当前位置:文档之家› 【整理】中考几何三大变换(含答案17页)

【整理】中考几何三大变换(含答案17页)

【整理】中考几何三大变换(含答案17页)
【整理】中考几何三大变换(含答案17页)

中考几何变换专题复习(针对几何大题的讲解)

几何图形问题的解决,主要借助于基本图形的性质(定义、定理等)和图形

之间的关系(平行、全等、相似等).基本图形的许多性质都源于这个图形本身的“变换特征”,最为重要和最为常用的图形关系“全等三角形”极多的情况也同

样具有“变换”形式的联系.本来两个三角形全等是指它们的形状和大小都一样,

和相互间的位置没有直接关系,但是,在同一个问题中涉及到的两个全等三角形,

大多数都有一定的位置关系(或成轴对称关系,或成平移的关系,或成旋转的关

系(包括中心对称).这样,在解决具体的几何图形问题时,如果我们有意识地

从图形的性质或关系中所显示或暗示的“变换特征”出发,来识别、构造基本图

形或图形关系,那么将对问题的解决有着极为重要的启发和引导的作用.下面我们从变换视角以三角形的全等关系为主进行研究.

解决图形问题的能力,核心要素是善于从综合与复杂的图形中识别和构造出基

本图形及基本的图形关系,而“变换视角”正好能提高我们这种识别和构造的能力.

1.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.

(1)求证:EG=CG;

(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请

说明理由;

(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).

考点:旋转的性质;全等三角形的判定与性质;直角三角形斜边上的中线;正方

形的性质。

专题:压轴题。

分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.

(3)结论依然成立.还知道EG⊥CG.

解答:(1)证明:在Rt△FCD中,

∵G为DF的中点,

∴CG=FD,

同理,在Rt△DEF中,

EG=FD,

∴CG=EG.

(2)解:(1)中结论仍然成立,即EG=CG.

证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.

在△DAG与△DCG中,

∵AD=CD,∠ADG=∠CDG,DG=DG,

∴△DAG≌△DCG,

∴AG=CG;

在△DMG与△FNG中,

∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,

∴△DMG≌△FNG,

∴MG=NG;

在矩形AENM中,AM=EN,

在△AMG与△ENG中,

∵AM=EN,∠AMG=∠ENG,MG=NG,

∴△AMG≌△ENG,

∴AG=EG,

∴EG=CG.

证法二:延长CG至M,使MG=CG,

连接MF,ME,EC,

在△DCG与△FMG中,

∵FG=DG,∠MGF=∠CGD,MG=CG,

∴△DCG≌△FMG.

∴MF=CD,∠FMG=∠DCG,

∴MF∥CD∥AB,

∴EF⊥MF.

在Rt△MFE与Rt△CBE中,

∵MF=CB,EF=BE,

∴△MFE≌△CBE

∴∠MEF=∠CEB.

∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.

∵MG=CG,

∴EG=MC,

∴EG=CG.

(3)解:(1)中的结论仍然成立.

即EG=CG.其他的结论还有:EG⊥CG.

点评:本题利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形

的判定和性质.

2.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,试证明CH=EF+EG;

(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写

出你的猜想;

(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连接CL,点E 是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;

(4)观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然

具有EF、EG、CH这样的线段,并满足(1)或(2)的结论,写出相关题设的条

件和结论.

考点:矩形的性质;全等三角形的判定与性质;等腰三角形的性质;正方形的性

质。

专题:几何综合题。

分析:(1)要证明CH=EF+EG,首先要想到能否把线段CH分成两条线段而加以证明,就自然的想到添加辅助线,若作CE⊥NH于N,可得矩形EFHN,很明显只需

证明EG=CN,最后根据AAS可求证△EGC≌△CNE得出结论.

(2)过C点作CO⊥EF于O,可得矩形HCOF,因为HC=DO,所以只需证明EO=EG,最后根据AAS可求证△COE≌△CGE得出猜想.

(3)连接AC,过E作EG作EH⊥AC于H,交BD于O,可得矩形FOHE,很明显只需证明EG=CH,最后根据AAS可求证△CHE≌△EGC得出猜想.

(4)点P是等腰三角形底边所在直线上的任意一点,点P到两腰的距离的和(或差)等于这个等腰三角形腰上的高,很显然过C作CE⊥PF于E,可得矩形GCEF,而且AAS可求证△CEP≌△CNP,故CG=PF﹣PN.

解答:(1)证明:过E点作EN⊥GH于N(1分)

∵EF⊥BD,CH⊥BD,

∴四边形EFHN是矩形.

∴EF=NH,FH∥EN.

∴∠DBC=∠NEC.

∵四边形ABCD是矩形,

∴AC=BD,且互相平分

∴∠DBC=∠ACB

∴∠NEC=∠ACB

∵EG⊥AC,EN⊥CH,

∴∠EGC=∠CNE=90°,

又EC=EC,

∴△EGC≌△CNE.(3分)

∴EG=CN

(4分)

∴CH=CN+NH=EG+EF

(2)解:猜想CH=EF﹣EG(5分)

(3)解:EF+EG=BD(6分)

(4)解:点P是等腰三角形底边所在直线上的任意一点,点P到两腰的距离的和(或差)等于这个等腰三角形腰上的高.如图①,有CG=PF﹣PN.

注:图(1分)(画一个图即可),题设的条件和结论(1分)

点评:此题主要考查矩形的性质和判定,解答此题的关键是作出辅助线,构造矩

形和三角形全等来进行证明.

3.如图1,点P是线段MN的中点.

(1)请你利用该图1画一对以点P为对称中心的全等三角形;

(2)请你参考这个作全等三角形的方法,解答下列问题:

①如图2,在Rt△ABC中,∠BAC=90°,AB>AC,点D是BC边中点,过D作射线交AB于E,交CA延长线于F,请猜想∠F等于多少度时,BE=CF(直接写出结果,不必证明);

②如图3,在△AB C中,如果∠BAC不是直角,而(1)中的其他条件不变,若BE=CF 的结论仍然成立,请写出△AEF必须满足的条件,并加以证明.

考点:作图—复杂作图;全等三角形的判定;等腰三角形的判定。

专题:证明题;开放型。

分析:(1)以P点为中心,依次做两条相互交叉但长度相等的线段,可得两个全

等三角形;

相关主题
文本预览
相关文档 最新文档