当前位置:文档之家› Lagrange插值程序1

Lagrange插值程序1

Lagrange插值程序1
Lagrange插值程序1

在Matlab中,可以编写如下程序来利用Lagrange插值公式进行计算:

function f=Lagrange(x,fx,inx)

n=length(x);m=length(inx);

for i=1:m;

z=inx(i);

s=0.0;

for k=1:n

p=1.0;

for j=1:n

if j~=k

p=p*(z-x(j))/(x(k)-x(j));

end

end

s=p*fx(k)+s;

end

f(i)=s;

end

plot(x,fx,'O',inx,f)

x=[1:12]

fx=[12 234 34 -1 34 2 5 23 34 9 45 23]

xi=[1:0.2:12]

Lagrange(x,fx,xi)

得出结果:

12.0000 -60.5937 18.2765 124.9778 202.5952 234.0000 223.3757 184.1249 131.4738 78.4253 34.0000 2.9467 -13.6885 -17.5810 -12.0379 -1.0000 11.7556 23.1624 31.1611 34.7730 34.0000 29.6054 22.8332 15.1153 7.8099 2.0000 -1.6307 -2.8397 -1.7907 1.0404 5.0000 9.4024 13.6643 17.4033 20.4834 23.0000 25.2037 27.3769 29.6858 32.0400 34.0000 34.7742 33.3426 28.7320 20.4439 9.0000 -3.4848 -12.8605 -12.8873

4.0592 4

5.0000 112.3788 197.1817 267.9699 254.3439 23.0000

拉格朗日插值法理论介绍

对于给定的若n+1个点,对应于它们的次数不超过n的拉格朗日多项式只有一个。如果计入次数更高的多项式,则有无穷个,因为所有与相差的多项式都满足条件。

定义

对某个多项式函数,已知有给定的k + 1个取值点:

其中x j对应着自变量的位置,而y j对应着函数在这个位置的取值。

假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为:

其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为:

拉格朗日基本多项式的特点是在x j上取值为1,在其它的点

上取值为0。

范例:

假设有某个多项式函数f,已知它在三个点上的取值为:

?f(4) = 10

?f(5) = 5.25

?f(6) = 1

要求f(18)的值。

首先写出每个拉格朗日基本多项式:

然后应用拉格朗日插值法,就可以得到p的表达式(p为函数f的插值函数):

此时代入数值就可以求出所需之值:。

优缺点:

拉格朗日插值法的公式结构整齐紧凑,在理论分析中十分方便,然而在计算中,当插值点增加或减少一个时,所对应的基本多项式就需要全部重新计算,于是整个公式都会变化,非常繁琐[5]。这时可以用重心拉格朗日插值法或牛顿插值法来代替。此外,当插值点比较多的时候,拉格朗日插值多项式的次数可能会很高,因此具有数值不稳定的特点,也就是说尽管在已知的几个点取到给定的数值,但在附近却会和“实际上”的值之间有很大的偏差(如右下图)[6]。这类现象也被称为龙格现象,解决的办法是分段用较低次数的插值多项式。

插值法和拟合实验报告(数值计算)

插值法和拟合实验报告 一、 实验目的 1.通过进行不同类型的插值,比较各种插值的效果,明确各种插值的优越性; 2.通过比较不同次数的多项式拟合效果,了解多项式拟合的原理; 3.利用matlab 编程,学会matlab 命令; 4.掌握拉格朗日插值法; 5.掌握多项式拟合的特点和方法。 二、 实验题目 1.、插值法实验 将区间[-5,5]10等分,对下列函数分别计算插值节点 k x 的值,进行不同类型 的插值,作出插值函数的图形并与)(x f y =的图形进行比较: ;11)(2x x f += ;a r c t a n )(x x f = .1)(42 x x x f += (1) 做拉格朗日插值; (2) 做分段线性插值; (3) 做三次样条插值. 2、拟合实验 给定数据点如下表所示: 分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数 ),(i i y x 和拟合函数的图形。 三、 实验原理 1.、插值法实验

∏∑∏∏∏∑∑≠==≠=≠=≠=+-==--= =-= ==-=-=----==++==j i j j i i i i i n i i n n j i j j n j i j j i i n j i j j n i i i n i i n n n o i n i i n x x x x x y x l x L x x c n i x x c x x x c x x x x x x x x c y x l x L y x l y x l y x l x L ,00 ,0,0,01100 00 )(l )()() (1 ,1,0, 1)()(l ) ()())(()()()()()()()(, 故, 得 再由,设 2、拟合实验

常见的插值方法及其原理

常见的插值方法及其原理 这一节无可避免要接触一些数学知识,为了让本文通俗易懂,我们尽量绕开讨厌的公式等。为了进一步的简化难度,我们把讨论从二维图像降到一维上。 首先来看看最简单的‘最临近像素插值’。 A,B是原图上已经有的点,现在我们要知道其中间X位置处的像素值。我们找出X位置和A,B位置之间的距离d1,d2,如图,d2要小于d1,所以我们就认为X处像素值的大小就等于B处像素值的大小。 显然,这种方法是非常苯的,同时会带来明显的失真。在A,B中点处的像素值会突然出现一个跳跃,这就是为什么会出现马赛克和锯齿等明显走样的原因。最临近插值法唯一的优点就是速度快。 图10,最临近法插值原理 接下来是稍微复杂点的‘线性插值’(Linear) 线性插值也很好理解,AB两点的像素值之间,我们认为是直线变化的,要求X点处的值,只需要找到对应位置直线上的一点即可。换句话说,A,B间任意一点的值只跟A,B有关。由于插值的结果是连续的,所以视觉上会比最小临近法要好一些。线性插值速度稍微要慢一点,但是效果要好不少。如果讲究速度,这是个不错的折衷。 图11,线性插值原理

其他插值方法 立方插值,样条插值等等,他们的目的是试图让插值的曲线显得更平滑,为了达到这个目的,他们不得不利用到周围若干范围内的点,这里的数学原理就不再详述了。 图12,高级的插值原理 如图,要求B,C之间X的值,需要利用B,C周围A,B,C,D四个点的像素值,通过某种计算,得到光滑的曲线,从而算出X的值来。计算量显然要比前两种大许多。 好了,以上就是基本知识。所谓两次线性和两次立方实际上就是把刚才的分析拓展到二维空间上,在宽和高方向上作两次插值的意思。在以上的基础上,有的软件还发展了更复杂的改进的插值方式譬如S-SPline, Turbo Photo等。他们的目的是使边缘的表现更完美。

实验名称 插值法

探索实验5 插值法 一、 实验目的 了解插值问题及其适用的场合,理解并掌握常用的插值算法的构造和计算,了解差商概念、Runge 现象及样条插值方法,学习用计算机求近似函数的一些科学计算方法和简单的编程技术。 二、概念与结论 1. 插值问题与插值函数: 由实验或测量的方法得到所求函数 y=f(x) 在互异点x 0 , x 1, ... , x n 处的值 y 0 , y 1 , … , y n ,构造一个简单函数 ?(x) 作为函数 y=f(x) 的近似表达式 y= f(x) ≈ ?(x) 使 ?(x 0)=y 0 , ?(x 1)=y 1 , ?, ?(x n )=y n , (1) 这类问题称为插值问题。 f(x) 称为被插值函数,?(x) 称为插值函数, x 0 , x 1, ... , x n 称为插值节点。(1)式称为插值条件。 常用的插值函数是多项式函数。且当n=1时是称为线性插值,n=2时称为Simpson 插值或抛物线插值。 2.插值定理: 假设x 0 ,x 1,…,x n 是n+1个互异节点,函数f(x)在这组节点的值f(x k )(k=0,1,…,n)是给定的,那么存在唯一的n 次次多项式p n (x)满足 p n (x k )=f(x k ), k=0,1,…,n 3.插值的截断误差 设?n (x)是过点x 0 ,x 1 ,x 2 ,…x n 的 n 次插值多项式, f (n+1)(x)在(a ,b )上存在,其中[a ,b]是包含点x 0 ,x 1 ,x 2 ,…,x n 的任一区间,则对任意给定的x ∈[a ,b],总存在一点ξ∈(a ,b )(依赖于x )使 其中 ωn+1 (x)=(x –x 0) (x - x 1)…(x -x n ) ,f (n+1)(ξ) 是f(x)的n+1阶微商在 ξ 的值。 4. 差商: 给定一个函数表 x | x 0 x 1 ….... x n -------- --------------------------------------------------------- y | y 0 ,y 1 ……. y n 其中当i ≠j 时 ,x i ≠x j 记 f[x i ]=f(x i ) ,定义f(x)关于x i ,x j 的一 阶差商 一般的, f(x)关于x i ,x i+1,…,x i+k 的k 阶差商定义为: ) ()! 1() ()()()(1) 1(x n x x f x R n n n n f +++= -=ωξ?j i j i j i x x x f x f x x f --= ][][],[

插值法实验报告

实验二插值法 1、实验目的: 1、掌握直接利用拉格郎日插值多项式计算函数在已知点的函数值;观察拉格郎日插值的龙格现象。 2、了解Hermite插值法、三次样条插值法原理,结合计算公式,确定函数值。 2、实验要求: 1)认真分析题目的条件和要求,复习相关的理论知识,选择适当的解决方案和算法; 2)编写上机实验程序,作好上机前的准备工作; 3)上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结果); 4)分析和解释计算结果; 5)按照要求书写实验报告; 3、实验内容: 1) 用拉格郎日插值公式确定函数值;对函数f(x)进行拉格郎日插值,并对f(x)与插值多项式的曲线作比较。 已知函数表:(0.56160,0.82741)、(0.56280,0.82659)、(0.56401,0.82577)、(0.56521,0.82495)用三次拉格朗日插值多项式求x=0.5635时函数近似值。 2) 求满足插值条件的插值多项式及余项 1) 4、题目:插值法 5、原理: 拉格郎日插值原理: n次拉格朗日插值多项式为:L n (x)=y l (x)+y 1 l 1 (x)+y 2 l 2 (x)+…+y n l n (x)

n=1时,称为线性插值, L 1(x)=y (x-x 1 )/(x -x 1 )+y 1 (x-x )/(x 1 -x )=y +(y 1 -x )(x-x )/(x 1 -x ) n=2时,称为二次插值或抛物线插值, L 2(x)=y (x-x 1 )(x-x 2 )/(x -x 1 )/(x -x 2 )+y 1 (x-x )(x-x 2 )/(x 1 -x )/(x 1 -x 2 )+y 2 (x -x 0)(x-x 1 )/(x 2 -x )/(x 2 -x 1 ) n=i时, Li= (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) 6、设计思想: 拉格朗日插值法是根据n + 1个点x0, x1, ... x n(x0 < x1 < ... x n)的函数值f (x0), f (x1) , ... , f (x n)推出n次多項式p(x),然后n次多項式p (x)求出任意的点x对应的函数值f (x)的算法。 7、对应程序: 1 ) 三次拉格朗日插值多项式求x=0.5635时函数近似值 #include"stdio.h" #define n 5 void main() { int i,j; float x[n],y[n]; float x1; float a=1; float b=1; float lx=0; printf("\n请输入想要求解的X:\n x="); scanf("%f",&x1); printf("请输入所有点的横纵坐标:\n"); for(i=1;i

克里金插值法

克里金插值法 克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。 1 克里金插值法原理 克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。 假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即: )()(10* i n i i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。 其中Z(x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量” 针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数 i λ (i=1,2,……, n)满足关系式: 11=∑=n i i λ (2) 以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:

计算方法 课内实验 插值法与函数逼近

《计算方法》课内实验报告 学生姓名:张学阳1009300132 及学号: 学院: 理学院 班级: 数学101 课程名称:计算方法 实验题目:插值法与函数逼近 指导教师 宋云飞讲师 姓名及职称: 朱秀丽讲师 尚宝欣讲师 2012年10月15日

目录 一、实验题目.......................................................... 错误!未定义书签。 二、实验目的.......................................................... 错误!未定义书签。 三、实验内容.......................................................... 错误!未定义书签。 四、实现结果.......................................................... 错误!未定义书签。 五、实验体会或遇到问题 (6)

插值法与函数逼近 二、实验目的 1.熟悉matlab 编写及运行数值计算程序的方法。 2.进一步理解插值法及函数逼近方法的理论基础。 3.进一步掌握给定数据后应用插值法及函数逼近方法进行数据处理并给出图示结果的实际操作过程。 三、实验内容 1.已知函数在下列各点的值为 试用4次牛顿插值多项式)(4x P 及三次样条函数)(x S (自然边界条件)对数据进行插值。给出求解过程,并用图给出 (){},10,1,0),()(,08.02.0,,4 ===+=i x S y x P y i x y x i i i i i 及。 2.下列数据点的插值 可以得到平方根函数的近似。 (1)用这9个点作8次多项式插值)(8x L 。 (2)用三次样条(第一类边界条件)插值给出)(x S 。 给出求解过程,在区间[0,64]上作图,从得到的结果看,在区间[0,64]上哪种插值结果更精确?在区间[0,1]上两种插值哪个更精确? 3.由实验给出数据表 试求3次、4次多项式的曲线拟合,再根据数据曲线形状,求一个另外函数的拟合曲线。给出求解过程,用图表示实验数据曲线及三种拟合曲线。

几种常用的插值方法

几种常用的插值方法 数学系 信息与计算科学1班 李平 指导老师:唐振先 摘要:插值在诸如机械加工等工程技术和数据处理等科学研究中有许多直接的应用,在很多领域都要用插值的办法找出表格和中间值,插值还是数值积分微分方程数值解等数值计算的基础。本文归纳了几种常用的插值方法,并简单分析了其各自的优缺点。 关键词:任意阶多项式插值,分段多项式插值。 引言:所谓插值,通俗地说就是在若干以知的函数值之间插入一些未知函数值,而插值函数的类型最简单的选取是代数多项式。用多项式建立插值函数的方法主要用两种:一种是任意阶的插值多项式,它主要有三种基本的插值公式:单项式,拉格朗日和牛顿插值;另一种是分段多项式插值,它有Hermite 和spine 插值和分段线性插值。 一.任意阶多项式插值: 1.用单项式基本插值公式进行多项式插值: 多项式插值是求通过几个已知数据点的那个n-1阶多项式,即P n-1(X)=A 1+A 2X+…A n X n-1,它是一个单项式基本函数X 0,X 1…X n-1的集合来定义多项式,由已知n 个点(X,Y )构成的集合,可以使多项式通过没数据点,并为n 个未知系数Ai 写出n 个方程,这n 个方程组成的方程组的系数矩阵为Vandermonde 矩阵。 虽然这个过程直观易懂,但它都不是建立插值多项式最好的办法,因为Vandermonde 方程组有可能是病态的,这样会导致单项式系数不确定。另外,单项式中的各项可能在大小上有很大的差异,这就导致了多项式计算中的舍入误差。 2.拉格朗日基本插值公式进行插值: 先构造一组插值函数L i (x ) =011011()()()() ()()()() i i n i i i i i i n x x x x x x x x x x x x x x x x -+-+--------L L L L ,其中i=0,… n.容易看出n 次多项式L i (x )满足L i (x )=1,(i=j );L i (x )=0,(i ≠j ),其中

插值法在管理决策中的应用及其Matlab实现

插值法在管理决策中的应用及其Matlab实现 张英俊,孙大宁*,张亚娟 (北方工业大学理学院,北京100144) 摘 要:利用插值曲线,即三次样条插值和立方插值法来比较分析随机网络评审法中两个随机变量之间的相关 性.经分析表明,立方插值不仅是分析相关性的实用曲线工具,而且利用Matlab所构造的函数有足够的光滑性、平顺性,且图像在考察变量的相关性时具有直观性的优点,因此对它的应用研究非常有价值. 关键词:插值 Matlab程序相关性 中图分类号:O29;TB115文献标识码:A文章编号:1674-0874(2008)03-0040-03 收稿日期:2008-01-15 作者简介:张英俊(1982-),女,山西平遥人,在读硕士,研究方向:风险决策;*孙大宁,男,教授,通讯作者. 随机网络评审法是基于随机网络和计算机仿真的一种随机型的定量评估方法,它是以风险评审技术(简称VERT)为基础的,VERT是一种计算机仿真技术,它把网络理论,仿真原理和概率论综合起来,其特点之一就是在各种信息不完全,不充分和不肯定的情况下,对各种工程系统和工程项目的发展计划有关的时间T(周期或工作量),费用C(耗费、成本或投入),功能P(性能、效益或输出等)三种指标来描述,从而描述决策分析对象应达到的目标.一般情况下,在进行风险决策分析时为了有利于模型的建立和使分析计算工作更快更有效,我们需要对网络中各个节点上相应随机参数的频数直方图以及3个参数中任意两者之间的相关性进行分析.在处理我国飞机预研计划这一课题发展起来的 SNSS系统是采用Fortran77语言编写的[1],以卡片形式进行输入输出的,在输出直方图以及进行时间、 费用、效益三者中任两者之间相互关系的计算上不是很直观、很简洁.其实两个随机参数之间的这种函数关系,在数值分析中有许多的方法可以求得,但是哪种方法能更直观、更合乎实际地给出反映这种相关性的平滑曲线呢?本文所选的插值方法能够较好地满足这一要求. 1插值方法的选择及其数学原理 插值是已知某函数在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束.也即要求通过平面上已知n个点(xi,yi),i= 1,2,…,n作一条光滑的曲线,完成这项工作的方 法有多种,如拉格朗日插值、埃尔米特插值和分段 插值等.实际表明,拉格朗日插值和埃尔米特插值函数对于数据较多且具有随机性的变量相关性分析,做一个高次插值多项式是不理想的,因为它带有近似性,且计算也相当复杂.而分段插值是克服高次插值的Runge现象而提出的,只能保证曲线的连续性,却不能保证曲线的光滑性.但是在生产和科学实验中,对所做的插值曲线既要简单,又要在曲线的连接处比较光滑,即所作的分段插值函数在分段上要求多项式次数低,而在节点上不仅连续,还存在连续的低阶导数,我们把满足这样条件的插值函数,称为样条插值函数,它所对应的曲线称为样条曲线,其节点称为样点,这种插值方法称为样条插值[2]. 2 应用举例 2.1 资料说明 某企业的领导和管理者,得知与其竞争的另一 企业正在研制一种新产品,一旦这种新产品研制成功,将给另一企业带来销售市场上的绝对优势,如 第24卷第3期山西大同大学学报(自然科学版) Vol.24.No.32008年6月 JournalofShanxiDatongUniversity(NaturalScience) Jun.2008

MATLAB数值实验一(数据的插值运算及其应用完整版)

佛山科学技术学院 实 验 报 告 课程名称 数值分析 实验项目 插值法与数据拟合 专业班级 机械工程 姓 名 余红杰 学 号 10 指导教师 陈剑 成 绩 日 期 月 日 一、实验目的 1、学会Lagrange 插值、牛顿插值和三次样条插值等基本插值方法; 2、讨论插值的Runge 现象 3、学会Matlab 提供的插值函数的使用方法,会用这些函数解决实际问题。 二、实验原理 1、拉格朗日插值多项式 2、牛顿插值多项式 3、三次样条插值 三、实验步骤 1、用MATLAB 编写独立的拉格朗日插值多项式函数 2、用MATLAB 编写独立的牛顿插值多项式函数 3、用MATLAB 编写独立的三次样条函数(边界条件为第一、二种情形) 4、已知函数在下列各点的值为: 根据步骤1,2,3编好的程序,试分别用4次拉格朗日多项式4()L x 、牛顿插值多项式4()P x 以及三次样条函数()S x (自然边界条件)对数据进行插值,并用图给出 {(,),0.20.08,0,1,2, ,10i i i x y x i i =+=},4()L x 、4()P x 和()S x 。 5、在区间[-1,1]上分别取10,20n =用两组等距节点对龙格函数 2 1 (),(11)125f x x x = -≤≤+作多项式插值,对不同n 值,分别画出插值函数及()f x 的图形。 6、下列数据点的插值

可以得到平方根函数的近似,在区间[0,64]上作图。 (1)用这9个点作8次多项式插值8()L x 。 (2)用三次样条(第一边界条件)程序求()S x 。 7、对于给函数2 1 ()125f x x = +在区间[-1,1]上取10.2(0,1, ,10)i x i i =-+=,试求3次 曲线拟合,试画出拟合曲线并打印出方程,与第5题的结果比较。 四、实验过程与结果: 1、Lagrange 插值多项式源代码: function ya=lag(x,y,xa) %x 所有已知插值点 %y 插值点对应函数值 %xa 所求点,自变量 %ya 所求点插值估计量 ya=0; mu=1; %初始化 %循环方式求L 系数,并求和: for i = 1:length(y) for j = 1:length(x) if i ~= j mu = mu * (xa - x(j) ) / ( x(i) - x(j) ); else continue end end ya = ya + y(i) * mu ; mu = 1; end 2、Newton 源代码: function ya = newton(x,y,xa) %x 所有已知插值点 %y 插值点对应函数值 %xa 所求点,自变量 %ya 所求点插值估计量 %建立系数零矩阵D 及初始化:

实验3 插值方法

0实验3 Matlab编程实现Lagrange插值算法 复习: 1、输出一个正整数,求该正整数的阶乘。 函数参考: 2、编写函数实现对任意输入一个向量的排序(向量里的元素从小到大)函数参考:

Lagrange 插值算法 一、理论知识: 1、线性插值 101001011)(y x x x x y x x x x x L ???? ??--+???? ??--= 2、二次插值 2211002)()()()(y x l y x l y x l x L ++= ))(() )(()(2010210x x x x x x x x x l ----= ,) )(())(()(2101201x x x x x x x x x l ----=, ))(())(()(1202102x x x x x x x x x l ----= 3、n 次Lagrange 插值 ∑==+++=n k k k n n n y x l y x l y x l y x l x L 01100)()()()()( ) ())(())(() ())(())(()(111111n k k k k k k o k n k k o k x x x x x x x x x x x x x x x x x x x x x l ----------= +-+- ∑∏=≠=???? ? ?????--=n k k n k j j j k j n y x x x x x L 00)()()( 二、实验题目: 1、 已知11=,24=,39=,用线性和二次插值求5的近似值。 线性插值 你选择的节点是: 你的程序: 插值结果:

计算方法实验

算方法实验指导 姓名学号院系专业哈尔滨工业大学

计算方法实验指导 根据实际问题建立的数学模型,一般不能求出所谓的解析解,必须针对数学模型 的特点确定适当的计算方法,编制出计算机能够执行的计算程序,输入计算机,进行 调试,完成运算,如果计算结果存在问题或不知是否正确,还需要重新确定新的计算 方法,再编制出计算程序,输入计算机,重新调试,完成运算,直至获得正确的计算 结果,这就是数值计算的全部过程。 学生在学习“计算方法”和“高级语言”等课程时普遍存在的问题是:只会套用 教科书中的标准程序进行数值计算,很少有人能够独立地将学过的数值算法编制成计 算机程序,至于灵活应用已经掌握的算法求解综合性较大的课题,则更是困难的事情。 编写《计算方法实验指导》的目的是:突出数值计算程序结构化的思想。提高学 生的编程能力,加深对“计算方法”课程内容的理解和掌握,为”计算方法“课程的 教学服务,进一步奠定从事数值计算工作的基础。具体地 1. 根据“计算方法”课程内容的特点,给出五个典型算法的分析流程,学生可以 利用所掌握的 “高级语言”顺利地编制出计算机程序,上机实习,完成实验环节的教 学要求。 2. 所有的计算实习题目都经过任课教师逐一检验,准确无误。 3. 充分利用循环的思想、 迭代的思想, 给出算法结构描述和程序语言的对应关系, 有利于学生编 制相应的程序。 4. 结合实习题目,提出实验要求,要求学生按规范格式写出相应的实验报告,实 验报告成绩记入 期末总成绩。需要提醒学生:不能简单地套用现成的标准程序完成实 验题目,应当把重点放在对算法的理解、程序的优化设计、上机调试和计算结果分析 上,否则就失去实验课的目的啦。 5. 五个具体的实验题目是: 实验题目 实验题目 实验题目 实验题目 实验题目 要求必须完 成其中三个(如果全部完成更好) 。 1 拉格朗日 (Lagrange) 插值 2 龙贝格 (Romberg) 积分法 3 四阶龙格—库塔 (Runge — Kutta) 方法 4 牛顿 (Newton) 迭代法 5 高斯 (Gauss) 列主元消去法

五种插值法的对比研究开题报告

五种插值法的对比研究 1. 选题依据 1.1 选题背景 插值法是一种古老的数学方法,插值法历史悠久。据考证,在公元六世纪时, 我国焯(zhuo) 已经把等距二次插值法应用于天文计算。十七世纪时,Newton 和 Gregory(格雷格里) 建立了等距节点上的一般插值公式,十八世纪时,Lagrange(拉格朗日) 给出了更一般的非等距节点插值公式。 而它的基本理论是在微积分产生以后逐渐完善的,它的实际应用也日益增多,特别是在计算机工程中。许多库函数的计算实际上归结于对逼近函数的计算。 1.2 研究的目的和意义 插值法是数值分析中最基本的方法之一。 在实际问题中碰到的函数是各种各样的,有的甚至给不出表达式,只提供了一些离散数据,例如,在查对数表时, 要查的数据在表中找不到,就先找出它相邻的数,再从旁边找出它的修正值, 按一定关系把相邻的数加以修正,从而找出要找的数,这种修正关系实际上就是一种插值。 在实际应用中选用不同类型的插值函数,逼近的效果也不同。在数值计算方法中,我们学习过五种基本的插值方法,即Lagrange 插值、Newton 插值、分段线性插值、分段三次Hermite 插值、样条插值函数。所以通过从这五种插值法的基本思想、特征、性质和具体实例入手,探讨五种插值法的优缺点和适用围,让学习者能够迅速而准确的解决实际问题,掌握插值法的应用。 2. 研究的方法 从具体实例入手并结合Matlab 在科学计算中的优势,通过实验对它们的精度和效率进行比较分析。 3. 论文结构 3.1 论文的总体结构 第一部分 导言 主要介绍选题的背景、目的及意义、研究现状、文献综述等。 第二部分 五种插值法的基本思想、性质及特点 在数值计算方法中,插值法是计算方法的基础,数值微分、数值积分和微分方程数值解都建立在此基础上。 插值问题的提法是:已知f(x)(可能未知或非常复杂函数)在彼此不同的n+1 个实点0x ,1x ,…n x 处的函数值是f(0x ),f(1x ),…,f(n x ),这时我们简单的说f(x)有n+1 个 离散数据对0n i i )}y ,{(x i .要估算f(x)在其它点x 处的函数值,最常见的一种办法就是插 值,即寻找一个相对简单的函数y(x),使其满足下列插值条件:y(i x )=f(i x ),i=0,1,…,n.,并以y(x)作为f(x)的近似值.其中y(x)称为插值函数,f(x)称为被插函数。

数值分析拉格朗日插值法上机实验报告

课题一:拉格朗日插值法 1.实验目的 1.学习和掌握拉格朗日插值多项式。 2.运用拉格朗日插值多项式进行计算。 2.实验过程 作出插值点(1.00,0.00),(-1.00,-3.00),(2.00,4.00)二、算法步骤 已知:某些点的坐标以及点数。 输入:条件点数以及这些点的坐标。 输出:根据给定的点求出其对应的拉格朗日插值多项式的值。 3.程序流程: (1)输入已知点的个数; (2)分别输入已知点的X坐标; (3)分别输入已知点的Y坐标; 程序如下: #include #include #include float lagrange(float *x,float *y,float xx,int n) /*拉格朗日

插值算法*/ { int i,j; float *a,yy=0.0; /*a作为临时变量,记录拉格朗日插值多项*/ a=(float*)malloc(n*sizeof(float)); for(i=0;i<=n-1;i++) { a[i]=y[i]; for(j=0;j<=n-1;j++) if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]); yy+=a[i]; } free(a); return yy; } int main() { int i; int n; float x[20],y[20],xx,yy; printf("Input n:");

scanf("%d",&n); if(n<=0) { printf("Error! The value of n must in (0,20)."); getch();return 1; } for(i=0;i<=n-1;i++) { printf("x[%d]:",i); scanf("%f",&x[i]); } printf("\n"); for(i=0;i<=n-1;i++) { printf("y[%d]:",i);scanf("%f",&y[i]); } printf("\n"); printf("Input xx:"); scanf("%f",&xx); yy=lagrange(x,y,xx,n); printf("x=%f,y=%f\n",xx,yy); getch(); } 举例如下:已知当x=1,-1,2时f(x)=0,-3,4,求f(1.5)的值。

计算方法-插值方法实验

实验一插值方法 一. 实验目的 (1)熟悉数值插值方法的基本思想,解决某些实际插值问题,加深对数值插值方法 的理解。 (2)熟悉Matlab 编程环境,利用Matlab 实现具体的插值算法,并进行可视化显示。 二. 实验要求 用Matlab 软件实现Lagrange 插值、分段线性插值、三次Hermite 插值、Aitken 逐步插值算法,并用实例在计算机上计算和作图。 三. 实验内容 1. 实验题目 (1 ) 已 知概 率积 分dx e y x x ?-= 2 2 π 的数据表 构造适合该数据表的一次、二次和三次Lagrange 插值公式,输出公式及其图形,并计算x =0.472时的积分值。 答: ①一次插值公式: 输入下面内容就可以得到一次插值结果 >> X=[0.47,0.48];Y=[0.4937452,0.5027498]; >> x=0.472; >> (x-X(2))/(X(1)-X(2))*Y(1)+(x-X(1))/(X(2)-X(1))*Y(2) ans =0.495546120000000 >> ②两次插值公式为: 输入下面内容就可以得到两次插值结果 >> X=[0.46,0.47,0.48];Y=[0.4846555,0.4937452,0.5027498]; >> x=0.472; >>(x-X(2))*(x-X(3))/((X(1)-X(2))*(X(1)-X(3)))*Y(1)+(x-X(1))*(x-X(3))/((X(2)-X(1))*(X(2)-X(3)))*Y(2)+(x-X(2))*(x-X(1))/((X(3)-X(2))*(X(3)-X(1)))*Y(3) i 0 1 2 3 x 0.46 047 0.48 0.49 y 0.4846555 0.4937452 0.5027498 0.5116683

实验5 插值方法

实验5 插值方法 一、实验目的及意义 [1] 了解插值的基本原理 [2] 了解拉格朗日插值、线性插值、样条插值的基本思想; [3] 了解三种网格节点数据的插值方法的基本思想; [4] 掌握用MATLAB 计算三种一维插值和两种二维插值的方法; [5] 通过范例展现求解实际问题的初步建模过程; 通过自己动手作实验学习如何用插值方法解决实际问题,提高探索和解决问题的能力。通过撰写实验报告,促使自己提炼思想,按逻辑顺序进行整理,并以他人能领会的方式表达自己思想形成的过程和理由。提高写作、文字处理、排版等方面的能力。二、实验内 容 1.编写拉格朗日插值方法的函数M 文件;2.用三种插值方法对已知函数进行插值计算,通过数值和图形输出,比较它们的效果;3.针对实际问题,试建立数学模型,并求解。 三、实验步骤 1.开启软件平台——MATLAB ,开启MATLAB 编辑窗口; 2.根据各种数值解法步骤编写M 文件 3.保存文件并运行; 4.观察运行结果(数值或图形); 5.写出实验报告,并浅谈学习心得体会。 四、实验要求与任务 根据实验内容和步骤,完成以下具体实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论→心得体会) 基础实验 1. 一维插值 利用以下一些具体函数,考察分段线性插值、三次样条插值和拉格朗日多项式插值等三种插值方法的差异。 1) 2 11 x +,x ∈[-5,5]; 2)sin x , x ∈[0,2π]; 3)cos 10 x , x ∈[0,2π]. 注意:适当选取节点及插值点的个数;比较时可以采用插值点的函数值与真实函数值的 差异,或采用两个函数之间的某种距离。 2.高维插值 对于二维插值的几种方法:最邻近插值、分片线性插值、双线性插值、三次插值等,利用如下函数进行插值计算,观察其插值效果变化,得出什么结论? 1) ())(sin ),(px t t x f -=ω,参数p =1/2000~1/200;采样步长为:t =4ms~4s ;

EasyKrig3.0的说明文档(kriging插值)

The GLOBEC Kriging Software Package – EasyKrig3.0July 15, 2004 Copyright (c) 1998, 2001, 2004 property of Dezhang Chu and Woods Hole Oceanographic Institution. All Rights Reserved. The kriging software described in this document was developed by Dezhang Chu with funding from the National Science Foundation through the U.S. GLOBEC Georges Bank Project's Program Service and Data Management Office. It was originally inspired by a MATLAB toolbox developed by Yves Gratton and Caroline Lafleur (INRS-Océanologie, Rimouski, Qc, Canada), and Jeff Runge (Institut Maurice-Lamontagne, now with University of New Hampshire). This software may be reproduced for noncommercial purposes only. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY. Contact Dr. Chu at dchu@https://www.doczj.com/doc/4816092775.html, with enhancements or suggestions for changes. Table of Contents: 1. INTRODUCTION 1.1 General Information 1.1.1 About kriging 1.1.2 Brief descriptions of easy_krig3.0 1.2 Getting started 1.2.1 Operating systems 1.2.2 Down-load the program 1.2.3 Quick start 2. DATA PROCESSING STAGES 2.1 Data Preparation 2.2 Semi-variogram 2.3 Kriging 2.4 Visualization 2.5Saving Kriging Results 3. EXAMPLES 3.1 Example 1: An Aerial Image of Zooplankton Abundance Data 3.2 Example 2: A Vertical Section of Salinity Data – An Anisotropic Data set 3.3 Example 3: Batch Process of Pressure (dbar) at Different Potential Density Layers 3.4 Example 4: 3-Dimensional Temperature Data 4. REFERENCES

插值与多项式逼近的数组计算方法实验讲解

插值与多项式逼近的数组计算方法实验 郑发进 2012042020022 【摘要】计算机软件中经常要用到库函数,如) cos,x e,它们 (x (x sin,) 是用多项式逼近来计算的。虽然目前最先进的逼近方法是有理函数(即多项式的商),但多项式逼近理论更适于作为数值分析的入门课程。在已知数据具有高精度的情况下,通常用组合多项式来构造过给定数据点的多项式。构造组合多项式的方法有许多种,如线性方程求解、拉格朗日系数多项式以及构造牛顿多项式的方分和系数表。 关键字泰勒级数、拉格朗日插值法、牛顿插值法、帕德逼近 一、实验目的 1.通过具体实验,掌握泰勒级数、拉格朗日插值法、牛顿插值法、帕德逼近的编程技巧。 2.比较各插值方法的优劣并掌握。 二、实验原理 1.泰勒级数 在数学中,泰勒级数(英语:Taylor series)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。 如果在点x=x 具有任意阶导数,则幂级数 称为在点x 处的泰勒级数。 =0,得到的级数 在泰勒公式中,取x 称为麦克劳林级数。函数的麦克劳林级数是x的幂级数,那么这种展开

是唯一的,且必然与的麦克劳林级数一致。 2.拉格朗日插值法 如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。这样的多项式称为拉格朗日(插值)多项式。数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数。 在平面上有(x 1,y 1)(x 2,y 2)...(x n ,y n )共n 个点,现作一条函数f (x )使其图像经过这n 个点。 作n 个多项式p i (x),i=1,2,3...,n,使得 最后可得 3.牛顿插值法 插值法利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化, 这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。 牛顿插值通过求各阶差商,递推得到的一个公式: 10121()()()()()()N N N N P x P x a x x x x x x x x --=+---- 牛顿插值与拉格朗日插值具有唯一性。 4.帕德逼近 它不仅与逼近论中其他许多方法有着密切的关系,而且在实际问题特别是许多物理问题中有着广泛的应用。设是在原点某邻域内收敛的、具有复系数的麦克劳林级数。欲确定一个有理函数,式中,使得前次方的系数为0,即使得 此处约定qk =0(k>n )。虽然所求得的Pm(z)和Qn(z)不惟一,但是比式却总是惟一的。有理函数称为F(z)的(m,n)级帕德逼近,记为(m/n)。由(m/n)所形成的阵列称为帕德表。

插值法数值上机实验报告

插值法数值上机实验报告 实验题目: 利用下列条件做插值逼近,并与R (x) 的图像比较 考虑函数:R x y=1 1+x2 (1)用等距节点X i=?5+i,i=0,1,...,10.给出它的10次Newton插值多项式的图像; π),i=0,1,...,20.给出它的20次Lagrange插值多项式(2)用节点X i=5cos(2i+1 42 的图像; (3)用等距节点X i=?5+i,i=0,1,...,10.给出它的分段线性插值函数的图像;(4)用等距节点X i=?5+i,i=0,1,...,10.给出它的三次自然样条插值函数的图像; (5)用等距节点X i=?5+i,i=0,1,...,10.给出它的分段三次Hermite插值函数的图像; 实验图像结果:

实验结果分析: 1.为了验证Range现象,我还特意做了10次牛顿插值多项式和20次牛顿插值多项式的对比图像,结果如下图(图对称,只截取一半) 可以看出,Range现象在高次时变得更加明显。这也是由于高次多项式在端点处的最值随次数的变大很明显。可以料定高次多项式在两侧端点处剧烈震荡,在更小的间距内急剧上升然后下降,Range现象非常明显。

2.分析实验(2)的结果,我们会惊讶地发现,由于取21个点逼近,原本预料的Range现象会很明显,但这里却和f(x)拟合的很好。(即下图中Lagrange p(x)的图像)。可是上图中取均匀节点的20次牛顿多项式逼近的效果在端点处却很差。料想是由于节点X i=5cos2i+1 42 π ,i=0,1,...,20 取得很好。由书上第五章的 知识,对于函数y=1 1+x ,y 1 2对应的cherbyshev多项式的根恰好为X i= 5cos2i+1 42 π ,i=0,1,...,20 。由于所学限制,未能深入分析。 (3)比较三次样条插值图像和Hermit插值图像对原函数图像的逼近情形。见下图:

相关主题
文本预览
相关文档 最新文档