当前位置:文档之家› 换热站电气设计探析

换热站电气设计探析

换热站电气设计探析
换热站电气设计探析

换热站电气设计探析

要:从负荷计算、负荷分级、电位联结、接地和补水泵控制方式等方面进行分析,对换热站电气设计的基本要求和依据进行分析,这样就可以最大限度的保证控制系统、仪表和水泵的顺利运行。本文就是对换热站电力设计进行探析,对换热站电气的使用是极为重要的,促进了换热站电气设计的不断发展。

关键词:换热站;等电位联结;负荷计算;变频器

换热点电气的设计是非常重要的,要根据科学的理念进行换热站电气设计,满足电气符合的要求,接地、负荷计算和补水泵控制系统是非常关键的,一定要引起我们的重视。设计是使用的基础,在换热站电气设计的过程中,一定要结合实际,对换电站的电气设计进行科学的分析,促进换热站电气事业的不断进步。

1 换热站负荷的升级

换热站的负荷升级必须要按照相关的规定进行设计,在区域性的住房中,生活给水泵房利用的是换热站和采暖锅炉房的用电负荷,按照相应的工程规模和重要性进行不断的分析,在对电力负荷升级的过程中,一定要确定负荷的升级标准,这一级别是不能够低于二级的,在此基础上,供电系统设计有两种方式,一种是地区供电条件比较困难的时候,或者是负荷比较小的时候,可以使用6kV的架空线路进行供电,在供电的过程中,还要取消两根电缆中每一根的缆都要承受二级负荷的方案,另一种方法就是使用两个回路进行供电,在供电的过程中,两回路的电路是不要求进行独立电源的安装的,一定要将两回线路引自同一个变压

器中的不同的母线段,这样就可以满足基本的要求,在整个过程中,每一条回路都要保证换热站使用全部的负荷,在使用负荷的过程中,一定要保证安全性,如果有一条线路出现了故障就会出现隐患,一定要进行稳定性的分析。如果是甲方不能够提供回线路,而且换热站的容量比250kW还要小的时候,用户就要提供一个专用的架空线路,这一线路在使用的过程中,架空路线必须要是380V的,满足基本的供电需要。

2 负荷的计算

2.1 容量的确定

在进行负荷计算的过程中,主要的用电设备就是电机,电机是一种连续的工作制设备,设备的制定功率与铭牌的额定功率是相同的,通过具体的分析可以知道,换热站的电气设备的负荷就是整个电机的额定功率之和,在电机使用的过程中,一定要结合具体的实际进行整个建设性工作。但是需要注意的是设备的容量与补水泵和备用的循环泵是没有任何的关系的,也就是说,电机的额定功率中是不包括这两个设备的功率的。换热站的照明装置主要分为两种,一种是荧光灯,一种是金属的乳化物,这两种均是电气设备中的放电设备,而且功率是镇流器和灯管的额定功率的损耗吗,在进行灯管额定功率计算的过程中,损耗是按照总功率的10%进行计算的,而且在计算的过程中,一定要保证准确性和科学性,这样才能够保证设备的安全和稳定运行。

2.2 电流的计算

在设计的过程中,一般是按照系数法对设备的电流进行计算,根据具体的补水泵的台数和内循环泵的台数进行系数的确定,如果是一套系

统,使用的水泵数量是2台,这时使用的系数就是I,如果使用的是两套系统,水泵的台数是4台,这时使用的系数就是0.9,如果是一姑娘的三套或者是三套以上的系统,水泵的台数是6台以上,这时使用的系数就是0.85,根据换热站电力设备的具体使用情况进行分析,这样就可以计算出换热站的电流,而且在使用的过程中也是极为有利的,一定要具体的进行分析。

2.3 尖峰电流

如果是单台的电动机,那么尖峰电流的计算公式就是Ijf=KIr,额定电流和电动机启动的电流倍数的乘积就是尖峰电流。如果是笼形的电动机,那么启动的电流会比额定电流要高,在这样的情况下,一定要结合具体的情况进行分析,对于单台的功率比较大的一些电动机,如果直接的进行启动,就会对电网有着很大的冲击,在使用的过程中,一定要注意。否则就会出现一些安全事故,如果电网出现了问题,一定要及时的进行维修,否则就会给很多的流程造成严重的影响,一定要引起我们的注意。如果想要减少启动的电流,就要在设计的时候,将所有的补水泵和循环泵在启动形式上都要进行改变,使用变频启动的形式。

3 接地与等电位联结

3.1 接地

随着工业自动化近年来飞速发展,换热站设计开始逐步向无人值守和自动调控方向发展。由此导致换热站内的电气、自控设备越来越多,其中包括以PLC为核心的参数采集设备、自动控制柜;基于移动网络的无线传播模块;变频控制器及各种远传检测设备。为保证换热站内各

种电气、电子设备能够安全可靠的运行,换热站综合接地措施就显得十分重要。对于新建换热站,宜利用建筑物的钢筋混凝土基础做自然接地极,各钢筋混凝土体之间必须连接成电气通路,并保证其电气连续性符合要求。

需特别说明:之前普遍作为人工接地材料的镀锌圆钢和镀锌扁钢,在锌和钢铁构成的腐蚀原电池中,通过牺牲阳极的镀锌表层来保护钢制接地极。但是,在土壤中,锌是一种非常易腐蚀的金属,因此镀锌钢接地极在土壤中电化学腐蚀非常严重。

3.2 等电位联结

换热站内进出的金属管道和各种可导电体较多,并且环境潮湿,为了降低换热站内不同金属物之间的电位差和间接接触电压,避免来自换热站外经金属管道和电气线路引入的故障电压的危害,减少保护电气动作不可靠带来的危险,应采用等电位联结。通过换热站内的总等电位联结箱,将进出换热站的金属管道(一二次网供回水管、自来水管、排水管、燃气管道及进线保护管等)、进线配电柜的PE(PEN)母排、换热站接地装置和站内所有不带电的设备金属外壳通过等电位联结线互相连通。

4 变频器安装和使用中需注意的问题

4.1 变频器可靠接地是提高其运行稳定性、抑制噪声的重要措施。变频器不应和动力设备共用接地点,接地电阻越小越好,接地导线的长度不应超过5m且截面积不应小于6mm2铜线。

4.2 变频器内部存在大量的电力电子器件,运行过程中半导体开关

器件的动作,会产生高频谐波和电磁干扰,这些高频电磁波会对其附近的仪表、仪器有一定的干扰,而且高次谐波会通过供电回路进入整个供电网络,从而影响其他仪表的正常运行。所以在变频器的出线端需加装滤波器,防止高次谐波进入供电网络,并且在安装变频器时尽量使其远离自控设备。同时,与变频器有关的模拟信号线最好选用屏蔽双绞线。

5 结论

换热站作为热源与用户之间的纽带,在整个供热系统中起着承上启下的重要作用,而电气系统的可靠性和合理性在换热站运行中起着至关重要的作用。设计时应严格遵守现行规范中的条文,以保证换热站内水泵、仪表和控制系统的正常运行,使千家万户在寒冷的冬天,能够在室内感受到充足的温暖,也使换热站电气设计的不断完善。

换热器计算步骤

第2章工艺计算 2.1设计原始数据 表2—1 2.2管壳式换热器传热设计基本步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量。 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍 l (9)选取管长 (10)计算管数 N T (11)校核管流速,确定管程数 (12)画出排管图,确定壳径 D和壳程挡板形式及数量等 i (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。

2.3 确定物性数据 2.3.1定性温度 由《饱和水蒸气表》可知,蒸汽和水在p=7.22MPa、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变。 对于壳程不存在相变,其定性温度可取流体进出口温度的平均值。其壳程混合气体的平均温度为: t=420295 357.5 2 + =℃(2-1) 管程流体的定性温度: T=310330 320 2 + =℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。 2.3.2 物性参数 管程水在320℃下的有关物性数据如下:【参考物性数据无机表1.10.1】 表2—2 壳程蒸气在357.5下的物性数据[1]:【锅炉手册饱和水蒸气表】 表2—3

列管式换热器课程设计

——大学《化工原理》列管式换热器 课程设计说明书 学院: 班级: 学号: 姓名: 指导教师: 时间:年月日

目录 一、化工原理课程设计任务书............................................................................ . (2) 二、确定设计方案............................................................................ (3) 1.选择换热器的类型 2.管程安排 三、确定物性数据............................................................................ (4) 四、估算传热面积............................................................................ (5) 1.热流量 2.平均传热温差 3.传热面积 4.冷却水用量 五、工艺结构尺寸............................................................................ (6) 1.管径和管内流速 2.管程数和传热管数 3.传热温差校平均正及壳程数 4.传热管排列和分程方法 5.壳体内径 6.折流挡板 (7) 7.其他附件 8.接管 六、换热器核算............................................................................ . (8) 1.热流量核算 2.壁温计算 (10) 3.换热器内流体的流动阻力 七、结构设计............................................................................ . (13) 1.浮头管板及钩圈法兰结构设计 2.管箱法兰和管箱侧壳体法兰设计 3.管箱结构设计 4.固定端管板结构设计 5.外头盖法兰、外头盖侧法兰设计 (14) 6.外头盖结构设计 7.垫片选择

供暖系统自动化控制方案

XXXXXX有限公司供热管网自动控制系统方案 同方股份有限公司 2010年6月

目录 1 大滞后控制对象自动化系统要点分析................................. 2分时、分温、分区供暖自动控制模式................................. 3供暖节能自动控制系统的构成....................................... 供热自动控制系统总体架构............................................ 节能自控系统的组成.................................................. 监控中心的主要功能.................................................. 设备配置....................................................... 监控管理软件................................................... 监控管理主机................................................... 系统组态功能................................................... 人机界面的特点................................................. 各换热站的设备功能.................................................. 数据采集....................................................... DDC智能控制器.................................................. 触摸式操作显示屏............................................... GPRS无线数据传输器............................................. 供暖节能自动控制系统的设备配置...................................... 4节能自动控制系统拟选设备简介..................................... DDC智能控制器....................................................... 一体化彩色液晶触摸屏(工控机)...................................... GPRS无线数据传输器.................................................. 5热网监控系统解决的问题和产生的效益...............................

无人值守换热站设计方案

太原邦意无人值守换热站设计方案 一、 引言 集中供热因具有节约能源和改善城市环境等方面的积极作用,而日益成为城市公用事业的一个重要组成部分,是国家大力推广的节能和环保措施。随着我国的城市集中供热规模也不断扩大,科学的管理热力管网具有非常重大的经济和社会效益。 根据用户的具体要求,对于该供热自控系统,既要根据室外温度的变化调节二次侧供水温度,保证终端热用户的室内变化不超出某一范围(18±2℃,最低不低于16℃),这样既保证终端热用户有一个舒适的生活、工作环境,也可以最大限度地节约能源,同时也要实现在换热站的无人值守的情况下中控室可以远程调度每个热力站的参数,保证整个热网的热力平衡,供热系统可以安全可靠地运行。并初步实现热网热量的计量。 二、 系统组成 本系统由换热站的自动控制系统、各个换热站与监控中心之间的通讯系统、监控中心管理系统三个部分构成。(见系统构成示意图) 换热站PLC 控制系统可独立完成本地控制。各个换热站利用通讯系统将现场监测数据、运行状态数据传给监控中心管理系统,同时接受监控管理软件进行的运行参数调整。各个换热站与监控中心采 用GPRS 通讯方式。 监控中心管理系统安装在中央调度室的工控机上,通过GPRS 网络和下位的换热站通讯模块相连,完成换热站运行 与管理系统数据之间的数据交换,既可以监视各换热站的运行情况,也可以调整 工程师站 操作员站其它站点 天线 通讯模块控制系统 输入检测 输出控制 温度输入压 力输入泵状态输入 电动调节阀调节控制 报警输出 补水系统调节控制 循环系统调节控制 其它控制 水箱水位输入1#换热站 热量计 进口温度输入一次流量输入 水泵电参数输入 电动调节阀输入 出口温度输入除污器差压输入 除污器控制 除污器控制 除污器差压输入 出口温度输入电动调节阀输入 水泵电参数输入 一次流量输入 进口温度输入热量计 1#换热站 水箱水位输入其它控制 循环系统调节控制 补水系统调节控制 报警输出 电动调节阀调节控制 泵状态输入 压 力输入温度输入输出控制 输入检测 控制系统 通讯模块天线 系统构成示意图

换热站设计计算

换热站设计计算 1. 热负荷计算(1.2系数) 商业: 2645kw, 住宅: 2736kw(分为高中低三区,低区(3~12层)900kw,中区(13~22层)900kw,高区(23~32层)936kw。 2. 板式换热器选型计算(K=5000w/m2.k,一次热源温度130/70℃,二次热水温度55/45℃,结垢系数取0.75) 逆流:Δt1=130-55=75℃,Δt2=70-45=25℃ 商业:2645=5000×10^-3×A×(75-25)/In(75/25)×0.75 换热器面积:A=15.5m2/选用2台,每台满足总量70%,每台15.5× 70=10.85m2 住宅:936=5000×10^-3×A×(75-25)/In(75/25)×0.75 换热器面积:A=5.49m2,各区选一台。 选型:商业BR0.2-20;住宅BR0.2-10。N+ 3.循环水泵选型计算 商业:选用三台泵,两用一备每台G=0.86×2645×0.5/10=106.0m3/h×1.15=121.9m3/h 住宅:各选用两台泵,一用一备 每台G=0.86×936/10=80.5m3/h×1.15=92.6m3/h 由于换热站到最远的供水点约为500m,沿程阻力按100pa/m,局部阻力按沿程阻力的0.3计算,换热器阻力取60Kpa,过滤器阻力取50Kpa,最不利户内阻力取30Kpa,富裕考虑50kpa; 水泵扬程H=0.1×(60+50+0.500×100×(1+0.3)+30+50)=25.5m 取1.1~1.2的系数,取30m扬程。 选型:商业FLGR80-200C;住宅FLGR80-160A。 4.补给水泵(变频)选型计算,采暖系统水容量按30L/kW。每台换热器选用两台水泵,一用一备 商业:水容量2645×30/1000=79.35m3 补给水量G=79.35×5%=3.97m3/h ×1.15=4.57m3/h 扬程,按最高建筑绝对标高按16.2m-水箱绝对标高=16.2+8.55=24.75m 1.系统定压最低压力即补水泵启动压力:P1=24.75+0.5+1=26.25m=26 2.5kPa 2.压罐最低和最高压力确定: 1).安全阀开启压力:P4=600kPa. 2).膨胀水量开始流回补水箱时电磁阀的开启压力:P3=0.9P4=0.9×600=540kPa。 3).补水泵停泵压力即电磁阀关闭压力:P2=0.9P3=0.9×540=486 kPa。 4).压力比:αt=(P1+100)/(P2+100)=(262.5+100)/(486+100)=0.62 本帖隐藏的内容 考虑到补水泵的停泵压力P2,确定补水泵扬程为:(P1+P2)/2=(262.5+486)/2=375kPa 选用一台2.5m3/h,扬程为375kPa(扬程变化范围262.5~486kPa)的水泵。 平时使用1台,初期上水或事故补水时采用2台同时运行。 采用变速泵时,Vt≥2.5×1/3×3/60=0.042m3=42L系统最大膨胀水量:

课程设计报告,列管式换热器设计

设计(论文)题目: 列管式换热器的设计 目录 1 前言 (3) 2 设计任务及操作条件 (3) 3 列管式换热器的工艺设计 (3) 3.1换热器设计方案的确定 (3) 3.2 物性数据的确定 (4) 3.3 平均温差的计算 (4) 3.4 传热总系数K的确定 (4) 3.5 传热面积A的确定 (6) 3.6 主要工艺尺寸的确定 (6) 3.6.1 管子的选用 (6) 3.6.2 管子总数n和管程数Np的确定 (6) 3.6.3 校核平均温度差 t m及壳程数Ns (7) 3.6.4 传热管排列和分程方法 (7) 3.6.5 壳体径 (7) 3.6.6 折流板 (7)

3.7 核算换热器传热能力及流体阻力 (7) 3.7.1 热量核算 (7) 3.7.2 换热器压降校核 (9) 4 列管式换热器机械设计 (10) 4.1 壳体壁厚的计算 (10) 4.2 换热器封头选择 (10) 4.3 其他部件 (11) 5 课程设计评价 (11) 5.1 可靠性评价 (11) 5.2 个人感想 (11) 6 参考文献 (11) 附表换热器主要结构尺寸和计算结果 (12) 1 前言 换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。 列管式换热器工业上使用最广泛的一种换热设备。其优点是单位体积的传热面积、处理能力和操作弹性大,适应能力强,尤其在高温、高压和大型装置中采用更为普遍。列管式换热器主要有以下几个类型:固定管板式换热器、浮头式换热器、U形管式换热器等。 设计一个比较完善的列管式换热器,除了能满足传热方面的要求外,还应该满足传热效率高、体积小、重量轻、消耗材料少、制造成本低、清洗维护方便和操作安全等要求。 列管式换热器的设计,首先应根据化工生产工艺条件的要求,通过化工工艺计算,确定换热器的传热面积,同时选择管径、管长,确定管数、管程数和壳程数,

毕业设计采暖计算书

目录 前言 (2) 摘要 (3) 第一章:工程概况 (4) 第二章:设计参数 (4) 第三章:供暖设计流程 (6) 第四章:负荷计算 (6) 第五章:采暖系统方案设计及说明 (10) 第六章:散热器选型 (11) 第七章:系统水力计算 (15) 第八章:设备选型 (27) 第九章:管道保温 (29) 第十章:英文翻译 (31) 第十一章:设计总结 (40) 第十二章:致谢 (40) 第十三章:主要参考文献 (41)

前言 从环境保护、能源的有效利用看.人口密集的城市发展区域集中供热是方向。城市集中供热是现代化城市建设的一个组成部分,它既是城市能源供应系统的一部分,又是城市公用事业的一项重要设施。 作为建筑环境与设备工程专业的工程人员,应该在建筑环境学、热质交换原理与设备、流体输配管网、施工组织与管理、工程热力学等等主要专业基础课上,在深入联系主体专业课的理论知识,系统的阐述采暖、通风与空调技术的应用过程。 作为建筑环境与设备专业的应届毕业生,在学习基本理论知识后,能具有一般建筑的采暖、通风、空调系统的设计和管理的初步能力,能对建筑物热、湿环境进行调节与控制;对建筑物的污染物进行控制 本次商业大厅采暖设计的计算说明书,充分体现了把专业理论知识应用到设计中,实现对某一房间或空间内空气的热力温度的控制,使人们在一个舒适的环境中生活。

中文摘要 摘要: 针对建筑能耗逐年增加、能源状况日益紧张的现状,就热水采暖系统方面的节能问题作了初步探讨.认为在热水采暖方面节约能源尚有很大潜力。随着我国国民经济和人民生活水平的持续快速发展,能源问题与环境问题一样,已经成为影响中国经济和谐发展的关键因素。我国加入《京都议定书》条约,中央政府对于节能省地住宅的高度重视,以及中国第一部《可再生能源法》的提前出台,等等信息表明我国建筑及其相关的能源问题已经成为全局问题。 关键词: 采暖系统;节能;热网 Key words: heating system ;energy saving;heating network Abstract: According to an increased energy consumption year by year and shirt supply situation in building industry,problems on energy saving in water heating system are preliminarily discussed.It is believed there still exists a great potentiality in energy saving when water heating system is used.Continues along with our country national economy and the lives of the people level fast to develop, the energy question and the environment question are same, already became affects the China economic harmony development the key aspect. Our country joins "the Kyoto Protocol" the treaty, the central authorities highly takes regarding the energy conservation province housing, as well as Chinese first "Renewable Energy Law" appears ahead of time, and so on the information indicated our country residence construct and its the correlation energy question already became the overall situation question.

课程设计—列管式换热器

课程设计设计题目:列管式换热器 专业班级:应化1301班 姓名:王伟 学号: U201310289 指导老师:王华军 时间: 2016年8月

目录 1.课程设计任务书 (5) 1.1 设计题目 (5) 1.2 设计任务及操作条件 (5) 1.3 技术参数 (5) 2.设计方案简介 (5) 3.课程设计说明书 (6) 3.1确定设计方案 (6) 3.1.1确定自来水进出口温度 (6) 3.1.2确定换热器类型 (6) 3.1.3流程安排 (7) 3.2确定物性数据 (7) 3.3计算传热系数 (8) 3.3.1热流量 (8) 3.3.2 平均传热温度差 (8) 3.3.3 传热面积 (8) 3.3.4 冷却水用量 (8) 4.工艺结构尺寸 (9) 4.1 管径和管内流速 (9) 4.2 管程数和传热管数 (9)

4.3 传热管排列和分程方法 (9) 4.4 壳体内径 (10) 4.5 折流板 (10) 4.6 接管 (11) 4.6.1 壳程流体进出管时接管 (11) 4.6.2 管程流体进出管时接管 (11) 4.7 壁厚的确定和封头 (12) 4.7.1 壁厚 (12) 4.7.2 椭圆形封头 (12) 4.8 管板 (12) 4.8.1 管板的结构尺寸 (13) 4.8.2 管板尺寸 (13) 5.换热器核算 (13) 5.1热流量衡算 (13) 5.1.1壳程表面传热系数 (13) 5.1.2 管程对流传热系数 (14) 5.1.3 传热系数K (15) 5.1.4 传热面积裕度 (16) 5.2 壁温衡算 (16) 5.3 流动阻力衡算 (17) 5.3.1 管程流动阻力衡算 (17) 5.3.2 壳程流动阻力衡算 (17)

换热器结构设计及强度计算说明书

摘要 本次设计的题目为汽提塔冷凝器。汽提塔冷凝器是换热器的一种应用,这里我设计成浮头式换热器。浮头式换热器是管壳式换热器系列中的一种,它的特点是两端管板只有一端与外壳固定死,另一端可相对壳体滑移,称为浮头。浮头式换热器由于管束的膨胀不受壳体的约束,因此不会因管束之间的差胀而产生温差热应力,另外浮头式换热器的优点还在于拆卸方便,易清洗。在化工工业中应用非常广泛。本文对浮头式换热器进行了整体的设计,按照设计要求,在结构的选取上,采用了1-2型,即壳侧一程,管侧两程。首先,通过换热计算确定换热面积与管子的根数初步选定结构。然后按照设计的要求以及一系列国际标准进行结构设计,之后对各部分进行校核。 本次毕业设计任务是流量为3500kg/h,浮头式换热器的机械设计,工作压力管程为0.43MPa、壳程为0.042MPa,工作温度管程为61℃、壳程为80℃。 通过本次毕业设计,我熟悉了浮头式换热器的工艺流程,掌握了浮头式换热器的结构及计算方法,了解了浮头式化热器的制造要求及安装过程。但是,限于经验不足和水平有限,一定存在缺点甚至错误之处,敬请老师批评指正。 关键词:换热器;浮头式;管程;壳程

Abstract The topic of my study is the design of . is one of applications heat exchanger.In here, my design is the floating head heat exchanger. The floating head heat exchanger is a special type of tube and shell heat exchanger. It is special for its floating head. One of its tube sheet is fixed,while another can float in the shell,so called floating head. As the tubes can expand without the restriction of the shell,it can avoid thermal stress. Another advantage is that it can be dismantled and clean easily . It is widely used in chemical industry. In this study an overall design of the floating head heat exchanger is carried out .According to the demand the type 1-2 is chosen to be the basic type,which has one segment in shell and two segment in tubes. First,heat transfer is calculated to determine the heat exchange surface area and the number of tubes that needed. Then,according to the request and standards,structural of system is well designed. After that,the finite element analysis of the shell is completed. The graduation design task is 3500kg/h flow of the floating head heat exchanger, the mechanical design, working pressure tube 0.4 3MP, shell, work process of 0.042MP for 61 ℃, the temperature tube for 80 ℃shell cheng. Through the graduation design, I am familiar with the floating head heat exchanger process, mastered the structure of floating head heat exchanger and calculation method of floating head, learned the heat exchanger is manufacturing requirements and installation process. But, due to lack of experience and limited ability, certain shortcomings and even mistakes, please the teacher criticism and corrections. KEY WORDS:HEAT EXCHANGER;FLOATING HEAD;TUBE-SIDE;SHELL-SIDE

换热站自动节能控制系统

换热站自动节能控制系统 摘要:文章介绍换热站温度自动控制系统的构成和基本原理 关键词:换热站S7-300PLC 电动调节阀PID控制 包钢热电厂炼钢换热站采用人工操作、控制及运行管理,生产过程中大致根据生产生活需要,采用人工手动调节蒸汽阀门、回水阀门,以蒸汽加热凉水的方式来调节供热管道的温度,实现需要的供暖温度,但存在的问题如下: 首先入冬及初春季节早午晚温差较大,最高可达20℃,人工难以实时调节,此时存在能源浪费或者不能满足用户的要求的情况较多。 其次由于阀门的尺寸较大,蒸汽压力较高,所以调节阀门不可能按照要求实时控制,存在较大的滞后现象,实际供热调节温度误差高达±10%左右,造成控制温度不能够准确反映实际需要的温度,控制精度较差,并造成大量的蒸汽损耗。另一方面由于人为手动调节,在户外温度高或低时,不能够及时调节供热温度,不是造成不必要的浪费,就是不能满足实际的需要,实现舒适的供热环境。 1、系统配置清单(表1) 2、原理说明 (1)整个换热站采用一台蒸汽电子调节阀门,针对汽水换热器的总进汽,采集供热系统的供水温度,综合当时环境温度后,给出一个供水温度给定值,打入蒸汽调节供水温度,当供水温度和回水温度差值满足正常需要以及出水温度达到要求时,控制进汽量,保障正常恒温,进汽阀采用高精度数字调节阀门进行PID闭环控制,稳定供热系统的供水温度。由此可免去人工调节进汽阀门,避免随机性、误差性、难操作及难控制的问题,同时可实现远程控制进汽阀门,达到自动控制的目的,杜绝±10%的调节误差,大量节约蒸汽。(2)系统采用SIEMENS公司的S7-300PLC 进行现场压力及温度信号的采集,进行信号的运算及处理,实时向数字调节阀控制器发送数据,调节电子蒸汽调节阀门开度,以适时调节供热温度,达到最佳的供热效果。 系统可监视或控制的温度有:每台换热器供水温度、回水温度、环境温度;系统可监视的压力有:汽水换热器供水压力、回水压力。以上参数可使用SIEMENS 操作员面板进行控制或显示。(3)针对换热站冷凝水箱采用一台电动蝶阀进行水箱的恒液位差值控制,免去经常由人工进行调节。(4)系统改造后安全性强,运行率高,供热系统仍保留原有系统所有手动控制功能,又增加了一套自动化控制系统,两套系统可实现互为备用,整个供热系统安全性增加一倍,增强了整个系统的运行稳定性。

换热站、补水泵、循环泵、风机设备选型计算书(审图)

换热站设备选型计算 本工程为陕西碧桂园嘉誉项目换热站设计,为住宅楼1#—8#楼冬季提供低温地板辐射采暖热水,本换热站设于地下室设备用房内。 (1)热负荷统计表 注:(已考虑:外网热损失、室内采暖系统损失以及热力站系统热损失)本工程热源为市政热网热水,经水-水换热以后为小区提供采暖热水。市政热源参数为:总供热量4800.0kW,流量169.0m3/h,供回水温度:95/70℃,1.6MPa;二次侧采暖热水供回水温度:50/40℃。各热力系统分别选用两台板式换热器,单台承担总负荷的70%, 热水循环泵为一用一备,补水泵为一用一备,板式换热器和循环水泵,补水泵组合为一套换热机组。补水定压系统:采暖系统均选用定压罐定压,各系统均选用两台补水泵(一用一备)进行补水。 一.高区采暖换热机组选型计算 1、换热器选型计算 住宅高区采暖总热负荷为1912.1kW,高区热力系统总计算热负荷 Q jz =1912.1x1.1=2103.31kW。换热机组选用板式换热器两组,单台承担70%负荷,即Q1=2103.31x0.65=1367.15kW。 选用板式换热器BRO0.35-1.6-15-E-I,满足设计要求。 2、采暖采暖热水循环系统计算 m/h; 二次侧流量G=3.6x2103.31/(4.2x(50-40))=180.283 换热器内水流阻力约为50kPa; 机房内内管道系统及其他设备水压降约为100kPa; 室外管道水力损失为75.68kPa; 最不利室内环路阻力为35.0kPa, 系统总阻力为(50+100+75.68+35.0)x1.1=286.75kPa。 m/h,H=32.0m,热水循环水泵一用一备,选用KQL 150/315-30/4型,G=187.03 P=30.0kW。

列管式换热器课程设计

化工原理课程设计说明书列管式换热器的选用和设计

目录 1 化工原理课程设计任务书 2 设计概述 3 换热器方案的确定 3.1 确定设计方案 3.2确定物性数据 3.3 计算总传热系数 4 计算换热面积 5 工艺结构尺寸 5.1 管径和管内流速 5.2 管程和传热管数 5.3 平均传热温差校正及壳程数 6传热管的排列和分程方法 7换热器核算 8 换热器的主要结构尺寸和计算结果表 9 设计评述 10 参考资料 11 主要符号说明 12 特别鸣谢

1化工原理课程设计任务书 欲用自来水将2.3万吨/年的异丁烯从300℃冷却至90℃,冷水进、出口温度分别为25℃和90℃。若要求换热器的管程和壳程压强降不大于100kpa,试选择合适型号的列管式换热器。假设管壁热阻和热损失可以忽略。 名称水异丁烯 密度 996 12 比热 4.08 130 导热系数 0.668 0.037 粘度 0.37×10^-3 13×10^-3 2.概述与设计方案简介 换热器的类型 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 2.1换热器 换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。 按用途它可分为加热器、冷却器、冷凝器、蒸发器和再沸器等。根据冷、热流体热量交换的原理和方式可分为三大类:混合式、蓄热式、间壁式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。该类换热器适用于冷、热流体不允许直接接触的场合。间壁式换热器的应用广泛,形式繁多。将在后面做重点介绍。

化工原理设计换热器设计计算

化工单元操作与单元设备设计任务书 任务书之十一 拟采用常压筛板(浮阀)塔分离苯-甲苯混合液。已知原料流量为4000kg/h,原料含苯组成30%(摩尔百分数,下同),精馏分离使塔顶产品苯含量不低于97%,塔底产品甲苯含量不低于98%;沸点进料,沸点回流,操作回流比可取2.0;要求产品进入贮罐的温度不低于50℃,原料贮罐贮料、产品贮罐要满足八小时生产任务。设计任务: ? 1.画出流程方框图和带控制点工艺流程图 ? 2.做分离全过程做物料衡算与热量衡算 ? 3. 做换热器设计与精馏塔设计 (1)换热器设计——塔底产品冷却器设计 上述精馏生产过程中,需要将塔底产品从80℃冷却至45℃,要求换热器的管程和壳程压降不大于10kpa,试选用合适的换热器。 (2)精馏塔(筛板或浮阀)设计 完成上述分离任务所需的精馏塔相关设计。 原始数据:精馏塔塔顶压强:4 kpa(表压),单板压降不超过0.7kPa,冷却循环水温度:25℃,饱和水蒸汽压力:0.25Mpa(表压),设备型式:筛板(浮阀)塔,建厂地区压力:1atm 组长: 叶敏萍060 组员: 张光华030 贾国柱011 薛进军059 陈科云006 邢祥龙057

【设计方案】 【一】、选择换热器的类型 (1)、两流体的温度变化情况: 热流体进口的温度80℃ 出口的温度45℃ 冷流体的进口温度25℃ 出口温度35℃ (注)、该换热器用凉水塔水冷却,初步确定选用带有膨胀节的固定板式换热器。 (2)、流动空间及流速的确定: 由于利用凉水塔水冷却,而易结垢,为方便清洗,应使水走管程,甲苯走壳程。选用φ25㎜*2.5㎜的碳钢管,管内流速为Ui=0.5m/s 。 【二】、确定物性参数 (1)、平均温度差 (2)、定性温度 T=﹙T1+T2﹚/2=﹙80+45﹚÷2=62.5℃ ; t=﹙t1+t2﹚/2=﹙35+25﹚÷2=30℃ 平均温差 Δt1=﹙80-35)=45℃ ;Δt2=﹙45-25﹚=20℃ Δt1/Δt2=45/20=2.25 Δt1/Δt2>2 Δ t ′m=﹙Δt1-Δt2﹚/㏑﹙Δt1÷Δt2﹚ =(45—20) ÷ln(45÷20)=30.83℃

换热站计算说明书

河北建筑工程学院 毕业设计计算说明书 系别:能环学院 专业:建筑环境与设备工程 班级:建环 121 姓名:任少朋 学号: 2012305127 起迄日期:16年02月21日~ 16年06月15日 设计(论文)地点:河北建筑工程学院 指导教师:贾玉贵职称:副教授 2016 年 06 月 15 日

摘要 随着人们生活水平的提高,集中供热被越来越多地采用,采用集中供暖可以减少能量的浪费,提高供热效率,减少环境污染,利于管理.同时采用集中供热可提高供热质量,提高人们的生活质量。 本题目是以张家口市桥西区恒峰热力有限公司集中供热系统M13号热力站供热区域的工程设计、改造为需用背景的实际工程。本工程为张家口市桥西区集中供热工程张家口市检察院换热站,属于原有燃煤锅炉房改造工程。供热区域总建筑面积:110000m2,总热负荷:约6400kw。 本次设计主要有工程概述、热负荷计算、供热方案确定、管道水力计算、系统原理图和平面布置图绘制、设备及附件的选择计算的内容。 除上述内容外,在计算说明书中尚需包括如下一些曲线:供回水温度随室外温度变化曲线,调节曲线。 本次设计要求使用CAD绘出图纸,其中包括设计施工说明、主要设备附件材料表,换热站设备平面布置图、换热站管道平面布置图、换热站流程图及相关剖面图等。 在换热站设计合理,安装质量符合标准和操作维修良好的条件下,换热站能够顺利地运行,对于采暖用户,在非采暖期停止运行期内,可以维修并且排除各种隐患,以满足在采暖期内正常运行的要求。 关键词:供热负荷设备选择计算及布置换热站系统运行板式换热器

目录 摘要 (1) 第一章设计概况 (4) 1.1设计题目 (4) 1.2设计原始资料 (4) 1.2.1 设计地区气象资料 (4) 1.2.2 设计参数资料 (4) 第二章换热站方案的确定 (5) 2.1换热站位置的确定 (5) 2.2换热站建筑平面图的确定 (5) 2.3换热站方案确定 (5) 2.4供热管道的平面布置类型 (5) 2.5管道的布置和敷设 (6) 2.6换热站负荷的计算 (6) 第三章换热站设备的选取 (7) 3.1换热器简介 (7) 3.1.1换热器概述 (7) 3.1.2换热器的分类 (7) 3.2换热器的选取 (9) 3.2.1换热器类型的选取 (9) 3.2.2换热器选型计算 (9) 3.3换热站内管道的水力计算 (10) 3.4循环水泵的选择 (11) 3.4.1循环水泵需满足的条件 (11) 3.4.2循环水泵选择 (11) 3.5补水泵的选择 (12) 3.5.1补水泵需该满足的条件 (12) 3.5.2补水泵的选择 (12) 3.6补水箱的选择 (14)

列管式换热器课程设计

(封面) XXXXXXX学院 列管式换热器课程设计报告 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日 目录

1、设计题目(任务书) (2) 2、流程示意图 (3) 3、流程及方案的说明和论证 (3) 4、换热器的设计计算及说明 (4) 5、主体设备结构图 (10) 6、设计结果概要表 (11) 7、设计评价及讨论 (12) 8、参考文献 (12) 附图:主体设备结构图和花版设计图 一.任务书

(一)设计题目: 列管式冷却器设计 (二)设计任务: 将自选物料用河水冷却或自选热源加热至生产工艺所要求的温度 (三)设计条件: 1.处理能力:G=学号最后2位×300t物料/d; 2.冷却器用河水为冷却介质,考虑广州地区可取进口水温度为20~30C;加热器用热水或水蒸气为热源,条件自选; 3.允许压降:不大于105Pa; 4.传热面积安全系数5~15% 5.每年按330天计,每天24小时连续运行。 (四)设计要求: 1.对确定的设计方案进行简要论述; 2.物料衡算、热量衡算; 3.确定列管壳式冷却器的主要结构尺寸; 4.计算阻力; 5.选择合宜的列管换热器并运行核算; 6.用Autocad绘制列管式冷却器的结构(3号图纸)、花板布置图(3号图纸); 7.编写设计说明书(包括:①.封面;②.目录;③.设计题目;④.流程示意图;⑤.流程及方案的说明和论证;⑥设计计算及说明;⑦主体设备结构图;⑧设计结果概要表;⑨对设计的评价及问题讨论;⑩参考文献。) (五)设计进度安排: 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码。专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码。 二.流程示意图

换热器设计计算步骤

换热器设计计算步骤 1. 管外自然对流换热 2. 管外强制对流换热 3. 管外凝结换热 已知:管程油水混合物流量 G ( m 3/d),管程管道长度 L (m),管子外径do (m), 管子内径di (m),热水温度 t ℃, 油水混合物进口温度 t 1’, 油水混合物出口温度 t 2” ℃。 1. 管外自然对流换热 1.1 壁面温度设定 首先设定壁面温度,一般取热水温度和油水混合物出口温度的平均值,t w ℃, 热水温度为t ℃,油水混合进口温度为'1t ℃,油水混合物出口温度为"1t ℃。 "w 11 t ()2 t t =+ 1.2 定性温度和物性参数计算 管程外为水,其定性温度为1()K -℃ 21 ()2 w t t t =+ 管程外为油水混合物,定性温度为'2t ℃ ''"2111 ()2t t t =+ 根据表1油水物性参数表,可以查得对应温度下的油水物性参数值 一般需要查出的为密度ρ (3/kg m ),导热系数λ(/())W m K ?,运动粘度2(/)m s ,体积膨胀系数a 1()K -,普朗特数Pr 。

表1 油水物性参数表 水 t ρ λ v a Pr 10 999.7 0.574 0.000001306 0.000087 9.52 20 998.2 0.599 0.000001006 0.000209 7.02 30 995.6 0.618 0.000000805 0.000305 5.42 40 992.2 0.635 0.000000659 0.000386 4.31 50 998 0.648 0.000000556 0.000457 3.54 60 983.2 0.659 0.000000478 0.000522 2.99 70 997.7 0.668 0.000000415 0.000583 2.55 80 971.8 0.674 0.000000365 0.00064 2.21 90 965.3 0.68 0.000000326 0.000696 1.95 100 958.4 0.683 0.000000295 0.00075 1.75 油 t ρ λ v a Pr 10 898.8 0.1441 0.000564 6591 20 892.7 0.1432 0.00028 0.00069 3335 30 886.6 0.1423 0.000153 1859 40 880.6 0.1414 9.07E-05 1121 50 874.6 0.1405 5.74E-05 723 60 868.8 0.1396 3.84E-05 493 70 863.1 0.1387 0.000027 354 80 857.4 0.1379 1.97E-05 263 90 851.8 0.137 1.49E-05 203 100 846.2 0.1361 1.15E-05 160 1.3 设计总传热量和实际换热量计算 0m v Q Cq t Cq t ρ=?=?v v C q t C q t αρβρ=?+?油油水水 C 为比热容/()j kg K ?,v q 为总体积流量3 /m s ,αβ分别为在油水混合物中 油和水所占的百分比,t ?油水混合物温差,m q 为总的质量流量/kg s 。 实际换热量Q 0Q Q *1.1/0.9= 0.9为换热器效率,1.1为换热余量。 1.4 逆流平均温差计算

板式换热器的计算方法

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU 法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线 估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、 方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准 则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 * A3 F7 y& G7 S+ Q T2 = 热侧出口温度 3 s' _% s5 s. T" D0 q4 b t1 = 冷侧进口温度 & L8 ~: |; B: t2 M2 w$ z t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为:0 B N/ I" A+ m0 z' H9 ~ (热流体放出的热流量)=(冷流体吸收的热流量) 在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W;# Q/ p3 p: I4 ~0 N' I) W mh,mc-----热、冷流体的质量流量,kg/s;+ Z: I9 b- h9 h" r3 P) {/ ^ Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K);6 L8 t6 b3 o& m/ n T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡 算式为:& w3 v) j4 I4 R 一侧有相变化1 Y# e$ B6 c& z% C3 W- W* J 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中

相关主题
文本预览
相关文档 最新文档