当前位置:文档之家› (新)高中数学数列放缩专题:用放缩法处理数列和不等问题含答案

(新)高中数学数列放缩专题:用放缩法处理数列和不等问题含答案

(新)高中数学数列放缩专题:用放缩法处理数列和不等问题含答案
(新)高中数学数列放缩专题:用放缩法处理数列和不等问题含答案

用放缩法处理数列和不等问题(教师版)

一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求:

(1)数列{}n a 的通项公式; (2)设11+=

n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2

1

解:(1)由已知得2

)1(4+=n n a S ,2≥

n 时,211)1(4+=--n n a S ,作差得:12

12224----+=n n n n n a a a a a ,所

以0)2)((11=--+--n n n n a a a a ,又因为{}n a 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列,由

1211+=a S ,得11=a ,所以12-=n a n

(2))1

21

121(21)12)(12(111+--=+-==

+n n n n a a b n n n ,所以

2

1)12(2121)1211215131311(21<+-=+---+-=

n n n B n 真题演练1:(06全国1卷理科22题)设数列

{}n a 的前n 项的和,1412

2333

n n n S a +=

-?+,1,2,3,n =

(Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2n

n n

T S =,1,2,3,

n =,证明:

1

32

n

i i T =<

∑. 解: (Ⅰ)由 S n =43a n -13×2n+1+2

3, n=1,2,3,… , ① 得 a 1=S 1= 43a 1-13×4+23 所以a 1=2

再由①有 S n -1=43a n -1-13×2n +2

3

, n=2,3,4,…

将①和②相减得: a n =S n -S n -1= 43(a n -a n -1)-13

×(2n+1-2n

),n=2,3, …

整理得: a n +2n

=4(a n -1+2n -1

),n=2,3, … , 因而数列{ a n +2n

}是首项为a1+2=4,公比为4的等比数列,即 : a n +2n

=4×4

n -1

=

4n , n=1,2,3, …, 因而a n =4n -2n

, n=1,2,3, …,

(Ⅱ)将a n =4n -2n 代入①得 S n = 43×(4n -2n )-13×2n+1 + 23 = 13×(2n+1-1)(2n+1

-2)

= 23

×(2n+1-1)(2n

-1)

T n = 2n

S n = 32×2n

(2n+1-1)(2n

-1) = 32×(12n -1 - 12n+1-1) 所以, 1

n

i i T =∑

=

3

2

1

(

n

i =∑12i -1 - 12i+1-1) = 32×(121

-1 - 1121

n +-) < 3

2

二.先放缩再求和

1.放缩后成等比数列,再求和

例2.等比数列

{}n a 中,1

1

2

a

=-,前n 项的和为n S ,且798,,S S S 成等差数列. 设n

n n a a b -=12

,数列{}n b 前n 项的和为n T ,证明:1

3n T <.

解:∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比981

2

a q a =

=-. ∴n n

a )2

1

(-=. n

n n n

n n b 2

31

)2(41)2

1(141?≤--=

--=

. (利用等比数列前n 项和的模拟公式n

n S Aq A =-猜想)

∴n n b b b B ++=2131)211(312

11)

21

1(213123123123122<-=--?

=?++?+?≤n n . 真题演练2:(06福建卷理科22题)已知数列{}n a 满足*111,21().n n a a a n N +==+∈

(I )求数列

{}n a 的通项公式;

(II )若数列{}n b 滿足12111

*444(1)()n n b b b b n a n N ---=+∈,证明:数列{}n b 是等差数列;

(Ⅲ)证明:

*122311...()232n n a a a n n

n N a a a +-<+++<∈. (I )解:

*121(),n n a a n N +=+∈

112(1),n n a a +∴+=+{}1n a ∴+是以112a +=为首项,2为公比的等比数列

12.n n a ∴+=即 2*21().n a n N =-∈

(II )证法一:

1211144...4(1).n n k k k k n a ---=+

12(...)42.n n k k k n nk +++-∴=

122[(...)],n n b b b n nb ∴+++-= ①

12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+ ② ②-①,得112(1)(1),n n n b n b nb ++-=+-

即1(1)20,n n n b nb +--+=21(1)20.n n nb n b ++-++=

③-④,得 2120,n n n nb nb nb ++-+=

即 2120,n n n b b b ++-+=*

211(),n n n n b b b b n N +++∴-=-∈{}n b ∴

是等差数列

(III )证明:

1121211

,1,2,...,,1212

2(2)2

k k k k k k a k n a ++--==<=--

12231 (2)

n n a a a n

a a a +∴

+++<

111211111111

.,1,2,...,,2122(21)2 3.222232

k k k k k k

k k a k n a +++-==-=-≥-=--+-

1222311111111

...(...)(1),2322223223

n n n n a a a n n n a a a +∴

+++≥-+++=-->-

*122311...().232

n n a a a n n

n N a a a +∴-<+++<∈ 2.放缩后为“差比”数列,再求和 例3.已知数列{}n a 满足:11

=a ,)3,2,1()21(1 =+

=+n a n a n n n .求证:1

12

1

3-++-≥>n n n n a a 证明:因为n n

n a n

a )21(1

+

=+,所以1+n a 与n a 同号,又因为011>=a ,所以0>n a , 即02

1>=-+n n n n a n

a a ,即n n a a >+1.所以数列{}n a 为递增数列,所以11=≥a a n , 即n n n n n n a n a a 221

≥=

-+,累加得:1

21

21

2221--+++≥-n n n a a . 令12212221--+++=

n n

n S ,所以n n n S 2

1

22212132-+++= ,两式相减得: n n n n S 212121212121132--++++=- ,所以1212-+-=n n n S ,所以12

13-+-≥n n n a , 故得1

121

3-++-

≥>n n n n a a .

3.放缩后成等差数列,再求和

例4.已知各项均为正数的数列{}n a 的前n 项和为n S ,且2

2n n n a a S +=.

(1) 求证:22

14

n n n a a S ++<;

(2)

<+???+< 解:(1)在条件中,令1=n ,得1112

122a S a a ==+,1011

=∴>a a ,又由条件n n n

S a a 22

=+有112

12+++=+n n n S a a ,上述两式相减,注意到n n n S S a -=++11得

0)1)((11=--+++n n n n a a a a 001>+∴>+n n n a a a ∴11n n a a +-=

所以, n n a n =-?+=)1(11,(1)

2

n

n n S +=

所以4

2)1(212)1(2

1

2

22++=++?<+=n n n a a n n n n S (2)因为1)1(+<+<

n n n n ,所以

2

1

2)1(2

+<

+<

n n n n ,所以 2)1(23222121+++?+?=

++n n S S S n 2

1

2322++++

12

2312-=

+=

+n S n n ;

2

2

2)1(2

2

22

121n n S n n n S S S =

+=

+

++

>

++

练习:

1.(08南京一模22题)设函数213

()44

f x x bx =

+-,已知不论,αβ为何实数,恒有(cos )0f α≤且(2sin )0f β-≥.对于正数列{}n a ,其前n 项和()n n S f a =,*()n N ∈.

(Ⅰ) 求实数b 的值;(II )求数列{}n a 的通项公式;

1,1n n N a +=

∈+,且数列{}n c 的前n 项和为n T ,试比较n T 和1

6

的大小并证明之. 解:(Ⅰ) 1

2

b =

(利用函数值域夹逼性);(II )21n a n =+; (Ⅲ)∵21111(22)22123n c n n n ??=<- ?+++??,∴1231111

+23236

n n T c c c c n ??=+++???<-< ?+??…

2.(04全国)已知数列}{n a 的前n 项和n S 满足:n

n n a S )1(2-+=, 1≥n (1)写出数列}{n a 的前三项1a ,2a ,3a ;(2)求数列}{n a 的通项公式; (3)证明:对任意的整数4>m ,有

8

7

11154<+++m a a a 分析:⑴由递推公式易求:a 1=1,a 2=0,a 3=2;

⑵由已知得:1

112(1)2(1)n n n n n n n a S S a a ---=-=+----(n>1)

化简得:1

122(1)

n n n a a --=+-

2)1(2)1(11---=---n n n n a a ,]32

)

1([232)1(1

1+--=+---n n n n a a 故数列{

32)1(+-n

n a }是以3

2

1+-a 为首项, 公比为2-的等比数列. 故

1

)2)(31(32)1(---=+-n n

n a ∴22[2(1)]3

n n n a -=-- ∴数列{n a }的通项公式为:22

[2(1)]3

n n n

a -=--. ⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。而左边

=

23245

1113111

[]22121

2(1)m m

m a a a -+++

=+++

-+--,如果我们把上式中的分母中的1±去掉,就可利用等比

数列的前n 项公式求和,由于-1与1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,尝试知:

3

2322

1

21121121+>++-, 43432121121121+

<-++,因此,可将121

2-保留,再将后面的项两两组合后放缩,即可求和。这里需要对m 进行分类讨论,(1)当m 为偶数)4(>m 时,

m a a a 11154+++ )11()11(11654m

m a a a a a +++++=- )21

2121(2321243-++++<

m )211(4123214--?+=

m 8321+<

8

7= (2)当m 是奇数)4(>m 时,1+m 为偶数,

8

711111111165454<+++++<++++m m m a a a a a a a a 所以对任意整数4>m ,有

m a a a 11154+++ 8

7

<。 本题的关键是并项后进行适当的放缩。 3.(07武汉市模拟)定义数列如下:*+∈+-==N n a a a a n n n ,1,22

11

求证:(1)对于*∈N n 恒有n n a a >+1成立; (2)当*

∈>N n n 且2,有11211+=-+a a a a a n n n 成立; (3)11112112006

212006

<+++<

-

a a a 分析:(1)用数学归纳法易证。 (2)由12

1

+-=+n n n a a a 得:)1(11-=-+n n n a a a )1(111-=-∴--n n n a a a

… … )1(1112-=-a a a

以上各式两边分别相乘得: )1(111211-=--+a a a a a a n n n ,又21=a

11211+=∴-+a a a a a n n n (3)要证不等式11112112006

212006

<+++<

-

a a a , 可先设法求和:

2006

21111a a a +++ ,再进行适当的放缩。 )1(11-=-+n n n a a a n n n a a a 1111

11--=

-∴

+1

1

1111---=∴+n n n a a a

200621111a a a +++∴

)1111()1111()1111(200720063221---++---+---=a a a a a a 111120071---=

a a 2006

2111a a a -=1<又20062006

1

2006212=>a a a a 20062006212

1

111->-

∴a a a ∴原不等式得证。

本题的关键是根据题设条件裂项求和。

用放缩法处理数列和不等问题(学生版)

一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求:

(1)数列{}n a 的通项公式;

(2)设11+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2

1

真题演练1:(06全国1卷理科22题)设数列

{}n a 的前n 项的和,1412

2333

n n n S a +=

-?+,1,2,3,n =

(Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2n

n n

T S =,1,2,3,

n =,证明:

1

32

n

i i T =<

∑.

二.先放缩再求和

1.放缩后成等比数列,再求和

例2.等比数列

{}n a 中,1

1

2

a

=-,前n 项的和为n S ,且798,,S S S 成等差数列.

设n

n n a a b -=12

,数列{}n b 前n 项的和为n T ,证明:1

3n T <.

真题演练2:(06福建卷理科22题)已知数列{}n a 满足*111,21().n n a a a n N +==+∈

(I )求数列

{}n a 的通项公式;

(II )若数列{}n b 滿足12111

*444(1)()n n b b b b n a n N ---=+∈,证明:数列{}n b 是等差数列;

(Ⅲ)证明:

*122311...()232

n n a a a n n

n N a a a +-<+++<∈.

2.放缩后为“差比”数列,再求和 例3.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+

=+n a n a n n n .求证:112

1

3-++-≥>n n n n a a

3.放缩后成等差数列,再求和

例4.已知各项均为正数的数列{}n a 的前n 项和为n S ,且2

2n n n a a S +=.

(1) 求证:22

14

n n n a a S ++<;

(2)

<+???+< 练习:

1.(08南京一模22题)设函数213

()44

f x x bx =

+-,已知不论,αβ为何实数,恒有(cos )0f α≤且(2sin )0f β-≥.对于正数列{}n a ,其前n 项和()n n S f a =,*()n N ∈.

(Ⅰ) 求实数b 的值;(II )求数列{}n a 的通项公式;

1,1n n N a +=∈+,且数列{}n c 的前n 项和为n T ,试比较n T 和1

6

的大小并证明之.

2.(04全国)已知数列}{n a 的前n 项和n S 满足:n

n n a S )1(2-+=, 1≥n (1)写出数列}{n a 的前三项1a ,2a ,3a ;(2)求数列}{n a 的通项公式; (3)证明:对任意的整数4>m ,有8

711154<+++m a a a

3.(07武汉市模拟)定义数列如下:*+∈+-==N n a a a a n n n ,1,22

11

求证:(1)对于*

∈N n 恒有n n a a >+1成立; (2)当*

∈>N n n 且2,有11211+=-+a a a a a n n n 成立; (3)11112112006

212006

<+++<

-

a a a

求递推数列通项的特征根法与不动点法

求递推数列通项的特征根法与不动点法 一、形如21(,n n n a pa qa p q ++=+是常数)的数列 形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特征根法求得通项n a ,其特征方程为2x px q =+…① 若①有二异根,αβ,则可令1212(,n n n a c c c c αβ=+是待定常数) 若①有二重根αβ=,则可令1212()(,n n a c nc c c α=+是待定常数) 再利用1122,,a m a m ==可求得12,c c ,进而求得n a . 例1.已知数列{}n a 满足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a . 解:其特征方程为232x x =-,解得121,2x x ==,令1212n n n a c c =?+?, 由1122122243a c c a c c =+=??=+=?,得121 12 c c =???= ??, 112n n a -∴=+. 例2.已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a . 解:其特征方程为2 441x x =-,解得121 2x x ==,令()1212n n a c nc ?? =+ ??? , 由1122121()121(2)2 4 a c c a c c ? =+?=????=+?=??,得1246c c =-??=?, 1322n n n a --∴=. 二、形如2n n n Aa B a C a D ++= +的数列 对于数列2n n n Aa B a C a D ++= +,*1,(,,,a m n N A B C D =∈是常数且0,0C AD BC ≠-≠) 其特征方程为A x B x C x D += +,变形为2()0C x D A x B +--=…②

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

不动点(特征方程)法求数列通项

特征方程法求解递推关系中的数列通项 考虑一个简单的线性递推问题. 设已知数列}{n a 的项满足 其中,1,0≠≠c c 求这个数列的通项公式. 采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述. 定理1.设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当, 其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-. 证明:因为,1,0≠c 由特征方程得.10c d x -=作换元,0x a b n n -= 则.)(110011 n n n n n n cb x a c c cd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b 当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两例,说明定理1的应用. 例1.已知数列}{n a 满足:,4,N ,23 111=∈--=+a n a a n n 求.n a 解:作方程.2 3,23 10-=--=x x x 则 当41=a 时,.2112 3 ,1101= +=≠a b x a 数列}{n b 是以3 1 -为公比的等比数列.于是.N ,)3 1 (2112323,)31(211)3 1 (111 1∈-+-=+-=-=-=---n b a b b n n n n n n 例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位. 当1a 取何值时,数列}{n a 是常数数列? 解:作方程,)32(i x x +=则.5 360i x +-= a 1= b a n+1=ca n +d

(完整版)高三文科数学数列专题.doc

高三文科数学数列专题 高三文科数学复习资料 ——《数列》专题 1. 等差数列{ a n}的前n项和记为S n,已知a1030, a2050 . ( 1)求通项a n; ( 2)若S n242 ,求 n ; ( 3)若b n a n20 ,求数列 { b n } 的前 n 项和 T n的最小值. 2. 等差数列{ a n}中,S n为前n项和,已知S77, S1575 . ( 1)求数列{ a n}的通项公式; ( 2)若b n S n,求数列 {b n } 的前 n 项和 T n. n 3. 已知数列{ a n}满足a1 1 a n 1 ( n 1) ,记 b n 1 , a n . 1 2a n 1 a n (1)求证 : 数列{ b n}为等差数列; (2)求数列{ a n}的通项公式 . 4. 在数列a n 中, a n 0 , a1 1 ,且当 n 2 时,a n 2S n S n 1 0 . 2 ( 1)求证数列1 为等差数列;S n ( 2)求数列a n的通项 a n; ( 3)当n 2时,设b n n 1 a n,求证: 1 2 (b2 b3 b n ) 1 . n 2(n 1) n 1 n 5. 等差数列{ a n}中,a18, a4 2 . ( 1)求数列{ a n}的通项公式; ( 2)设S n| a1 | | a2 || a n |,求 S n;

1 (n N *) , T n b1 b2 b n (n N *) ,是否存在最大的整数m 使得对任( 3)设b n n(12 a n ) 意 n N * ,均有T n m m 的值,若不存在,请说明理由. 成立,若存在,求出 32 6. 已知数列{log2(a n1)} 为等差数列,且a13, a39 . ( 1)求{ a n}的通项公式; ( 2)证明: 1 1 ... 1 1. a2 a1 a3 a2 a n 1 a n 7. 数列{ a n}满足a129, a n a n 12n 1(n 2, n N * ) . ( 1)求数列{ a n}的通项公式; ( 2)设b n a n,则 n 为何值时, { b n } 的项取得最小值,最小值为多少?n 8. 已知等差数列{ a n}的公差d大于0 , 且a2,a5是方程x2 12 x 27 0 的两根,数列 { b n } 的前 n 项和 为 T n,且 T n 1 1 b n. 2 ( 1)求数列{ a n} , { b n}的通项公式; ( 2)记c n a n b n,求证:对一切 n N 2 , 有c n. 3 9. 数列{ a n}的前n项和S n满足S n2a n 3n . (1)求数列{ a n}的通项公式a n; (2)数列{ a n}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由 . 10. 已知数列{ a n}的前n项和为S n,设a n是S n与 2 的等差中项,数列{ b n} 中, b1 1,点 P(b n , b n 1 ) 在 直线 y x 2 上. ( 1)求数列{ a n} , { b n}的通项公式

高中数列放缩法技巧大全

高中数列放缩法技巧大全 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 121 42的值; (2)求证:2 1153n k k =<∑ . 解析:(1)因为 1 21 121)12)(12(21422+- -=+-= -n n n n n ,所以1 2212111 42 1 2 += +- =-∑=n n n k n k (2)因为22211411214121214 n n n n n ??<==- ?--+??- , 所以35321121121513121112 =+

不动点法求数列通项公式

不动点法求数列通项公 式 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

不动点法求数列通项公式 通常为了求出递推数列a[n+1]=(ca[n]+d)/(ea[n]+f)【c、d、e、f是不全为0的常数,c、e不同时为0】的通项,我们可以采用不动点法来解.假如数列{a[n]}满足a[n+1]=f(a[n]),我们就称x=f(x)为函数f(x)的不动点方程,其根称为函数f(x)的不动点.至于为什么用不动点法可以解得递推数列的通项,这足可以写一本书.但大致的理解可以这样认为,当n趋于无穷时,如果数列{a[n]}存在极限,a[n]和a[n+1]是没有区别的. 首先,要注意,并不是所有的递推数列都有对应的不动点方程,比如: a[n+1]=a[n]+1/a[n].其次,不动点有相异不动点和重合不动点. 下面结合不动点法求通项的各种方法看几个具体的例子吧. ◎例1:已知a[1]=2,a[n+1]=2/(a[n]+1),求通项. 【说明:这题是“相异不动点”的例子.】 先求不动点 ∵a[n+1]=2/(a[n]+1) ∴令 x=2/(x+1),解得不动点为:x=1 和 x=-2 【相异不动点】 ∴(a[n+1]-1)/(a[n+1]+2) 【使用不动点】 =(2/(a[n]+1)-1)/(2/(a[n]+1)+2) =(2-a[n]-1)/(2+2a[n]+2) =(-a[n]+1)/(2a[n]+4) =(-1/2)(a[n]-1)/(a[n]+2) ∵a[1]=2 ∴(a[1]-1)/(a[1]+2)=1/4 ∴{(a[n]-1)/(a[n]+2)}是首项为1/4,公比为-1/2的等比数列

【高考数学】高考数列不动点法解题方法整理版

利用“不动点”法巧解高考题 由递推公式求其数列通项历来是高考的重点和热点题型,对那些已知递推关系但又难求通项的数列综合问题,充分运用函数的相关性质是解决这类问题的着手点和关键.与递推关系对应的函数的“不动点”决定着递推数列的增减情况,因此我们可以利用对函数“不动点”问题的研究结果,来简化对数列通项问题的探究。笔者在长期的教学实践中,不断总结探究反思,对那些难求通项的数列综合问题,形成利用函数不动点知识探究的规律性总结,以期对同学们解题有所帮助. 1 不动点的定义 一般的,设()f x 的定义域为D ,若存在0x D ∈,使f x x ()00=成立,则称x 0为f x ()的 不动点,或称00(,)x x 为f x ()图像的不动点。 2 求线性递推数列的通项 定理 1 设()(01)f x ax b a =+≠,,且x 0为f x ()的不动点,{}a n 满足递推关系1()n n a f a -=,2,3, n =,证明{}a x n -0是公比为a 的等比数列。证:∵x 0是f x ()的不动点,所以ax b x 00+=, 所以,所以a n -=+-=-=----x a a b x a a ax a a x n n n 0101010()()··,∴数列{}a x n -0是公比为a 的等比数列。 例1(2010上海文数21题)已知数列{}n a 的前n 项和为n S ,且585n n S n a =--,*n N ∈ (1)证明:{}1n a -是等比数列;(2)求数列{}n S 的通项公式,并求出使得1n n S S +>成立的最小正整数n . 证:(1) 当n =1时,a 1=-14;当2n ≥时,a n =S n -S n -1=-5a n +5a n -1+1,即1651n n a a -=+(2)n ≥即 15166n n a a -= +(2)n ≥,记51 ()66f x x =+,令()f x x =,求出不动点01x =,由定理1知:15 1(1)(2)6 n n a a n --=-≥,又a 1-1= -15 ≠0,所以数列{a n -1}是等比数列。(2)解略。 3求非线性递推数列的通项 定理2 设()(00)ax b f x c ad bc cx d +=≠-≠+,,且x x 12、是f x ()的不动点,数列{}a n 满足递推关系a f a n n =-()1,2,3,n =,(ⅰ)若12x x ≠,则数列{ }a x a x n n --12是公比为a x c a x c --12的等比数列;(ⅱ)

人教版最新高中数学数列专题复习(综合训练篇含答案)Word版

——教学资料参考参考范本——人教版最新高中数学数列专题复习(综合训练篇含答案)Word 版 ______年______月______日 ____________________部门

———综合训练篇 一、选择题: 1. 在等差数列中,,则的值为 ( D ){}n a 120 31581=++a a a 1092a a - A .18 B .20 C .22 D .24 2.等差数列满足:,若等比数列满足则为( B ) A .16 B .32 C .64 D .27{}n a 30,8531==+S a a {} n b ,,4311a b a b ==5b 3.等差数列中,则数列的前9项之和S9等于{} n a 1 a {a ( C )A .66 B .144 C .99 D .297 4.各项都是正数的等比数列的公比q ≠1,且,,成等差数列,则为(A ) A . B . C . D .或{} n a 2a 321a 1 a 5 443a a a a ++2 15-215+2 51-2 1 5+215- 5.设等比数列的前项和为,若则( B ){}n a n n S ,33 6=S S = 69S S A. 2 B. C. D.3738 3

6.已知等差数列的前项的和为,且,,则过点和的直线的一个方向向 量的坐标是 ( B ){}n a n n S 210S =555S =(,) n P n a 2(2,)()n Q n a n N *++∈ A. B. C. D.1(2,)2 1(,2)2--1(,1) 2--(1,1)-- 7.设a 、b 、c 为实数,3a 、4b 、5c 成等比数列,且、、成等差数列,则 的值为( C ) A . B . C . D .a 1b 1c 1a c c a +15941594±15341534 ± 8. 已知数列的通项则下列表述正确的是 ( A ){} n a ,1323211 ????????-??? ??? ? ? ??=--n n n a A .最大项为最小项为 B .最大项为最小项不存在,1a 3 a ,1a C .最大项不存在,最小项为 D .最大项为最小项为3 a ,1a 4a 9.已知为等差数列,++=105,=99.以表示的前项和,则使得达到最大 值的是(B ){}n a 1a 3a 5a 246a a a ++n S {}n a n n S n A .21 B .20 C .19 D .18 9.一系列椭圆都以一定直线l 为准线,所有椭圆的中心都在定点M , 且点M 到l 的距离为2,若这一系列椭圆的离心率组成以为首项,为公比的等比数列,而椭圆相应的长半轴长为ai=(i=1,2,…,n),设bn=2(2n+1)·3n -2·an ,且Cn=,Tn=C1+C2+…+Cn ,若

高中数学放缩法公式

“放缩法”证明不等式的基本策略 1、添加或舍弃一些正项(或负项) 例1、已知* 21().n n a n N =-∈求证: *12 231 1...().23n n a a a n n N a a a +-<+++∈ 证明: 111211111111 .,1,2,...,,2122(21)2 3.222232 k k k k k k k k a k n a +++-==-=-≥-=--+-Q 1222311111111 ...(...)(1),2322223223 n n n n a a a n n n a a a +∴ +++≥-+++=-->- *122311...().232 n n a a a n n n N a a a +∴-<+++<∈ 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的 值变小。由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩时就舍去了22k -,从而是使和式得到化简. 2、先放缩再求和(或先求和再放缩) 例2、函数f (x )= x x 414+,求证:f (1)+f (2)+…+f (n )>n + )(2 1 21*1 N n n ∈-+. 证明:由f (n )= n n 414+=1- 11 11422n n >-+? 得f (1)+f (2)+…+f (n )>n 2211221122112 1 ?- ++?- +?-Λ )(21 2 1)2141211(41*11N n n n n n ∈-+=++++-=+-Λ. 此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和. 若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。 3、逐项放大或缩小

用不动点法求数列通项

定义:方程的根称为函数的不动点. 利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法. 定理1:若是的不动点,满足递推关系,则,即是公比为的等比数列. 证明:因为是的不动点 由得 所以是公比为的等比数列. 定理2:设,满足递推关系,初值条件 (1):若有两个相异的不动点,则(这里) (2):若只有唯一不动点,则(这里) 证明:由得,所以 (1)因为是不动点,所以,所以 令,则 (2)因为是方程的唯一解,所以 所以,所以 所以 令,则 例1:设满足,求数列的通项公式 例2:数列满足下列关系:,求数列的通项公式 定理3:设函数有两个不同的不动点,且由确定着数列,那么当且仅当时, 证明:是的两个不动点 即 于是, 方程组有唯一解

例3:已知数列中,,求数列的通项. 其实不动点法除了解决上面所考虑的求数列通项的几种情形,还可以解决如下问题: 例4:已知且,求数列的通项. 解: 作函数为,解方程得的不动点为 .取,作如下代换: 逐次迭代后,得: 已知曲线22:20(1,2,)n C x nx y n -+==K .从点(1,0)P -向曲线n C 引斜率为(0) n n k k >的切线n l ,切点为(,)n n n P x y . (1)求数列{}{}n n x y 与的通项公式; (2)证明:13521n n n x x x x x y -????<),()f x '是()f x 的 导数,设11a =,1()(12)()n n n n f a a a n f a +=-='L ,,. (1)求αβ,的值; (2)证明:对任意的正整数n ,都有n a α>; (3)记ln (12)n n n a b n a βα -==-L ,,,求数列{}n b 的前n 项和n S 13陕西文21.(本小题满分12分)已知数列{}n a 满足, *11212,,2 n n n a a a a a n N ++=∈’+2==. ()I 令1n n n b a a +=-,证明:{}n b 是等比数列; (Ⅱ)求{}n a 的通项公式。 山东文20.(本小题满分12分)等比数列{n a }的前n 项和为n S , 已知对任意的n N + ∈ ,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图像上.(1)求r 的值;(11)

高三数列专题练习30道带答案

高三数列专题训练二 学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.在公差不为零的等差数列{}n a 中,已知23a =,且137a a a 、、成等比数列. (1)求数列{}n a 的通项公式; (2)设数列{}n a 的前n 项和为n S ,记,求数列{}n b 的前n 项和n T . 2.已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; 1,公比为3的等比数列,求数列{}n b 的前n 项和n T . 3.设等比数列{}n a 的前n 项和为n S ,,2S ,3S 成等差数列,数列{}n b 满足2n b n =. (1)求数列{}n a 的通项公式; (2)设n n n c a b =?,若对任意*n N ∈,求λ的取值范围. 4.已知等差数列{n a }的公差2d =,其前n 项和为n S ,且等比数列{n b }满足11b a =, 24b a =,313b a =. (Ⅰ)求数列{n a }的通项公式和数列{n b }的前n 项和n B ; (Ⅱ)记数列的前n 项和为n T ,求n T . 5.设数列{}n a 的前n 项和为n S ,且满足()21,2,3,n n S a n =-=. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足11b =,且1n n n b b a +=+,求数列{}n b 的通项公式; (3)设()3n n c n b =-,求数列{}n c 的前n 项和n T .

高中数学放缩法技巧全总结

2010高考数学备考之放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 142 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为??? ??+--=-=- <1211212144 4 11 1 222n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1) 1(1 ≥--<+n n n n n (15) 11 1) 11)((112 2 2 22 222<++ ++= ++ +--= -+-+j i j i j i j i j i j i j i 例2.(1)求证:)2()12(2167) 12(1513112 22≥-->-++++n n n (2)求证:n n 412141361161412 -<++++

不动点法求数列的通项(讲座)

不动点法求数列的通项 惠来县第一中学 方文湃 自从实施新课程标准,使用新教材以来,高考题中出现了数列的解答题的次数好象不少。如2007年普通高考广东数学理科卷压轴题第21题 、2011年普通高等学校招生全国统一考试数学广东卷理科第20题 ,这两道题都是已知数列的递推式,求它的的通项公式,并且求法都与“不动点”有关。 记函数f(x)的定义域为D ,若存在λ∈D ,使λ=f(λ)成立,则称(λ,λ)为坐标的点为函数f(x)图象上的不动点。以此类推,在数列{a n }中,a n+1=f(a n ) (n ∈N +),若存在λ满足方程λ=f(λ),称λ为不动点方程λ=f(λ)的根。下面介绍的一些数列,可先求生成函数(递推式)的不动点,通过换元后,化为等差、等比数列,再求这些数列的通项,这一方法,我们不妨称为不动点法。 一、递推式为a n+1=aa n +b(a ≠0,a ≠1,a,b 均为常数)型的数列 由递推式a n+1=aa n +b 总可变形为 a n+1-λ=a (a n -λ) …………………………(1) (1) 式中的λ与系数a, b 存在怎样的关系呢? 由(1)得a n+1=aa n +λ-a λ ∴b=λ-a λ即λ=a λ+b …………………………(2) 关于λ的方程(2)刚好是递推式a n+1=aa n +b 中的a n ,a n+1都换成λ得到的不动点方程。 令b n =a n -λ代入(1)得b n+1=ab n 一般来说,可先求等比数列{b n }的通项,再求数列{a n }的通项。 例1:在数列{a n }中,已知a 1=1,a n+1=1-21 a n (n ∈N +),求lim ∞ →n a n 。 解:令x=1- 21x 得x=32 a n+1-32=1-21a n -32=-21 (a n -3 2) 令b n =a n -32,则b n+1=-2 1 b n ∴数列{b n }成首项为b 1=a 1-32=1-32=31,公比为q =-2 1 的等比数列,于 是有

高二数学数列专题练习题含答案)

高中数学《数列》专题练习 1.n S 与n a 的关系:1 1(1)(1) n n n S n a S S n -=??=? ->?? ,已知n S 求n a ,应分1=n 时1a =1S ; 2≥n 时,n a =1--n n S S 两步,最后考虑1a 是否满足后面的n a . 2.等差等比数列

3.数列通项公式求法:(1)定义法(利用等差、等比数列的定义);(2)累加法;(3)累乘法( n n n c a a =+1 型);(4)利用公式1 1(1)(1) n n n S n a S S n -=??=?->??;(5)构造法(b ka a n n +=+1型);(6)倒数法等 4.数列求和 (1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。 5. n S 的最值问题:在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解: (1)当0,01<>d a 时,满足?? ?≤≥+001 m m a a 的项数m 使得m S 取最大值. (2)当 0,01>

高考数学_压轴题_放缩法技巧全总结(最强大)

放缩技巧 (高考数学备考资料) 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 1 2142的值; (2)求证:3 511 2 <∑=n k k . 解析:(1)因为 121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为 ??? ??+--=-=- <1211212144 4 11 1222 n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1) 1(1 ≥--<+n n n n n (15) 112 22 2+-+-+j i j i j i

不动点法求数列通项公式

不动点法求数列通项公式 This model paper was revised by the Standardization Office on December 10, 2020

不动点法求数列通项公式 通常为了求出递推数列a[n+1]=(ca[n]+d)/(ea[n]+f)【c、d、e、f是不全为0的常数,c、e不同时为0】的通项,我们可以采用不动点法来解.假如数列{a[n]}满足a[n+1]=f(a[n]),我们就称x=f(x)为函数f(x)的不动点方程,其根称为函数f(x)的不动点.至于为什么用不动点法可以解得递推数列的通项,这足可以写一本书.但大致的理解可以这样认为,当n趋于无穷时,如果数列{a[n]}存在极限,a[n]和a[n+1]是没有区别的. 首先,要注意,并不是所有的递推数列都有对应的不动点方程,比如:a[n+1]=a[n]+1/a[n].其次,不动点有相异不动点和重合不动点. 下面结合不动点法求通项的各种方法看几个具体的例子吧. ◎例1:已知a[1]=2,a[n+1]=2/(a[n]+1),求通项. 【说明:这题是“相异不动点”的例子.】 先求不动点 ∵a[n+1]=2/(a[n]+1) ∴令 x=2/(x+1),解得不动点为:x=1 和 x=-2 【相异不动点】 ∴(a[n+1]-1)/(a[n+1]+2) 【使用不动点】 =(2/(a[n]+1)-1)/(2/(a[n]+1)+2) =(2-a[n]-1)/(2+2a[n]+2) =(-a[n]+1)/(2a[n]+4) =(-1/2)(a[n]-1)/(a[n]+2) ∵a[1]=2 ∴(a[1]-1)/(a[1]+2)=1/4 ∴{(a[n]-1)/(a[n]+2)}是首项为1/4,公比为-1/2的等比数列

(完整版)高中数学数列专题练习(精编版)

高中数学数列专题练习(精编版) 1. 已知数列{}()n a n N * ∈是等比数列,且1 3 0,2,8.n a a a >== (1)求数列{}n a 的通项公式; (2)求证: 11111321<++++n a a a a Λ; (3)设1log 22+=n n a b ,求数列{}n b 的前100项和. 2.数列(1)(2)设 (3) n T 3. ? 4 .已知数列{}n a 的相邻两项1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根,且

11=a . (1) 求证: 数列? ?? ????-n n a 231是等比数列; (2) 求数列{}n b 的前n 项和n S . 5. 6. 划,万元,(1)b n 的表达式; (2) 7. 在等比数列{a n }(n ∈N*)中,已知a 1>1,q >0.设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0. (1)求数列{a n }、{b n }的通项公式a n 、b n ; (2)若数列{b n }的前n 项和为S n ,试比较S n 与a n 的大小.

8. 已知数列{a n }的前n 项和为S n ,且a n 是S n 与2的等差中项,数列{b n }中,b 1=1, 点P (b n ,b n+1)在直线x -y +2=0上。 (1)求a 1和a 2的值; (2)求数列{a n },{b n }的通项a n 和b n ; (3)设c n =a n ·b n ,求数列{c n }的前n 项和T n 。 9. 已知119 4-且 13n n b b -- 10. 已知等差数列{}a n 的前9项和为153. (1)求5a ; (2)若,82=a ,从数列{}a n 中,依次取出第二项、第四项、第八项,……,第2n 项,按原来的顺序组成一个新的数列{}c n ,求数列{}c n 的前n 项和S n .

相关主题
文本预览
相关文档 最新文档