当前位置:文档之家› 大学物理期末复习题及答案(1)

大学物理期末复习题及答案(1)

大学物理期末复习题及答案(1)
大学物理期末复习题及答案(1)

j i r )()(t y t x +=大学物理期末复习题

力学部分

一、填空题:

1. 已知质点的运动方程,则质点的速度为 ,加速度

为 。

2.一质点作直线运动,其运动方程为2

21)s m 1()s m 2(m 2t t x --?-?+=,则从0=t 到s 4=t 时间间隔内质点的位移大小 质点的路程 。

3. 设质点沿x 轴作直线运动,加速度t a )s m 2(3-?=,在0=t 时刻,质点的位置坐标

0=x 且00=v ,则在时刻t ,质点的速度 ,和位置 。

4.一物体在外力作用下由静止沿直线开始运动。第一阶段中速度从零增至v,第二阶段中速度从v 增至2v ,在这两个阶段中外力做功之比为 。

5.一质点作斜上抛运动(忽略空气阻力)。质点在运动过程中,切向加速度是

,法向加速度是 ,合加速度是 。(填变化的或不变的)

6.质量m =40 kg 的箱子放在卡车的车厢底板上,已知箱子与底板之间的静摩擦系数为 s =0.40,滑动摩擦系数为 k =0.25,试分别写出在下列情况下,作用在箱子上的摩擦力的大小和方向.

(1)卡车以a = 2 m/s 2的加速度行驶,f =_________,方向_________.

(2)卡车以a = -5 m/s 2的加速度急刹车,f =________,方向________.

7.有一单摆,在小球摆动过程中,小球的动量 ;小球与地球组成的系统机械能 ;小球对细绳悬点的角动量 (不计空气阻力).(填守恒或不守恒) 二、单选题:

1.下列说法中哪一个是正确的( )

(A )加速度恒定不变时,质点运动方向也不变 (B )平均速率等于平均速度的大小

(C )当物体的速度为零时,其加速度必为零

(D )质点作曲线运动时,质点速度大小的变化产生切向加速度,速度方向的变化产生法向加速度。

2. 质点沿Ox 轴运动方程是m 5)s m 4()s m 1(122+?-?=--t t x ,则前s 3内它的( )

(A )位移和路程都是m 3 (B )位移和路程都是-m 3 (C )位移为-m 3,路程为m 3 (D )位移为-m 3,路程为m 5

3. 下列哪一种说法是正确的( ) (A )运动物体加速度越大,速度越快

(B )作直线运动的物体,加速度越来越小,速度也越来越小 (C )切向加速度为正值时,质点运动加快

(D )法向加速度越大,质点运动的法向速度变化越快

4.一质点在平面上运动,已知质点的位置矢量的表示式为j i r 2

2

bt at +=(其中a 、b 为常量),则该质点作( )

(A )匀速直线运动 (B )变速直线运动 (C )抛物线运动 (D )一般曲线运动

5. 用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时,它( )

(A )将受到重力,绳的拉力和向心力的作用 (B )将受到重力,绳的拉力和离心力的作用 (C )绳子的拉力可能为零

(D )小球可能处于受力平衡状态 6.功的概念有以下几种说法

(1)保守力作功时,系统内相应的势能增加

(2)质点运动经一闭合路径,保守力对质点作的功为零

(3)作用力和反作用力大小相等,方向相反,所以两者作功的代数和必为零 以上论述中,哪些是正确的( )

(A )(1)(2) (B )(2)(3) (C )只有(2) (D )只有(3)

7.质量为m 的宇宙飞船返回地球时,将发动机关闭,可以认为它仅在地球引力场中运动,当它从与地球中心距离为1R 下降到距离地球中心2R 时,它的动能的增量为( )

(A )2

E R m m G

? (B )2

121E R R R R m Gm - (C )2

12

1E R R R m Gm - (D )2

2

212

1E R R R R m

Gm --

8.下列说法中哪个或哪些是正确的( )

(1)作用在定轴转动刚体上的力越大,刚体转动的角加速度应越大。 (2)作用在定轴转动刚体上的合力矩越大,刚体转动的角速度越大 (3)作用在定轴转动刚体上的合力矩为零,刚体转动的角速度为零 (4)作用在定轴转动刚体上合力矩越大,刚体转动的角加速度越大 (5) 作用在定轴转动刚体上的合力矩为零,刚体转动的角加速度为零 9.一质点作匀速率圆周运动时( )

(A )它的动量不变,对圆心的角动量也不变 (B )它的动量不变,对圆心的角动量不断改变 (C )它的动量不断改变,对圆心的角动量不变

(D )它的动量不断改变,对圆心的角动量也不断改变 10 . 人造地球卫星绕地球作椭圆轨道运动,地球在椭圆轨道上的一个焦点上,则卫星( )

(A )动量守恒,动能守恒 (B )对地球中心的角动量守恒,动能不守恒 (C )动量守恒,动能不守恒 (D )对地球中心的角动量不守恒,动能守恒

11.花样滑冰者,开始自转时,其动能为2

21ωJ E =,然后将手臂收回,转动惯量减少到原来的31

,此时的角速度变为ω,动能变为E ,则有关系( )

(A ),

,300

E E ==ω

ω (B )

03,3

1E E ==ωω (C ),,300E E ==ωω (D )

003 , 3E E ==ωω

12.一个气球以1

s m 5-?速度由地面匀速上升,经过30s 后从气球上自行脱离一个重物,该物体从脱落到落回地面的所需时间为( )

(A )6s (B )s 30 (C )5. 5s (D )8s

13. 以初速度0v

将一物体斜向上抛出,抛射角为0

60=θ,不计空气阻力,在初始时刻该物体的( )

(A )法向加速度为;g (B )法向加速度为;23g

(C )切向加速度为;2

3g - (D )切向加速度为.21

g -

14.如图,用水平力F 把木块压在竖直墙面上并保持静止,当F 逐渐增大时,木块所受

的摩擦力( )

(A )恒为零; (B )不为零,但保持不变; F (C )随F 成正比地增大;

(D )开始时随F 增大,达到某一最大值后,就保持不变。

15.质量分别为m 和4m 的两个质点分别以k E 和4k E 的动能沿一直线相向运动,它们的总动量的大小为( )

(A );33

k mE (B );23k mE (C );25k mE (D ).2122k mE -

16. 气球正在上升,气球下系有一重物,当气球上升到离地面100m 高处,系绳突然断裂,重物下落,这重物下落到地面的运动与另一个物体从100m 高处自由落到地面的运动相比,下列哪一个结论是正确的( )

(A )下落的时间相同 (B )下落的路程相同 (C )下落的位移相同 (D )落地时的速度相同

17.抛物体运动中,下列各量中不随时间变化的是( ) (A )v (B )v

(C )t v d (D )t d d v

18.一滑块1m 沿着一置于光滑水平面上的圆弧形槽体2m 无摩擦地由静止释放下滑,若不计空气阻力,在这下滑过程中,分析讨论以下哪种观点正确:( )

(A)由1m和2m组成的系统动量守恒(B)由1m和2m组成的系统机械能守恒

(C)1m和2m之间的正压力恒不作功(D)由1m、2m和地球组成的系统机械能守恒

三.判断题

1.质点作曲线运动时,不一定有加速度;()

2.质点作匀速率圆周运动时动量有变化;()

3.质点系的总动量为零,总角动量一定为零;()

4.作用力的功与反作用力的功必定等值异号,所以它们作的总功为零。()

5.对一质点系,如果外力不做功,则质点系的机械能守恒;()

热学部分

一、填空题:

3.热力学第一定律的实质是涉及热现象的.

4.某种理想气体分子的平动自由度t=3,转动自由度r=2,振动自由度s=1.当气体的温度为T时,一个分子的平均总能量等于,一摩尔该种气体的内能等于。

5.热力学概率是指。

6.熵的微观意义是分子运动性的量度。

7.1mol氧气(视为理想气体)储于一氧气瓶中,温度为27o C,气体分子的平动自由度t=3,转动自由度r=2,振动自由度s=0.则氧分子的平均平动能为J;氧分子的平均总动能为J;该瓶氧气的内能为J。

8.某温度为T,摩尔质量为μ的气体的最概然速率v p=,物理意义为。

9.密闭容器内的理想气体,如果它的热力学温度提高二倍,那么气体分子的平均平动能提高倍,气体的压强2倍(填提高或降低)。

二、单项选择题

1.在下列理想气体各种过程中,那些过程可能发生?()

(A) 等体加热,内能减少,压强升高(B) 等温压缩,吸收热量,压强升高

(C)等压压缩,吸收热量,内能增加(D) 绝热压缩,内能增加,压强升高

2.下列说法那一个是正确的()

(A) 热量不能从低温物体传到高温物体

(B) 热量不能全部转变为功

(C)功不能全部转化为热量

(D) 气体在真空中的自由膨胀过程是不可逆过程

3.在绝热容器中,气体分子向真空中自由膨胀,在这过程中()

(A)气体膨胀对外作功,系统内能减小 (B)气体膨胀对外作功,系统内能不变

(C)系统不吸收热量,气体温度不变 (D)系统不吸收热量,气体温度降低

4.1mol的单原子理想气体从A状态变为B状态,如果不知道是什么气体,变化过程也不清楚,但是可以确定A、B两态的宏观参量,则可以求出()

(A) 气体所作的功 (B) 气体内能的变化

(C)气体传给外界的热量 (D) 气体的质量

5. 热力学第二定律表明()

(A)不可能从单一热源吸收热量使之全部变为有用功而不产生其他影响

(B) 热不能全部转变为功

(C) 热量不可能从温度低的物体传到温度高的物体

(D) 以上说法均不对。

6.在标准条件下,将1mol单原子气体等温压缩到16.8升,外力所作的功为()

(A) 285 J (B) -652 J (C) 1570 J (D) 652 J

7.关于热功转换和热量传递有下面一些叙述

(1)功可以完全变为热量,而热量不能完全变为功;

(2)一切热机的效率都小于1 ;

(3)热量不能从低温物体传到高温物体;

(4)热量从高温物体传到低温物体是不可逆的。

8.以上这些叙述( )

(A) 只有(2)、(4)正确 (B) 只有(2)、(3)、(4)正确

(C)只有(1)、(3)、(4)正确 (D) 全部正确

9.速率分布函数f(v)的物理意义为()

(A)具有速率v的分子占总分子数的百分比

(B)速率分布在v附近的单位速率间隔中的分子数占总分子数的百分比

(C)具有速率v的分子数

(D)速率分布在v附近的单位速率间隔中的分子数

10.1mol刚性双原子理想气体分子在温度为T时,其内能为()

(A)

RT

3

2

(B)

kT

2

3

(C)

RT

2

5

;(D)

kT

2

5

11.压强为p、体积为V的氢气的内能为()

(A)

pV

2

5

(B)

pV

2

3

(C)

pV

2

1

(D)

pV

2

7

12.质量为m的氢气,分子的摩尔质量为M,温度为T的气体平均平动动能为()

(A )RT M m 23 (B ) kT M m 23 (C ) RT M m 25; (D ) kT

M m

25

电学部分

一、填空题:

1.电荷最基本的性质是与其他电荷有 ,库仑定律直接给出了 之间相互作用的规律;

7.两个电荷量均为q 的粒子,以相同的速率在均匀磁场中运动,所受的磁场力 相同(填一定或不一定)。

11.麦克斯韦感生电场假设的物理意义为:变化的 _______ 能够在空间激发涡旋的电场;

位移电流假设的物理意义为变化的 _______ 能够在空间激发磁场。

9.自感系数L =0.3 H 的 螺 线 管 中 通 以I =8 A 的电流时,螺线管存储的磁场能 量W =___________________. 二、选择题:

1.点电荷C q 6100.21-?=,C q 6

100.42-?=两者相距cm 10=d ,试验电荷

C q 6100.10-?=,则0q 处于21q q 连线的正中位置处受到的电场力为( )

(A )N 2.7 (B )N 79.1 (C )N 102.74-? (D )

N 1079.14-? 2.一半径R 的均匀带电圆环,电荷总量为q ,环心处的电场强度为( ) (A )2

0π4R q

ε (B )0 (C )R q 0π4ε (D )202

π4R q ε

3.一半径为R 的均匀带电半圆环,带电为Q

半径为R ,环心处的电场强度大小为

( )

(A )2

02π2R Q

ε (B )20π8R Q

ε (C )0 (D )20π4R Q

ε

4.长l 的均匀带电细棒,带电为

Q

,在棒的延长线上距棒中心r 处的电场强度的量值为

(A )20π3r Q

ε (B )20π9r Q

ε (C )

)4(π2

20l r Q

-ε (D )∞ ( )

5.孤立金属导体球带有电荷

Q

,由于它不受外电场作用,所以它具有( )所述的性质

(A )孤立导体电荷均匀分布,导体内电场强度不为零 (B )电荷只分布于导体球表面,导体内电场强度不为零 (C )导体内电荷均匀分布,导体内电场强度为零 (D )电荷分布于导体表面,导体内电场强度为零 6.半径为R 的带电金属球,带电量为Q

,r 为球外任一点到球心的距离,球内与球外的

电势分别为( )

(A )r

Q V V 0ex in π4 ,0ε=

= (B )r

Q

V R Q V 0ex 0in π4 ,π4εε==

(C )

R

Q

V V 0ex in π4 ,0ε=

= (D )

R

Q

V R Q V 0ex 0in π4 ,π4εε==

7.两长直导线载有同样的电流且平行放置,单位长度间的相互作用力为F ,若将它们

的电流均加倍,相互距离减半,单位长度间的相互作用力变为F ',则大小之比/F F '为 ( )

(A )1 (B )2 (C )4 (D )8

8.对于安培环路定理的正确理解是 ( ) (A )若?=?l 0

d l B ,则必定l 上B 处处为零 (B )若?=?l 0d l B ,则必定l 不包围电流

(C )若?=?l 0d l B ,则必定l 包围的电流的代数和为零 (D )若?=?l 0d l B ,则必定l 上各点的B 仅与l 内的电流有关

9. 平行板电容器的电容为C 0,两极板间电势差为U ,若保持U 不变而将两极板距离拉开一倍,则: ( )

(A )电容器电容减少一半; (B )电容器电容增加一倍; (C )电容器储能增加一倍; (D )电容器储能不变。

10.对于毕奥—萨伐尔定律的理解: ( ) (A )它是磁场产生电流的基本规律; (B )它是电流产生磁场的基本规律;

(C )它是描述运动电荷在磁场中受力的规律; (D )以上说法都对。

11.通以稳恒电流的长直导线,在其周围空间: ( )

A .只产生电场。

B .只产生磁场。

C .既不产生电场,也不产生磁场。

D .既产生电场,也产生磁场。

12.有一无限长载流直导线在空间产生磁场,在此磁场中作一个以载流导线为轴线的同轴圆柱形闭合高斯面,则通过此闭合面的磁感应通量:( )

A. 等于零;

B. 不一定等于零;

C. 为 I 0μ ;

D. 为0

εI

.

13.有一由N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀磁场B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩m M 值为 ( )

(A )2/32IB Na (B )4/32IB Na (C )?60sin 32

IB Na (D )0

14.位移电流有下述四种说法,请指出哪种说法是正确的 ( ) (A )位移电流是由变化电场产生的; (B )位移电流是由变化磁场产生的;

(C )位移电流的热效应服从焦耳一愣次定律; (D )位移电流的磁效应不服从安培环路定律。

15.麦克斯韦方程组的全电流安培环路定理=??)

(L l d B

( )

A .I 0μ; B.S d t E s ?????)(00με; C. 0; D.S d t E

I s

???+??)

(000μεμ.

16.热力学第二定律表明( )

(A)不可能从单一热源吸收热量使之全部变为有用功而不产生其他影响 (B) 热不能全部转变为功

(C) 热量不可能从温度低的物体传到温度高的物体

(D) 以上说法均不对。

17.一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p o ,右边为真空,今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是( ) (A)p o (B)p o /2 (C)2p o (D)无法确定。

18.判断下列有关角动量的说法的正误: ( )

(A )质点系的总动量为零,总的角动量一定为零; (B )一质点作直线运动,质点的角动量不一定为零;

(C )一质点作匀速率圆周运动,其动量方向在不断改变,所以质点对圆心的角动量方向也随之不断改变; (D )以上说法均不对。

19.以下说法哪个正确: ( )

(A )高斯定理反映出静电场是有源场; (B )环路定理反映出静电场是有源场; (C )高斯定理反映出静电场是无旋场;

(D )高斯定理可表述为:静电场中场强沿任意闭合环路的线积分恒为零。

20.平行板电容器的电容为C 0,两极板间电势差为U ,若保持U 不变而将两极板距离拉开一倍,则: ( )

(A )电容器电容减少一半; (B )电容器电容增加一倍; (C )电容器储能增加一倍; (D )电容器储能不变。 21.对于毕奥—萨伐尔定律的理解: ( )

(A ) 它是磁场产生电流的基本规律; (B ) 它是电流产生磁场的基本规律;

(C ) 它是描述运动电荷在磁场中受力的规律; (D ) 以上说法都对。

22.通以稳恒电流的长直导线,在其周围空间:( )

(A )只产生电场; (B )既不产生电场,又不产生磁场; (C )只产生磁场; (D )既产生电场,又产生磁场。

6.两瓶不同种类的气体,它们的温度和压强相同,但体积不同,则单位体积内的分子数相同.( )

7.从气体动理论的观点说明:当气体的温度升高时,只要适当地增大容器的容积,就可使气体的压强保持不变.( )

8.热力学第二定律的实质在于指出:一切与热现象有关的宏观过程都是可逆的。( ) 9.随时间变化的磁场会激发涡旋电场,随时间变化的电场会激发涡旋磁场。( ) 10.带电粒子在均匀磁场中,当初速度v ⊥B 时,它因不受力而作匀速直线运动。( ) 1.作用力的功与反作用力的功必定等值异号,所以它们作的总功为零。( ) 2.不受外力作用的系统,它的动量和机械能必然同时都守恒.( ) 3.在弹簧被拉伸长的过程中,弹力作正功。 ( ) 4.物体的温度越高,则热量越多.( )

5.对一热力学系统,可以在对外做功的同时还放出热量.( ) 6.可以使一系统在一定压力下膨胀而保持其温度不变.( )

7.带电粒子在均匀磁场中,当初速度v ⊥B 时,它因不受力而作匀速直线运动。( ) 8.随时间变化的磁场会激发涡旋电场,随时间变化的电场会激发涡旋磁场。( ) 9.动生电动势是因磁场随时间变化引起的,感生电动势是因导线在磁场中运动引起的。( ) 10.电磁波是横波,它能在空间传播是由于随时间变化的电场与磁场互相激发所至。( )

四.计算题

1. 已知质点运动方程为

??

?-=-=) cos 1( sin t R y t R x ωω

式中R 、ω为常量,试求质点作什么运动,并求其速度和加速度。 2. 一质点的运动方程为2

3

25.6t t x -=(SI ),试求:

(1)第3秒内的位移及平均速度; (2)1秒末及2秒末的瞬时速度;

(3)第2秒内的平均加速度及0.5秒末的瞬时加速度。

3.质点沿半径为R 做圆周运动,其按规律2

21

bt ct S -=运动,式中S 为路程,b 、c 为常数,求

(1)t 时刻质点的角速度和角加速度

(2)当切向加速度等于法向加速度时,质点运动经历的时间。

(1)解 质点作圆周运动,有θR S =,所以 )

21(12bt ct R R S -==θ 角速度

t

R b R c t -==d d θω 角加速度

R b t -

==d d ωα (2)在圆周运动中,有 b R a -==αt 2

2n

)(1bt c R R a -==ω 当 t n a a = 即 2

)(1

bt c R b -= 得 0)(22

2

2=-+-bR c bct t b

b R b

c

t +=

4.一质点的运动方程为j i r ])s m 1(2[)s m 2(2

21t m t --?-+?=。

(1)画出质点的运动轨迹。 (2)求s 2 s 1==t t 和时的位矢 (3)求s 2 s 1和末的速度 (4)求出加速度

5.在光滑水平面上放置一静止的木块,木块质量为m 2.一质量为m 1的子弹以速度v 1沿水平方向射入木块,然后与木块一起运动,如图所示。

(1) 求子弹与木块间的相互作用力分别对子弹和木块所做的功; (2)碰撞过程所损耗的机械能。

m 1 V m 2

1. 一电容器的电容C=200μF ,求当极板间电势差U=200V 时,电容器所储存的电能W。 2. 如图所示,在长直导线AB 内通有电流I 1=10A,在矩形线圈CDEF 中通有电流I 2=15A , AB 与线圈在同一平面内,且CD 、EF 与AB 平行 。已知a=2.0cm,b=5.0cm,d=1.0cm 。求:

(1)导线AB 中的电流I 1的磁场对矩形线圈CD 、DE 边的安培力的大小和方向;

(2)矩形线圈所受到的磁力矩。

2.两球质量m 1=2.0g,m 2=5.0g,在光滑的桌面上运动,速度分别为v 1=10i cm ?s -1, v 2=(3.0i +5.0j )cm ?s -1,碰撞后合为一体,求碰后的速度(含大小和方向)。

3.我国第一颗人造地球卫星绕地球沿椭圆轨道运动,地球的中心为椭圆的一个焦点。已知人造地球卫星近地点高度h 1=439km ,远地点高度h 2=2384km 。卫星经过近地点时速率为v 1=8.10km ·s -1,试求卫星在远地点的速率。取地球半径R=6378km ,空气阻力不计。 13.1如图所示,在直角三角形ABCD 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -

4.8×10-9C ,AC = 3cm ,BC = 4cm ,试求C 点的场强. [解答]根据点电荷的场强大小的公式

22

014q q

E k

r r ==

πε, 其中1/(4πε0) = k = 9.0×109N·m 2·C -2.

点电荷q 1在C 点产生的场强大小为

11201

4q E AC =πε994-122

1.810910 1.810(N C )(310)

--?=??=???,方向向下. 点电荷q 2在C 点产生的场强大小为

2220||1

4q E BC =πε994-1

22

4.810910 2.710(N C )(410)

--?=??=???,方向向右. C 处的总场强大小为

E =

44-110 3.24510(N C )==??,

总场强与分场强E 2的夹角为 1

2

a r c t a n 33.69

E

E ==

?θ. 3均匀带电细棒,棒长a = 20cm ,电荷线密度为λ = 3×10-8C·m -1,求:

(1)棒的延长线上与棒的近端d 1 = 8cm 处的场强;

13.1

(2)棒的垂直平分线上与棒的中点相距d 2 = 8cm 处的场强. [解答](1)建立坐标系,其中L = a /2 = 0.1(m),

x = L+d 1 = 0.18(m).

在细棒上取一线元d l ,所带的电量为d q = λd l ,根据点电荷的场强公式,电荷元在P 1点产生的场强的大小为

122

0d d d 4()q l E k

r x l ==-λπε 场强的方向沿x 轴正向.因此P 1点的总场强大小通过积分得

120d 4()L L l E x l λπε-=-?014L

L

x l

λπε-=

-011()4x L x L λπε=

--+22

0124L x L λ

πε=

-①. 将数值代入公式得P 1点的场强为

89

122

20.13109100.180.1

E -???=??-= 2.41×103(N·C -1

),方向沿着x 轴正向. (2)建立坐标系,y = d 2.

在细棒上取一线元d l ,所带的电量为d q = λd l , 在棒的垂直平分线上的P 2点产生的场强的大小为

222

0d d d 4q l

E k

r r λπε==

, 由于棒是对称的,x 方向的合场强为零,y 分量为 d E y = d E 2sin θ.

由图可知:r = d 2/sin θ,l = d 2cot θ,所以 d l = -d 2d θ/sin 2

θ, 因此 02

d sin d 4y E d λ

θθπε-=,

总场强大小为

02sin d 4L y l L

E d λθθπε=--=

?02cos 4L

l L

d λ

θπε=-

=L

L

=-=

=

将数值代入公式得P 2点的场强为

8

9

221/2

20.13109100.08(0.080.1)

y E -???=??+= 5.27×103(N·C -1).方向沿着y 轴正向.

[讨论](1)由于L = a /2,x = L+d 1,代入①式,化简得

10110111

44/1

a E d d a d d a λλπεπε=

=

++, 保持d 1不变,当a →∞时,可得101

4E d λ

πε→

, ③

这就是半无限长带电直线在相距为d 1的延长线上产生的场强大小. (2)由②式得

y E =

=

当a →∞时,得 02

2y E d λ

πε→

, ④

这就是无限长带电直线在线外产生的场强公式.如果d 1=d 2,则有大小关系E y = 2E 1.

13.一宽为b 的无限长均匀带电平面薄板,其电荷密度为σ,如图所示.试求: (1)平板所在平面内,距薄板边缘为a 处的场强.

(2)通过薄板几何中心的垂直线上与薄板距离为d 处的场强. [解答](1)建立坐标系.在平面薄板上取一宽度为d x 的带电直

线,电荷的线密度为 d λ = σd x , 根据直线带电线的场强公式 02E r

λ

πε=, 得带电直线在P 点产生的场强为

00d d d 22(/2)

x

E r

b a x λσπεπε=

=

+-,其方向沿x 轴正向.

由于每条无限长直线在P 点的产生的场强方向相同,所以总场强为

/20/2

1d 2/2b b E x b a x σπε-=

+-?/2

0/2

ln(/2)2b b b a x σ

πε--=+-0ln(1)2b

a

σπε=

+. ① 场强方向沿x 轴正向.

(2)为了便于观察,将薄板旋转建立坐标系.仍然在平

面薄板上取一宽度为d x 的带电直线,电荷的线密度仍然为

d λ = σd x ,

带电直线在Q 点产生的场强为

2

21/2

00d d d 22()

x

E r

b x λσπεπε=

=

+,

沿z 轴方向的分量为 221/2

0cos d d d cos 2()z x

E E b x σθθπε==

+,

设x = d tan θ,则d x = d d θ/cos 2θ,因此0

d d cos d 2z E E σ

θθπε==

积分得arctan(/2)

0arctan(/2)

d 2b d z b d E σθπε-=

?0arctan()2b

d σπε=. ② 场强方向沿z 轴正向. [讨论](1)薄板单位长度上电荷为λ = σb , ①式的场强可化为 0ln(1/)

2/b a E a b a

λπε+=

当b →0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式,场强公式变为

02E a

λ

πε→

, ③ 这正是带电直线的场强公式.

(2)②也可以化为 0arctan(/2)

2/2z b d E d b d

λπε=

当b →0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式,场强公式变为

02z E d

λ

πε→

, 这也是带电直线的场强公式.

当b →∞时,可得0

2z E σ

ε→

, ④ 这是无限大带电平面所产生的场强公式. 13. 两无限长同轴圆柱面,半径分别为R 1和R 2(R 1 > R 2),带有等量异号电荷,单位长度的电量为λ和-λ,求(1)r < R 1;(2) R 1 < r < R 2;(3)r > R 2处各点的场强.

[解答]由于电荷分布具有轴对称性,所以电场分布也具有轴对称性.

(1)在内圆柱面内做一同轴圆柱形高斯面,由于高斯内没有电荷,所以

E = 0,(r < R 1).

(2)在两个圆柱之间做一长度为l ,半径为r 的同轴圆柱形高斯面,高斯面内包含的电荷为 q = λl ,

穿过高斯面的电通量为 d d 2

e S

S

E S E rl Φπ=?==??E S ?, 根据高斯定理Φe = q /ε0,所以02E r

λ

πε=

, (R 1 < r < R 2). (3)在外圆柱面之外做一同轴圆柱形高斯面,由于高斯内电荷的代数和为零,所以

E = 0,(r > R 2).

13.9一厚度为d 的均匀带电无限大平板,电荷体密度为ρ,求板内外各点的场强.

[解答]方法一:高斯定理法.

(1)由于平板具有面对称性,因此产生的场强的方向与平板垂直且对称于中心面:E = E ‘.

在板内取一底面积为S ,高为2r 的圆柱面作为高斯面,场

强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为

d e S

Φ=??E S 2

d d d S S S =?+?+????E S E S E S 1

`02ES E S ES =++=,

高斯面内的体积为 V = 2rS ,

包含的电量为 q =ρV = 2ρrS , 根据高斯定理 Φe = q/ε0,

可得场强为 E = ρr/ε0,(0≦r ≦d /2).①

(2)穿过平板作一底面积为S ,高为2r 的圆柱形高斯面,通过高斯面的电通量仍为 Φe = 2ES ,

高斯面在板内的体积为V = Sd ,

包含的电量为 q =ρV = ρSd , 根据高斯定理 Φe = q/ε0,

可得场强为 E = ρd /2ε0,(r ≧d /2). ② 方法二:场强叠加法.

(1)由于平板的可视很多薄板叠而成的,以r 为界,下面平板产生的场强方向向上,上面平板产生的场强方向向下.在下面板中取一薄层d y ,面电荷密度为d σ = ρd y , 产生的场强为 d E 1 = d σ/2ε0,

积分得100/2

d ()222r

d y d

E r ρρεε-=

=+?,③ 同理,上面板产生的场强为

/2

200d ()222

d r

y d

E r ρρεε=

=-?

,④ r 处的总场强为E = E 1-E 2 = ρr/ε0.

(2)在公式③和④中,令r = d /2,得

E 2 = 0、E = E 1 = ρd /2ε0,E 就是平板表面的场强.

平板外的场强是无数个无限薄的带电平板产生的电场叠加的结果,是均强电场,方向与平板垂直,大小等于平板表面的场强,也能得出②式.

13. 两块“无限大”平行带电板如图所示,A 板带正电,B 板带负电并接地(地的电势为零),设A 和B 两板相隔 5.0cm ,板上各带电荷σ=3.3×10-6C·m -2,求:

(1)在两板之间离A 板1.0cm 处P 点的电势;

(2)A 板的电势.

[解答]两板之间的电场强度为 E=σ/ε0,方向从A 指向B .

以B 板为原点建立坐标系,则r B = 0,r P = -0.04m ,r A = -0.05m .

(1)P 点和B 板间的电势差为

d d B

B

P

P

r r P B r r U U E r -=?=??E l 0

()B P r r σ

ε=

-, 由于U B = 0,所以P 点的电势为612

3.3100.048.8410

P U --?=??=1.493×104

(V). (2)同理可得A 板的电势为 0

()A B A U r r σ

ε=

-=1.866×104(V). 13. 如图所示,一个均匀带电,内、外半径分别为R 1和R 2的均匀带电球壳,所带电荷体密度为ρ,试计算:

(1)A ,B 两点的电势;

(2)利用电势梯度求A ,B 两点的场强.

[解答](1)A 点在球壳的空腔内,空腔内的电势处处相等,因此A 点的电势就等于球心O 点的电势.

在半径为r 的球壳处取一厚度为d r 的薄壳,其体积为 d V = 4πr 2d r ,

包含的电量为 d q = ρd V = 4πρr 2d r ,

图13.10

图13.18

在球心处产生的电势为 00

d d d 4O q U r r r

ρ

πεε=

=

, 球心处的总电势为 2

1

2

2210

d ()2R O R U r r R R ρ

ρεε=

=

-?, 这就是A 点的电势U A .

过B 点作一球面,B 的点电势是球面外的电荷和球面内的电荷共

同产生的.

球面外的电荷在B 点产生的电势就等于这些电荷在球心处产生的电势,根据上面的推导可得

2

2120

()2B U R r ρε=

-. 球面内的电荷在B 点产生的电势等于这些电荷集中在球心处在B 点产生的电势.球壳在球面内的体积为

3314()3

B V r R π=

-, 包含的电量为 Q = ρV , 这些电荷集中在球心时在B 点产生的电势为 3

32100()43B B

B

Q U r R r r ρπεε=

=

-. B 点的电势为 U B = U 1 + U 2322

120(32)6B B

R R r r ρε=--.

(2)A 点的场强为 0A

A A

U E r ?=-

=?. B 点的场强为 3120()3B B B B B

U R E r r r ρ

ε?=-=-?.

[讨论] 过空腔中A 点作一半径为r 的同心球形高斯面,由于面内没有电荷,根据高斯定

理,可得空腔中A 点场强为 E = 0, (r ≦R 1).

过球壳中B 点作一半径为r 的同心球形高斯面,面内球壳的体积为 3314

()3

V r R π=-, 包含的电量为 q = ρV ,根据高斯定理得方程 4πr 2E = q/ε0,

可得B 点的场强为3120()3R E r r

ρ

ε=-, (R 1≦r ≦R 2).

这两个结果与上面计算的结果相同.

在球壳外面作一半径为r 的同心球形高斯面,面内球壳的体积为3

3214()3

V R R π=-, 包含的电量为 q = ρV ,根据高斯定理得可得球壳外的场强为

332122

00()

43R R q

E r r

ρπεε-==,(R 2≦r). A 点的电势为 d d A

A

A r r

U E r ∞

=?=??E l 12

1

31200d ()d 3A R R r R R r r r r ρ

ε=+-??23

32120()d 3R R R r r ρε∞

-+? 2

2210

()2R R ρε=

-. B 点的电势为 d d B

B

B r r

U E r ∞

=?=??E l 2

3120()d 3B

R r R r r r ρ

ε=-?2332120()d 3R R R r r ρε∞

-+? 322

120(32)6B B

R R r r ρε=--.

A 和

B 点的电势与前面计算的结果相同.

14. 设圆柱形电容器的内、外圆筒半径分别为a 、b .试证明电容器能量的一半储存在半

径R =

[解答]设圆柱形电容器电荷线密度为λ,场强为E = λ/2πε0r ,能量密度为 w = ε0E 2/2, 体积元为 d V = 2πrl d r ,能量元为 d W = w d V .

在半径a 到R 的圆柱体储存的能量为

2

d d 2V

V

W w V E V ε==??

2200d ln 44R

a

l l R

r r a λλπεπε==?. 当R = b 时,能量为210ln 4l b

W a

λπε=;

当R =

22200ln 48l l b

W a

λλπεπε==,

所以W 2 = W 1/2

,即电容器能量的一半储存在半径R

14. 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多

大?如果两端加上1000V 电压,是否会被击穿? [解答]当两个电容串联时,由公式

211212111C C C C C C C +=+=

, 得 1212

120PF C C

C C C ==+.

加上U = 1000V 的电压后,带电量为Q = CU ,

第一个电容器两端的电压为U 1 = Q/C 1 = CU/C 1 = 600(V); 第二个电容器两端的电压为U 2 = Q/C 2 = CU/C 2 = 400(V).

由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿. 17.长为b ,宽为a 的矩形线圈ABCD 与无限长直截流导线共面,且线圈的长边平行于长

直导线,线圈以速度v 向右平动,t 时刻基AD 边距离长直导线为

x ;且长直导线中的电流按I = I 0cos ωt 规律随时间变化,如图所

示.求回路中的电动势ε. [解答]电流I 在r 处产生的磁感应强度为02I B r

μπ=

穿过面积元d S = b d r 的磁通量为0d d d 2Ib

B S r r

μΦπ==,

穿过矩形线圈ABCD 的磁通量为

001d ln()22x a x Ib Ib x a r r x

μμΦππ++==?, 回路中的电动势为 d d t Φε=-

0d 11d [ln()()]2d d b x a I x

I x t x a x t

μπ+=-+-+ 00cos [ln()sin ]2()

I b x a av t t x x x a μωωωπ+=

++. 显然,第一项是由于磁场变化产生的感生电动势,第二项是由于线圈运动产生的动生电动势.

5.将一边长L =0.20m 的正方形导电回路置于圆形区域的均匀磁场中。磁场方向垂直纸面

向里,磁感应强度以0.1T ·s -1的变化率减小,如图所示。试求:(1) 整个回路内的感生电动势;(2)回路电阻为2Ω时回路中的感应电流。

图17.10

大学物理(下)期末考试试卷

大学物理(下)期末考试试卷 一、 选择题:(每题3分,共30分) 1. 在感应电场中电磁感应定律可写成?-=?L K dt d l d E φ ,式中K E 为感应电场的电场强度。此式表明: (A) 闭合曲线L 上K E 处处相等。 (B) 感应电场是保守力场。 (C) 感应电场的电力线不是闭合曲线。 (D) 在感应电场中不能像对静电场那样引入电势的概念。 2.一简谐振动曲线如图所示,则振动周期是 (A) 2.62s (B) 2.40s (C) 2.20s (D) 2.00s 3.横谐波以波速u 沿x 轴负方向传播,t 时刻 的波形如图,则该时刻 (A) A 点振动速度大于零, (B) B 点静止不动 (C) C 点向下运动 (D) D 点振动速度小于零. 4.如图所示,有一平面简谐波沿x 轴负方向传 播,坐标原点O 的振动规律为)cos(0φω+=t A y , 则B 点的振动方程为 (A) []0)/(cos φω+-=u x t A y (B) [])/(cos u x t A y +=ω (C) })]/([cos{0φω+-=u x t A y (D) })]/([cos{0φω++=u x t A y 5. 一单色平行光束垂直照射在宽度为 1.20mm 的单缝上,在缝后放一焦距为2.0m 的会聚透镜,已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.00mm ,则入射光波长约为 (A )100000A (B )40000A (C )50000A (D )60000 A 6.若星光的波长按55000A 计算,孔镜为127cm 的大型望远镜所能分辨的两颗星2 4 1

大学物理试题及答案

第2章刚体得转动 一、选择题 1、如图所示,A、B为两个相同得绕着轻绳得定滑轮.A滑轮挂一质量为M得物体,B滑轮受拉力F,而且F=Mg.设A、B两滑轮得角加速度分别为βA与βB,不计滑轮轴得摩擦,则有 (A) βA=βB。(B)βA>βB. (C)βA<βB.(D)开始时βA=βB,以后βA<βB。 [] 2、有两个半径相同,质量相等得细圆环A与B。A环得质量分布均匀,B环得质量分布不均匀。它们对通过环心并与环面垂直得轴得转动惯量分别为JA与J B,则 (A)JA>J B.(B) JA

大学物理期末考试题(上册)10套附答案

n 3 电机学院 200_5_–200_6_学年第_二_学期 《大学物理 》课程期末考试试卷 1 2006.7 开课学院: ,专业: 考试形式:闭卷,所需时间 90 分钟 考生: 学号: 班级 任课教师 一、填充題(共30分,每空格2分) 1.一质点沿x 轴作直线运动,其运动方程为()3262x t t m =-,则质点在运动开始后4s 位移的大小为___________,在该时间所通过的路程为_____________。 2.如图所示,一根细绳的一端固定, 另一端系一小球,绳长0.9L m =,现将小球拉到水平位置OA 后自由释放,小球沿圆弧落至C 点时,30OC OA θ=o 与成,则 小球在C 点时的速率为____________, 切向加速度大小为__________, 法向加速度大小为____________。(210g m s =)。 3.一个质点同时参与两个在同一直线上的简谐振动,其振动的表达式分别为: 215 5.010cos(5t )6x p p -=?m 、211 3.010cos(5t )6 x p p -=?m 。则其合振动的频率 为_____________,振幅为 ,初相为 。 4、如图所示,用白光垂直照射厚度400d nm =的薄膜,为 2 1.40n =, 且12n n n >>3,则反射光中 nm ,

波长的可见光得到加强,透射光中 nm 和___________ nm 可见光得到加强。 5.频率为100Hz ,传播速度为s m 300的平面波,波 长为___________,波线上两点振动的相差为3 π ,则此两点相距 ___m 。 6. 一束自然光从空气中入射到折射率为1.4的液体上,反射光是全偏振光,则此光束射角等于______________,折射角等于______________。 二、选择題(共18分,每小题3分) 1.一质点运动时,0=n a ,t a c =(c 是不为零的常量),此质点作( )。 (A )匀速直线运动;(B )匀速曲线运动; (C ) 匀变速直线运动; (D )不能确定 2.质量为1m kg =的质点,在平面运动、其运动方程为x=3t ,315t y -=(SI 制),则在t=2s 时,所受合外力为( ) (A) 7j ? ; (B) j ?12- ; (C) j ?6- ; (D) j i ? ?+6 3.弹簧振子做简谐振动,当其偏离平衡位置的位移大小为振幅的4 1 时,其动能为振动 总能量的?( ) (A ) 916 (B )1116 (C )1316 (D )1516 4. 在单缝夫琅和费衍射实验中波长为λ的单色光垂直入射到单缝上,对应于衍 射角为300的方向上,若单逢处波面可分成3个半波带,则缝宽度a 等于( ) (A.) λ (B) 1.5λ (C) 2λ (D) 3λ 5. 一质量为M 的平板车以速率v 在水平方向滑行,质量为m 的物体从h 高处直落到车子里,两者合在一起后的运动速率是( ) (A.) M M m v + (B). (C). (D).v

大学物理 1 期末考试复习原题 (含参考答案)

大学物理1期末考试复习原题 力学 8. A 质量为m的小球,用轻绳AB、BC连接,如图,其中AB水平.剪断绳AB 前后的瞬间,绳BC中的张力比T : T′=____________________. 9. 一圆锥摆摆长为l、摆锤质量为m,在水平面上作匀速圆周运动,摆线与铅直线夹角θ,则 (1) 摆线的张力T=_____________________; (2) 摆锤的速率v=_____________________. 12. 一光滑的内表面半径为10 cm的半球形碗,以匀角速度ω绕其对称OC 旋转.已知放在碗内表面上的一个小球P相对于碗静止,其位置高于碗底4 cm,则由此可推知碗旋转的角速度约为

(C) 17 rad/s (D) 18 rad/s.[] 13. 质量为m的小球,放在光滑的木板和光滑的墙壁之间,并保持平衡,如图所示.设木板和墙壁之间的夹角为α,当α逐渐增大时,小球对木板的压力将 (A) 增加(B) 减少.(C) 不变. (D) 先是增加,后又减小.压力增减的分界角为α=45°.[ ] 15. m m 一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大.(B) 不变.(C) 减小.(D) 不能确定定.()

16. 如图所示,A、B为两个相同的绕着轻绳的定滑轮.A滑轮挂一质量为M的物体,B滑轮受拉力F,而且F=Mg.设A、B两滑轮的角加速度分别为βA和βB,不计滑轮轴的摩擦,则有 (A) βA=βB.(B) βA>βB. (C) βA<βB.(D) 开始时βA=βB,以后βA<βB. 18. 有两个半径相同,质量相等的细圆环A和B.A环的质量分布均匀,B环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A和J B,则 (A) J A>J B(B) J A<J B. (C) J A =J B.(D) 不能确定J A、J B哪个大. 22. 一人坐在转椅上,双手各持一哑铃,哑铃与转轴的距离各为0.6 m.先让人体以5 rad/s的角速度随转椅旋转.此后,人将哑铃拉回使与转轴距离为0.2 m.人体和转椅对轴的转动惯量为5 kg·m2,并视为不变.每一哑铃的质量为5 kg可视为质点.哑铃被拉回后,人体的角速度ω = __________________________.

大学物理试题库及答案详解【考试必备】

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)2 2d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确

大学物理上册试卷及答案(完整版)

大学物理(I )试题汇总 《大学物理》(上)统考试题 一、填空题(52分) 1、一质点沿x 轴作直线运动,它的运动学方程为 x =3+5t +6t 2-t 3 (SI) 则 (1) 质点在t =0时刻的速度=v __________________; (2) 加速度为零时,该质点的速度=v ____________________. 2、一质点作半径为 0.1 m 的圆周运动,其角位置的运动学方程为: 2 2 14πt += θ (SI) 则其切向加速度为t a =__________________________. 3、如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度a max =____________________. 4、一圆锥摆摆长为l 、摆锤质量为m ,在水平面上作匀速圆周运动, 摆线与铅直线夹角θ,则 (1) 摆线的张力T =_____________________; (2) 摆锤的速率v =_____________________. 5、两个滑冰运动员的质量各为70 kg ,均以6.5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m ,当彼此交错时, 各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L =_______;它们各自收拢绳索,到绳长为 5 m 时,各自的速率v =_______. 6、一电子以0.99 c 的速率运动(电子静止质量为9.11310-31 kg ,则电子的总能量是__________J ,电子的经典力学的动能与相对论动能之比是_____________. 7、一铁球由10 m 高处落到地面,回升到 0.5 m 高处.假定铁球与地面碰撞时 损失的宏观机械能全部转变为铁球的内能,则铁球的温度将升高__________.(已知铁的比 热c = 501.6 J 2kg -12K -1 ) 8、某理想气体在温度为T = 273 K 时,压强为p =1.0310-2 atm ,密度ρ = 1.24310-2 kg/m 3,则该气体分子的方均根速率为___________. (1 atm = 1.0133105 Pa) 9、右图为一理想气体几种状态变化过程的p -V 图,其中MT 为等温线,MQ 为绝热线,在AM 、BM 、CM 三种准静态过程中: (1) 温度升高的是__________过程; (2) 气体吸热的是__________过程. 10、两个同方向同频率的简谐振动,其合振动的振幅为20 cm , 与第一个简谐振动的相位差为φ –φ1 = π/6.若第一个简谐振动的振幅 为310 cm = 17.3 cm ,则第二个简谐振动的振幅为 ___________________ cm ,第一、二两个简谐振动的相位 差φ1 - φ2为____________. 11、一声波在空气中的波长是0.25 m ,传播速度是340 m/s ,当它进入另一介质时,波

大学物理期末考试试卷(C卷)答案

第三军医大学2011-2012学年二学期 课程考试试卷答案(C 卷) 课程名称:大学物理 考试时间:120分钟 年级:xxx 级 专业: xxx 答案部分,(卷面共有26题,100分,各大题标有题量和总分) 一、选择题(每题2分,共20分,共10小题) 1.C 2.C 3.C 4.D 5.B 6.C 7.D 8.C 9.A 10.B 二、填空题(每题2分,共20分,共10小题) 1.m k d 2 2.20kx ;2021 kx -;2021kx 3.一个均匀带电的球壳产生的电场 4.θ cos mg . 5.θcot g . 6.2s rad 8.0-?=β 1s rad 8.0-?=ω 2s m 51.0-?='a 7.GMR m 8.v v v v ≠=? ?, 9.1P 和2P 两点的位置.10.j i ??22+- 三、计算题(每题10分,共60分,共6小题) 1. (a) m /s;kg 56.111.0?+-j i ρρ (b) N 31222j i ρρ+- . 2. (a) Yes, there is no torque; (b) 202202/])([mu mbu C C ++ 3.(a)m/s 14 (b) 1470 N 4.解 设该圆柱面的横截面的半径为R ,借助于无限长均匀带电直线在距离r 处的场强公式,即r E 0π2ελ=,可推出带电圆柱面上宽度为θd d R l =的无限长均匀带电直线在圆柱

2 轴线上任意点产生的场强为 =E ρd r 0π2ε λ-0R ρ=000π2d cos R R R ρεθθσ- =θθθεθσ)d sin (cos π2cos 0 0j i ρρ+-. 式中用到宽度为dl 的无限长均匀带电直线的电荷线密度θθσσλd cos d 0R l ==,0R ρ为从 原点O 点到无限长带电直线垂直距离方向上的单位矢量,i ρ,j ρ为X ,Y 方向的单位矢量。 因此,圆柱轴线Z 上的总场强为柱面上所有带电直线产生E ρd 的矢量和,即 ??+-==Q j i E E πθθθεθσ2000)d sin (cos π2cos d ρρρρ=i 002εσ- 方向沿X 轴负方向 5.解 设邮件在隧道P 点,如图所示,其在距离地心为r 处所受到的万有引力为 23π34r m r G f ??-=ρ r m G )π34 (ρ-= 式中的负号表示f ρ与r ρ的方向相反,m 为邮件的质量。根据牛顿运动定律,得 22d )π34(dt r m r m G =-ρ

《大学物理 》下期末考试 有答案

《大学物理》(下)期末统考试题(A 卷) 说明 1考试答案必须写在答题纸上,否则无效。请把答题纸撕下。 一、 选择题(30分,每题3分) 1.一质点作简谐振动,振动方程x=Acos(ωt+φ),当时间t=T/4(T 为周期)时,质点的速度为: (A) -Aωsinφ; (B) Aωsinφ; (C) -Aωcosφ; (D) Aωcosφ 参考解:v =dx/dt = -A ωsin (ωt+φ) ,cos )sin(2 4/?ω?ωπA A v T T t -=+?-== ∴选(C) 2.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的 (A) 7/6 (B) 9/16 (C) 11/16 (D )13/16 (E) 15/16 参考解:,1615)(221242122122 1221=-=kA k kA kA mv A ∴选(E ) 3.一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中: (A) 它的动能转换成势能. (B) 它的势能转换成动能. (C) 它从相邻的一段质元获得能量其能量逐渐增大. (D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小. 参考解:这里的条件是“平面简谐波在弹性媒质中传播”。由于弹性媒质的质元在平衡位置时的形变最大,所以势能动能最大,这时动能也最大;由于弹性媒质的质元在最大位移处时形变最小,所以势能也最小,这时动能也最小。质元的机械能由最大变到最小的过程中,同时也把该机械能传给相邻的一段质元。∴选(D )

4.如图所示,折射率为n 2、厚度为e 的透明介质薄膜 的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1 <n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜 上,则从薄膜上、下两表面反射的光束①与②的光程差是 (A) 2n 2 e . (B) 2n 2 e -λ / 2 . (C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2). 参考解:半波损失现象发生在波由波疏媒质到波密媒质的界面的反射现象中。两束光分别经上下表面反射时,都是波疏媒质到波密媒质的界面的反射,同时存在着半波损失。所以,两束反射光的光程差是2n 2 e 。 ∴选(A ) 5.波长λ=5000?的单色光垂直照射到宽度a=0.25mm 的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹,今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离d=12mm ,则凸透镜的焦距f 为: (A) 2m (B) 1m (C) 0.5m (D) 0.2m ; (E) 0.1m 参考解:由单缝衍射的暗纹公式, asin φ = 3λ, 和单缝衍射装置的几何关系 ftg φ = d/2, 另,当φ角很小时 sin φ = tg φ, 有 1103 310500061025.0101232==?=---?????λa d f (m ) , ∴选(B ) 6.测量单色光的波长时,下列方法中哪一种方法最为准确? (A) 双缝干涉 (B) 牛顿环 (C) 单缝衍射 (D) 光栅衍射 参考解:从我们做过的实验的经历和实验装置可知,最为准确的方法光栅衍射实验,其次是牛顿环实验。 ∴选(D ) 7.如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为 (A) I 0 / 8. (B) I 0 / 4. (C) 3 I 0 / 8. (D) 3 I 0 / 4. 参考解:穿过第一个偏振片自然光的光强为I 0/2。随后,使用马吕斯定律,出射光强 10201 60cos I I I == ∴ 选(A ) n 3

大学物理(下)试题及答案

全国2007年4月高等教育自学考试 物理(工)试题 课程代码:00420 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.以大小为F的力推一静止物体,力的作用时间为Δt,而物体始终处于静止状态,则在Δt时间内恒力F对物体的冲量和物体所受合力的冲量大小分别为() A.0,0B.FΔt,0 C.FΔt,FΔt D.0,FΔt 2.一瓶单原子分子理想气体与一瓶双原子分子理想气体,它们的温度相同,且一个单原子分子的质量与一个双原子分子的质量相同,则单原子气体分子的平均速率与双原子气体分子的平均速率()A.相同,且两种分子的平均平动动能也相同 B.相同,而两种分子的平均平动动能不同 C.不同,而两种分子的平均平动动能相同 D.不同,且两种分子的平均平动动能也不同 3.系统在某一状态变化过程中,放热80J,外界对系统作功60J,经此过程,系统内能增量为()A.140J B.70J C.20J D.-20J 4.自感系数为L的线圈通有稳恒电流I时所储存的磁能为() A.LI2 1 B.2 LI 2 C.LI 1 D.LI 2 5.如图,真空中存在多个电流,则沿闭合路径L磁感应强度的环流为() A.μ0(I3-I4) B.μ0(I4-I3) C.μ0(I2+I3-I1-I4) D.μ0(I2+I3+I1+I4)

6.如图,在静电场中有P 1、P 2两点,P 1点的电场强度大小比P 2点的( ) A .大,P 1点的电势比P 2点高 B .小,P 1点的电势比P 2点高 C .大,P 1点的电势比P 2点低 D .小,P 1点的电势比P 2点低7.一质点作简谐振动,其振动表达式为x=0.02cos(4)2 t π+π(SI),则其周期和t=0.5s 时的相位分别为()A .2s 2π B .2s π25 C .0.5s 2π D .0.5s π258.平面电磁波的电矢量 E 和磁矢量B () A .相互平行相位差为0 B .相互平行相位差为 2πC .相互垂直相位差为0 D .相互垂直相位差为2π 9.μ子相对地球以0.8c(c 为光速)的速度运动,若μ子静止时的平均寿命为τ,则在地球上观测到的μ子的平均 寿命为( )A .τ5 4B .τC .τ35D .τ2 510.按照爱因斯坦关于光电效应的理论,金属中电子的逸出功为A ,普朗克常数为h ,产生光电效应的截止频率 为( )A .v 0=0 B .v 0=A/2h C .v 0=A/h D .v 0=2A/h 二、填空题Ⅰ(本大题共8小题,每空2分,共22分) 请在每小题的空格中填上正确答案。错填、不填均无分。 11.地球半径为R ,绕轴自转,周期为T ,地球表面纬度为?的某点的运动速率为_____,法向加速度大小为_____。

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3 ,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间合力作功为 A 1,32t t →时间合力作功为A 2,43t t → 3 C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间,其平均 速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D ) T R π2, 0 5、质点在恒力F 作用下由静止开始作直线运动。已知在时间1t ?,速率由0增加到υ;在2t ?, 由υ增加到υ2。设该力在1t ?,冲量大小为1I ,所作的功为1A ;在2t ?,冲量大小为2I , 所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直线 运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力F 的 大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

《大学物理》(I1)期末复习题

大物期末复习题(I1) 一、单项选择题 1、质量为0.5 =的质点,在oxy坐标平面内运动,其运动方程为 m kg 2 ==,从t=2s到t=4s这段时间内,外力对质点做的功为() x t y t 5,0.5 A、 1.5J B、 3J C、 4.5J D、 -1.5J 2、对功的概念有以下几种说法: ①作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必 为零。 ②保守力作正功时,系统内相应的势能增加。 ③质点运动经一闭合路径,保守力对质点作的功为零。 在上述说法中: () (A)①、②是正确的。 (B)②、③是正确的。 (C)只有②是正确的。 (D)只有③是正确的。 3、如图3所示1/4圆弧轨道(质量为M)与水平面光滑接触,一物体(质量为m)自轨道顶端滑下,M与m间有摩擦,则 A、M与m 组成系统的总动量及水平方向动量都守恒,M、m与地组成的系统机械能守恒。 B、M与m 组成系统的总动量及水平方向动量都守恒,M、m与地组成的系统机械能不守恒。 C、M与m 组成的系统动量不守恒,水平方向动量不守恒,M、m与地组成的系统机械能守恒。 D、M与m 组成的系统动量不守恒,水平方向动量守恒,M、m与地组成的系统机械能不守恒。 4、一个圆形线环,它的一半放在一分布在方形区域的匀强磁场中,另一半

位于磁场之外,如图所示。磁场的方向垂直指向纸内。预使圆环中产生逆时针方向的感应电流,应使() A 、线环向右平移 B 、线环向上平移 C 、线环向左平移 D 、磁场强度 减弱 5、若尺寸相同的铁环与铜环所包围的面积中穿过相同变化率的磁通量,则在两环中( ) (A) 感应电动势相同,感应电流不同. (B) 感应电动势不同,感应电流也不同. (C) 感应电动势不同,感应电流相同. (D) 感应电动势相同,感应电流也相同. 6、线圈与一通有恒定电流的直导线在同一平面内,下列说法正确的是 A 、当线圈远离导线运动时,线圈中有感应电动势 B 、当线圈上下平行运动时,线圈中有感应电流 C 、直导线中电流强度越大,线圈中的感应电流也越大 D 、以上说法都不对 7. 真空带电导体球面与一均匀带电介质球体,它们的半径和所带的电量都相等,设带电球面的静电能为W1,球体的静电能为W2,则( ) A 、W1>W 2; B 、W 1

大学物理试题及答案

《大学物理》试题及答案 一、填空题(每空1分,共22分) 1.基本的自然力分为四种:即强力、、、。 2.有一只电容器,其电容C=50微法,当给它加上200V电压时,这个电容储存的能量是______焦耳。 3.一个人沿半径为R 的圆形轨道跑了半圈,他的位移大小为,路程为。 4.静电场的环路定理公式为:。5.避雷针是利用的原理来防止雷击对建筑物的破坏。 6.无限大平面附近任一点的电场强度E为 7.电力线稀疏的地方,电场强度。稠密的地方,电场强度。 8.无限长均匀带电直导线,带电线密度+λ。距离导线为d处的一点的电场强度为。 9.均匀带电细圆环在圆心处的场强为。 10.一质量为M=10Kg的物体静止地放在光滑的水平面上,今有一质量为m=10g的子弹沿水平方向以速度v=1000m/s射入并停留在其中。求其 后它们的运动速度为________m/s。 11.一质量M=10Kg的物体,正在以速度v=10m/s运动,其具有的动能是_____________焦耳 12.一细杆的质量为m=1Kg,其长度为3m,当它绕通过一端且垂直于细杆 的转轴转动时,它的转动惯量为_____Kgm2。 13.一电偶极子,带电量为q=2×105-库仑,间距L=0.5cm,则它的电距为________库仑米。 14.一个均匀带电球面,半径为10厘米,带电量为2×109-库仑。在距球心 6厘米处的电势为____________V。 15.一载流线圈在稳恒磁场中处于稳定平衡时,线圈平面的法线方向与磁场强度B的夹角等于。此时线圈所受的磁力矩最。 16.一圆形载流导线圆心处的磁感应强度为1B,若保持导线中的电流强度不

大学物理期末考试试卷(含答案) 2

2008年下学期2007级《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) (2717) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分)(2391) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分)(2594) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分)(2314) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分)(2125) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分)(2421) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

大学物理(上)期末复习题

1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求: (1) 质点在运动开始后4.0 s 内的位移的大小; (2) 质点在该时间内所通过的路程; (3) t =4 s 时质点的速度和加速度. 1 -13 质点沿直线运动,加速度a =4 -t 2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程. 1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点. (1) 由题意知 v v B A t a -== d d (1) 用分离变量法把式(1)改写为 t B A d d =-v v (2) 将式(2)两边积分并考虑初始条件,有 ?? =-t t B A 0d d d 0 v v v v v 得石子速度 )1(Bt e B A --=v 由此可知当,t →∞时,B A →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e B A t y --== v 并考虑初始条件有 t e B A y t Bt y d )1(d 00??--= 得石子运动方程 )1(2-+= -Bt e B A t B A y 1 -22 一质点沿半径为R 的圆周按规律202 1 bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈? 解 (1) 质点作圆周运动的速率为 bt t s -== 0d d v v 其加速度的切向分量和法向分量分别为 b t s a t -==22d d , R bt R a n 2 02)(-==v v

大学物理试题及答案

大学物理试题及答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

第1部分:选择题 习题1 1-1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,t 至()t t +?时间内的位移为r ?,路程为s ?,位矢大小的变化量为r ?(或称r ?),平均速度为v ,平均速率为v 。 (1)根据上述情况,则必有( ) (A )r s r ?=?=? (B )r s r ?≠?≠?,当0t ?→时有dr ds dr =≠ (C )r r s ?≠?≠?,当0t ?→时有dr dr ds =≠ (D )r s r ?=?≠?,当0t ?→时有dr dr ds == (2)根据上述情况,则必有( ) (A ),v v v v == (B ),v v v v ≠≠ (C ),v v v v =≠ (D ),v v v v ≠= 1-2 一运动质点在某瞬间位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即 (1) dr dt ;(2)dr dt ;(3)ds dt ;(4下列判断正确的是: (A )只有(1)(2)正确 (B )只有(2)正确 (C )只有(2)(3)正确 (D )只有(3)(4)正确 1-3 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度。对下列表达式,即 (1)dv dt a =;(2)dr dt v =;(3)ds dt v =;(4)t dv dt a =。

下述判断正确的是( ) (A )只有(1)、(4)是对的 (B )只有(2)、(4)是对的 (C )只有(2)是对的 (D )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( ) (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C )切向加速度可能不变,法向加速度不变 (D )切向加速度一定改变,法向加速度不变 * 1-5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向 岸边运动。设该人以匀速率0v 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( ) (A )匀加速运动,0 cos v v θ= (B )匀减速运动,0cos v v θ= (C )变加速运动,0cos v v θ = (D )变减速运动,0cos v v θ= (E )匀速直线运动,0v v = 1-6 以下五种运动形式中,a 保持不变的运动是 ( ) (A)单摆的运动. (B)匀速率圆周运动. (C)行星的椭圆轨道运动. (D)抛体运动. (E)圆锥摆运动. 1-7一质点作直线运动,某时刻的瞬时速度v=2m/s,瞬时加速度22/a m s -=-,则一秒钟后质点的速度 ( ) (A)等于零. (B)等于-2m/s. (C)等于2m/s. (D)不能确定.

大学物理期末考试试卷(含答案)

《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

大学物理(上)期末试题(1)

大学物理(上)期末试题(1) 班级 学号 姓名 成绩 一 填空题 (共55分) 请将填空题答案写在卷面指定的划线处。 1(3分)一质点沿x 轴作直线运动,它的运动学方程为x =3+5t +6t 2-t 3 (SI),则 (1) 质点在t =0时刻的速度=0v __________________; (2) 加速度为零时,该质点的速度v =____________________。 2 (4分)两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动。物体A 的动量是时间的函数,表达式为 P A = P 0 – b t ,式中P 0 、b 分别为正值常量,t 是时间。在下列两种情况下,写出物体B 的动量作为时间函数的表达式: (1) 开始时,若B 静止,则 P B 1=______________________; (2) 开始时,若B 的动量为 – P 0,则P B 2 = _____________。 3 (3分)一根长为l 的细绳的一端固定于光滑水平面上的O 点,另一端系一质量为m 的小球,开始时绳子是松弛的,小球与O 点的距离为h 。使小球以某个初速率沿该光滑水平面上一直线运动,该直线垂直于小球初始位置与O 点的连线。当小球与O 点的距离达到l 时,绳子绷紧从而使小球沿一个以O 点为圆心的圆形轨迹运动,则小球作圆周运动时的动能 E K 与初动能 E K 0的比值 E K / E K 0 =______________________________。 4(4分) 一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动。已知在此力作用下质点的运动学方程为3243t t t x +-= (SI)。在0到4 s 的时间间隔内, (1) 力F 的冲量大小I =__________________。 (2) 力F 对质点所作的功W =________________。

大学物理(普通物理)考试试题及答案

任课教师: 系(室)负责人: 普通物理试卷第1页,共7页 《普通物理》考试题 开卷( )闭卷(∨ ) 适用专业年级 姓名: 学号: ;考试座号 年级: ; 本试题一共3道大题,共7页,满分100分。考试时间120分钟。 注:1、答题前,请准确、清楚地填各项,涂改及模糊不清者,试卷作废。 2、试卷若有雷同以零分记。 3、常数用相应的符号表示,不用带入具体数字运算。 4、把题答在答题卡上。 一、选择(共15小题,每小题2分,共30分) 1、一质点在某瞬时位于位矢(,)r x y r 的端点处,对其速度的大小有四种意见,即 (1)dr dt (2)d r dt r (3) ds dt (4) 下列判断正确的是( D ) A.只有(1)(2)正确; B. 只有(2)正确; C. 只有(2)(3)正确; D. 只有(3)(4)正确。 2、下列关于经典力学基本观念描述正确的是 ( B )

A、牛顿运动定律在非惯性系中也成立, B、牛顿运动定律适合于宏观低速情况, C、时间是相对的, D、空间是相对的。 3、关于势能的描述不正确的是( D ) A、势能是状态的函数 B、势能具有相对性 C、势能属于系统的 D、保守力做功等于势能的增量 4、一个质点在做圆周运动时,则有:(B) A切向加速度一定改变,法向加速度也改变。B切向加速度可能不变,法向加速度一定改变。 C切向加速的可能不变,法向加速度不变。D 切向加速度一定改变,法向加速度不变。 5、假设卫星环绕地球中心做椭圆运动,则在运动的过程中,卫星对地球中心的( B ) A.角动量守恒,动能守恒;B .角动量守恒,机械能守恒。 C.角动量守恒,动量守恒; D 角动量不守恒,动量也不守恒。 6、一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,两个质量相同、速度大小相同、方向相反并在一条直线上(不通过盘心)的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L和圆盘的角速度ω则有( C ) A.L不变,ω增大; B.两者均不变m m

相关主题
文本预览
相关文档 最新文档