当前位置:文档之家› 全自动膜片钳技术及其在药物筛选中的应用

全自动膜片钳技术及其在药物筛选中的应用

全自动膜片钳技术及其在药物筛选中的应用
全自动膜片钳技术及其在药物筛选中的应用

全自动膜片钳技术及其在药物筛选中的应用

来源:易生物浏览次数:513 网友评论0 条

全自动膜片钳技术及其在药物筛选中的应用一:全自动膜片钳技术介绍:膜片钳技术被称为研究离子通道的“金标准”。是研究离子通道的最重要的技术。目前膜片钳技术已从常规膜片钳技术(Conventional patch clamp technique)发展到全自动膜片钳技术(Automated patch...

关键词:应用药物全自动通道细胞研究

全自动膜片钳技术及其在药物筛选中的应用

一:全自动膜片钳技术介绍:

膜片钳技术被称为研究离子通道的“金标准”。是研究离子通道的最重要的技术。目前膜片钳技术已从常规膜片钳技术(Conventional pat ch clamp technique)发展到全自动膜片钳技术(Automated patch clamp technique)。

传统膜片钳技术每次只能记录一个细胞(或一对细胞),对实验人员来说是一项耗时耗力的工作,它不适合在药物开发初期和中期进行大量化合物的筛选,也不适合需要记录大量细胞的基础实验研究。全自动膜片钳技术的出现在很大程度上解决了这些问题,它不仅通量高,一次能记录几个甚至几十个细胞,而且从找细胞、形成封接、破膜等整个实验操作实现了自动化,免除了这些操作的复杂与困难。这两个优点使得膜片钳技术的工作效率大大提高了!签于全自动膜片钳技术的这些优点,目前已经广泛的用于药物筛选。

传统膜片钳技术主要优缺点总结

全自动膜片钳技术的发展,经历了下列三个发展阶段,在每个阶段,所采取的原理和技术有所不同:

1. Flip-Tip翻转技术:

将一定密度的细胞悬液灌注在玻璃电极中,下降到电极尖端的单个细胞通过在电极外施加负压可以与玻璃电极尖端形成稳定的高阻封接,自动判断封接形成是否良好并自动破膜形成全细胞模式。随后,药物化合物等可以被自动应用到管内进行全细胞模式实验。这种方式形成

的膜片钳完全排除显微镜和显微操作,从而革命性的实现膜片钳技术的全自动化。它的显著特点是仍然采用玻璃毛坯作为电极。

2. SealChip技术:

完全摒弃了玻璃电极,而是采用SealChip平面电极芯片,一定密度的细胞悬液灌注在芯片上面,随机下降到芯片上约1-2μm的孔上并在自动负压的吸引下形成高阻封接,打破孔下面的细胞膜形成全细胞记录模式。采用这一技术的美国MDC(Axon)公司的PatchXpre 7000A 系统是高通量全自动膜片钳技术的典范,是离子通道药物研发的革命性工具,在国外实验室和制药厂广泛用于hERG通道药理学的研究。其通量最高为16,即一次可同时记录16个细胞。同时,其药物施加微量、快速,不仅用于药物筛选,还大量用于离子通道的基础研究。

3. Population Patch

Clamp(C)技术:

同SealChip技术一样,

完全摒弃了玻璃电极,而

是采用PatchPlate平面

电极芯片。该芯片含有多

个小室,每个小室中含有

很多1-2μm的封接孔。在

记录时,每个小室中封接

成功的细胞数目较多,获

得的记录是这些细胞通道电流的平均值。因此,不同小室其通道电流的一致性非常好,变异系数很小。美国Axon(MDS)公司采用这一技术研发出了全自动高通量的IonWorks Quattro全自动膜片钳药物筛系统,成为药物初期筛选的“金标准”。

二:全自动膜片钳在药物筛选中的应用:

离子通道的实验研究最初主要来源于生理学实验。1949~1952 年, Hodgkin 等发展的“电压钳技术”为离子通透性的研究提供技术条件。60年代中期,一些特异性通道抑制剂的发现为离子通道的研究提供有力武器。1976 年Neher和Sakma发展的膜片钳技术直接记录离子单通道电流,为从分子水平上研究离子通道提供直接手段。80年代中期,生化技术的进步,分子生物学以及基因重组技术的发展,使人们能够分离纯化许多不同的通道蛋白,直接研究离子通道的结构与功能关系

全自动膜片钳技术一个重要的应用方向是检测早期药物化合物对hERG的毒副作用。hERG通道产生的电流是心室复极中最重要的电流。

通道被药物后抑制直接导致Long QT综合症,很可能演变成尖端扭转型室性心动过速,心室纤颤,直至猝死。目前发现几乎所有的临床药物所至的LQT 或者TdP 都作用于hERG,且导致hERG抑制的药物在化学结构上没有明显的共性,从而很难预测,仅有通过实验的方式给予解决。2004年, ICH和美国FDA都颁布关于非临床检测Ikr (其中主要是hERG)的规章,要求药物上市时必须提供作用于离子通道的电流变化数据,否则新药不得用于临床。同时,根据该规章的要求美国FDA撤除由于致QT间期延长的处方药,约为全部从市场撤除处方药的4 0% 。为此,新的早期药物安全评测方式需要引入制药研发过程中,以便及早发现候选化合物潜在的心脏毒性,尽可能减少新药研发的投资与风险,而采用全自动膜片钳技术正是解决该问题的最佳选择。

事实上,制药企业还可以利用当前新兴药物虚拟筛选技术进行初筛,把初筛结果再结合全自动膜片钳技术进行实验上的验证。虚拟筛选技术,即把已经测定三维结构的小分子化合物或者是多肽化合物与已经测定三维结构的生物大分子靶标(如离子通道) ,通过分子对接软件进行计算机模拟,最后得到小分子- 受体复合物的三维结构,而进行筛选研究。虚拟筛选的目的同样是从数十万到数百万化合物库中筛选出可能的小分子化合物,再进一步进行实验研究。把全自动膜片钳技术结合以离子通道为靶标的高通量虚拟筛选研究技术,无疑将会极大的缩短研究时间和节省大量的研究经费。

总而言之,全自动膜片钳技术具有如下的优点:效率高,是传统膜片钳效率的20~300倍;不需要专业电生理人员,简单易用,所有的操作可以在电脑软件控制的界面下完成,无须显微防震系统;大部分仪器的封接质量在1GΩ以上;部分仪器同时适用于研究配体门控通道和电压门控通道;主要应用于药物药理和毒理测试;在药物微量加样设计方面表现优秀;仪器主要工作方式为全细胞膜片钳方式。缺点:仪器仅适用于悬浮细胞实验。无疑地,随着基因组测序的完成和蛋白质组学的兴起,离子通道在未来的细胞与药物方面研究将会变得越来越重要。与此同时,作为离子通道研究的最佳伴侣- 全自动膜片钳,由于其独特的优点也必定在这一领域大展身手。

离子通道研究技术的最新进展_全自动膜片钳技术

离子通道研究技术的最新进展———全自动膜片钳技术 曹小于1 郑婉云2 鲁燕滨3 黄 超1 (1.达科为生物技术有限公司 深圳 518054) (2.厦门大学生命科学学院分子细胞神经科学实验室 厦门 361005) (3.南京善康医药科技发展公司 南京 210013) 摘 要 全自动膜片钳技术是离子通道检测技术的最新进展,它具有直接性、高信息量及高精确性的特点。近来在多个方面作出新的突破,如高的实验通量表现,较高的自动化程度、良好的封接质量、微量加样等。目前,该技术在以离子通道为靶标的药物研发,药物毒理测试以及虚拟药筛等方面有广阔的应用前景。本文对全自动膜片钳仪器的原理和技术细节作全面介绍。 关键词 全自动膜片钳 高通量药筛 hERG检测 虚拟筛选 引言 细胞是通过细胞膜与外界隔离的,在细胞膜上有很多种离子通道,细胞通过这些通道与外界进行离子交换。离子通道在许多细胞活动中都起关键作用,它是生物电活动的基础,在细胞内和细胞间信号传递中起着重要作用。随着基因组测序工作的完成,更多的离子通道基因被鉴定出来,离子通道基因约占1.5%,至少有400个基因编码离子通道。相应的由于离子通道功能改变所引起的中枢及外周疾病也越来越受到重视。以离子通道作为靶标的药物现占总靶标的5%,而潜在的离子通道靶标药物将占总靶标的25%,因此开发离子通道为靶标的药物将具有广阔的市场前景。已知与离子通道有关的疾病主要有:癫痫(ep ilep sy)、心律失常(Cardiac ar2 rhyth m ia)、糖尿病(diabetes)、高血压(hyperten2 si on)、舞蹈症(Huntingt on’s disease)、帕金森症(Par2 kins on’s disease)……。 离子通道的实验研究最初主要来源于生理学实验。1949~1952年,Hodgkin等发展的“电压钳技术”为离子通透性的研究提供技术条件。60年代中期,一些特异性通道抑制剂的发现为离子通道的研究提供有力武器。1976年Neher和Sak mann发展的膜片钳技术直接记录离子单通道电流,为从分子水平上研究离子通道提供直接手段。80年代中期,生化技术的进步,分子生物学以及基因重组技术的发展,使人们能够分离纯化许多不同的通道蛋白,直接研究离子通道的结构与功能关系(见表1)。 表1 传统膜片钳技术主要优缺点总结 优 点缺 点 A高信息量:能改变细胞膜电位,单细胞记录A需要受过良好训练的电生理学专家 B高灵敏性:能记录到pA级电流变化和单通道B通量很低,一天的实验数据量不超过10  开关状态C劳动力投入密集,试验操作过程复杂 C灵活性好:可以控制改变细胞膜内外的溶液成分D不适合药物粗筛/二次筛选 D应用范围广:可以分析检测所有的离子通道类型E技术自动化非常困难,且不能进行平行检测E相对于荧光标记和放射性标记等手段具有更高权  威性和精确性〔1〕 1 多款全自动膜片钳系统分析 1.1 技术实现原理 Nani on公司的PatchL iner NPCκ216,Molecular Devices公司的I on works HT和PatchXp ress7000A 全部采用的是平板微阵列技术。其技术特点如下:在平板电极上打磨或者使用金属离子轰击成孔,每孔都是大小均一的直径约1~2μm的小孔,每个小孔下面有电极连接到放大器,可对实验过程中的电流变化进行记录。将细胞悬浮液加载到平板玻璃孔上,通过调节压力和吸力,一个细胞便可以自动定位在小孔上(相当于微管电极的尖端),自动进行封接,自动判断封接并进一步施加负压破膜以进行全细胞模式实验〔4,5〕。

膜片钳技术的发展和应用

膜片钳的发展和应用 1.背景 细胞是生物的基本组成单元,细胞外围有一层薄膜,彼此分离又互相联系,细胞间与细胞内的通信、信号传递依靠其膜上的离子通道来进行,离子和离子通道是细胞兴奋性的基础,亦是产生生物电的基础。生物电信号通常是用电学或电子学的方法进行测量。早期多采用双电极电压钳技术作胞内记录,近年来逐渐被膜片钳所取代,这项技术为从细胞和分子水平了解生物膜离子单通道“开启”和“关闭”的门控动力学及各种不同离子通道的通透性和选择性等膜信息提供了最直接的手段。 膜片钳记录(patch clamp recording)是利用玻璃微电极吸引封接面积仅为几个um2的细胞膜片,在10-12A水平,记录单个或几个通道的离子电流,已达到当今电子测量的极限。此技术广泛用于细胞膜离子通道电流的测量和细胞分泌、药理学、病理生理学、神经科学、脑科学、植物细胞的生殖生理等领域的研究。从而点燃了细胞和分子水平的生理学研究的生命之火,并取得了丰硕的成果。 2.膜片钳技术简介 2.1 基本原理和记录方法 电压钳(V oltage-clamp)是由英国学者Huxley和Katz最先应用的[1]。其实质是通过负反馈微电流放大器在兴奋性细胞膜上外加电流,保持细胞跨膜电位不变,并迅速控制其数值,以观察在不同膜电位条件下膜电流的情况。膜电流的改变反映了膜电阻和膜电容的变化,因此电压钳可用来研究整个细胞膜或一大块细胞膜上所有离子通道的活动,但该技术由于在细胞内插人两根电扳,对细胞损伤很大,在小细胞中难以实现,又因细胞形态复杂,很难保持细胞膜各处生物特性的一致,而逐渐被膜片钳所取代。 膜片钳技术(patch-clamp)是在电压钳基础上发展起来一种新技术,与电压钳的主要区别有二:一是钳制膜电位的方法不同;二是电位固定的细胞膜面积不同,即所研究的离子通道数目不同。与电压钳一样,膜片钳也是利用负反馈电子线路,将微电板尖端所吸附的一个至几个平方微米的细胞膜电位固定在一定水平,观察流过通道的离子电流。其实现膜电位固定的关键是在玻璃微电极尖端边缘与细胞膜之间形成高阻封接,使电极尖开口处与相接的细胞膜小区域(膜片)形成无论是从机械上还是电学上都极为紧密地封接,从而可反映细胞上单一(或多数)离子通道的分子活动[2]。1976年,德国科学家Neher和Sakmann首先用此技术对蛙胸皮肌细胞膜上的己酰胆碱受体通道进行了研究,记录出了量值在皮安级(10-12 A)的微弱电流[3,4]。1981年,经Hamill等[5]后人的进一步完善,其电流测量灵敏度已达1pA,时间和空间分辨率达10 us和1 um。 随着膜片钳技术的出现,目前有几种不同的记录方式: (1)细胞吸附式(cell-attached patch)将两次拉制后,经热抛光的微管电极置于清洁的细胞膜表面, 形成高阻封接,在细胞膜表面隔离出一小片膜,即通过微管电极对膜片进行电压钳制,从而测量膜电流。 (2)内面向外模式(inside-out patch)高阻封接形成后,将微管电极轻轻提起,使其与细胞分离,电极端形成密封小泡,在空气中短暂暴露几秒钟后,小泡破裂再回到溶液中,使小泡的外半部分破裂即得。

膜片钳原理

膜片钳技术原理 可兴奋膜的电学模型 细胞膜由脂类双分子层和和蛋白质构成。脂质层的电导很低,由于双分子层的结构特点,形成了细胞的膜电容,通道蛋白的开闭状况主要决定了膜电导的数值。在细胞膜的电学模型中,膜电容和膜电导构成了一个并联回路。在细胞膜的电兴奋过程中,脂质层膜电容的反应是被动的,其电流电压曲线是线性的;而由通道蛋白介导的膜电导构成了膜反应的主动成分,它的电流电压关系是非线性的。 当改变跨膜电位时,膜电容和膜电导分别引发被动和主动电流:Im=Ii+CdV/dt,其中Im是流过膜的总电流,Ii是通道电流,CdV/dt是由膜电容介导的电容电流。为了考察通道电流就必须消除电容电流的影响,此时可以令dV/dt=0,即将膜电位钳制在一固定数值,使其不随时间变化,这就是电压钳技术的实质所在。 电压钳技术 离子通道的近代观念源于Hodgkin、Huxley、Katz等人在20世纪30—50年代的开创性研究。在1902年,Bernstein创造性地将Nernst的理论应用到生物膜上,提出了“膜学说”。他认为在静息状态下,细胞膜只对钾离子具有通透性;而当细胞兴奋的瞬间,膜的破裂使其丧失了选择通透性,所有的离子都可以自由通过。Cole等人在1939年进行的高频交变电流测量实验表明,当动作电位被触发时,虽然细胞的膜电导大为增加,但膜电容却只略有下降,这个事实表明膜学说所宣称的膜破裂的观点是不可靠的。1949年Cole在玻璃微电极技术的基础上发明了电压钳位(voltage clamp technique)技术,基本原理如下: 电压钳技术的核心在于将膜电位固定在指令电压的水平,这样才能研究在给定膜电位下膜电流随时间的变化关系。在上图中,膜电位Vm由高输入阻抗的电压跟随器所测量。钳制放大器在比较了膜电位和指令电位E之后,通过电阻Ra将电流注入膜内以控制膜电位。钳制放大器的输出:Vo=A(E-Vm),因为这个输出由电阻Ra和膜所分压,所以输出电流:I=(Vo-Vm)/Ra。由这两个关系可推出:Vm=EA/(1+A)-RaI/(1+A)。因此若钳制放大器的增益A极大,膜电位Vm和指令电位E之间的差别就可以忽略,即实现了电压钳制。 Hodgkin、Huxley和Katz应用电压钳技术研究枪乌贼巨轴突,结合同位素示踪和胞内灌流等技术发现:动作电位的初期,细胞膜主要对钠离子的通透性发生改变,胞外的钠离子迅速内流,并产生所谓的“超射”现象(overshoot);随后对钠的通透性的急剧减少并且对钾离子的通透性增加。兴奋期的膜电位存在“超射”现象也是膜学说所不能解释的。 根据这些实验,Hodgkin、Huxley和Katz在其1949—1952年的一系列论文中提出了“离子学说”或“钠学说”。认为当膜的去极化超过一个临界值时,就会触发动作电位的产生。在此期间,钠电导迅速上升,钠离子大量内流,使得膜电位接近钠的平衡电位;随后钠电导迅速失活,钾电导逐渐增加,引起膜电位的复极化。 Hodgkin和Huxley通过对电压钳位实验数据的分析,给出了所谓的Hodgkin—Huxley方程。他们将膜电位钳制在不同的水平,观察钾电导或钠电导随时间的变化,然后用一个常微分方程去逼近所得到的实验曲线,而这些微分方程中的参数则假定跟离子通道上的“粒子”相关。根据H—H方程,能够推导出动作电位的阈值、形状、幅度等性质。并且在去除电压钳制的条件下,可以得到一个以电压和时间为变量的偏微分方程,由它可以给出和真实状况相符合的神经冲动的传导。 膜噪声和噪声分析 Katz等人在1970年代初期研究了蛙神经肌肉接头处肌纤维膜电位的波动。他们根据对这种膜电位“噪声”的分析,提出了量子释放的概念,认为神经递质是以囊泡的形式从突触前膜释放到突触间隙中。并且Katz等人借助这种新的“噪声分析”方法(fluctuation analysis),能从突触后膜电位的“噪声”中推测出单位事件的幅度和时程。Anderson、Stevens、Colquhoun和Sigworth等人进一步发展了“噪声分析”。 “噪声分析”的实质在于二项分布期望和方差之间的关系。假定通道只有开和关两个状态,并且各个通道的开关是独立的。若N是通道的总数,p是通道的开放概率,i是单通道电流,I是膜电流的期望值。则有:I=Npi,var(I)=Np(1-p)i2,即:var(I)=iI-I2/N。用var(I)对I作图,这显然是一个开口朝下的抛物线。微分这个二次方程得到曲线的斜率:dvar(I)/dI=i-2I/N,当I=0时的斜率就是单通道电流,根据钳制电位和反转电位之间的差就可以算出单通道电导;在抛物线的顶点即当:dvar(I)/dI=0时,I=Ni/2,由此可算出

药物筛选中分子生物学技术的应用之研究

药物筛选中分子生物学技术的应用之研究 摘要:药物筛选是新药物研究、制造、合成的必备过程,通过药物筛选,能够从已有的海量化合物中寻找到具有特定药物作用及治疗功能的新化合物,从而提高药物的研发效率,缩短其研发周期,起到降低风险减少成本的作用。随着分子生物学技术的不断发展,该技术的应用对于药理研究及药物临床应用的推进起到了极大的促进作用,提高了药物筛选的特异性,对于药物筛选效率及成功率的提升具有重要的意义。 关键词:药物筛选;生物技术;分子生物学;应用 Abstract:Drug screening is an essential process in the research, manufacture and synthesis of new drugs,through the screening of drugs, it is possible to find new compounds with specific drug action and therapeutic function from the existing massive compounds,reducing risk and costs of drug manufacture,improve the efficiency and shorten the cycle of drug research and development.With the continuous development of molecular biology technology, the application of this technology has played a significant role in the promotion of pharmacological research and clinical application of drugs.It is of great significance to improve the screening efficiency and improve the success rate of drug screening. Key words: drug screening; Biotechnology; molecular biology; application 0. 引言 药物筛选是药物研发过程中的重要环节,它是针对有可能药用的各类物质,包括各类蛋白多肽、化合物、天然及海洋产物等,运用一定的筛选方法和技术,对其内部可能存在的具有药理作用的活性物质进行检测,并利用相应的方法,进行药用成分的提取与合成。药物筛选在药物的实验室研究到临床应用之间发挥了

膜片钳记录和分析技术在生命科学中的应用

膜片钳记录和分析技术在生命科学中的应用 细胞是动物和人体的基本组成单元,细胞与细胞内的通信,是依靠其膜上的离子通道进行的,离子和离子通道是细胞兴奋的基础,亦即产生生物电信号的基础,生物电信号通常用电学或电子学方法进行测量。由此形成了一门细胞学科—电生理学(electrophysiology),即是用电生理的方法来记录和分析细胞产生电的大小和规律的科学。 早期的研究多使用双电极电压钳技术作细胞内电活动的记录。现代膜片钳技术是在电压钳技术的基础上发展起来的。 1976年德国马普生物物理研究所Neher和Sakmann创建了膜片钳技术(patch clamp recording technique)。这是一种以记录通过离子通道的离子电流来反映细胞膜单一的(或多个的离子通道分子活动的技术)。以后由于吉欧姆阻抗封接(gigaohm seal, 109Ω)方法的确立和几种方法的创建。这种技术点燃了细胞和分子水平的生理学研究的革命之火,它和基因克隆技术(gene cloning)并驾齐驱,给生命科学研究带来了巨大的前进动力。这一伟大的贡献,使Neher和Sakmann获得1991年度的诺贝尔生理学与医学奖。 一、膜片钳技术发展历史 1976年德国马普生物物理化学研究所Neher和Sakmann首次在青蛙肌细胞上用双电极钳制膜电位的同时,记录到ACh激活的单通道离子电流,从而产生了膜片钳技术。 1980年Sigworth等在记录电极内施加5-50 cmH2O的负压吸引,得到10-100GΩ的高阻封接(Giga-seal),大大降低了记录时的噪声实现了单根电极既钳制膜片电位又记录单通道电流的突破。 1981年Hamill和Neher等对该技术进行了改进,引进了膜片游离技术和全细胞记录技术,从而使该技术更趋完善,具有1pA的电流灵敏度、1μm的空间分辨率和10μs的时间分辨率。 1983年10月,《Single-Channel Recording》一书问世,奠定了膜片钳技术的里程碑。Sakmann 和Neher也因其杰出的工作和突出贡献,荣获1991年诺贝尔医学和生理学奖。 二:膜片钳技术原理 膜片钳技术是用玻璃微电极吸管把只含1-3个离子通道、面积为几个平方微米的细胞膜通过负压吸引封接起来(见下图),由于电极尖端与细胞膜的高阻封接,在电极尖端笼罩下的那片膜事实上与膜的其他部分从电学上隔离,因此,此片膜内开放所产生的电流流进玻璃吸管。在此基础上相对稳定膜电位,同时,对该膜片(单通道)和(全细胞)上的离子通道电流进行监测和记录,即用一个极为敏感的电流监视器(膜片钳放大器)测量此电流强度,代表离子通道电流;并通过分析通道电流了解细胞的性质和生理功能及各因素干预后的影响。

全自动膜片钳技术及其在药物筛选中的应用

全自动膜片钳技术及其在药物筛选中的应用 来源:易生物浏览次数:513 网友评论0 条 全自动膜片钳技术及其在药物筛选中的应用一:全自动膜片钳技术介绍:膜片钳技术被称为研究离子通道的“金标准”。是研究离子通道的最重要的技术。目前膜片钳技术已从常规膜片钳技术(Conventional patch clamp technique)发展到全自动膜片钳技术(Automated patch... 关键词:应用药物全自动通道细胞研究 全自动膜片钳技术及其在药物筛选中的应用 一:全自动膜片钳技术介绍: 膜片钳技术被称为研究离子通道的“金标准”。是研究离子通道的最重要的技术。目前膜片钳技术已从常规膜片钳技术(Conventional pat ch clamp technique)发展到全自动膜片钳技术(Automated patch clamp technique)。 传统膜片钳技术每次只能记录一个细胞(或一对细胞),对实验人员来说是一项耗时耗力的工作,它不适合在药物开发初期和中期进行大量化合物的筛选,也不适合需要记录大量细胞的基础实验研究。全自动膜片钳技术的出现在很大程度上解决了这些问题,它不仅通量高,一次能记录几个甚至几十个细胞,而且从找细胞、形成封接、破膜等整个实验操作实现了自动化,免除了这些操作的复杂与困难。这两个优点使得膜片钳技术的工作效率大大提高了!签于全自动膜片钳技术的这些优点,目前已经广泛的用于药物筛选。 传统膜片钳技术主要优缺点总结 全自动膜片钳技术的发展,经历了下列三个发展阶段,在每个阶段,所采取的原理和技术有所不同: 1. Flip-Tip翻转技术: 将一定密度的细胞悬液灌注在玻璃电极中,下降到电极尖端的单个细胞通过在电极外施加负压可以与玻璃电极尖端形成稳定的高阻封接,自动判断封接形成是否良好并自动破膜形成全细胞模式。随后,药物化合物等可以被自动应用到管内进行全细胞模式实验。这种方式形成

膜片钳记录和分析技术

膜片钳记录和分析技术 2010-12-15 16:41 来源:美国分子仪器点击次数:2186 关键词:膜片钳细胞信号 分享到: ?收藏夹 ?腾讯微博 ?新浪微博 ?开心网 细胞是动物和人体的基本组成单元,细胞与细胞内的通信,是依靠其膜上的离子通道进行的,离子和离子通道是细胞兴奋的基础,亦即产生生物电信号的基础,生物电信号通常用电学或电子学方法进行测量。由此形成了一门细胞学科-电生理学(electrophysiology),即是用电生理的方法来记录和分析细胞产生电的大小和规律的科学。 早期的研究多使用双电极电压钳技术作细胞内电活动的记录。现代膜片钳技术是在电压钳技术的基础上发展起来的。 1976年德国马普生物物理研究所Neher和Sakmann创建了膜片钳技术(patch clamp recording technique)。这是一种以记录通过离子通道的离子电流来反映细胞膜单一的(或多个的离子通道分子活动的技术)。以后由于吉欧姆阻抗封接(gigaohm seal, 109W)方法的确立和几种方法的创建。这种技术点燃了细胞和分子水平的生理学研究的革命之火,它和基因克隆技术(gene cloning)并架齐驱,给生命科学研究带来了巨大的前进动力。 这一伟大的贡献,使Neher和Sakmann获得1991年度的诺贝尔生理学与医学奖。 一、膜片钳技术发展历史 1976年德国马普生物物理化学研究所Neher和Sakmann首次在青蛙肌细胞上用双电极钳制膜电位

的同时,记录到ACh激活的单通道离子电流,从而产生了膜片钳技术。 1980年Sigworth等在记录电极内施加5-50 cmH2O的负压吸引,得到10-100GW10-100G?的高阻封接(Giga-seal),大大降低了记录时的噪声实现了单根电极既钳制膜片电位又记录单通道电流的突破。 1981年Hamill和Neher等对该技术进行了改进,引进了膜片游离技术和全细胞记录技术,从而使该技术更趋完善,具有1pA的电流灵敏度、1μm的空间分辨率和10μs的时间分辨率。 1983年10月,《Single-Channel Recording》一书问世,奠定了膜片钳技术的里程碑。Sakmann 和Neher也因其杰出的工作和突出贡献,荣获1991年诺贝尔医学和生理学奖。 二、膜片钳技术原理 膜片钳技术是用玻璃微电极吸管把只含1-3个离子通道、面积为几个平方微米的细胞膜通过负压吸引封接起来(见下图),由于电极尖端与细胞膜的高阻封接,在电极尖端笼罩下的那片膜事实上与膜的其他部分从电学上隔离,因此,此片膜内开放所产生的电流流进玻璃吸管,用一个极为敏感的电流监视器(膜片钳放大器)测量此电流强度,就代表单一离子通道电流。 膜片钳技术的建立,对生物学科学特别是神经科学是一资有重大意义的变革。这是一种以记录通过离子通道的离子电流来反映细胞膜单一的(或多个的离子通道分子活动的技术。些技术的出现自然将细胞水平和分子水平的生理学研究联系在一起,同时又将神经科学的不同分野必然地融汇在一起,改变了既往各个分野互不联系、互不渗透,阻碍人们全面认识能力的弊端。

组合化学法及其在药物筛选合成中的应用

组合化学及其在药物筛选合成中的应用 贾新建 (赣南师范学院化学与生命科学系,江西赣州,341000) 摘要:组合化学是20世纪90年代有机化学领域中的一场革命,从创立起就与工业应用紧密联系在一起,它带动了包括新药发明和新材料研制在内的一系列高新技术的发展,加速了化合物的合成与筛选速度,是药物合成化学上的一次革新,为近年来药物领域最显著的进步之一。目前,组合化学已渗透到药物、有机、材料、分析等诸多领域,随着自动化水平的提高,组合化学已成为化学领域最活跃的部分之一。本文简述了组合化学的起源与发展,重点介绍了组合合成的研究方法及其在药物筛选合成中的应用。 关键词:组合化学;合成方法;药物筛选;分子多样性 Combinatorial chemistry and its applications in drug screening synthesis xinjian Jia ( Department of Chemical and life sciences of GanNan Normal University, ganzhou 341000,china) Abstract:Combinatorial chemistry is a revolution in the nineties of the 20th century in the field of organic chemistry, from starting up with industrial application closely together. It spurred a series of hi-tech industry including drug invention and new materials developed, and accelerate the speed of compounds synthesis and screening. It is an innovation for drug synthesis chemistry in recent years, one of the most significant progress in drug field. At present, the combinatorial chemistry has penetrated into drugs, organic, materials, analysis and so on many domains. As automation level enhancement, combinatorial chemistry has become one of the most active chemical field. This paper briefly describes the origin and development of combinatorial chemistry, focusing on the combinatorial synthesis research method and its application in drug screening synthesis. Key Words: Combinatorial chemistry; Synthetic methods; Drug screening; Molecular diversity

膜片钳技术原理与基本操作

膜片钳技术原理与基本操作 1976 年Neher 和Sakmann 建立了膜片钳技术(Patch clamp technique),这是一种以记录通过离子通道的离子电流来反映细胞膜上单一的或多数的离子通道分子活动的技术。1981 年Hamill, Neher 等人又对膜片钳实验方法和电子线路进行了改进,形成了当今广泛应用的膜片钳实验技术。该技术可应用于许多细胞系的研究,也是目前唯一可记录一个蛋白分子电活动的方法,膜片钳技术和克隆技术并驾齐驱给生命科学研究带来了巨大的前进动力,这一伟大的贡献,使Neher 和Sakmann 获得1991 年诺贝尔医学与生理学奖。 一、膜片钳技术的基本原理 用一个尖端直径在1.5~3.0μm 的玻璃微电极接触细胞膜表面,通过负压吸引使电极尖端与细胞膜之间形成千兆欧姆以上的阻抗封接,此时电极尖端下的细胞膜小区域(膜片,patch)与其周围在电学上分隔,在此基础上固定(钳制,Clamp)电位,对此膜片上的离子通道的离子电流进行监测及记录。 基本的仪器设备有膜片钳放大器、计算机、倒置显微镜、示波器、双步电极拉制器、三轴液压显微操纵器、屏蔽防震实验台、恒温标本灌流槽、玻璃微电极研磨器。膜片钳放大器是离子单通道测定和全细胞记录的关键设备,具有高灵敏度、高增益、低噪音及高输入阻抗。膜片钳放大器是通过单根电极对细胞或膜片进行钳制的同时记录离子流经通道所产生的电流。膜片钳放大器的核心部分是以运算放大器和反馈电阻构成的电流-电压(I-V)转换器,运算放大器作为电压控制器自动控制,使钳制电位稳定在一定的水平上。 二、操作步骤 1.膜片钳微电极制作 (1) 玻璃毛细管的选择:有二种玻璃类型,一是软质的苏打玻璃,另一是硬质的硼硅酸盐玻璃。软质玻璃在拉制和抛光成弹头形尖端时锥度陡直,可降低电极的串联电阻,对膜片钳的全细胞记录模式很有利;硬质玻璃的噪声低,在单通道记录时多选用。玻璃毛细管的直径应符合电极支架的规格,一般外部直径在 1.1~1.2mm。内径1mm。 (2) 电极的拉制:分二步拉制。第一部是使玻璃管中间拉长成一窄细状,第二次拉制窄细部位断成二根,其尖端直径一般在1~5μm,充入电极内液后电极电阻在1~5MΩ为宜。调节第一步和第二步拉制时加热线圈的电流强度,即可得到所需要的电极尖端直径。电极必须保持干净,应现用现拉制。 (3) 涂硅酮树酯:记录单通道电流时,为了克服热噪声、封接阻抗噪声及电极浸入溶液产生的浮游电容性噪声,需要在电极尖颈部(距离微电极尖端50mm)的表面薄薄地涂一层硅酮树酯(sylgard),它具有疏水性、与玻璃交融密切、非导

细胞分子生物学技术在靶向药物筛选中的应用

细胞分子生物学技术在靶向药物筛选中的应用 作者:刘陆军药学1101班学号:201109157026 摘要:随着细胞及分子生物学的发展 ,新技术方法越来越多地用于新靶点建立和药物筛选研究 ,为药物设计、靶点的选择和用药方案的确定提供理论依据 ,同时使药物筛选有了更高的特异性,对药物筛选和药理学研究起到了极大的促进作用。本文主要论述了基因克隆技术、生物芯片、流式细胞技术在靶向药物筛选中的应用。 关键词: 生物技术药物筛选分子药理学基因克隆生物芯片流式细胞正文: 随着生物技术的迅速发展 ,细胞及分子生物学技术越来越多地用于新靶点建立和药理学研究 ,直接用靶点作为筛选对象 ,寻找与其相互作用的药物 ,对药物筛选和药理学研究起到了极大的促进作用。分子药理学研究的基本理论是受体学说 ,受体的本质是蛋白质 ,对于受体的研究可以阐明药物、激素及神经递质的作用原理和生物信号转导机制 ,为药物设计、靶点的选择和用药方案的确定提供理论依据。细胞及分子生物学方法能在基因水平上研究受体生理调节和病理变化的分子机制、受体病的分子基础以及细胞内受体与 DNA 相互作用的机制等。以下主要从基因克隆技术、生物芯片、流式细胞术三方面论述其在靶向药物筛选中的应用。 一、基因克隆技术在确定药物靶点中的应用 1、高通量筛选和高内涵筛选在药物靶基因功能研究中的应用。 高通量筛选 ( high throughput screening, HTS) 是药物开发的强有力工具。目前 HTS 广泛应用于发现作用药靶的活性化合物 ,评价先导化合物的选择性、毒性等多个药物开发阶段 ,并在先导化合物的优化等过程中起着重要作用。高通量细胞筛选技术 ( highthroughput cell based screening technology) 是以高通量方式研究基因功能最有效的方法之一。除与细胞表型或形态学相关的检测指标外 ,细胞信号转导通路、糖代谢、能量产生和代谢产物分析 (metabolic con2trol analysis) 等代谢通路也是基因功能重要的研究内容。结合抗体芯片技术、多路测定技术 (multip le2 xing) 等的检测方法和荧光成像读板仪 ( fluorescence im age p late reader , FL IPR ) 、定量 PCR、高通量荧光激活细胞分类器 ( HT2FACS) 等检测方法和技术的不断发展和应用 ,灵敏度和重现性这两个高通量细胞筛选的关键问题逐步得以解决。 高内涵筛选 ( high content screening, HCS ) 是通过显微成像法记录多孔板内的细胞图像 ,并分析图像中的信息来筛选药物的技术。 HCS是一种基于细胞层面的、多元的药物筛选方法 ,它主要依赖于高分辨率的细胞成像系统 ,充分整合样品制备技术、自动化设备、数据管理系统 ,检测试剂 ,生物信息学等资源的综合优势 ,在细胞或分子水平上实现

药物的发现

药物的发现: 神农尝百草之经验式和文献式众所周知,药物的发现和应用是经过原始的经验积累而完成的。这一过程是人类进行的无意识的自然药物筛选过程。随着人类对医药知识认识的深人,才开始了有意识的主动药物筛选过程,神农尝百草就是人类主动进行药物筛选的具体实践。 最早的药物来自天然植物、动物及矿物原料。药物是人类在长期的生产、生活和与疾病作斗争的过程中发现和逐步发展起来的。早期人类为维持生存不断的与伤痛疾病作斗争。在捕捉动物、采集植物为食的过程中意外发现有些天然的动物、植物、矿物质有减轻伤病或解除疾病的功效,便逐步有意识地应用它们来治疗伤病。 药物的发现与发展:偶然发现和随机筛选。 随着时代的进步药物的发现也逐步由机遇筛选向合理设计、由偶然向必然的漫长历史过程。本草时期的药物是人们在生产和生活的实践中偶然发现的,到了近代也有的药物是在实验室里偶然发现的。例如20世纪30年代发现的抗菌药物磺胺类药物是在研究偶氮染料的过程中偶然发现的,后来成为人类系统地用于预防及治疗细菌感染的一类化学合成药物,这类药物的发现和发展是近代药物发展史上的一个里程碑。抗菌药物发明的又一个里程碑式的药物是青霉素,青霉素是由英国细菌学家Fleming在研究葡萄球菌的实验中偶然发现的。 随机筛选主要是从广泛的天然资源中寻找,如植物中的化学成份,土壤微生物的代谢产物或人工合成的化合物,从中发现特定结构和作用特点的先导化合物。在此基础上进一步进行结构改进,可能发现一系列的有治疗价值的新药。例如当前人们常用的药品其中很多是从植物成份中筛选出来的。而抗生素就是从土壤微生物中筛选发展起来的。 从文献中发现:我国《史记纲鉴》称“神农尝百草,始有医药”。汉代-《神农本草经》是我国第一部药书,该书收载了365种中药,也是全世界第一部药物学著作。它所指出的大黄导泻、麻黄治喘至今仍然行之有效。唐代-《新修本草》是我国第一部药典,颁行于公元659年,有世界最早药典之称。全书收载药物共844种。明代-《本草纲目》李时珍通过毕生对于药物的调查去伪存真写成《本草纲目》收载药物1892种,插图1160幅,药方11000余条,对药物的生态、形态、性味、功能作了比较系统的记述,对后世从文献方式发现药物提供了丰富的

膜片钳技术SOP

膜片钳技术SOP 关键词:膜片钳 目的: 研究膜片上几个甚至一个离子通道的电流,对单个离子通道在各种电位状态及每种电位状态下对产生电流的离子作出定性、定量的分析,来反映细胞膜上离子通道活动,为研究离子通道结构与功能关系提供关于生物电特性的新资料。基本原理: 膜片钳制技术(patch clamp technique)是对一块单独的细胞膜片(或整个细胞)的电位进行钳制的一项电生理技术。 通过对膜电位的钳制可以观察通过离子通道的电流,膜片钳放大器正是通过维持电压的恒定而测出这种电流。运用膜片钳技术记到的最小电流可达到pA级(10-12 A)。膜片钳的本质属于电压钳范畴,其基本工作原理是:采用经典的负反馈放大技术作电压固定,但改用细胞外微吸管作电极,将微电极管尖端与细胞膜表面接触,经负压抽吸,形成具极高阻抗的紧密封接,其电阻值高达10-100千欧(即GΩ=109Ω)。只有在这种封接存在时,通过膜电极引导记录的电流才是通过该膜的离子通道电流。 膜片钳技术原理示意图 Rs是膜片阻抗相串联的局部串联电阻(输入阻抗),Rseal是封接阻抗。Rs通常为1~5MΩ,如果Rseal高达10GΩ(1010Ω)以上时,IP/I=Rseal/(Rs+ Rseal)-1。此Ip可为在I-V转换器(点线)内的高阻抗负反馈电阻(Rf)的电压降而被检测出。

药品和试剂: 根据不同的实验设计选择不同的药品和试剂。 主要仪器设备与材料: ①屏蔽防震实验台(TMC 63-544) ②数字式超级恒渐浴槽(HSS-1 CHENDU INSTRUMENT China) ③微管电极拉制器(PP-83 NARISHIGE Japan) ④微管电极抛光仪(ME-83 NAEISHIFE Japan) ⑤电子刺激器(SEN-2030, NIHON KOHDEN, Japan) ⑥膜片钳放大器(AXOPATCH 200B Axon Instruments U.S.A) ⑦倒置相差显微镜(AXIOVERT 135 ZEISS Germany) ⑧计算机(PⅢ 800) ⑨A/D、D/A转换器(DIGIDATA-1200 Axon Instruments U.S.A) ⑩pClamp软件(10.0)Axon Instruments U.S.A ) 实验对象: 兔、大鼠、猪、和人的组织细胞(直径小于30μm的细胞),都可用于膜片钳实验。动物由泸州医学院(许可证号:SYXK(川)2008-063)提供;人体组织来源于临床手术丢弃物。本SOP以猪冠状动脉平滑肌细胞为例,选取体重约120~150 Kg的猪,雌雄不拘,猪心脏购自泸州市屠宰场。 实验环境: 常温(22o C)下进行, 湿度(70-80%) 操作步骤: 1.液体配制 主要根据研究通道的不同,所用细胞的不同,配制相应的液体,可参考相应的文献进行调整。包括:电极液;细胞外液等。基本原则是保持2个平衡,渗透压平衡和酸碱平衡。另外,所有液体在使用前必须过滤,以保持液体洁净。(详见细胞的分离与培养SOP:L Y-XJD-SYJS-014/015) 2.标本制备 膜片钳实验一般是在单个细胞上进行。实验用单细胞主要来自培养细胞或急性酶分离的细胞,也可来自脑片细胞中的原位细胞。常用的酶是胶原酶和蛋白酶,

膜片钳的发展与应用

膜片钳技术的发展与应用 崔梦梦 (生命科学学院 1241410026) 摘要:膜片钳技术是在电压钳技术的基础上发展起来的,该技术的核心是能够记录 单一离子通道的电流。膜片钳可以测量到0.06pA的电流,它具有1um的空间分辨 率和10us的时间分辨率。作为先进的细胞电生理技术,膜片钳一直被奉为研究离 子通道的“金标准”。应用膜片钳技术可以证实细胞膜上离子通道的存在并能对其 电生理特性、分子结构、药物作用机稍等进行深入的研究。此外,将膜片钳技术与 其他一些先进的技术结合,使其在药理学、病理学、神经科学、脑科学、细胞生物 学和分子生物学等生物科学方面,,得到了越来越广泛的应用。 关键词:膜片钳;离子通道;发展与应用 在细胞膜上存在有许多的离子通道,这些离子通道是细胞兴奋性的基础,对细胞内以及细胞之间的信息传递起着非常重要的作用。为探究离子通道的功能和结构,许多电生理技术被发明创造。英国学者Huxley和Katz最早应用电压钳来研究细胞膜上离子通道的电流变化,但由于该技术钳制的细胞膜面积很大,包含着大量随机开放和关闭着的离子通道,因而不能测定单一离子通道电流。所以在1976年德国神经生物学家Erwin Neher和Bert Sakmann 建立起一种新的技术,即膜片钳技术,并且逐渐取代了电压钳技术。 随着膜片钳技术的不断完善,自1981年以来, 该技术已经在不同动物的肝、脾、胃肠、心肌、骨骼肌、神经系统、内分泌等各类细胞上应用并取得了研究成果。膜片钳技术点燃了细胞和分子水平的生理学研究的革命之火,给生命科学研究带来了巨大的前进动力。 一、膜片钳技术的基本原理 膜片钳技术是利用玻璃微电极尖端经抛光后贴附于神经元膜上,与玻璃微电极尖端相接的膜仅含1—3个离子通道,然后通过负压吸引将这片膜与周围的膜实行高阻封接,因此在电极尖端覆盖下的那片膜,在电学上已于膜的其他部分相互分隔。电极尖端下的膜通道开放所产生的电流流进玻璃微电极吸管,通过一极其敏感的膜片钳放大器,就可测量得到单一离子通道电流。电极尖端的直径一般可达0.5um,它与膜的高阻封接可达到10亿欧,因而极大提高了膜片钳技术的可靠性和灵敏度。 二、膜片钳技术的改进与新进展 (一)穿孔膜片钳技术 1988年Horn等对传统全细胞记录进行了改进,建立了穿孔膜片钳技术。即利用某些抗生素具有在生物膜上形成通透性孔道的性质,将这类抗生素充灌在电极液中,在高阻封接形成之后自发形成全细胞记录模式。该技术中,抗生素形成孔道的有效半径为0.4—0.8 nm,可以选择性地通透Na+ 、K+ 、Li+ 、Cs+ 、Cl- 等一价离子,使细胞内环境相对稳定,电

膜片钳技术

2008级硕士研究生膜片钳技术试题 请用A4纸书面手写,严禁抄袭。下学期开学后两周内交于先知楼2002室陆巍老师处,过期不侯! 问答题(共100分) 1、什么是膜片钳技术?它的基本工作原理是什么? 答:膜片钳技术是以记录通过离子通道的离子电流来反映细胞上单一的(或多个的)离子通道分子活动的技术,具体说来就是利用微玻管(膜片电极或膜片吸管)接触细胞膜,以吉欧姆(GΩ)以上的阻抗使之封接,使与电极尖开口处相接的细胞膜的小区域(膜片)与其周围在电学上绝缘,在此基础上固定电位,对此膜片上的离子通道的离子电流(pA级)(10-12A)进行监测记录的方法。 膜片箝的基本原理是:用一个尖端光洁、直径约0.5-3um的玻璃微电极同神经或肌细胞的膜接触而不刺入,然后在微电极的另一段开口施加适当的负压,将与电极尖端接触的那一小片膜轻度吸入电极尖端的纤细开口,这样在小片膜周边与微电极开口的玻璃之间形成紧密封接,在理想状态下电阻可达数十兆欧。实际上把吸附在微电极尖端开口的那小片膜同其余部分的膜在电学上完全分开,如果这小片膜上只含一个或几个通道分子,那么微电极就可以测量出单一开放的离子电流或电导,对离子通道的其他功能进行研究。 2、膜片钳记录方法分为四类?各有何特点? 答:膜片箝有四种分类: (1)单通道记录法-细胞吸附模式(Cell-attached Mode) 微电极在显微镜下贴近细胞后,给微电极施加一负压,形成高阻抗封接。此时可看到背景噪音明显减少,通常选取电极下仅有一个通道的膜片进行分析,即单通道记录,以利于不失真的观察一个通道的活动状态。该方法的优点是对细胞膜结构和调制系统干扰最小,能准确反映通道的活动状态并对此进行客观分析。但缺点是电流小,分辨率地,对技术要求高,难度较大,且工作量大而成功率又较低。 (2)全细胞记录法(Whole-cell recording) 在高阻抗封接做好后,再给一个很小的负压,将电极覆盖的膜吸破,使电极内与整个细胞内相通,用这个方法可记录进出整个细胞的电流。该方法的优点是电流大,信噪比好,既可以做电流钳制又可以做电压钳制,且可以改变细胞内容物。但此法只能用于直径小于3μ的细胞,且仅能观察膜电流的变化,不能分析变化的产生机制。 (3)膜内面向外式(Inside-out) 按照细胞密着式将电极封接好之后,再将电极拉开,使之与胞体脱离即可,也是用以记录封在电极尖端口下的膜片中的离子通道电流。是在细胞吸附式的基础上改进而成。其优点是可以观察化学因素对细胞膜内侧面结构的影响,但其操作难度较高。 (4)膜外面向外(Outside-out)在全息胞记录式的基础上,拉开电极使之与胞体脱离,这是附在电极尖端的膜片又可自动地将电极尖端口封住。此膜片的外侧面向外其是在全细胞记录的基础上改进而成,优点是可以分别观察化学因素对细胞膜外侧面结构的影响。 3、膜片钳技术的应用范围有哪些? 答:应用膜片钳技术可以直接观察和分辨单离子通道电流及其开闭时程、区分离子通道的离子选择性,同时可发现新的离子通道及亚型,并能在记录单细胞电流和全细胞电流

膜片钳技术资料汇编

丁香园膜片钳技术讨论区 资料汇编 整理人:xiaoxuanzi 发起人:tianx775 2006年6月

目录 第一节膜片钳技术介绍 (1) 应用 (1) 基本概念 (2) 第二节仪器操作和维护 (3) 仪器的使用 (3) 噪声 (4) 玻璃微电极的制备 (5) 第三节 实验操作 (7) 1.细胞的分离、培养 (7) (1)心肌细胞 (7) (2)平滑肌细胞 (17) (3)其他细胞 (19) 2.电极的拉制与电镀 (23) 3.电极内外液与渗透压 (25) 4.串联、封接、电极电阻 (28) 5.补偿 (37) 6.刺激方案 (40) 7.动作电位记录 (42) 8.电流记录 (42) (1)钙电流 (42) (2)钾电流 (45) (3)钠电流 (47) (4)其他电流 (48) 9.穿孔 (50) 10.单通道记录 (51) 11.脑片 (54) 12.数据分析与处理 (55) 第四节 相关电子文献及书籍 (61)

第一节 膜片钳技术介绍 一、应用 1.全细胞记录技术的应用 [Cactuswzw](1)离子通道宏观性质的分析,例如,离子通道的性质和分类(电压门控通道、膜受体激活通道、配体门控通道、胞内第二信使激活通道等) (2)离子通道微观性质分析,例如单一离子通道活动的测定的测定,离子通道的构造,分布和机能的分析等。 (3)膜电容的测量及其对细胞分泌活动的研究。 (4)胞内钙离子浓度和钙通道电流的同时定量检测。 (5)组织切片的全细胞记录。 (6)植物细胞的电生理研究。 二、基本概念 1.刚刚接触patch,有些概念都很模糊 holding potential与command potential? Axon200B的放大器控制面板上有ext. command,又是什么东东? 都分别什么时候给予? 在我理解,pipette capacity compesation就是快电容补偿,而Cm补 偿为慢电容补偿,那为何Axon200B的面板上在pipette capacitance compensation下面列了FAST和SLOW的magnitude以及时间常数的调节 扭? [baxiansheng]Holding potential 是钳制电压,这是实验中从头至尾 通过电极用于钳制细胞的一个电压,和膜电位的关系取决于采用的实验 模式。而command voltage是在holding potential基础上施加的刺激 方案,比如全细胞实验中可以设置Holding potential在-80mV,然后 去极化至+10mV 400ms,那么这个去极化至+10mV的方波就是command voltage,当然command voltage的设置可以根据实验设置得更复杂。 Axon200B放大器控制面板的ext. command是用于接外接刺激器的,通 过外接刺激器来施加command voltage,当然现在完全由计算机代替了。 pipette capacity是电极电容,因为时间常数小,所以称快电容,而 Cm是膜电容,因为时间常数大,所以称为慢电容。Axon200B的面板上 在pipette capacitance compensation下面列了FAST和SLOW的 magnitude以及时间常数的调节扭,那是对电极电容的补偿方式。实际 上电极电容中也有一些时间常数较大的成分,单纯补偿FAST效果并不 完美,需要再稍稍调节一下SLOW。 2.我的课题是关于心血管系统中离子通道方面的研究。离子通道一般有备 用关闭状态(close),激活状态(active)和失活状态(inavtive)。但 最近我看文献有去激活状态,英文为deactivation,我想跟失活肯定不是 一个概念,但又找不到确切的含义,有谁能帮我解释一下这几种通道状 态个代表什么含义? [coolworm]C<----->O<------->I

相关主题
文本预览
相关文档 最新文档