当前位置:文档之家› VASP磁性计算总结篇

VASP磁性计算总结篇

VASP磁性计算总结篇
VASP磁性计算总结篇

以下是从VASP在线说明书整理出来的非线性磁矩和自旋轨道耦合的计算说明。非线性磁矩计算:

1)计算非磁性基态产生WAVECAR和CHGCAR文件。

2)然后INCAR中加上

ISPIN=2

ICHARG=1 或 11 !读取WAVECAR和CHGCAR文件

LNONCOLLINEAR=.TRUE.

MAGMOM=

注意:①对于非线性磁矩计算,要在x, y 和 z方向分别加上磁矩,如MAGMOM = 1 0 0 0 1 0 !表示第一个原子在x方向,第二个原子的y方向有磁矩

②在任何时候,指定MAGMOM值的前提是ICHARG=2(没有WAVECAR和CHGCAR 文件)或者ICHARG=1 或11(有WAVECAR和CHGCAR文件),但是前一步的计算是非磁性的(ISPIN=1)。

磁各向异性能(自旋轨道耦合)计算:

注意: LSORBIT=.TRUE. 会自动打开LNONCOLLINEAR= .TRUE.选项,且自旋轨道计算只适用于PAW赝势,不适于超软赝势。

自旋轨道耦合效应就意味着能量对磁矩的方向存在依赖,即存在磁各向异性能(MAE),所以要定义初始磁矩的方向。如下:

LSORBIT = .TRUE.

SAXIS = s_x s_y s_z (quantisation axis for spin)

默认值: SAXIS=(0+,0,1),即x方向有正的无限小的磁矩,Z方向有磁矩。

要使初始的磁矩方向平行于选定方向,有以下两种方法:

MAGMOM = x y z ! local magnetic moment in x,y,z

SAXIS = 0 0 1 ! quantisation axis parallel to z

or

MAGMOM = 0 0 total_magnetic_moment ! local magnetic moment parallel to SAXIS (注意每个原子分别指定)

SAXIS = x y z !quantisation axis parallel to vector (x,y,z),如 0 0 1两种方法原则上应该是等价的,但是实际上第二种方法更精确。第二种方法允许读取已存在的WAVECAR(来自线性或者非磁性计算)文件,并且继续另一个自旋方向的计算(改变SAXIS 值而MAGMOM保持不变)。当读取一个非线性磁矩计算的WAVECAR时,自旋方向会指定平行于SAXIS。

计算磁各向异性的推荐步骤是:

1)首先计算线性磁矩以产生WAVECAR 和 CHGCAR文件(注意加入LMAXMIX)。

2)然后INCAR中加入:

LSORBIT = .TRUE.

ICHARG = 11 ! non selfconsistent run, read CHGCAR

!或 ICHARG ==1 优化到易磁化轴,但此时应提高EDIFF的精度

LMAXMIX = 4 ! for d elements increase LMAXMIX to 4, f: LMAXMIX = 6 ! you need to set LMAXMIX already in the collinear calculation

SAXIS = x y z ! direction of the magnetic field 如0 0 1

NBANDS = 2 * number of bands of collinear run !grep NBANDS OUTCAR ISYM=0 !switch off symmetry (ISYM=0) when spin orbit coupling is selected GGA_COMPAT=.FALSE. ! it improves the numerical precision of GGA for non collinear calculations

LORBMOM=.TRUE. !计算轨道磁矩

继续计算,VASP会读取WAVECAR 和 CHGCAR将自旋量子化方向(磁场方向)平行于SAXIS方向。

最后可以比较各个方向磁矩时能量的不同。

注意:第二步使用自洽计算(ICHARG=1)原则上也是可以的,但是初始平行于SAXIS的磁场发生旋转,直到达到基态,如平行于易磁化轴,但这个过程会很慢且能量变化很小,而且如果收敛标准不是很严格的话,自洽计算会在未达到基态就停止。

注意: VASP的输入输出的磁矩和类自旋量都会按照这个SAXIS方向,包括INCAR 中的

MAGMOM行,OUTCAR和PROCAR文件中的总磁矩和局域磁矩,WAVECAR中的类自旋轨道和CHGCAR中的磁性密度。

MAGMOM-tag:

http://cms.mpi.univie.ac.at/vasp/vasp/MAGMOM_tag.html#incar-magmom LNONCOLLINEAR:http://cms.mpi.univie.ac.at/vasp/vasp/LNONCOLLINEAR_tag

.html

LSORBIT-tag http://cms.mpi.univie.ac.at/vasp/vasp/LSORBIT_tag.html

问题:①第一步线性计算得到WAVECAR 和 CHGCAR文件,必须是静态计算的WAVECAR 和 CHGCAR文件吗?动态优化的可不可以?静态计算需要使用NUPDOWN 锁定磁矩吗?

②进行非线性磁矩或自旋轨道耦合计算的时候,结构需不需要重新优化?我现在的做法是:先加入LMAXMIX = 4结构优化,然后仍然使用LMAXMIX = 4静态计算(ICHARG=2,LWAVE=.TRUE.,LCHARG=.TRUE.),然后进行高收敛标准的静态的soc自洽计算来考虑soc的影响,也不知对不对。

spin-orbit计算求助!

最近用spin-orbit计算体系的磁性总是出错,现将计算过程中的一些问题和疑惑贴出来,求大虾解答:

1. 用spin-orbit与spin-polarizedINCAR文件的不同有哪些?除了需要加

LSORBIT=.TRUE.

SAXIS =X Y Z

NBANDS变为共线的两倍,MAGMON也变为xyz方向之外

需不需要加

GGA_COMPAT=.FALSE.

ISYM =0

呢?(这是在VASP手册上看到的)

2.自旋量子轴SAXIS =X Y Z 应该怎么设置啊?应该与体系晶格结构有关,轴的设置应该根据实空间晶格设置呢,还是根据倒空间晶格设置呢,求举例!

3.根据VASP手册上提供的方法,计算spin-orbit之前应该先计算共线情况下的WAVECAR 和CHGCAR,然后再开始spin-orbit的计算。

但是我在计算的时候导入之前计算的WAVECAR和CHGCAR,计算总会出错,不知道是什么原因?是不是应该计算非共线情况下的WAVECAR和CHGCAR,然后再计算spin-orbit呢?

4.计算spin-orbit需不需要使用超胞呢?(掺杂或者不掺杂的情况下)

使用超胞的计算结果该怎么分析呢?

5.计算spin-orbit对赝势(譬如GGA-PBE等)有没有要求,对算法(譬如ALGO=Normal、ALGO=Damped等),对计算精度等有没有要求?

回答

1.ISYM =0在打开SO时要加,用GGA交换泛函时需要用GGA_COMPAT=.FALSE.改善精

度。

2. SAXIS和MAGMOM有两种常用设置,手册上有介绍,默认是0 0 1方向,是相对实

空间笛卡尔坐标系的。一种是SAXIX为0 0 1方向,此时MAGMOM为任意方向,另外一种是MAGMOM均为0 0 z或0 0 -z方向,SAXIX为任意方向,第二种允许读取先前存在的共线或非共线电荷密度和波函数,且精度更高。

3. 导入之前计算的WAVECAR和CHGCAR出错原因是KPOINTS在SO打开时对称性发

生变化。你可以用SO生成的IBZKPT,然后拷贝为KPOINTS,重新计算WAVECAR和CHGCAR,然后再读取就可以了。

4. 不需要用超胞!

5. SO只支持PAW赝势,对精度要求高,能量精度EDIFF一般为10^-7eV.

2)SOC版本:

cp makefile.mpi makefile.soc

在makefile.soc修改

CPP =$(CPP_) -DMPI -DHOST=\"LinuxIFC\" -DIFC \

-DCACHE_SIZE=5000 -DPGF90 -Davoidalloc -DNGZhalf \

-DMPI_BLOCK=262144 -Duse_collective -DscaLAPACK \

-DRPROMU_DGEMV -DRACCMU_DGEMV

中去掉-DNGZhalf

然后make -f makefile.soc 得到vasp ,并mv vasp vasp.mpi.soc.neb

MAE(磁各向异性能)-非共线磁矩计算

SYSTEM = Fe/Gra

LREAL= Auto

ALGO=Fast

IALGO=48

ISYM = 0

ISTART = 1

ICHARG = 11

ENCUT = 500

NPAR=2

ISMEAR = 0 ; SIGMA = 0.2 GGA=91; VOSKOWN=1 GGA_COMPAT=.FALSE.

ISPIN=2

#MAGMOM=1*5 2*0 1*4 LORBIT = 11 LNONCOLLINEAR=.TRUE. LSORBIT=.TRUE

LORBMOM=.TRUE

SAXIS= 0 0 1

MAGMOM=0 0 0 0 0 0 0 0 4 LMAXMIX = 4

IBRION =2

LWAVE=.F; LCHARG=.F

EDIFF = 1E-5 ; EDIFFG = -0.001

VASP参数设置详解

VASP参数设置详解 计算材料2010-11-30 20:11:32 阅读197 评论0 字号:大中小订阅 转自小木虫,略有增减 软件主要功能: 采用周期性边界条件(或超原胞模型)处理原子、分子、团簇、纳米线(或管)、薄膜、晶体、准晶和无定性材料,以及表面体系和固体 l 计算材料的结构参数(键长、键角、晶格常数、原子位置等)和构型 l 计算材料的状态方程和力学性质(体弹性模量和弹性常数) l 计算材料的电子结构(能级、电荷密度分布、能带、电子态密度和ELF) l 计算材料的光学性质 l 计算材料的磁学性质 l 计算材料的晶格动力学性质(声子谱等) l 表面体系的模拟(重构、表面态和STM模拟) l 从头分子动力学模拟 l 计算材料的激发态(GW准粒子修正) 计算主要的四个参数文件:INCAR ,POSCAR,POTCAR ,KPOINTS,下面简要介绍,详细权威的请参照手册 INCAR文件: 该文件控制VASP进行何种性质的计算,并设置了计算方法中一些重要的参数,这些参数主要包括以下几类: 对所计算的体系进行注释:SYSTEM

●定义如何输入或构造初始的电荷密度和波函数:ISTART,ICHARG,INIWAV ●定义电子的优化 –平面波切断动能和缀加电荷时的切断值:ENCUT,ENAUG –电子部分优化的方法:ALGO,IALGO,LDIAG –电荷密度混合的方法:IMIX,AMIX,AMIN,BMIX,AMIX_MAG,BMIX_MAG,WC,INIMIX,MIXPRE,MAXMIX –自洽迭代步数和收敛标准:NELM,NELMIN,NELMDL,EDIFF ●定义离子或原子的优化 –原子位置优化的方法、移动的步长和步数:IBRION,NFREE,POTIM,NSW –分子动力学相关参数:SMASS,TEBEG,TEEND,POMASS,NBLOCK,KBLOCK,PSTRESS –离子弛豫收敛标准:EDIFFG ●定义态密度积分的方法和参数 –smearing方法和参数:ISMEAR,SIGMA –计算态密度时能量范围和点数:EMIN,EMAX,NEDOS –计算分波态密度的参数:RWIGS,LORBIT ●其它 –计算精度控制:PREC –磁性计算:ISPIN,MAGMOM,NUPDOWN –交换关联函数:GGA,VOSKOWN –计算ELF和总的局域势:LELF,LVTOT –结构优化参数:ISIF –等等。 主要参数说明如下: ?SYSTEM:该输入文件所要执行的任务的名字。取值:字符串,缺省值:SYSTEM ?NWRITE:输出内容详细程度。取值:0~4,缺省值:2

vasp 安装心得

VASP5.2安装心得 2014-05-07 来源:小木虫作者: yysskk 花了五天时间终于学会怎么装VASP了,在此写下心得体会,供后人参考。个人觉得最难的一步就是makefile文件,网上流传着各种各样的版本,每个人都说自己编译成功了,却又各不相同,也说不清为什么,给新手极大的困扰。在此会详细介绍makefile的文件结构。其余大部分内容都是参考前人的,就不一一注明出处了。 一、系统、编译程序及准备工作 我用的是centos6.5+icc2011+ifort2011+openmpi1.6.5 1.1编译器安装 系统安装不说了,网上教程多得是。Icc和ifort可以申请免费非商业版本,icc和ifort都各自带了一个MKL,使用的时候别搞混了。装2011的时候会缺组件,用yum都可以免费下载。装编译器的时候会要求关闭selinux,按照给出的步骤关闭即可。之后会说系统不兼容,但是可以继续装,默认安装路径是在/opt下面。装完之后会有提示,把安装目录 /bin/ifortvars.sh 写到环境变量中,注意32/64位系统的参数不一样。C语言编译器建议用icc,毕竟是intel出品,针对自家cpu肯定有大量优化,效率上高于gcc是肯定的。这是装完之后的提示: For csh/tcsh: $ source install-dir/bin/compilervars.csh intel64 For bash: $ source install-dir/bin/compilervars.sh intel64 To invoke the installed compilers:

vasp在计算磁性的实例和讨论

兄弟,问3个问题 1,vasp在计算磁性的时候,oszicar中得到的磁矩和outcar中得到各原子磁矩之和不一致,在投稿的是否曾碰到有审稿人质疑,对于这个不一致你们一般是怎么解释的了? 2,另外,磁性计算应该比较负责。你应该还使用别的程序计算过磁性,与vasp结果比较是否一致,对磁性计算采用的程序有什么推荐。 ps:由于曾使用vasp和dmol算过非周期体系磁性,结构对磁性影响非常大,因此使用这两个程序计算的磁性要一致很麻烦。还不敢确定到底是哪个程序可能不可靠。 3,如果采用vasp计算磁性,对采用的方法和设置有什么推荐。 1,OSZICAR中得到的磁矩是OUTCAR中最后一步得到的总磁矩是相等的。总磁矩和各原子的磁矩(RMT球内的磁矩)之和之差就是间隙区的磁矩。因为有间隙区存在,不一致是正常的。 2,如果算磁性,全电子的结果更精确,我的一些计算结果显示磁性原子对在最近邻的位置时,PAW与FPLAW给出的能量差不一致,在长程时符合的很好。虽然并没有改变定性结论。感觉PAW似乎不能很好地描述较强耦合。我试图在找出原因,主要使用exciting和vasp做比较。计算磁性推荐使用FP-LAPW, FP-LMTO, FPLO很吸引人(不过是商业的),后者是O(N)算法。 3,使用vasp计算磁性,注意不同的初始磁矩是否收敛为同一个磁矩。倒没有特别要注意的地方,个人认为。 归根结底,需要一个优秀的交换关联形式出现 VASP计算是否也是像计算DOS和能带一样要进行三步(结构优化,静态自洽计算,非自洽计算),然后看最后一步的出的磁矩呢? 一直想计算固体中某个原子的磁矩,根据OUTCAR的结果似乎不能分析,因为它里面总磁矩跟OSZICAR的值有一定的差别,据说是OUTCAR中只考虑WS半径内磁矩造成的。最近看到一个帖子说是可以用bader电荷分析方法分析原子磁矩。如法炮制之后发现给出的总磁矩与OSZICAR的结果符合的甚好,可是觉得没有根据,有谁知道这样做的依据吗,欢迎讨论! 设置ISPIN=2计算得到的态密度成为自旋态密度。 设置ISPIN=2就可以计算磁性,铁磁和反铁磁在MAG里设置。最后得到的DOS是分up和down的。 磁性计算 (2006-12-03 21:02) 标签: - 分类:Vasp ·磁性计算

VASP使用总结

VASP计算的理论及实践总结 一、赝势的选取 二、收敛测试 1、VASP测试截断能和K 点 2、MS测试 三、结构弛豫 四、VASP的使用流程(计算性质) 1、VASP的四个输入文件的设置 2、输出文件的查看及指令 3、计算单电能 (1) 测试截断能 (2) 测试K点 4、进行结构优化 5、计算弹性常数 6、一些常用指令

一、赝势的选取 VASP赝势库中分为:PP和PAW两种势,PP又分为SP(标准)和USPP(超软)。 交换关联函数分为:LDA(局域密度近似)和GGA(广义梯度近似)。GGA 又分为PW91和PBE。 在VASP中,其中pot ,pot-gga是属于超软势(使用较少)。Paw, paw-pbe ,和paw-gga是属于PAW。采用较多的是PAW-pbe 和PAW-gga。 此外vasp 中的赝势分为几种,包扩标准赝势(没有下标的)、还有硬(harder)赝势(_h)、软(softer)赝势(_s), 所谓的硬(难以赝化),就是指该元素原子的截断动能比较大,假想的势能与实际比较接近,计算得到的结果准确,但比较耗时,难以收敛。软(容易赝化),表示该元素原子的截断动能比较小,赝势模型比较粗糙,但相对简单,可以使计算很快收敛(比如VASP开发的超软赝势)。即硬的赝势精度高,但计算耗时。软的精度低,容易收敛,但节省计算时间。 另一种情况:如Gd_3,这是把f电子放入核内处理,对于Gd来说,f电子恰好半满。所以把f电子作为价电子处理的赝势还是蛮好的(类似还有Lu,全满)。(相对其他的4f元素来说,至于把f电子作为芯内处理,是以前对4f元素的通用做法。计算结果挺好) 常用的做法是:用两种赝势测试一下对自己所关心的问题的影响情况。在影响不大的情况下,选用不含4f电子的赝势(即后缀是3),一来减少计算量,二来避免DFT对4f电子的处理。 【1.赝势的选择: vasp的赝势文件放在目录~/vasp/potentials 下,可以看到该目录又包含五个子目录pot pot_GGA potpaw potpaw_GGA potpaw_PBE ,其中每一个子目录对应一种赝势形式。

VASP几个计算实例

用VASP计算H原子的能量 氢原子的能量为。在这一节中,我们用VASP计算H原子的能量。对于原子计算,我们可以采用如下的INCAR文件 PREC=ACCURATE NELMDL=5make five delays till charge mixing ISMEAR=0;SIGMA=0.05use smearing method 采用如下的KPOINTS文件。由于增加K点的数目只能改进描述原子间的相互作用,而在单原子计算中并不需要。所以我们只需要一个K点。 Monkhorst Pack0Monkhorst Pack 111 000 采用如下的POSCAR文件 atom1 15.00000.00000.00000 .0000015.00000.00000 .00000.0000015.00000 1 cart 000 采用标准的H的POTCAR 得到结果如下: k-point1:0.00000.00000.0000 band No.band energies occupation 1-6.3145 1.00000 2-0.05270.00000 30.48290.00000 40.48290.00000 我们可以看到,电子的能级不为。 Free energy of the ion-electron system(eV) --------------------------------------------------- alpha Z PSCENC=0.00060791 Ewald energy TEWEN=-1.36188267 -1/2Hartree DENC=-6.27429270 -V(xc)+E(xc)XCENC= 1.90099128 PAW double counting=0.000000000.00000000 entropy T*S EENTRO=-0.02820948 eigenvalues EBANDS=-6.31447362 atomic energy EATOM=12.04670449 ---------------------------------------------------

VASP控制参数文件INCAR的简单介绍

限于能力,只对部分最基本的一些参数(>,没有这个标志的参数都是可以不出现的) 详细说明,在这里只是简单介绍这些参数的设置,详细的问题在后文具体示例中展开。 部分可能会干扰VASP运行的参数在这里被刻意隐去了,需要的同学还是请查看VASP自带的帮助文档原文。 参数列表如下: >SYSTEM name of System 任务的名字*** >NWRITE verbosity write-flag (how much is written) 输出内容详细程度0-3 缺省2 如果是做长时间动力学计算的话最好选0或1(首末步/每步核运动输出) 据说也可以结合shell的tail或grep命令手动输出 >ISTART startjob: restart选项0-3 缺省0/1 for 无/有前次计算的WAVECAR(波函数) 1 'restart with constant energy cut-off' 2 'restart with constant basis set' 3 'full restart including wave function and charge prediction' ICHARG charge: 1-file 2-atom 10-const Default:if ISTART=0 2 else 0 ISPIN spin polarized calculation (2-yes 1-no) default 2 MAGMOM initial mag moment / atom Default NIONS*1 INIWAV initial electr wf. : 0-lowe 1-rand Default 1 only used for start jobs (ISTART=0) IDIPOL calculate monopole/dipole and quadrupole corrections 1-3 只计算第一/二/三晶矢方向适于slab的计算 4 全部计算尤其适于就算孤立分子 >PREC precession: medium, high or low(VASP.4.5+ also: normal, accurate) Default: Medium VASP4.5+采用了优化的accurate来替代high,所以一般不推荐使用 high。不过high可以确保'绝对收敛',作为参考值有时也是必要的。 同样受推荐的是normal,作为日常计算选项,可惜的是说明文档提供的信息不足。 受PREC影响的参数有四类:ENCUT; NGX,NGY,NGZ; NGXF, NGYF, NGZF; ROPT 如果设置了PREC,这些参数就都不需要出现了 当然直接设置相应的参数也是同样效果的,这里不展开了,随后详释

最新VASP磁性计算总结篇

以下是从VASP在线说明书整理出来的非线性磁矩和自旋轨道耦合的计算说明。非线性磁矩计算: 1)计算非磁性基态产生WAVECAR和CHGCAR文件。 2)然后INCAR中加上 ISPIN=2 ICHARG=1 或11 !读取WAVECAR和CHGCAR文件 LNONCOLLINEAR=.TRUE. MAGMOM= 注意:①对于非线性磁矩计算,要在x, y 和z方向分别加上磁矩,如MAGMOM = 1 0 0 0 1 0 !表示第一个原子在x方向,第二个原子的y 方向有磁矩 ②在任何时候,指定MAGMOM值的前提是ICHARG=2(没有WAVECAR和CHGCAR 文件)或者ICHARG=1 或11(有WAVECAR和CHGCAR文件),但是前一步的计算是非磁性的(ISPIN=1)。 磁各向异性能(自旋轨道耦合)计算: 注意:LSORBIT=.TRUE. 会自动打开LNONCOLLINEAR= .TRUE.选项,且自旋轨道计算只适用于PAW赝势,不适于超软赝势。 自旋轨道耦合效应就意味着能量对磁矩的方向存在依赖,即存在磁各向异性能(MAE),所以要定义初始磁矩的方向。如下: LSORBIT = .TRUE. SAXIS = s_x s_y s_z(quantisation axis for spin) 默认值:SAXIS=(0+,0,1),即x方向有正的无限小的磁矩,Z方向有磁矩。 要使初始的磁矩方向平行于选定方向,有以下两种方法: MAGMOM = x y z ! local magnetic moment in x,y,z SAXIS = 0 0 1 ! quantisation axis parallel to z or MAGMOM = 0 0 total_magnetic_moment ! local magnetic moment parallel to SAXIS (注意每个原子分别指定) SAXIS = x y z !quantisation axis parallel to vector (x,y,z),如 0 0 1 两种方法原则上应该是等价的,但是实际上第二种方法更精确。第二种方法允许读取已存在的WAVECAR(来自线性或者非磁性计算)文件,并且继续另一个自旋方向的计算(改变SAXIS 值而MAGMOM保持不变)。当读取一个非线性磁矩计算的WAVECAR时,自旋方向会指定平行于SAXIS。

VASP计算前的各种测试

BatchDoc Word文档批量处理工具 (计算前的)验证 一、检验赝势的好坏: (一)方法:对单个原子进行计算; (二)要求:1、对称性和自旋极化均采用默认值; 2、ENCUT要足够大; 3、原胞的大小要足够大,一般设置为15 ?足矣,对某些元素还可以取得更小一些。 (三)以计算单个Fe原子为例: 1、INCAR文件: SYSTEM = Fe atom ENCUT = 450.00 eV NELMDL = 5 ! make five delays till charge mixing,详细意义见注释一 ISMEAR = 0 SIGMA=0.1 2、POSCAR文件: atom 15.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1 Direct 0 0 0 3、KPOINTS文件:(详细解释见注释二。) Automatic Gamma 1 1 1 0 0 0 4、POTCAR文件:(略) 注释一:关键词“NELMDL”: A)此关键词的用途:指定计算开始时电子非自洽迭代的步数(即

NELMDL gives the number of non-selfconsistent steps at the beginning), 文档批量处理工具BatchDoc Word 文档批量处理工具BatchDoc Word densitycharge fastermake calculations 。目的是“非自洽”指的是保持“非自Charge density is used to set up the Hamiltonian, 所以不变,由于洽”也指保持初始的哈密顿量不变。: B)默认值(default value)(时) 当ISTART=0, INIWANELMDL = -5 V=1, and IALGO=8 ) ISTART=0, INIWA V=1, and IALGO=48( NELMDL = -12 时当 ) 其他情况下NELMDL = 0 ( NELMDL might be positive or negative. ionic each applied means A positive number that after a delay is (movement -- in general not a convenient option. )在每次核运动之后(只在A negative value results in a delay only for the start-configuration. 第一步核运动之前)NELMDL”为什么可以减少计算所需的时间?C)关键词“ the the is Charge density used Hamiltonian, to set then up wavefunctions are optimized iteratively so that they get closer to the exact a optimized wavefunctions wavefunctions of Hamiltonian. this From the old with density charge is calculated, the which is then mixed new Manual P105input-charge density. A brief flowchart is given below.(参自页) 是比较离谱的,在前一般情况下,the initial guessed wavefunctions 不变、保持初始的density次非自洽迭代过程中保持NELMDLcharge

VASP-INCAR参数设置

V A S P-I N C A R参数设置-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1. 结构优化 (Opt) SYSTEM = opt ISTART = 0 INIWAV = 1 ICHARG = 2 ISPIN = 2 LREAL = Auto ENCUT = 400 PREC = high NSW= 600 NELM = 60 IBRION = 2 ISIF = 2 POTIM = 0.1 ALGO= Fast LVDW = .TRUE. EDIFF = 1E-5 EDIFFG = 1E-4 or -0.05 # 体系需计算TS时,全部结构优化EDIFFG均设置为-0.05 ISMEAR = 0 SIGMA = 0.2 LCHARG = .FALSE. LWAVE = .FALSE.

2. 过渡态搜索 (TS): 计算时先进行低精度计算,再进行高精度计算 SYSTEM= TS ISTART = 0 INIWAV = 1 ICHARG = 2 ISPIN = 2 LREAL = Auto ENCUT = 400 PREC = high NSW = 600 NELMIN = 6 IBRION = 3 or 1 # 过渡态计算低精度为3,高精度为1 ISIF = 2 POTIM = 0.01 ALGO = Fast LVDW = .TRUE. EDIFF = 1E-5 EDIFFG = -1 or -0.05 # 过渡态计算低精度为-1,高精度为-0.05 ISMEAR = 0 SIGMA = 0.05 LCHARG= .FALSE. LWAVE= .FALSE. IMAGES=8 # TS专属设置 SPRING=-5 # TS专属设置 LCLIMB=.TRUE. # TS专属设置

vasp计算参数设置

软件主要功能: 采用周期性边界条件(或超原胞模型)处理原子、分子、团簇、纳米线(或管)、薄膜、晶体、准晶和无定性材料,以及表面体系和固体 l 计算材料的结构参数(键长、键角、晶格常数、原子位置等)和构型 l 计算材料的状态方程和力学性质(体弹性模量和弹性常数) l 计算材料的电子结构(能级、电荷密度分布、能带、电子态密度和ELF) l 计算材料的光学性质 l 计算材料的磁学性质 l 计算材料的晶格动力学性质(声子谱等) l 表面体系的模拟(重构、表面态和STM模拟) l 从头分子动力学模拟 l 计算材料的激发态(GW准粒子修正) 计算主要的四个参数文件:INCAR ,POSCAR,POTCAR ,KPOINTS,下面简要介绍,详细权威的请参照手册 INCAR文件: 该文件控制VASP进行何种性质的计算,并设置了计算方法中一些重要的参数,这些参数主要包括以下几类: l 对所计算的体系进行注释:SYSTEM l 定义如何输入或构造初始的电荷密度和波函数:ISTART,ICHARG,INIWA V l 定义电子的优化 –平面波切断动能和缀加电荷时的切断值:ENCUT,ENAUG –电子部分优化的方法:ALGO,IALGO,LDIAG –电荷密度混合的方法:IMIX,AMIX,AMIN,BMIX,AMIX_MAG,BMIX_MAG,WC,INIMIX,MIXPRE,MAXMIX –自洽迭代步数和收敛标准:NELM,NELMIN,NELMDL,EDIFF l 定义离子或原子的优化 –原子位置优化的方法、移动的步长和步数:IBRION,NFREE,POTIM,NSW –分子动力学相关参数:SMASS,TEBEG,TEEND,POMASS,NBLOCK,KBLOCK,PSTRESS –离子弛豫收敛标准:EDIFFG l 定义态密度积分的方法和参数 –smearing方法和参数:ISMEAR,SIGMA –计算态密度时能量范围和点数:EMIN,EMAX,NEDOS –计算分波态密度的参数:RWIGS,LORBIT l 其它 –计算精度控制:PREC –磁性计算:ISPIN,MAGMOM,NUPDOWN –交换关联函数:GGA,VOSKOWN –计算ELF和总的局域势:LELF,LVTOT –结构优化参数:ISIF –等等。 主要参数说明如下: ? SYSTEM:该输入文件所要执行的任务的名字。取值:字符串,缺省值:SYSTEM

初学VASP中电子态密度计算设置参考

初学VASP中电子态密度计算基本设置参考主要分成三步:一、结构优化;二、静态自洽计算;三、非自洽计算以Al-FCC为例子 第一步结构优化 输入文件(INCAR, POTCAR, POSCAR, KPOINT) INCAR文件 System=Al ISTART=0 ISMEAR=1 SIGMA=0.2 ISPIN=2 GGA=91; VOSKOWN=1; EDIFF=0.1E-05; EDIFFG=-0.01 IBRION=2 NSW=50 ISIF=2 (OR 3) NPAR=10 POTCAR 文件直接在势库中拷贝 POSCAR文件 Al 4.05 1.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 1.0 4 Direct 0.0 0.0 0.0 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 KPOINT 文件 Automatic generation Mohkorst Pack 15 15 15 0.0 0.0 0.0 第二步静态自洽计算 INCAR:PREC = Medium,ISTART = 0,ICHARG = 2,ISMEAR = -5输入文件(INCAR, POTCAR, POSCAR, KPOINT) INCAR文件 System=Al ISTART=0 ISMEAR=1 SIGMA=0.2 ISPIN=2

GGA=91; VOSKOWN=1; EDIFF=0.1E-05; EDIFFG=-0.01 #IBRION=2 #NSW=50 #ISIF=2 (OR 3) NPAR=10 POTCAR 文件直接在势库中拷贝 POSCAR文件 Al 4.05 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 4 Selective Dynamic Direct 0.0 0.0 0.0 T T T 0.5 0.5 0.0 T T T 0.5 0.0 0.5 T T T 0.0 0.5 0.5 T T T KPOINT 文件 Automatic generation

VASP经典学习教程,有用

VASP 学习教程太原理工大学量子化学课题组 2012/5/25 太原

目录 第一章Linux命令 (1) 1.1 常用命令 (1) 1.1.1 浏览目录 (1) 1.1.2 浏览文件 (1) 1.1.3 目录操作 (1) 1.1.4 文件操作 (1) 1.1.5 系统信息 (1) 第二章SSH软件使用 (2) 2.1 软件界面 (2) 2.2 SSH transfer的应用 (3) 2.2.1 文件传输 (3) 2.2.2 简单应用 (3) 第三章V ASP的四个输入文件 (3) 3.1 INCAR (3) 3.2 KPOINTS (4) 3.3 POSCAR (4) 3.4 POTCAR (5) 第四章实例 (5) 4.1 模型的构建 (5) 4.2 V ASP计算 (8) 4.2.1 参数测试 (8) 4.2.2 晶胞优化(Cu) (13) 4.2.3 Cu(100)表面的能量 (2) 4.2.4 吸附分子CO、H、CHO的结构优化 (2) 4.2.5 CO吸附于Cu100表面H位 (4) 4.2.6 H吸附于Cu100表面H位 (5) 4.2.7 CHO吸附于Cu100表面B位 (6) 4.2.8 CO和H共吸附于Cu100表面 (7) 4.2.9 过渡态计算 (8)

第一章Linux命令 1.1 常用命令 1.1.1 浏览目录 cd: 进入某个目录。如:cd /home/songluzhi/vasp/CH4 cd .. 上一层目录;cd / 根目录; ls: 显示目录下的文件。 注:输入目录名时,可只输入前3个字母,按Tab键补全。1.1.2 浏览文件 cat:显示文件内容。如:cat INCAR 如果文件较大,可用:cat INCAR | more (可以按上下键查看) 合并文件:cat A B > C (A和B的内容合并,A在前,B在后) 1.1.3 目录操作 mkdir:建立目录;rmdir:删除目录。 如:mkdir T-CH3-Rh111 1.1.4 文件操作 rm:删除文件;vi:编辑文件;cp:拷贝文件 mv:移动文件;pwd:显示当前路径。 如:rm INCAR rm a* (删除以a开头的所有文件) rm -rf abc (强制删除文件abc) tar:解压缩文件。压缩文件??rar 1.1.5 系统信息 df:分区占用大小。如:df -h du:各级目录的大小。 top:运行的任务。 ps ax:查看详细任务。 kill:杀死任务。如:kill 12058 (杀死PID为12058的任务)注:PID为top命令的第一列数字。

VASP遇到小总结问题

VASP 计算的过程遇到的问题 01、第一原理计算的一些心得 (1)第一性原理其实是包括基于密度泛函的从头算和基于Hartree-Fock自洽计算的从头算,前者以电子密度作为基本变量(霍亨伯格-科洪定理),通过求解Kohn-Sham方程,迭代自洽得到体系的基态电子密度,然后求体系的基态性质;后者则通过自洽求解Hartree-Fock方程,获得体系的波函数,求基态性质; 评述:K-S方程的计算水平达到了H-F水平,同时还考虑了电子间的交换关联作用。 (2)关于DFT中密度泛函的Functional,其实是交换关联泛函 包括LDA,GGA,杂化泛函等等 一般LDA为局域密度近似,在空间某点用均匀电子气密度作为交换关联泛函的唯一变量,多数为参数化的CA-PZ方案; GGA为广义梯度近似,不仅将电子密度作为交换关联泛函的变量,也考虑了密度的梯度为变量,包括PBE,PW,RPBE等方案,BL YP泛函也属于GGA; 此外还有一些杂化泛函,B3L YP等。 (3)关于赝势 在处理计算体系中原子的电子态时,有两种方法,一种是考虑所有电子,叫做全电子法,比如WIEN2K中的FLAPW方法(线性缀加平面波);此外还有一种方法是只考虑价电子,而把芯电子和原子核构成离子实放在一起考虑,即赝势法,一般赝势法是选取一个截断半径,截断半径以内,波函数变化较平滑,和真实的不同,截断半径以外则和真实情况相同,而且赝势法得到的能量本征值和全电子法应该相同。 赝势包括模守恒和超软,模守恒较硬,一般需要较大的截断能,超软势则可以用较小的截断能即可。另外,模守恒势的散射特性和全电子相同,因此一般红外,拉曼等光谱的计算需要用模守恒势。 赝势的测试标准应是赝势与全电子法计算结果的匹配度,而不是赝势与实验结果的匹配度,因为和实验结果的匹配可能是偶然的。 (4)关于收敛测试 (a)Ecut,也就是截断能,一般情况下,总能相对于不同Ecut做计算,当Ecut增大时总能变化不明显了即可;然而,在需要考虑体系应力时,还需对应力进行收敛测试,而且应力相对于Ecut的收敛要比总能更为苛刻,也就是某个截断能下总能已经收敛了,但应力未必收敛。 (b)K-point,即K网格,一般金属需要较大的K网格,采用超晶胞时可以选用相对较小的K网格,但实际上还是要经过测试。 (5)关于磁性 一般何时考虑自旋呢?举例子,例如BaTiO3中,Ba、Ti和O分别为+2,+4和-2价,离子全部为各个轨道满壳层的结构,就不必考虑自旋了;对于BaMnO3中,由于Mn+3价时d 轨道还有电子,但未满,因此需考虑Mn的自旋,至于Ba和O则不必考虑。其实设定自旋就是给定一个原子磁矩的初始值,只在刚开始计算时作为初始值使用,具体的可参照磁性物理。 (6)关于几何优化 包括很多种了,比如晶格常数和原子位置同时优化,只优化原子位置,只优化晶格常数,还有晶格常数和原子位置分开优化等等。

用VASP进行Partial Charge分析实例

用VASP进行Partial Charge分析实例 VASP Version : 4.6 在这篇文章中,我将首先介绍Partial Charge的概念,以及如何用VASP具体的计算Partial Charge。首先,所谓的Partial Charge是针对与Total Charge来说的,指的是某个能量范围、某个K点或者某个特定的态所对应的电荷密度。在文献中最常见的是价带顶部,导带底部,表面态或者局域态所对应的Partial Charge。通过分析这些态所对应的Partial Charge,可以得到体系的一些性质,比如局域态具体的是局域在哪个原子上等。我将通过具体的例子说明如何用VASP进行Partial Charge Analysis。 进行Partial Charge Analysis的第一步是进行自洽的计算,得到体系的电子结构。这一步的计算采用通常的INCAR和KPOINTS文件。在自洽计算结束后,我们需要保存WAVECAR文件。(通过在INCAR文件中设置LWAVE=TRUE实现)在这个例子中,假设我们需要计算一个硅纳米线的导带和价带的Partial Charge。硅纳米线的结构如下: 第二步是画出能带结构,以决定你需要画哪条能带的那个K点的态所对应的Partial Charge。关于具体如何用VASP画能带,请参见用VASP4.6计算晶体硅能带实例一文。我们得到硅纳米线的能带结构如下: 画能带时有些小技巧。你可以用一些支持列模块的编辑器,如UltraEdit,将OUTCAR里的各个K点所对应的本征值粘贴到Origin中。这一步完成后,在Origin中做一个矩阵转置,然后将K点坐标贴到第一列,并将其设为X坐标。如此画出来的基本上就是能带图了。在Origin 中可以通过设置纵轴范围来更加清楚的区分费米能级附近的各条能带。如上的硅纳米线所对应的能带结构图如下: 决定画哪条能带,或者那些感兴趣的K点之后,有如下几种方法计算不同的Partial Charge。如果你希望计算价带顶端的Partial Charge,则需要首先通过能带结构图确定价带的能带标号。需要注意,进行Partial Charge分析必须要保留有自洽计算的WAVECAR才可以。 第一种Partial Charge分析的INCAR ISTART = 1 job : 0-new 1-cont 2-samecut ICHARG = 1 charge: 1-file 2-atom 10-const LPARD=.TRUE. IBAND= 20 21 22 23 KPUSE= 1 2 3 4 LSEPB=.TRUE. LSEPK=.TRUE. 这样的INCAR给出的是指定能带,指定K点所对应的Partial Charge。分析导带、价带等的Partial Charge特性,通常采用的都是这种模式。 第二种Partial Charge分析的INCAR ISTART = 1 job : 0-new 1-cont 2-samecut ICHARG = 1 charge: 1-file 2-atom 10-const LPARD=.TRUE. EINT = -10.3 -5.1 LSEPB=.FALSE. LSEPK=.FALSE. 这样的INCAR给出的是在能量之间的Partial Charge。这种模式适合于分析某个能量区间内的波函数的性质。 第三种Partial Charge分析的INCAR ISTART = 1 job : 0-new 1-cont 2-samecut

初学VASP最重要的INCAR参数

初学VASP(六) 最重要的INCAR参数 初学VASP(六) 最重要的INCAR参数 INCAR是决定how to do 的文件 限于能力,只对部分最基本的一些参数(>,没有这个标志的参数都是可以不出现的) 详细说明,在这里只是简单介绍这些参数的设置,详细的问题在后文具体示例中展开。 部分可能会干扰VASP运行的参数在这里被刻意隐去了,需要的同学还是请查看VASP自带 的帮助文档原文。 参数列表如下: >SYSTEM name of System 任务的名字 *** >NWRITE verbosity write-flag (how much is written) 输出内容详细程度 0-3 缺省2 如果是做长时间动力学计算的话最好选0或1(首末步/每步核运动输出) 据说也可以结合shell的tail或grep命令手动输出 >ISTART startjob: restart选项 0-3 缺省0/1 for 无/有前次计算的WAVECAR(波函数) 1 'restart with constant energy cut-off' 2 'restart with constant basis set' 3 'full restart including wave function and charge prediction' ICHARG charge: 1-file 2-atom 10-const Default:if ISTART=0 2 else 0 ISPIN spin polarized calculation (2-yes 1-no) default 2 MAGMOM initial mag moment / atom Default NIONS*1 INIWAV initial electr wf. : 0-lowe 1-rand Default 1 only used for start jobs (ISTART=0) IDIPOL calculate monopole/dipole and quadrupole corrections 1-3 只计算第一/二/三晶矢方向适于slab的计算 4 全部计算尤其适于就算孤立分子 >PREC precession: medium, high or low(VASP.4.5+ also: normal, accurate)

VASP磁性计算总结篇

在线说明书整理出来的非线性磁矩和自旋轨道耦以下是从VASP 合的计算说明。非线性磁矩计算:和CHGCAR文件。1)计算非 磁性基态产生WAVECAR)然后INCAR中加上2ISPIN=2文件和CHGCAR11 !读取WAVECAR ICHARG=1 或LNONCOLLINEAR=.TRUE. MAGMOM= 注意:①对于非线性磁矩计算,要在x, y 和 z方向分别加上磁 矩,如 MAGMOM = 1 0 0 0 1 0 !表示第一个原子在x方向,第二个 原子的y方向有磁矩 ②在任何时候,指定MAGMOM值的前提是ICHARG=2(没有WAVECAR 和CHGCAR文件)或者ICHARG=1 或11(有WAVECAR和CHGCAR文件),但是前一步的计算是非磁性的(ISPIN=1)。 磁各向异性能(自旋轨道耦合)计算: 注意: LSORBIT=.TRUE. 会自动打开LNONCOLLINEAR= .TRUE.选 项,且自旋轨道计算只适用于PAW赝势,不适于超软赝势。. 自旋轨道耦合效应就意味着能量对磁矩的方向存在依赖,即存在 磁各向异性能(MAE),所以要定义初始磁矩的方向。如下:LSORBIT = .TRUE. SAXIS = s_x s_y s_z (quantisation axis for spin) 默认值: SAXIS=(0+,0,1),即x方向有正的无限小的磁矩,Z

方向有磁矩。 要使初始的磁矩方向平行于选定方向,有以下两种方法:MAGMOM = x y z ! local magnetic moment in x,y,z SAXIS = 0 0 1 ! quantisation axis parallel to z or MAGMOM = 0 0 total_magnetic_moment ! local magnetic moment parallel to SAXIS (注意每个原子分别指定) SAXIS = x y z ! quantisation axis parallel to vector (x,y,z),如 0 0 1 两种方法原则上应该是等价的,但是实际上第二种方法更精确。第二种方法允许读取已存在的WAVECAR(来自线性或者非磁性计算)文件,并且继续另一个自旋方向的计算(改变SAXIS 值而MAGMOM保持不变)。当读取一个非线性磁矩计算的WAVECAR时,自旋方向会指定平行于SAXIS。 计算磁各向异性的推荐步骤是:(注文件CHGCAR首先计算线性磁矩以产生WAVECAR 和 1)LMAXMIX)。意加入INCAR中加入:2)然后LSORBIT = .TRUE.ICHARG = 11 ! non selfconsistent run, read CHGCAR !或 ICHARG ==1 优化到易磁化轴,但此时应提高EDIFF的精度LMAXMIX = 4 ! for d elements increase LMAXMIX to 4,

vasp常见问题

最近在学vasp,这篇文章是百度文库找到的,看了不错,转载一把。另外附上vasp程序,linux中下载后无须安装即可使用。单机中可能会出现内存溢出问题,可以放机群上使用。 01、第一原理计算的一些心得 (1)第一性原理其实是包括基于密度泛函的从头算和基于Hartree-Fock自洽计算的从头算,前者以电子密度作为基本变量(霍亨伯格-科洪定理),通过求解Kohn-Sham方程,迭代自洽得到体系的基态电子密度,然后求体系的基态性质;后者则通过自洽求解Hartree-Fock方程,获得体系的波函数,求基态性质;评述:K-S方程的计算水平达到了H-F 水平,同时还考虑了电子间的交换关联作用。 (2)关于DFT中密度泛函的Functional,其实是交换关联泛函,包括LDA,GGA,杂化泛函等等一般LDA为局域密度近似,在空间某点用均匀电子气密度作为交换关联泛函的唯一变量,多数为参数化的CA-PZ方案;GGA为广义梯度近似,不仅将电子密度作为交换关联泛函的变量,也考虑了密度的梯度为变量,包括PBE,PW,RPBE等方案,BL YP泛函也属于GGA;此外还有一些杂化泛函,B3L YP等。(3)关于赝势在处理计算体系中原子的电子态时,有两种方法,一种是考虑所有电子,叫做全电子法,比如WIEN2K中的FLAPW方法(线性缀加平面波);此外还有一种方法是只考虑价电子,而把芯电子和原子核构成离子实放在一起考虑,即赝势法。 一般赝势法是选取一个截断半径,截断半径以内,波函数变化较平滑,和真实的不同,截断半径以外则和真实情况相同,而且赝势法得到的能量本征值和全电子法应该相同。赝势包括模守恒和超软,模守恒较硬,一般需要较大的截断能,超软势则可以用较小的截断能即可。另外,模守恒势的散射特性和全电子相同,因此一般红外,拉曼等光谱的计算需要用模守恒势。 赝势的测试标准应是赝势与全电子法计算结果的匹配度,而不是赝势与实验结果的匹配度,因为和实验结果的匹配可能是偶然的。(4)关于收敛测试(a)Ecut,也就是截断能,一般情况下,总能相对于不同Ecut做计算,当Ecut增大时总能变化不明显了即可;然而,在需要考虑体系应力时,还需对应力进行收敛测试,而且应力相对于Ecut的收敛要比总能更为苛刻,也就是某个截断能下总能已经收敛了,但应力未必收敛。(b)K-point,即K网格,一般金属需要较大的K网格,采用超晶胞时可以选用相对较小的K网格,但实际上还是要经过测试。(5)关于磁性一般何时考虑自旋呢?举例子,例如BaTiO3中,Ba、Ti和O分别为+2,+4和-2价,离子全部为各个轨道满壳层的结构,就不必考虑自旋了;对于BaMnO3中,由于Mn+3价时d轨道还有电子,但未满,因此需考虑Mn的自旋,至于Ba和O则不必考虑。其实设定自旋就是给定一个原子磁矩的初始值,只在刚开始计算时作为初始值使用,具体的可参照磁性物理。(6)关于几何优化包括很多种了,比如晶格常数和原子位置同时优化,只优化原子位置,只优化晶格常数,还有晶格常数和原子位置分开优化等等。在PRL一篇文章中见到过只优化原子位置,晶格常数用实验值的例子(PRL 100, 186402 (2008));也见到过晶格常数先优化,之后固定晶格常数优化原子位置的情况;更多的情况则是Full geometry optimization。 一般情况下,也有不优化几何结构直接计算电子结构的,但是对于缺陷形成能的计算则往往要优化。(7)关于软件软件大致分为基于平面波的软件,如CASTEP、PWSCF 和ABINIT等等,计算量大概和体系原子数目的三次方相关;还有基于原子轨道线性组合的软件(LCAO),比如openmx,siesta,dmol等,计算量和体系原子数目相关,一般可模拟较多原子数目的体系。 V ASP是使用赝势和平面波基组,进行从头量子力学分子动力学计算的软件包,它基于CASTEP1989版开发。V AMP/V ASP中的方法基于有限温度下的局域密度近似(用自由能作

相关主题
相关文档 最新文档