当前位置:文档之家› 回流焊温度确认记录

回流焊温度确认记录

回流焊温度确认记录

成都倍瑞科技有限公司

回流焊温度确认记录

回流焊接温度曲线

回流焊接温度曲线 作温度曲线(profiling)是确定在回流整个周期内印刷电路板(PCB)装配必须经受的时刻/温度关系的过程。它决定于锡膏的特性,如合金、锡球尺寸、金属含量和锡膏的化学成分。装配的量、表面几何形状的复杂性和基板导热性、以及炉给出足够热能的能力,所有都阻碍发热器的设定和炉传送带的速度。炉的热传播效率,和操作员的经验一起,也阻碍反复试验所得到的温度曲 线。 锡膏制造商提供差不多的时刻/温度关系资料。它应用于特定的配方,通常可在产品的数据表中找到。但是,元件和材料将 决定装配所能忍受的最高温度。 涉及的第一个温度是完全液化温度(full liquidus temperature)或最低回流温度(T1)。这是一个理想的温度水平,在这点,熔化的焊锡可流过将要熔湿来形成焊接点的金属表面。它决定于锡膏内特定的合金成分,但也可能受锡球尺寸和其它配方因素的阻碍,可能在数据表中指出一个范围。对Sn63/Pb37,该范围平均为200 ~ 225°C。对特定锡膏给定的最小值成为每个连接点必须获得焊接的最低温度。那个温度通常比焊锡的熔点高出大约15 ~ 20°C。(只要达到焊锡熔点是一个常见的错误假

设。) 回流规格的第二个元素是最脆弱元件(MVC, most vulnerable component)的温度(T2)。正如其名所示,MVC确实 是装配上最低温度“痛苦”忍耐度的元件。从这点看,应该建立一个低过5°C的“缓冲器”,让其变成MVC。它可能是连接器、双排包装(DIP, dual in-line package)的开关、发光二极管(LED, light emitting diode)、或甚至是基板材料或锡膏。MVC是随 应用不同而不同,可能要求元件工程人员在研究中的关心。 在建立回流周期峰值温度范围后,也要决定贯穿装配的最大同意温度变化率(T2-T1)。是否能够保持在范围内,取决于诸如表面几何形状的量与复杂性、装配基板的化学成分、和炉的热传导效率等因素。理想地,峰值温度尽可能靠近(但不低于)T1可 望得到最小的温度变化率。这关心减少液态居留时刻以及整个对 高温漂移的暴露量。 传统地,作回流曲线确实是使液态居留时刻最小和把时刻/温度范围与锡膏制造商所制订的相符合。持续时刻太长可造成连接处过多的金属间的增长,阻碍其长期可靠性以及破坏基板和元件。就加热速率而言,多数实践者运行在每秒4°C或更低,测量如何20秒的时刻间隔。一个良好的做法是,保持相同或比加

回流焊温度曲线测试操作指示

1.0目的 用于指导回流焊温度曲线测试操作指示。 2.0适用范围: 适用于苏州福莱盈电子有限公司 3.0职责: 无 4.0作业内容 4.1设定温度参数制程界限: 4.1.1工程师根据锡膏型号、特殊元件规格、特殊测量位置、FPC制程以及客户 的要求制定一个合理的温度曲线测试范围,包括:升温区、浸泡(保 温)区、回流区、冷却区的具体参数及定义 图一: KOKI S3X48-M500锡膏的参考回流曲线 4.1.2预热区:通常是指由室温升温至150度左右的区域。在此温区,升温速 率不宜过快,一般不超过3度/秒。以防止元器件应升温过快而造成基板 变形或元件微裂等现象。 4.1.3浸泡(保温)区:通常是指由110度~190度左右的区域。在此温区,助 焊剂进一步挥发并帮助基板清楚氧化物,基板及元器件均达热平衡,为高 温回流做准备。此区一般持续时间问60~120秒。

4.1.4回流区:通常是指超过217度以上温度区域。在此温区,焊膏很快熔 化,迅速浸润焊接面,并与基板PAD形成新的合金焊接层,达到元件与 PAD之间的良好焊接。此区持续时间一般设定为:45~90秒。最高温度一 般不超过250度(除有特定要求外)。 4.1.5冷却区:该区为焊点迅速降温,将焊料凝固,使焊料晶格细化,提高焊 接强度。本区降温速率一般设置为-3~-1度/秒左右。 4.2测温板的制作 4.2.1采用与生产料号一致的样品板作为测温板,制作测温板时,原则上应保留 必要的具有代表性的测温元器件,以保证测试测量温度与实际生产温度保 持一致。 4.2.2测温板与生产料号在无法保持一致情况下,经工程师验证认可,可使用与 之同类型的测温板进行测量。 4.2.3测温点应该选择最具有代表性的区域及元件,比如最大及最小吸热量的元 件,零件选取优先级(如Socket->Motor->大型BGA ->小型BGA->QFP或 SOP->标准Chip)除此之外,还应选择介于两者之间的一个测温区。如 图: 4.2.4一般测温点在每板上不得少于3个,有BGA或大型IC至少选取4个,基 于特殊代表型元件为首选原则选取元件。 4.2.5位置分布:采用全板对角线型方式或4角1中心点方式,能涵盖整块板位 置分布. 4.2.6测温线应用耐高温黄胶带或红胶固定在测温板上。 4.3测试炉温曲线

如何设定回流焊温度曲线

如何设定回流焊温度曲线 如何设定回流焊温度曲线 首先我们要了解回流焊的几个关键的地方及温度的分区情况及回流焊的种类. 影响炉温的关键地方是: 1:各温区的温度设定数值 2:各加热马达的温差 3:链条及网带的速度 4:锡膏的成份 5:PCB板的厚度及元件的大小和密度 6:加热区的数量及回流焊的长度 7:加热区的有效长度及泠却的特点等 回流焊的分区情况: 1:预热区(又名:升温区) 2:恒温区(保温区/活性区) 3:回流区 4 :泠却区 那么,如何正确的设定回流焊的温度曲线 下面我们以有铅锡膏来做一个简单的分析(Sn/pb) 一:预热区 预热区通常指由室温升至150度左右的区域,在这个区域,SMA平稳升温,在预热区锡膏的部分溶剂能够及时的发挥。元件特别是集成电路缓慢升温。以适应以后的高温,但是由于SMA表面元件大小不一。其温度有不均匀的现象。在些温区升温的速度应控制在1-3度/S 如果升温太快的话,由于热应力的影响会导致陶瓷电容破裂/PCB变形/IC芯片损坏同时锡膏中的溶剂挥发太快,导致锡珠的产生,回流焊的预热区一般占加热信道长度的1/4—1/3 时间一般为60—120S 二:恒温区 所谓恒温意思就是要相对保持平衡。在恒温区温度通常控制在150-170度的区域,此时锡膏处于融化前夕,锡膏中的挥发进一步被去除,活化剂开始激活,并有效的去除表面的氧化物,SMA表面温度受到热风对流的影响。不同大小/不同元件的温度能够保持平衡。板面的温差也接近最小数值,曲线状态接近水平,它也是评估回流焊工艺的一个窗口。选择能够维持平坦活性温度曲线的炉子将提高SMA的焊接效果。特别是防止立碑缺陷的产生。通常恒温区的在炉子的加热信道占60—120/S的时间,若时间太长也会导致锡膏氧化问题。导致锡珠增多,恒温渠温度过低时此时容易引起锡膏中溶剂得不到充分的挥发,当到回流区时锡膏中的溶剂受到高温容易引起激烈的挥发,其结果会导致飞珠的形成。恒温区的梯度过大。这意味

回流焊的温度曲线 Reflow Profile

迴流焊的溫度曲線Reflow Profile 電子業之所以能夠蓬勃發展,表面黏著技術(SMT, Surface Mount Technology)的發明及精進佔有極大的貢獻。而迴流焊(Reflow)又是表面黏著技術中最重要的技術之一。這裡我們試著來解釋一下迴流焊的一些技術與設定問題。 (↑Soaking type 典型浸潤式迴流焊溫度曲線)(↑ Slumping type 斜升式迴流焊溫度曲線) 迴流焊的溫度曲線共包括預熱、浸潤、回焊和冷卻四個部份,以下為個人的心得整理,如果有誤也請各位先進不吝指教。 預熱區 預熱區通常是指由溫度由常溫升高至150℃左右的區域﹐在這個區域﹐溫度緩升以利錫膏中的部分溶劑及水氣能夠及時揮發﹐電子零件特別是IC零件緩緩升溫﹐為適應後面的高溫。但PCB表面的零件大小不一﹐吸熱裎度也不一,為免有溫度有不均勻的現象﹐在預熱區升溫的速度通常控制在1.5℃~3℃/sec。預熱區均勻加熱的另一目的,是要使溶劑適度的揮發並活化助焊劑,因為大部分助焊劑的活化溫度落在150℃以上。 快速升溫有助快速達到助焊劑軟化的溫度,因此助焊劑可以快速地擴散並覆蓋到最大區域的焊點,它可能也會讓一些活化劑融入實際合金的液體中。可是,升溫如果太快﹐由於熱應力的作用﹐可能會導致陶瓷電容的細微裂紋(micro crack)、PCB所熱不均而產生變形(Warpage)、空洞或IC晶片損壞﹐同時錫膏中的溶劑揮發太快﹐也會導致塌陷產生的危險。 較慢的溫度爬升則允許更多的溶劑揮發或氣體逃逸,它也使助焊劑可以更靠近焊點,減少擴散及崩塌的可能。但是升溫太慢也會導致過度氧化而降低助焊劑的活性。 爐子的預熱區一般占加熱通道長度的1/4—1/3﹐其停留時間計算如下﹕設環境溫度為25℃﹐若升溫斜率按照3℃/sec計算則(150-25)/3即為42sec﹐如升溫斜率

SMT回流焊的温度曲线

電子產業之所以能夠蓬勃發展,表面貼焊技術(SMT, Surface Mount Technology)的發明及精進佔有極大程度的貢獻。而回焊(Reflow) 又是表面貼 焊技術中最重要的技術之一。這裡我們就試著來解釋一下回焊的一些技術與溫度設定的問題。 ▲ Ramp-Soak-Spike(RSS) 典型馬鞍式回流焊溫度曲線 ▲ Ramp-To-Spike(RTS) 斜升式回流焊溫度曲線 電路板組裝的回流焊溫度曲線(reflow profile)共包括了預熱(pre-heat)、吸熱(Soak)、回焊(Reflow)和冷卻(Cooling)等四個大區塊,以下為個人的心得整理,如果有誤也請各位先進不吝指教。 預熱區(Pre-heat zone) 預熱區通常是指由溫度由常溫升高至150°C 左右的區域﹐在這個區域﹐溫度緩升(又稱一次昇溫)以利錫膏中的部分溶劑及水氣能夠及時揮發﹐電子零件(特別是BGA 、IO 連接器零件)緩緩升溫﹐為適應後面的高溫預作準備。但PCB 表面的零件大小不一﹐焊墊/焊盤連接銅箔面積也不同,其吸熱裎度也不一,為了避免零件內外或不同零件間有溫度不均勻的現象發生﹐以致零件變形,所以預熱區升溫的速度通常控制在1.5°C ~3°C/sec 之間。預熱區均勻加熱的另一

目的,是要使錫膏中的溶劑可以適度緩慢的揮發並活化助焊劑,因為大部分助 焊劑的活化溫度大約落在150°C上下。 快速升溫有助快速達到助焊劑軟化的溫度,因此助焊劑可以快速地擴散並覆蓋 到最大區域的焊點,它可以讓一些活化劑融入實際合金的液體中。可是,升溫 如果太快﹐由於熱應力的作用﹐可能會導致陶瓷電容的細微裂紋(micro crack)、PCB受熱不均而產生變形(Warpage)、空洞或IC晶片損壞﹐同時錫膏中的溶劑揮發太快﹐也會導致錫膏塌陷產生的危險。 較慢的溫度爬升則允許更多的溶劑揮發或氣體逃逸,它也使助焊劑可以更靠近 焊點,減少擴散及崩塌的可能。但是升溫太慢也會導致過度氧化而降低助焊劑 的活性。 建議相關閱讀:介紹認識【錫膏(solder paste)】的基本知識 爐子的預熱區一般佔加熱通道長度的1/4~1/3﹐其停留時間計算如下﹕假設環 境溫度為25°C﹐若升溫斜率按照3°C/sec計算則[(150-25)/3]即為42sec﹐如 升溫斜率按照1.5°C/sec計算則[(150-25)/1.5]即為85sec。通常根據組件大小 差異程度調整時間以調控升溫斜率在2°C/sec以下為最佳。 另外還有幾種不良現象都與預熱區的升溫有關係,下面一一說明: 1. 塌陷: 這主要是發生在錫膏融化前的膏狀階段,錫膏的黏度會隨著溫度的上升而下降,這是因為溫度的上升使得材料內的分子因熱而震動得更加劇烈所致;另外溫度 迅速上升會使得溶劑(Solvent)沒有時間適當地揮發,造成黏度更迅速的下降。 正確來說,溫度上升會使溶劑揮發,並增加黏度,但溶劑揮發量與時間及溫度 皆成正比,也就是說給一定的溫升,時間較長者,溶劑揮發的量較多。因此升 溫慢的錫膏黏度會比升溫快的錫膏黏度來的高,錫膏也就必較不容易產生塌陷。 2. 錫珠:

回流焊原理及温度曲线

回流焊原理与温度曲线: 从温度曲线分析回流焊的原理:当PCB进入升温区(干燥区)时,焊锡膏中的溶剂气体蒸发掉,同时焊锡膏中的助焊剂润湿焊盘元器件端头和引脚,焊锡膏软化塌落覆盖了焊盘,将焊盘元器件引脚与氧气隔离;PCB进入保温区时,使PCB和元器件得到充分的预热,以防PCB突然进入焊接区升温过快而损坏PCB和元器件;当PCB进入焊接区时,温度迅速上升使焊锡膏达到熔化状态,液态焊锡对PCB的焊盘元器件端头和引脚润湿扩散漫流或回流混合形成焊锡接点;PCB进入冷却区,使焊点凝固,完成整个回流焊。 温度曲线是保证焊接质量的关键,实际温度曲线和焊锡膏温度曲线的升温斜率和峰值温度应基本一致。160℃前的升温速度控制在1℃/s~2℃/s,如果升温斜率速度太快,一方面使元器件及PCB受热太快,易损坏元器件,易造成PCB变形;另一方面,焊锡膏中的溶剂挥发速度太快,容易溅出金属成分,产生焊锡球。峰值温度一般设定在比焊锡膏熔化温度高20℃~40℃左右(例如Sn63/Pb37焊锡膏的熔点为183℃,峰值温度应设置在205℃~230℃左右),回(再)流时间为10s~60s,峰值温度低或回(再)流时间短,会使焊接不充分,严重时会造成焊锡膏不熔;峰值温度过高或回(再)流时间长,造成金属粉末氧化,影响焊接 质量,甚至损坏元器件和PCB。 根据回流焊温度曲线及回流原理,目前市场上的回流焊机一般为简易四温区回流焊机,还有大型的六八甚至十二温区的回流焊机,而型号为QHL320A的回流焊机采用20段可编程温度控制,相当于20温区回流焊机,这样将回流温度曲线细分,进而控温更精确,更加拟合理想的回流温度曲线,达到完美焊良好的焊接质量从何保障?QHL320A回流焊机除了在控制上完全符合回流焊的温度曲线以外,同时也可以使用户真正了解回流焊接的原理。QHL320A回流焊机具有大尺寸透明视窗的功能,用户可通过透明视窗对整个焊接过程进行全程控制,同时可观察焊锡膏在整个焊接过程中的变化状态,易于发现焊接过程中出现的问题,通过参数调整加以改善,从而保证良好的焊接质量。同时QHL320A回流焊机为小型台式回流焊机,采用全静止焊接,有效的防止了大型多温区回流焊机履带式传送所产生的微小振动,此振动有可能在焊接区焊锡膏熔化的流动状态下对微小间距的IC(如间距≤0.5mm)和元件(如0603.0402和0201等)的焊接产生影响,导致元器件的漂移锡珠锡桥等焊接缺陷,而全静止焊接则完全避免了以上可能出现的缺陷。

回流焊温度曲线的设定依据

回流焊温度曲线的设定依据 回流焊温度曲线的设定依据温度曲线是保证焊接质量的关键,实时温度曲线和焊膏温度曲线的升温斜率和峰值温度应基本一致。160℃前的升温速度控制在1—2℃/s。如果升温斜率速度太快,一方面使元器件及PCB受热太决,易损坏元器件和造成PCB变形。另一方面,焊膏中的熔剂挥发速度太快,容易溅出金属成份,产生锡珠。峰值温度一般设定在比焊膏金属熔点高30-40℃左右(例如63Sn/37Pb焊膏的熔点为183℃,峰值温度应设置在215℃左右),回流时间为30~60s。峰值温度低或回流时间短,会使焊接不充分,严重时会造成焊膏不熔。峰值温度过高或回流时间过长,容易造成金属粉末氧化,影响焊接质量;甚至会损坏元器件和印制板。 设置回流焊温度曲线的依据: 1.根据使用焊膏的温度曲线进行设置。不同金属含量的焊膏有不同的温度曲线,应按照焊膏供应商提供的温度曲线进行具体产品的回流焊温度曲线设置。 2.根据PCB板的材料、厚度、是否多层板、尺寸大小进行设置。 3.根据表面组装板搭载元器件的密度、元器件的大小以及有无BGA、CSP等特殊元器件进行设置。 4.此外,根据设备的具体隋况,例如加热区的长度、加热源的材料、回流焊炉的构造和热传导方式等因素进行设置。 热风(回流)炉和红外(回流)炉有很大区别,红外炉主要是辐射传导,其优点是热效率高,温度陡度大,易控制温度曲线;双面焊时,PCB上、下温度易控制;其缺点是温度不均匀。在同一块PCB上由于器件线的要求。 5.根据温度传感器的实际位置确定各温区的设置温度,若温度传感器位置在发热体内部,设置温度比实际温度高30℃左右。 6.根据排风量的大小进行设置。一般回流焊炉对排风量都有具体要求,但实际排风量因各种原因有时会有所变化,确定一个产品的温度曲线时,因考虑排风量,并定时测量。

回流焊曲线的讲解与说明

回流焊PCB 回流焊PCB溫度曲線講解 PCB溫度曲線講解
佛山市顺德区昊瑞电子科技有限公司
FOSHAN CITY SHUNDE HAORUI ELECTRON SCIENCE AND TECHNOLOGY CO,LTD
https://www.doczj.com/doc/457270671.html,



理解锡 理解锡膏的回流过 膏的回流过程 怎样设定 样设定锡膏回流温 膏回流温度曲线 度曲线 得益于升温 得益于升温-到-回流的回流温 回流的回流温度曲线 度曲线 群焊的温 群焊的温度曲线 度曲线 回流焊接工艺 回流焊接工艺的经典PCB温度曲线 度曲线

理解锡 理解锡膏的回流过 膏的回流过程
当锡膏至于一个加热的环境中,锡膏 回流分为五个阶段 1.首先,用于达到所需粘度和丝印性 能的溶剂开始蒸发,温度上升必需 慢(大约每秒3° C),以限制沸腾和 飞溅,防止形成小锡珠,还有,一 些元件对内部应力比较敏感,如果 元件外部温度上升太快,会造成断 裂。

理解锡 理解锡膏的回流过 膏的回流过程
2.
3.
助焊剂活跃,化学清洗行动开始, 水溶性助焊剂和免洗型助焊剂都会 发生同样的清洗行动,只不过温度 稍微不同。将金属氧化物和某些污 染从即将结合的金属和焊锡颗粒上 清除。好的冶金学上的锡焊点要求 “清洁”的表面。 当温度继续上升,焊锡颗粒首先单 独熔化,并开始液化和表面吸锡的 “灯草”过程。这样在所有可能的表 面上覆盖,并开始形成锡焊点。

理解锡 理解锡膏的回流过 膏的回流过程
4.这个阶段最为重要,当单个的焊锡颗 粒全部熔化后,结合一起形成液态 锡,这时表面张力作用开始形成焊脚 表面,如果元件引脚与PCB焊盘的间 隙超过4mil,则极可能由于表面张力 使引脚和焊盘分开,即造成锡点开路。 5.冷却阶段,如果冷却快,锡点强度会 稍微大一点,但不可以太快而引起元 件内部的温度应力。

回流焊接工艺的经典PCB温度曲线模板

回流焊接工艺的经典PCB 温度曲线模板 1

回流焊接工艺的经典PCB温度曲线 本文介绍对于回流焊接工艺的经典的PCB温度曲线作图方法, 分 析了两种最常见的回流焊接温度曲线类型: 保温型和帐篷型...。 经典印刷电路板(PCB)的温度曲线(profile)作图, 涉及将PCB 装配上的热电偶连接到数据记录曲线仪上, 并把整个装配从回流焊接炉中经过。作温度曲线有两个主要的目的: 1) 为给定的PCB装配确定正确的工艺设定, 2) 检验工艺的连续性, 以保证可重复的结果。经过观察PCB在回流焊接炉中经过的实际温度(温度曲线), 能够检验和/或纠正炉的设定, 以达到最终产品的最佳品质。 经典的PCB温度曲线将保证最终PCB装配的最佳的、持续的质量, 实际上降低PCB的报废率, 提高PCB的生产率和合格率, 而且改进整体的获利能力。 回流工艺 在回流工艺过程中, 在炉子内的加热将装配带到适当的焊接温度, 而不损伤产品。为了检验回流焊接工艺过程, 人们使用一个作 温度曲线的设备来确定工艺设定。温度曲线是每个传感器在经过 2

加热过程时的时间与温度的可视数据集合。经过观察这条曲线, 你 能够视觉上准确地看出多少能量施加在产品上, 能量施加哪里。温度曲线允许操作员作适当的改变, 以优化回流工艺过程。 一个典型的温度曲线包含几个不同的阶段 - 初试的升温(ramp)、保温(soak)、向回流形成峰值温度(spike to reflow)、回流(reflow)和产品的冷却(cooling)。作为一般原则, 所希望的温度坡度是在2~4°C范围内, 以防止由于加热或冷却太快对板和/或元件所造成的损害。 在产品的加热期间, 许多因素可能影响装配的品质。最初的升温是当产品进入炉子时的一个快速的温度上升。目的是要将锡膏带到开始焊锡激化所希望的保温温度。最理想的保温温度是刚好在锡膏材料的熔点之下 - 对于共晶焊锡为183°C, 保温时间在 30~90秒之间。保温区有两个用途: 1) 将板、元件和材料带到一个均匀的温度, 接近锡膏的熔点, 允许较容易地转变到回流区, 2) 激化装配上的助焊剂。在保温温度, 激化的助焊剂开始清除焊盘与引脚的氧化物的过程, 留下焊锡能够附着的清洁表面。向回流形成峰值温度是另一个转变, 在此期间, 装配的温度上升到焊锡熔点之上, 锡 膏变成液态。 3

如何设置回流焊温度曲线

一、回流温度曲线在生产中地位: 回流焊接是在SMT工业组装基板上形成焊接点的主要方法,在SMT工艺中回流焊接是核心工艺。因为表面组装PCB的设计,焊膏的印刷和元器件的贴装等产生的缺陷,最终都将集中表现在焊接中,而表面组装生产中所有工艺控制的目的都是为了获得良好的焊接质量,如果没有合理可行的回流焊接工艺,前面任何工艺控制都将失去意义。而回流焊接工艺的表现形式主要为回流温度曲线,它是指PCB的表面组装器件上测试点处温度随时间变化的曲线。因而回流温度曲线是决定焊接缺陷的重要因素。因回流曲线不适当而影响的缺陷形式主要有:部品爆裂/破裂、翘件、锡粒、桥接、虚焊以及生半田、PCB脱层起泡等。因此适当设计回流温度曲线可得到高的良品率及高的可靠度,对回流温度曲线的合理控制,在生产制程中有着举足轻重的作用。 二、回流温度曲线的一般技术要求及主要形式: 1.回流温度曲线各环节的一般技术要求:一般而言,回流温度曲线可分为三个阶段:预热阶段、回流阶段、冷却阶段。①预热阶段:预热是指为了使锡水活性化为目的和为了避免浸锡时进行急剧高温加热引起部品不具合为目的所进行的加热行为。?预热温度:依使用锡膏的种类及厂商推荐的条件设定。一般设定在80~160℃范围内使其慢慢升温(最佳曲线);而对于传统曲线恒温区在140~160℃间,注意温度高则氧化速度会加快很多(在高温区会线性增大,在150℃左右的预热温度下,氧化速度是常温下的数倍,铜板温度与氧化速度的关系见附图)预热温度太低则助焊剂活性化不充分。?预热时间视PCB板上热容量最大的部品、PCB面积、PCB厚度以及所用锡膏性能而定。一般在80~160℃预热段内时间为60~120sec,由此有效除去焊膏中易挥发的溶剂,减少对元件的热冲击,同时使助焊剂充分活化,并且使温度差变得较小。?预热段温度上升率:就加热阶段而言,温度范围在室温与溶点温度之间慢的上升率可望减少大部分的缺陷。对最佳曲线而言推荐以0.5~1℃/sec的慢上升率,对传统曲线而言要求

回流焊的温度曲线 Reflow Profile

回流焊的溫度曲線 Reflow Profile Posted by 工作熊 引用: https://www.doczj.com/doc/457270671.html,/2010/07/reflow-profile/ 電子產業之所以能夠蓬勃發展,表面貼焊技術(SMT, Surface Mount Technology)的發明及精進佔有極大程度的貢獻。而回焊(Reflow)又是表面貼焊技術中最重要的技術之一。這裡我們就試著來解釋一下回焊的一些技術與溫度設定的問題。 (▲ Soaking type 典型浸潤式回流焊溫度 曲線) (▲ Slumping type 斜升式回流焊溫度曲線) 回流焊的溫度曲線共包括了預熱、吸熱、回焊和冷卻等四個區塊,以下為個人的心得整理,如果有誤也請各位先進不吝指教。 預熱區(Pre-heat zone) 預熱區通常是指由溫度由常溫升高至150°C 左右的區域﹐在這個區域﹐溫度緩升以利錫膏中的部分溶劑及水氣能夠及時揮發﹐電子零件(特別是IC 零件)緩緩升溫﹐為適應後面的高溫預作準備。但PCB 表面的零件大小不一﹐吸熱裎度

也不一,為了避免零件內外或不同零件間有溫度不均勻的現象﹐所以預熱區升溫的速度通常控制在1.5°C~3°C/sec之間。預熱區均勻加熱的另一目的,是要使錫膏中的溶劑可以適度的揮發並活化助焊劑,因為大部分助焊劑的活化溫度大約落在150°C上下。 快速升溫有助快速達到助焊劑軟化的溫度,因此助焊劑可以快速地擴散並覆蓋到最大區域的焊點,它可能也會讓一些活化劑融入實際合金的液體中。可是,升溫如果太快﹐由於熱應力的作用﹐可能會導致陶瓷電容的細微裂紋(micro crack)、PCB受熱不均而產生變形(Warpage)、空洞或IC晶片損壞﹐同時錫膏中的溶劑揮發太快﹐也會導致塌陷產生的危險。 較慢的溫度爬升則允許更多的溶劑揮發或氣體逃逸,它也使助焊劑可以更靠近焊點,減少擴散及崩塌的可能。但是升溫太慢也會導致過度氧化而降低助焊劑的活性。 爐子的預熱區一般佔加熱通道長度的1/4—1/3﹐其停留時間計算如下﹕假設環境溫度為25°C﹐若升溫斜率按照3°C/sec計算則(150-25)/3即為42sec﹐如升溫斜率按照1.5°C/sec計算則(150-25)/1.5即為85sec。通常根據組件大小差異程度調整時間以調控升溫斜率在2°C/sec以下為最佳。 另外還有幾種不良現象都與預熱區的升溫有關係,下面一一說明: 1. 塌陷: 這主要是發生在錫膏融化前的膏狀階段,錫膏的黏度會隨著溫度的上升而下降,這是因為溫度的上升使得材料內的分子因熱而震動得更加劇烈所致;另外溫度迅速上升會使得溶劑(Solvent)沒有時間適當地揮發,造成黏度更迅速的下降。正確

回流焊温度曲线详解

[SMT] 回流焊温度曲线Reflow Profile 表面黏著技術(SMT, Surface Mount Technology)的回流焊溫度曲線包括預熱、浸潤、回焊和冷 卻四個部份,以下為個人的心得整理,如果有誤或偏偏也請各位先進不吝指教。 預熱區 預熱區通常是指由溫度由常溫升高至150℃左右的區域﹐在這個區域﹐溫度緩升以利錫膏中的 部分溶劑及水氣能夠及時揮發﹐電子零件特別是IC零件緩緩升溫﹐為適應後面的高溫。但PCB 表面的零件大小不一﹐吸熱裎度也不一,為免有溫度有不均勻的現象﹐在預熱區升溫的速度通常控制在1.5℃--3℃/sec。預熱區均勻加熱的另一目的,是要使溶劑適度的揮發並活化助焊劑,因為大部分助焊劑的活化溫度落在150℃以上。 快速升溫有助快速達到助焊劑軟化的溫度,因此助焊劑可以快速地擴散並覆蓋到最大區域的焊點,它可能也會讓一些活化劑融入實際合金的液體中。可是,升溫如果太快﹐由於熱應力的作用﹐可能會導致陶瓷電容的細微裂紋(micro crack)、PCB所熱不均而產生變形(Warpage)、空洞或IC 晶片損壞﹐同時錫膏中的溶劑揮發太快﹐也會導致塌陷產生的危險。 較慢的溫度爬升則允許更多的溶劑揮發或氣體逃逸,它也使助焊劑可以更靠近焊點,減少擴散及崩塌的可能。但是升溫太慢也會導致過度氧化而降低助焊劑的活性。 爐子的預熱區一般占加熱通道長度的1/4—1/3﹐其停留時間計算如下﹕設環境溫度為25℃﹐若 升溫斜率按照3℃/sec計算則(150-25)/3即為42sec﹐如升溫斜率按照1.5℃/sec計算則(150-25)/1.5即為85sec。通常根據組件大小差異程度調整時間以調控升溫斜率在2℃/sec以下為最佳。 另外還有幾種不良現象都與預熱區的升溫有關係,下面一一說明: 1. 塌陷: 這主要是發生在錫膏融化前的膏狀階段,錫膏的黏度會隨著溫度的上升而下降,這是因為溫度的

回流焊温度曲线根据什么得来的

回流焊温度曲线根据什么得来的 当锡膏至于一个加热的环境中,锡膏回流分为五个阶段 1.首先,用于达到所需粘度和丝印性能的溶剂开始蒸发,温度上升必需慢(大约每秒3° C),以限制沸腾和飞溅,防止形成小锡珠,还有,一些元件对内部应力比较敏感,如果元件外部温度上升太快,会造成断裂。 2.助焊剂活跃,化学清洗行动开始,水溶性助焊剂和免洗型助焊剂都会发生同样的清洗行动,只不过温度稍微不同。将金属氧化物和某些污染从即将结合的金属和焊锡颗粒上清除。好的冶金学上的锡焊点要求“清洁”的表面。 3.当温度继续上升,焊锡颗粒首先单独熔化,并开始液化和表面吸锡的“灯草”过程。这样在所有可能的表面上覆盖,并开始形成锡焊点。 4.这个阶段最为重要,当单个的焊锡颗粒全部熔化后,结合一起形成液态锡,这时表面张力作用开始形成焊脚表面,如果元件引脚与PCB焊盘的间隙超过4mil,则极可能由于表面张力使引脚和焊盘分开,即造成锡点开路。 5.冷却阶段,如果冷却快,锡点强度会稍微大一点,但不可以太快而引起元件内部的温度应力。回流焊温度曲线如何设定(篇一) 回流焊接温度曲线回流焊接温度曲线的设计是S MT工艺工程师最重要的工作之一,但据笔者了解,许多制造商的温度曲线都是根据焊膏供应商提供的参数设计的,这也是目前业界较为普遍的做法。这一做法的好处在于可以充分利用焊膏供应商的经验,不足之处是对不同印制电路板组件(PCBA)之间热特性的差异考虑不充分,而这恰恰是影响焊接质量最主要的 因素之一。在本文中,笔者将结合一些案例对温度曲线的设计做一些定性分析,供读者参考。 回流焊的加热过程 在SMT的发展过程中,回流焊设备先后经过了气相回流焊、热板回流焊、红外回流焊和热风回流焊等几个发展阶段。气相回流焊、热板回流焊基本没有被广泛使用,红外回流焊也仅仅使用了几年的时间,二十世纪八十年代后期基本就以热风回流焊和热风+红外机型为主了。 红外回流焊主要依靠红外线进行加热,由于红外线的颜色效应,使得PCBA上不同部位存在较大的温度差。为了减少焊接过程中PCBA的温度不均匀性,多使用“Ramp-Soak-Spike”型的温度曲线,如图1所示,现在多把它称为传统型温度曲线。而随着全热风回流焊设备的使用,由于加热效率的提升和温度差的减小,逐渐改为“Ramp-Spike”型的温度曲线,如图2所示,这种形状的温度曲线也被称为“帐篷”型温度曲线。 全热风回流焊设备,尽管品牌很多,结构各异,但热风的循环方式基本一样,都是从风口板吹出,再从炉子前后回去,如图 3所示。 PCBA的受热过程一般为先表面后内部。具体来讲,就是回流焊设备将热空气吹到PCBA的表面,使其表面被加热,再通过传导的方式把热量传递到PCBA内部,如图4所示。显而易见,由于PCBA元器件布局的不均以及元器件封装大小的不同,在加热的起始过程,PCB和元器件各部位的温度存在着差异,而这一差异会引起PCB和元器件封装体的热变形以及各焊点上焊膏开始熔化时间的不一致。热变形会导致热应力的产生,焊膏熔化时间的不同会导致焊接时间的变长;这两点是PCBA 回流焊接与单焊点焊接(如可焊性测试)、波峰焊接的最大不同,也是回流焊接必须根据PCBA热特性设置温度曲线的原因 所在。

相关主题
文本预览
相关文档 最新文档