤耗)均可以折算为标准耗煤量,计算公式如下:标准煤耗量(T)=原煤耗量x原煤平均低位发热量/标准煤低位发热量=原煤耗量x原煤平均低位发热量/29271 9.燃油与标准煤、原煤的换算低位发热量等于41816kj(10000大卡)的液体燃料,称为

生物质直燃发电机组效率计算方法和说明

生物质直燃发电机组效率计算方法和说明 生物质直燃发电机组效率计算方法和说明 本文依据现有燃煤电厂效率计算的基本方法,结合生物质直燃发电厂性能试验取得的经验数据,编制了生物质直燃发电机组效率计算方法和说明。 一、生物质锅炉效率计算 (一)基本原则 (1)采用反平衡法(热损失法)测定锅炉热效率,正平衡法(输入-输出热量法)计算作为参考。 (2)将送风机入口的空气温度作为锅炉热效率计算的基准温度,也即送风机附近的大气温度。 (3)因本文主要目的是计算实际工况下的锅炉热效率,故未进行修正。 (二)正平衡计算 1、正平衡热效率计算(η1) %1001 1?= r Q Q η (1-1) 式中:1η——锅炉热效率,%; r Q ——输入热量,kJ; 1Q ——输出热量,kJ 。 2、输入热量(Qr ) 因目前大部分生物质发电厂无外来热源加热空气和燃料雾化蒸汽,为简化计算,忽略入炉燃料显热,将燃料收到基低位

发热量作为输入热量。即ar net Q ,r Q = (1-2) 式中:ar net Q ,——燃料收到基低位发热量,kJ/kg 。 3、输出热量(Q1) )]()([1 1gs ps ps gs gr gr h h D h h D B Q -?+-??= (1-3) 式中: B ——燃料消耗量,kg; gr D ——锅炉主汽流量,kg/h ; gr h ——锅炉主蒸汽出口焓值,kJ/kg ; gs h ——锅炉给水焓值,kJ/kg ; ps D ——锅炉排污水量,%; ps h ——锅炉排污水的焓值,kJ/kg 。 因连续排污和定期排污水量很少,一般约为主蒸汽流量2%左右,为简化计算,不考虑锅炉排污水量。 蒸汽和给水焓值通过水和水蒸气热力性质通用计算模型IAPWS —IF97编程实现。 (三)反平衡计算 1、入炉燃料元素成分的确定 由于现场不具备开展入炉燃料的元素分析工作,且影响燃料低位发热量的主要成分是水分和灰分,所以通过折算实际入炉燃料与典型燃料水分和灰分的差异,拟合实际入炉燃料元素分析的方法来解决。 (1)典型燃料元素分析成分 因入炉燃料种类多,所以选择国能高唐电厂性能试验时入

OEE设备综合效率计算方法案例讲解

OEE设备综合效率计算方法案例 影响设备综合效率的主要原因是停机损失、速度损失和废品损失。它们分别由时间开动率、性能开动率和合格品率反映出来,故得到下面设备综合效率公式: 设备综合效率=时间开动率×性能开动率×合格品率 这里,负荷时间为规定的作业时间除去每天的停机时间,即负荷时间=总工作时间-计划停机时间 工作时间则是负荷时间除去那些非计划停机时间,如故障停机、设备调整和更换刀具、工夹具停机等。 【例1】若总工作时间为8h,班前计划停机时间是20min,而故障停机为20min,安装工夹具时间为20min,调整设备时间为20min。于是 负荷时间=480-20=460min 开动时间=460-20-20=400min 时间开动率=速度开动率×净开动率 这里,理论加工周期是按照标准的加工进给速度计算得到的,而实际的加工周期一般要比理论加工周期长。开动时间即是设备实际用于加工的时间,也就是工作时间减去计划停机和非计划停机所得时间,或是负荷时间减去非计划停机所得时间。 实际上 从计算上看,用简化了的公式也可以得到同样的结果。之所以用速度开动率和净开动率共同表示性能开动率,是因为从计算过程更容易看出性能开动率的损失原因。 【例2】有400件零件加工,理论加工周期为0.5min,实际加工周期为0.8min。则净开动率=0.8×400/400=80%速度开动率=0.5/0.8=62.5% 性能开动率=80%×62.5%=50%

【例3】如果仍延用上面的例子,假如设备合格品率为98%,则 设备综合效率(全效率)=87%×50%×98%=42. 6%我们把上面的公式和例子总结成以下的序列,得到(A)每天工作时间=60×8=480min。(B)每天计划停机时间(生产、维修计划、早晨会议等)=20min。(C)每天负荷时间=A-B=460min。(D)每天停机损失=60min(其中故障停机=20min,安装准备=20min,调整=20min)。(E)每天开动时间=C-D=400min。(F)每天生产数量=400件。(G)合格品率=98%。(H)理论加工周期=0. 5min/件。(I)实际加工周期= 0. 8min/件。(J)实际加工时间=I×F=0. 8×400=320min。(K)时间开动率=(E/C ×100%=(400/460)×100%=87%。(L)速度开动率=(H/I)×100%= (0. 5/0.8×100%=62.5%。(M)净开动率=(J/E× 100%=(320/400×100%=80%。(N)性能开动率=L×M×100%=0. 625×0. 80 ×100%=50%。最后得设备综合效率(全效率)=K×N×G×100%=0.87×0.50×0.98×100%=42.6% 日本全员生产维修体制中,要求企业的设备时间开动率不低于90%,性能开动率不低于95%,合格品率不低于99%,这样设备综合效率才不低于85%。这也是TPM所要求达到的目标。 如前所述,提高设备综合效率主要靠减少六大损失。图1-1就把全效率的计算和减少六大损失联系起来。

电厂主要指标计算公式

主要指标统计计算 1、发电量:日、月累计发电量。 2、供电煤耗: 日供电标准煤耗(克/千瓦时)= 计算期内入炉煤平均热值(兆焦/千克)= 月供电标准煤耗(克/千瓦时)= 累计供电标准煤耗(克/千瓦时)= 3、供热标准煤耗率(千克/百万千焦)= 月供热标准煤耗率(千克/百万千焦)= 累计供热标准煤耗率(千克/百万千焦)= 4、发电厂用电率(%) 日发电厂用电率(%)= 月发电厂用电率(%)= 累计发电厂用电率(%)= 5、供热厂用电率(%) 日供热厂用电率(千瓦时/百万千焦)= 月供热厂用电率(千瓦时/百万千焦)= 累计供热厂用电率(千瓦时/百万千焦)= 7、补水率 日补水率(%)= 月补水率(%)= 累计补水率(%)= 8、耗油量 按日、按月进行累计。 9、发电水耗 日发电水耗(吨/千瓦时)= 月发电水耗(吨/千瓦时)= 累计发电水耗(吨/千瓦时)= 10、入厂、入炉煤热值差 日入厂煤平均热值(兆焦/千克)= 月入厂煤平均热值(兆焦/千克)= 累计入厂煤平均热值= 日入炉煤平均热值(兆焦/千克)= 月入炉煤平均热值(兆焦/千克)= 累计入炉煤平均热值= 月入厂、入炉煤热值差=月入厂煤平均热值-月入炉煤平均热值

累计入厂、入炉煤热值差=累计入厂煤平均热值-累计入炉煤平均热值 11、主汽压力(Mpa) 日主汽压力平均值= 月主汽压力平均值= 累计主汽压力平均值= 12、主汽温度(℃) 日主汽温度平均值= 月主汽温度平均值= 累计主汽温度平均值= 13、再热汽温度(℃) 日再热蒸汽温度平均值= 月再热蒸汽温度平均值= 累计再热汽温平均值= 14、排烟温度(℃) 日排烟温度平均值= 月排烟温度平均值= 累计排烟温度平均值= 15、给水温度(℃) 日给水温度平均值= 月给水温度平均值= 累计给水温度平均值= 16、真空度(%) 日真空度平均值= 月真空度平均值= 累计真空度平均值= 17、凝汽器端差(℃) 日凝汽器端差平均值=(日24小时现场抄表所得每小时汽轮机排汽温度实际值累加起来-日24小时现场抄表所得每小时循环水出口温度实际值累加起来)÷24 月凝汽器端差平均值=

最新生物质发电十二五规划说课讲解

山东省农林生物质直接燃烧发电 发展规划 山东省发展和改革委员会

前言 能源是支撑和保障经济社会发展的重要物质基础。山东省是能源消费大省,能源消费主要以煤炭、石油和天然气等化石能源为主。随着经济社会的快速发展,能源资源瓶颈制约日益突出,环境约束日益加剧。保障能源供给、优化能源结构、保护生态环境已经成为事关山东省可持续发展的重大战略性任务。 近年来,可再生能源开发利用越来越受到世界各国和地区的高度重视。开发利用可再生能源,是转方式、调结构的必然要求,有利于优化能源结构、缓解能源约束、促进节能减排、保护生态环境,保障经济健康、快速、可持续发展。 生物质直燃发电作为生物质能综合利用领域发展最快的产业,有着技术成熟、能质好、清洁度高、可靠性强等优点。发展农林生物质直燃发电,可以扩大能源供给,提高生物质综合利用率,变废为宝,具有较高的社会效益、环保效益与经济价值。因此,当前大力发展生物质直燃发电具有重大的现实意义和经济意义。 山东省可再生能源资源丰富,“十一五”以来,风能、太阳能、生物质能等可再生能源开发利用取得重大进展。特别是在生物质直燃发电方面,国内首家生物质直燃发电项目即落户在菏泽市单县,单县项目的投产大大推动了全省生物质直接燃烧发电的发展。目前全省生物质直燃发电装机容量已达21.6万千瓦,年消耗秸秆约200万吨,极大地促进了可再生能源的发展,也带动了农民增收。但在生物质直燃发电快速发展过程中,生物质燃料收集、运输困难、生物质电厂运营困难等问题也逐渐显现。 为了规范农林生物质直燃发电产业发展,促进全省农林生物质直燃发电统筹规划、有序开发,在科学调研我省农林生物质资源,全面掌握生物质直燃发电技术及产业发展状况,借鉴国内外发展经验基础上,研究制定了《山东省农林生物质直接燃烧发电发展规划》,提出了未来我省农林生物质直接燃烧发电的指导思想、发展思路和目标、项目布局和保障措施,以此指导全省农林生物质直接燃烧发电产业发展和项目建设。

设备综合效率OEE计算公式和方法1

设备综合效率O E E计算公式和方法1 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

设备综合效率OEE计算公式和方法实例 影响设备综合效率的主要原因是停机损失、速度损失和废品损失。它们分别由时间开动率、性开动率和合格品率反映出来,故得到下面设备综合效率公式: 设备综合效率=时间开动率×性能开动率×合格品率 这里,负荷时间为规定的作业时间除去每天的停机时间,即 负荷时间=总工作时间-计划停机时间 工作时间则是负荷时间除去那些非计划停机时间,如故障停机、设备调整和更换刀具、工夹具停机等。 【例1】若总工作时间为8h,班前计划停机时间是20min,而故障停机为20min,安装工夹具时间为20min,调整设备时间为20min。于是 负荷时间=480-20=460min 开动时间=460-20-20=400min 时间开动率=速度开动率×净开动率 这里,理论加工周期是按照标准的加工进给速度计算得到的,而实际的加工周期一般要比理论加工周期长。开动时间即是设备实际用于加工的时间,也就是工作时间减去计划停机和非计划停机所得时间,或是负荷时间减去非计划停机所得时间。 从计算上看,用简化了的公式也可以得到同样的结果。之所以用速度开动率和净开动率共同表示性能开动率,是因为从计算过程更容易看出性能开动率的损失原因。 【例2】有400件零件加工,理论加工周期为,实际加工周期为。则 净开动率=×400/400=80% 速度开动率==% 性能开动率=80%×%=50% 【例3】如果仍延用上面的例子,假如设备合格品率为98%,则 设备综合效率(全效率)=87%×50%×98%=42. 6%

直驱式风力发电机知识(技术研究)

是我们初中学的磁极数,一个发电机是有南北极的(货是正负极),就是指的这个,但是3相的就不是了,你可以通过数住绕组的个数来辨别是多少级数,或者说发电机的转速也可以看出来是多少级数 以50HZ为例,2级的就是3000转,4级就3000/2,1500转这样就好理解了 直驱永磁风力发电机组特点 直驱式风力发电机(Direct-driven Wind Turbine Generators),是一种由风力直接驱动发电机,亦称无齿轮风力发动机,这种发电机采用多极电机与叶轮直接连接进行驱动的方式,免去齿轮箱这一传统部件。由于齿轮箱是目前在兆瓦级风力发电机中属易过载和过早损坏率较高的部件,因此,没有齿轮箱的直驱式风力发动机,具备低风速时高效率、低噪音、高寿命、减小机组体积、降低运行维护成本等诸多优点。 直驱式(无齿轮)风力发电机始于20多年前,由于电气技术和成本等原因,发展较慢。随着近几年技术的发展,其优势才逐渐凸现。德国、美国、丹麦都是在该技术领域发展较为领先的国家,其中德国西门子公司开发的(直驱式)无齿轮同步发电机安装在世界最大的挪威风力发电场,最高效率达98%。 1997年的风机市场上出现了兼具无齿轮、变速变桨距等特征的风力发电机,这些高产能、运行维护成本低的先进机型有E-33、E-48、E-70等型号,容量从330千瓦至2兆瓦,由德国ENERCONGmbH公司制造,它们的研制始于1992年。2000年,瑞典ABB公司成功研制了3兆瓦的巨型可变速风力发电机组,其中包括永磁式转子结构的高压风力发电机Wind former,容量3兆瓦、高约70米、风扇直径约90米。2003年,在Okinawa电力公司开始运行的MWT-S2000型风力发电机,是日本三菱重工首度完全自行制造的2兆瓦级风机,采用小尺寸的变速无齿轮永磁同步电机,新型轻质叶片。 目前,国内多家企业也开始进军直驱式风力发电机领域,湘潭电机集团与日本原弘产株式会社合资组建的湖南湘电风能有限公司,2兆瓦直驱式永磁风力发电整机机组已试车成功;广西银河艾万迪斯风力发电有限公司与德国AVAVTIS公司联合推出的2.5兆瓦直驱变桨风力发电也将于2008年二季度完成样机;具有自主知识产权的新疆金凤科技股份公司、哈尔滨九州电气公司也分别研制出1.5兆瓦直驱式风力发电机。 编辑本段直驱永磁风力发电机组特点 直驱永磁风力发电机有以下几个方面优点[1]: 1.发电效率高:直驱式风力发电机组没有齿轮箱,减少了传动损耗,提高了发电效率,尤其是在低风速环境下,效果更加显著。

生物质的电厂发电流程及设备简介

生物质电厂发电流程及其设备简介 单位简介 五河县凯迪绿色能源开发有限公司隶属于阳光凯迪新能源集团有限公司,凯迪集团是我国从事生物质能综合开发利用的专业化公司。公司利用国际先进的生物质直燃发电技术和中国丰富的生物质资源,投资建设生物质发电项目,并上下延伸产业链,生产、加工生物质能燃料以及灰份的再循环利用等。目前,公司致力于发展成为全球最大的生物质发电专业公司。 公司的发展目标是:奉献环保,造福人类。以可再生能源为主体,生物质发电为基础,建立生物质循环体系,延伸产业链,加快生物质资源的综合开发利用和农林电一体化发展步伐,致力于发展成为世界先进的可再生能源企业。 我厂发电流程 生物质发电厂是利用桔梗、树皮等燃料的化学能产出电能的工厂,即为燃料的化学能→蒸汽的热势能→机械能→电能。在锅炉中,燃料的化学能转变为蒸汽的热能,在汽轮机中,蒸汽的热能转变为轮子旋转的机械能,在发电机中机械能转变为电能。炉、机、电是生物质发电厂中的主要设备,亦称三大主机。辅助三大主机的设备称为辅助设备简称辅机。主机与辅机及其相连的管道、线路等称为系统。国

能生物发电集团的原料就是桔梗、树皮。桔梗、树皮用车运送到发电厂的草料场,再用输料输送草料。最后送入锅炉的炉膛中燃烧。燃料燃烧所需要的热空气由送风机送入锅炉的空气预热器中加热,预热后的热空气,经过风道一部分送入料仓作干燥以及送料粉,另一部分直接引至燃烧器进入炉膛。燃烧生成的高温烟气,在引风机的作用下先沿着锅炉的倒“U”形烟道依次流过炉膛,水冷壁管,过热器,省煤器,空气预热器,同时逐步将烟气的热能传给工质以及空气,自身变成低温烟气,经除尘器净化后在排入大气。桔梗、树皮燃烧后生成的灰渣,其中大的灰子会因自重从气流中分离出来,沉降到炉膛底部的冷灰斗中形成固态渣,最后由排渣装置排入灰渣沟,再由灰渣泵送到灰渣场。大量的细小的灰粒(飞灰)则随烟气带走,经除尘器分离后也送到灰渣沟。炉给水先进入省煤器预热到接近饱和温度,后经蒸发器受热面加热为饱和蒸汽,再经过热器被加热为过热蒸汽,此蒸汽又称为主蒸汽。经过以上流程,就完了燃料的输送和燃烧、蒸汽的生成燃物(灰、渣、烟气)的处理及排出。由锅炉过热气出来的主蒸汽经过主蒸汽管道进入汽轮机膨胀做功,冲转汽轮机,从而带动发电机发电。从汽轮机排出的乏汽排入凝汽器,在此被凝结冷却成水,此凝结水称为主凝结水。主凝结水通过凝结水泵送入低压加热器,有汽轮机抽出部分蒸汽后再进入除氧器,在其中通过继续加热除去溶于水中的各种气体(主要是氧气)。经化学车间处理后的补给水与主凝结水汇于除氧器的水箱,成为锅炉的给水,再经过给水泵升压后送往高压加热器,汽轮机高压部分抽出一定的蒸汽加热,然后送入锅炉,从而使

OEE 设备综合效率 计算方式

设备管理好帮手 -----OEE(设备综合效率)计算方式 纸箱厂进行整体生产时规划时,目标之一就是提高设备的使用效率,让每台设备对 的每个零件都能最大限度地发挥其潜力即生产能力,并且能够始终保持稳定状态。 为了使生产速度最大化,必须首先了解导致生产速度下降的原因,并采取相应的措施。在这些解决措施中,设备综合效率分析(OEE)是一种非常实用的、有效的设备管理方式,可以帮我们了解设备的潜在的生产能力。 (OEE)是世界级稳定性组织(WCR)中一个非常重要的测量手段.借助OEE,可以与六大损失相关联(故障/停机损失、换装和调试损失、空闲和暂停损失、减速损失、质量缺陷和返工损失、启动损失)。有三大测量指标:设备利用率、生产速度和合格产品率。 六大损失包括 故障/停机损失(Equipment Failure/Breakdown) 设备故障/停机损失是指故障停机造成时间损失,这将减少合格产品数量。如果出现设备故障或停机,就需要对设备进行维修处理。在平时,应该采取正确预防性保养措施、改进操作程序、改进生产设计以防止故障发生。要减少设备故障,生产部门与维修商之间良好的合作与沟通也非常重要。 预防性保养技术包括震动检测、定期上油和温度记录分析,用以防止设备故障的发生。如果出现机器故障,可以采取根本原因分析(RCFA)法来确定导致故障的根源。RCFA可以使企业解决故障问题从事后处理转变为事前处理。RCFA切实有效的“寻根溯源”解决方案能够消除或转移故障发生以及造成的影响。 换装和调试损失(Setup and Adjustment) 换装和调试损失是指在生产不同产品时定单切换时间损失。定单切换时间损失不归入计划停机时间范畴。 空闲和暂停损失(Ldling and Minorsyoppage Losses) 空闲和暂停损失是指由于错误操作而停顿或设备本身发生的短暂停机时间损失。通常在5-10分钟之间,还包括一些小调整或类似清洗之类的活动造成的时间损失。不包括运送原料造成的时间损失。 减速损失(Reduced Speed Losses)

火力发电厂热效率计算

火力发电厂? 火力发电厂简称火电厂,是利用煤、石油、天然气作为燃料生产电能的工厂,它的基本生产过程是:燃料在锅炉中燃烧加热水使成蒸汽,将燃料的化学能转变成热能,蒸汽压力推动汽轮机旋转,热能转换成机械能,然后汽轮机带动发电机旋转,将机械能转变成电能。????? 热电厂经济指标释义与计算? 1.?发电量:电能生产数量的指针。即发电机组产出的有功电能数量。计算单位:万千瓦时(1×104kwh)? 2.供电量:发电厂实际向外供出电量的总和。即出线有功电量总和。计算单位:万千瓦时(1×104kwh)? 3.厂用电量:厂用电量=发电量-供电量?单位:?万千瓦时(1×104kwh)? 4.供热量:热电厂发电同时,对外供出的蒸汽或热水的热量。计量单位:GJ? 5.平均负荷:计算期内瞬间负荷的平均值。计量单位:?MW? 6.燃料的发热量:单位量的燃料完全燃烧后所放出的热量成为燃料的发热量,亦称热值。计算单位:KJ/Kg。? 7.燃料的低位发热量:单位量燃料的最大可能发热量(包括燃烧生成的水蒸气凝结成水所放出的汽化热)扣除水蒸汽的汽化热后的发热量。计量单位:KJ/Kg。? 8.原煤与标准煤的折算总和能耗计算通则(GB2589-81)中规定:低位发热量等于29271kj (7000大卡)的固体燃料,称为1kg标准煤。标准煤是指低位发热量为29271kj/kg的煤。不同发热量下的耗煤量(原煤耗)均可以折算为标准耗煤量,计算公式如下:标准煤耗量(T)=原煤耗量x原煤平均低位发热量/标准煤低位发热量=原煤耗量x原煤平均低位发热量/29271? 9?.燃油与标准煤、原煤的换算低位发热量等于41816kj(10000大卡)的液体燃料,称为1kg标准油。因为煤耗率计算中的耗用煤量还应包括锅炉点火及助燃用油量,所以还应将计算期间的燃油折算成原煤量或标准煤量来进行煤耗计算。公式:燃油折标准煤量=燃油耗量×燃油的低位发热量/标准煤的低位发热量=燃油耗量×41816/29271=燃油耗量×?燃油折原煤量=燃油量×41816/原煤低位发热量? 汽水损失率汽水损失量=锅炉补充水量-对外供热量汽水损失率=汽水损失量/锅炉产汽量×100%.电厂补给水率:即电厂补充水量与锅炉产汽量的比率。? 热电厂发电原煤耗率热电厂发电原煤耗=发电耗原煤量/发电量热电厂供热耗原煤量=热电厂耗原煤量×供热比热电厂发电耗原煤量=热电厂原煤耗量×发电比? 28.热电厂发电标煤耗率=热电厂发电标准煤耗量/发电量? 29.发电标煤耗=发电标煤耗/(1-厂用电率) 30.供热标煤耗=供热耗用煤量/供热量 31.热电比是指计算期内供热消耗热量与供电量的当量热量的比率。热电比=供热量×供热焓值/供电量×3600? 热电厂热效率:是指汽轮机组发电量的当量热量占发电耗燃料含热量的比率,即每千瓦时发电量的当量热量与每千瓦时发电量所耗用燃料的含热量的比率,反映发电厂能源加工转换的效率。公式为:热效率=10E×3600/(B×29271)?B------计算期内发电标准煤耗?26.热电厂耗用标煤量:热电厂标准耗煤量=(热电厂原煤耗量×原煤低位发热量+耗用油量×41816)/29271?热电厂发电标煤耗量=(热电厂原煤耗量×原煤低位发热量+耗用油量×41816)×发电比/29271? 热电厂发电热效率?q=Q’/(E/10)?Q’----计算期内热电厂发电耗用热量(kj)?Q’=(耗用煤量x煤低位热值+耗用油量×41816)×发电比? 汽水损失率汽水损失量=锅炉补充水量-对外供热量汽水损失率=汽水损失量/锅炉产汽量

我国生物质直燃发电工程设计的若干问题

第32卷增刊2 电网技术V ol. 32 Supplement 2 2008年12月Power System Technology Dec. 2008 文章编号:1000-3673(2008)S2-0268-04 中图分类号:TK6 文献标志码:A 学科代码:470·4051 我国生物质直燃发电工程设计的若干问题 李宗瑞 (国能生物发电集团有限公司,北京市西城区100032) Analysis of Direct-Fired Biomass Power Plant Design Issues in China LI Zong-rui (National Bio Energy Technical Consulting Co.,Ltd,Xicheng District,Beijing 100032,China) 摘要:首先对生物质燃料与煤电燃料的差别进行了全面的定性和定量分析,详细说明了两种燃料在流动性、能源密度、化学成分等方面存在着巨大的差别,并因此导致了生物质直燃发电工程在上料给料、锅炉燃烧等系统的工艺设计上与煤电工程完全不同。介绍了国内外生物质直燃发电项目的背景差别和我国生物质发电产业的特点,进而讨论了我国生物质直燃发电项目设计存在的主要问题,指出了上料系统的设计尚不成熟是面临的最大问题;最后结合工程实践,提出了我国生物质发电工程设计的可参考基本原则,并认为中国生物质直燃发电项目在工程设计上的成熟尚需2~3年的时间,但前景广阔。 关键词:生物质发电;设计;问题;基本原则 0 引言 近年来,生物质能作为一种可再生能源,其开发和利用日益得到全球的关注。在我国,生物质能也已经从积极推动向加快发展阶段迈进,2007年9月发布的可再生能源中长期发展规划中明确提出了到2020年我国生物质能装机容量达到30GW的发展目标[1-2]。 生物质直燃发电是生物质能利用的主要方式。国外的生物质直燃发电技术已经成熟并已于20世纪90年代投入商业运营。近年来,一些大型国有、民营以及外资企业纷纷投资参与我国生物质发电产业的建设运营,已在全国建成投产了近20个生物质直燃发电项目,在建项目也有几十个。我国生物质发电产业的发展正在艰难探索中渐入佳境,前景广阔。 由于国情的不同,我国的生物质直燃发电与国外有着很大的差别。研究设计符合中国国情的生物质直燃发电项目,是我们无法回避的基本问题。本文总结了几年来的生物质直燃发电工程的实践,主要从技术层面对国内生物质发电项目的设计进行了一些基本研究和介绍,以期对有关单位和人士对于生物质发电的特殊性的理解和认识有所帮助,为促进国内生物质直燃发电的健康发展起到积极、良好的作用。 1 生物质直燃发电系统 生物质直燃发电系统是指采用生物质原料(农作物秸秆、林业加工剩余物、果树枝等)直接燃烧进行热力发电的系统。它主要由上料系统、给料系统、生物质锅炉、汽轮发电机组和烟气除尘系统及其他辅助设备组成。图1是国外生物质直燃发电系统结构示意图。 生物质锅炉 除尘系统上料系统 汽轮 发电机组 图1生物质直燃电厂结构示意图 其中上料系统是指燃料从进电厂卸料至进入炉前料仓为止的整个系统,是生物质直燃电厂区别于常规燃煤电厂的最重要部分,它主要由卸料系统、储料系统、送料系统、事故上料、计量及辅助设施等部分组成。根据燃料的不同,需要设置不同形式的上料系统,可以粗略地分为黄色秸秆上料系统和灰色秸秆及木质燃料上料系统2种。 给料系统是指燃料自炉前料仓到进入炉膛为止的炉前给料系统。生物质锅炉是生物质直燃发电厂除上给料系统外的又一关键设备。与常规煤电锅炉不同,其结构和材质上要适合农林生物质燃料的特

相关主题
文本预览
相关文档 最新文档