当前位置:文档之家› 排列组合难题二十一种方法(含答案详解)

排列组合难题二十一种方法(含答案详解)

排列组合难题二十一种方法(含答案详解)
排列组合难题二十一种方法(含答案详解)

排列组合难题二十一种方法

解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事

2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.

4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略

例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.

解:由于末位和首位有特殊要求,应该优先安排,

以免不合要求的元素占了这两个位置. 先排末位共有13C

然后排首位共有1

4C 最后排其它位置共有34A

由分步计数原理得113434288C C A =

练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的

花盆里,问有多少不同的种法?

二.相邻元素捆绑策略

例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.

解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元

素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A =种不同的排法

甲丁

练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20

三.不相邻问题插空策略

例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的

出场顺序有多少种?

解:分两步进行第一步排2个相声和3个独唱共有55A 种,

第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种4

6A 不同的方法,由分步计数原理,节目

的不同顺序共有54

56A A 种

练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30

四.定序问题倍缩空位插入策略

例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法

C 14A 34C 1

3

解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起

进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同

排法种数是:73

73/A A

(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有4

7A 种方法,其余的三个位

置甲乙丙共有 1种坐法,则共有4

7A 种方法。

思考:可以先让甲乙丙就坐吗?

(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法

练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有

多少排法. 5

10C 五.重排问题求幂策略

例5.把6名实习生分配到7个车间实习,共有多少种不同的分法

解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有67种不同的排法

练习题:

1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 42

2.某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法87 六.环排问题线排策略

例6. 8人围桌而坐,共有多少种坐法?

解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人44A 并

从此位置把圆形展成直线其余7人共有(8-1)!种排法即7!

H F

D C A

A

B C D E A

B E G

H G F

练习题:6颗颜色不同的钻石,可穿成几种钻石圈. 120 七.多排问题直排策略

例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法

解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有24

A 种,再排后4个位置上的特殊元素丙有14A 种,其余的5人在5个位置上任意排列

有55A 种,则共有215

44

5A A A 种

前 排

后 排

练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中

间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 346

八.排列组合混合问题先选后排策略

例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.

解:第一步从5个球中选出2个组成复合元共有25C 种方法.再把4个元素(包含一个

复合元素)装入4个不同的盒内有44A 种方法,

根据分步计数原理装球的方法共有2454C A

练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,

每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种

九.小集团问题先整体后局部策略

例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之

间,这样的五位数有多少个?

解:把1,5,2,4当作一个小集团与3排队共有22A 种排法,再排小集团内部共有

2222A A 种排法,由分步计数原理共有222

222A A A 种排法.

1524

3

练习题:

1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为

254

254A A A

2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有255

255A A A 种

十.元素相同问题隔板策略

例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?

解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个空隙。在

9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法。

一班二班三班四班五班六班七班

练习题:

1.10个相同的球装5个盒中,每盒至少一有多少装法? 49C

2.100x y z w +++=求这个方程组的自然数解的组数 3

103C 十一.正难则反总体淘汰策略

例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的

取法有多少种?

解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法。这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有35C ,只含有1个偶数的

取法有1255C C ,和为偶数的取法共有123555C C C +。再淘汰和小于10的偶数共9种,符合条件的取法共有123

5

559C C C +-

练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?

十二.平均分组问题除法策略

例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?

解: 分三步取书得222642C C C 种方法,但这里出现重复计数的现象,不妨记6本书为

ABCDEF ,若第一步取AB,第二步取CD,第三步取EF 该分法记为(AB,CD,EF),则222642C C C 中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共

有33A 种取法 ,而这些分法仅是(AB,CD,EF)一种分法,故共有22236423/C C C A 种分法。

练习题:

1.将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?(544213842/C C C A )

2.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的分组方法 (1540)

3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班

级且每班安排2名,则不同的安排方案种数为______(222

24262/90C C A A =)

十三. 合理分类与分步策略

例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人

唱歌2人伴舞的节目,有多少选派方法

解:10演员中有5人只会唱歌,2人只会跳舞3人为全能演员。选上唱歌人员为标准进行研究

只会唱的5人中没有人选上唱歌人员共有2233C C 种,只会唱的5人中只有1人选

上唱歌人员112

534C C C 种,只会唱的5人中只有2人选上唱歌人员有2255C C 种,由分类

计数原理共有

22112

22335

3455C C C C C C C ++种。

练习题:

1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有34

2. 3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,

他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法. (27)

本题还有如下分类标准:

*以3个全能演员是否选上唱歌人员为标准

*以3个全能演员是否选上跳舞人员为标准

*以只会跳舞的2人是否选上跳舞人员为标准

都可经得到正确结果

十四.构造模型策略

例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少

种?

解:把此问题当作一个排队模型在6盏亮灯的5个空隙中插入3个不亮的灯有3

5

C种

练习题:某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?(120)

十五.实际操作穷举策略

例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法

解:从5个球中取出2个与盒子对号有2

5

C种还剩下3球3盒序号不能对应,利用实际操作法,如果剩下3,4,5号球, 3,4,5号盒3号球装4号盒时,则4,5号球有

只有1种装法,同理3号球装5号盒时,4,5号球有也只有1种装法,由分步计数

原理有2

5

2C种

534

3号盒 4号盒 5号盒

练习题:

1.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种? (9)

2.给图中区域涂色,要求相邻区域不同色,现有4种可选颜色,则不同的着色方法有 72种

54

32

1

十六. 分解与合成策略

例16. 30030能被多少个不同的偶数整除

分析:先把30030分解成质因数的乘积形式30030=2×3×5 × 7 ×11×13依题意可知偶因数必先取2,再从其余5个因数中任取若干个组成乘积,所有的偶因数为:1234555555C C C C C ++++

练习:正方体的8个顶点可连成多少对异面直线

解:我们先从8个顶点中任取4个顶点构成四体共有体共481258C -=,每个四面体有

3对异面直线,正方体中的8个顶点可连成358174?=对异面直线

十七.化归策略

例17. 25人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?

解:将这个问题退化成9人排成3×3方阵,现从中选3人,要求3人不在同一行也不在同一列,有多少选法.这样每行必有1人从其中的一行中选取1人后,把这人所在的行列

都划掉,如此继续下去.从3×3方队中选3人的方法有111

321C C C 种。再从5×5方阵选出3×3方阵便可解决问题.从5×5方队中选取3行3列

有3355C C 选法所以从5×5方阵选不在同一行也不在同一

列的3人有33111

553

21C C C C C 选法。

练习题:某城市的街区由12个全等的矩形区组成其中实线表示马路,从A 走到B 的最

短路径有多少种?(3735C =

)

B

A

十八.数字排序问题查字典策略

例18.由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数?

解:297221122334455=++++=A A A A A N

练习:用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列

起来,第71个数是 3140 十九.树图策略

例19.3人相互传球,由甲开始发球,并作为第一次传球,经过5次传求后,球仍回到甲的

手中,则不同的传球方式有______ 10=N

练习: 分别编有1,2,3,4,5号码的人与椅,其中i 号人不坐i 号椅(54321,,,,i =)的

不同坐法有多少种?44=N

二十.复杂分类问题表格策略

例20.有红、黄、兰色的球各5只,分别标有A 、B 、C 、D 、E 五个字母,现从中取5只,

要求各字母均有且三色齐备,则共有多少种不同的取法 解:

二十一:住店法策略

解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解.

例21.七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有 .

分析:因同一学生可以同时夺得n 项冠军,故学生可重复排列,将七名学生看作7家“店”,五项冠军看作5名“客”,每个“客”有7种住宿法,由乘法原理得75种.

红 1 1 1 2 2 3 黄 1 2 3 1 2 1 兰 3 2 1 2 1 1

取法 1415C C 2415C C 3415C C 1325C C 2325C C 1235C C

高考数学轻松搞定排列组合难题二十一种方法

高考数学轻松搞定排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 m种不同的方法,在第 1 2类办法中有 m种不同的方法,…,在第n类办法中有n m种不同的 2 方法, 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 m种不同的方法,做第 1 2步有 m种不同的方法,…,做第n步有n m种不同的方法,那么完2 成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略

一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 占了这两个位置 . 先排末位共有13C 然后排首位共有1 4C 最后排其它位置共有34 A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间, 也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也 看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能 连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4 舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种4 6 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 443

排列组合的二十种解法(最全的排列组合方法总结)

教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有3 4A 由分步计数原理得113 434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有 多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522 522480A A A =种不同的 排法

解排列组合难题二十一方法

解排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.

排列组合方法

排列、组合题解题方法 一、相邻问题捆绑法 1、A,B,C,D,E共5人并排站成一排,若A,B必须相邻,则不同的排法种数有多少? 2、A,B,C,D,E共5人并排站成一排,若A,B必须相邻且B在A的右边,则不同的排法种数有多少? 二、相离问题插空法 1、A,B,C,D,E共5人并排站成一排,若A,B不能相邻,则不同的排法种数有多少? 2、用1,2,3,4,5,6,7七个数字排成一个七位数, (1)偶数数字不相邻的有多少个? (2)奇数与偶数数字相间的有多少个? 3、4男4女排成一排,男女要相间排列,则不同的排法种数有多少? 4、某人射击8枪,命中4枪,4枪命中且恰有3枪连在一起的不同种数? 射击7枪,击中5枪,击中与未击中的不同顺序? 三、定序问题缩倍法 1、A,B,C,D,E共5人并排站成一排,若A必须站在B的右方,(A,B可以不相邻),则不同的排法种数有多少? 2、书架上放有6本不同的书,现把另外3本不同的新书也放上去,并且不改变原来书的相对顺序,则共有多少种不同的摆放方法? 3、一条街上有10盏路灯,为了节约用电,需关掉其中的3盏,但不能关两端的2盏,也不能关相邻的2盏或3盏,则共有多少种关灯方法? 4、某人上楼共10级,上楼可以一步上一级,也可一步上两级,规定要用8步走完,则不同的上楼方法?四、定位问题优先法 1、一名老师和4名同学排成一排照相,若老师不能在两端,则不同的排法种数有多少? 2、用0,1,3,5,7五个数字,可组成多少个没有重复数字且5不在十位位置上的五位数? 3、10双不同的鞋子混装在一只口袋中,从中任取4只, (1)4只鞋子没有成双的 (2)4只鞋子恰成两双 (3)4只鞋子,有2只成双,另2只不成双 五、相同元素隔板法 1、方程) (* ∈ = + + +N n n x x x m Λ 2 1 ,共有多少组不同的正整数解? 2、某校召开代表会,把6个代表分配给3个班,每班至少一个名额,有多少种方法? 3、4 () a b c d f ++++展开式再合并同类项共有多少项? 4、(1)12个相同的小球放入编号为1,2,3,4的盒子中,问每个盒子至少有一个球的不同放法?(2)12个相同的小球放入编号为1,2,3,4的盒子中,每盒可空,不同放法? (3)12个相同的小球放入编号为1,2,3,4的盒子中,每个盒子的小球数不小于其编号数,不同放法? 六、有序分配问题逐分法 1、有甲,乙,丙三项任务,甲需2人承担,乙,丙各需一人承担,从10人中选出4人承担这3项任务,不同的选法总数有多少? 2、6本不同的书,按下列条件,各有多少种不同的分法? (1)分给甲,乙,丙三人,每人两本书 (2)分成三份,每份2本 (3)分成三份,1份1本,1份2本,1份3本 (4)分给甲,乙,丙三人,1人1本,1人2本,1人3本 (5)分给甲,乙,丙三人,每人至少1本

高中数学轻松搞定排列组合难题二十一种方法10页

高中数学轻松搞定排列组合难页10题二十一种方法. 高考数学轻松搞定排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排 列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标

1.进一步理解和应用分步计数原理和分类计数原理。能运用解题策略解决简单的综合应用掌握解决排列组合问题的常用策略; 2. 题。提高学生解决问题分析问题的能力. 学会应用数学思想和方法解决排列组合问题 3. 复习巩固) 加法原理1.分类计数原理(2种不同的方法,在第完成一件事,有类办法,在第1类办法中有mn1种不同的方法,类办法中有类办法中有种不同的方法,…,在第mmn n2那么完成这件事共有2种不同的方法.分步计数原理(乘法原理)2.2种不同的方法,做第个步骤,做第1步有完成一件事,需要分成mn1种不同的方法,那么完成这件步有步有种不同的方法,…,做第mmn n2事共有2种不同的方法.分类计数原理分步计数原理区别3. 分类计数原理方法相互独立,任何

一种方法都可以独立地完成这件事。 不能完每步中的方法完成事件的一个阶段,分步计数原理各步相互依存,成整个事件.: 解决排列组合综合性问题的一般过程如下 1. 认真审题弄清要做什么事或是分步与分类同时即采取分步还是分 类,2.怎样做才能完成所要做的事, ,确定分多少步及多少类。进行元素总数是,无序)问题确定每一步或每一类是排列问题3.(有序)还是组合(. 多少及取出多少个元素因此必须掌握一些常用的解往往类与步交叉,4.解决排列组合综合性问题,题策略 .特殊元素和特殊位置优先策略一. 可以组成多少个没有重复数字五位奇数1.例由0,1,2,3,4,5以免不合要求的元素占了这应该优先安排,,解:由于末位和首位有特殊要求2 131CAC344. . 两个位置先排末位共有1C3然后排首位共有1C4最后排其它位置共有3A4由分步计数原理得311C288CA?434

高中数学轻松搞定排列组合难题二十一种方法(含答案)

高中数学轻松搞定排列组合难) 含答案(题二十一种方法. 高考数学轻松搞定排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排 列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标

1.进一步理解和应用分步计数原理和分类计数原理。能运用解题策略解决简单的综合应用掌握解决排列组合问题的常用策略; 2. 题。提高学生解决问题分析问题的能力. 学会应用数学思想和方法解决排列组合问题 3. 复习巩固) 加法原理1.分类计数原理(2种不同的方法,在第完成一件事,有类办法,在第1类办法中有mn1种不同的方法,类办法中有类办法中有种不同的方法,…,在第mmn n2那么完成这件事共有2种不同的方法.分步计数原理(乘法原理)2.2种不同的方法,做第个步骤,做第1步有完成一件事,需要分成mn1种不同的方法,那么完成这件步有步有种不同的方法,…,做第mmn n2事共有2种不同的方法.分类计数原理分步计数原理区别3. 分类计数原理方法相互独立,任何

一种方法都可以独立地完成这件事。 不能完每步中的方法完成事件的一个阶段,分步计数原理各步相互依存,成整个事件.: 解决排列组合综合性问题的一般过程如下 1. 认真审题弄清要做什么事或是分步与分类同时即采取分步还是分 类,2.怎样做才能完成所要做的事, ,确定分多少步及多少类。进行元素总数是,无序)问题确定每一步或每一类是排列问题3.(有序)还是组合(. 多少及取出多少个元素因此必须掌握一些常用的解往往类与步交叉,4.解决排列组合综合性问题,题策略 .特殊元素和特殊位置优先策略一. 可以组成多少个没有重复数字五位奇数1.例由0,1,2,3,4,5以免不合要求的元素占了这应该优先安排,,解:由于末位和首位有特殊要求2 131CAC344. . 两个位置先排末位共有1C3然后排首位共有1C4最后排其它位置共有3A4由分步计数原理得311C288CA?434

行测排列组合方法技巧

行测排列组合方法技巧 在考试中行测数量关系是必考题型,也是大家容易放弃的一个模块。数量关系中排列组合是必考题型,而在排列组合中还得掌握一些常用的方法也是重中之重。在备考时应该重点复习,快速精确的解题。 捆绑法 在数学运算排列组合题型的题干中经常出现“在一起”、“相邻”特征的题型,这时候我们考虑捆绑法(有些老师也叫打包法),即把“在一起”的元素“捆绑”处理,具体步骤为:先“捆绑”内排序,再“捆绑体”和其他元素间排序。 例如:5个人去看电影要求相邻而坐,已知小王和老王必须在一起,则共有多少种排位方案? 先把必须在一起的小王和老王排序,有A(2,2)=2种排法;接着对其他三人和“捆绑体”共4个单位进行排序,有A(4,4)=24种排法。共有2×24=48种排法。 【例1】3个三口之家一起看演出,一起去看电影坐在一排上,,要求各家庭之间均不能分开,问有几种坐法。 A.6 B.36 C.216 D.1296 【解析】题干中“均不能分开”表明必须“在一起”,则用捆绑法解题。 先每个家庭内部进行排序,有A(3,3)×A(3,3)×A(3,3)=216种排法; 再“捆绑体”(即各个家庭间)间进行排序,有A(3,3)=6种排法。 共有6×216=1296种排法。因此,选择D选项。

【例2】单位工会组织拔河比赛,每支参赛队都由3名男职工和3名 女职工组成。假设比赛时要求3名男职工的站位不能全部连在一起,则每支队伍有几种不同的站位方式? A.432 B.504 C.576 D.720 【解析】注意本题中为不能“全部连在一起”,那么从反面进行考虑哦! 第一步,计算总的情况数为A(6,6)=720种情况。 第二步,计算在一起的情况:先捆绑内排序有A(3,3)=6种情况,再“捆绑体”与其它剩下元素进行排序有A(4,4)=24种情况,共有 6×24=144种情况。 第三步,计算不能“在一起”的情况为720-144=576种情况,因此,选择C选项。 插空法 排列组合题中经常出现排序时要求几个元素“不在一起”、“不相邻”这个时候可以考虑使用插空法,以下题为例: 5位同学去看电影要求相邻而坐,已知小强和小蓉不坐在一起,则共 有多少种排位方案? 在做这类题时,先对无特殊条件的元素进行排序,再将“不在一起”、“不相邻”的元素进行插空排序。 除小强和小蓉外的其他3人无特殊要求先排序有A(3,3)=6种方法,这3人共产生4个空,再对“不在一起”小强和小蓉进行插空,有 A(4,2)=12种方法,共有6×12=72种方法。 【例1】某道路旁有10盏路灯,为节约用电,准备关掉其中3盏。 已知两端的路灯不能关,并且关掉的灯不能相邻,则有( )种不同的 关灯方法。 A.20 B.40 C.48 D.96

高中数学排列组合难题二十一种方法(含答案)

高考数学排列组合难题二十一种方法 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 m种不同的方法,在第2类 1 办法中有 m种不同的方法,…,在第n类办法中有n m种不同的方法,那么2 完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 m种不同的方法,做第2步 1 有 m种不同的方法,…,做第n步有n m种不同的方法,那么完成这件事共2 有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 具体策略 一.特殊元素和特殊位置优先策略

例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不 种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7 人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一 个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有5225 22480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场, 则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插 入第一步排好的6个元素中间包含首尾两个空位共有种4 6A 不同的方法, 由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.那么不同插法的种数为 30 四.定序问题倍缩空位插入策略

排列组合知识点与方法归纳 (1)

排列组合知识点与方法归纳 一、知识要点 (1)分类计数原理与分步计算原理 (1)分类计算原理(加法原理): 完成一件事,有n类办法,在第一类办法中有m 1 种不同的方法,在第二类办法 中有m 2种不同的方法,……,在第n类办法中有m n 种不同的方法,那么完成这 件事共有N= m 1+ m 2 +…+ m n 种不同的方法。 (2)分步计数原理(乘法原理): 完成一件事,需要分成n个步骤,做第1步有m 1种不同的方法,做第2步有m 2 种不同的方法,……,做第n步有m n 种不同的方法,那么完成这件事共有N= m 1 × m 2×…× m n 种不同的方法。 (2)排列 a)定义 从n个不同元素中取出m()个元素的所有排列的个数,叫做从n个不 同元素中取出m个元素的排列数,记为 . b)排列数的公式与性质 a)排列数的公式: =n(n-1)(n-2)…(n-m+1)=

特例:当m=n时, =n!=n(n-1)(n-2)…×3×2×1规定:0!=1 b)排列数的性质: (Ⅰ) =(Ⅱ)(Ⅲ) (3)组合 a)定义 a)从n个不同元素中取出个元素并成一组,叫做从n个不同元素中取出m 个元素的一个组合 b)从n个不同元素中取出个元素的所有组合的个数,叫做从n个不同元 素中取出m个元素的组合数,用符号表示。 b)组合数的公式与性质 a)组合数公式:(乘积表示) (阶乘表示) 特例: b)组合数的主要性质: (Ⅰ)(Ⅱ)

(4)排列组合的区别与联系 (1)排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。 (2)注意到获得(一个)排列历经“获得(一个)组合”和“对取出元素作全排列”两个步骤,故得排列数与组合数之间的关系: 二、经典例题 例1、某人计划使用不超过500元的资金购买单价分别为60、70元的单片软件和盒装磁盘,要求软件至少买3片,磁盘至少买2盒,则不同的选购方式是() A .5种种 C. 7种 D. 8种 解:注意到购买3片软件和2盒磁盘花去320元,所以,这里只讨论剩下的180元如何使用,可从购买软件的情形入手分类讨论:第一类,再买3片软件,不买磁盘,只有1种方法;第二类,再买2片软件,不买磁盘,只有1种方法; 第三类,再买1片软件,再买1盒磁盘或不买磁盘,有2种方法;第四类,不买软件,再买2盒磁盘、1盒磁盘或不买磁盘,有3种方法;于是由分类计数原理可知,共有N=1+1+2+3=7种不同购买方法,应选C。 例2、在中有4个编号为1,2,3,4的小三角形,要在每一个小三角形中涂上红、蓝、黄、白、黑五种颜色中的一种,使有相邻边的小三角形颜色不同,共有多少种不同的涂法?

完整版排列组合的二十种解法最全的排列组合方法总结

教学目标 1. 进一步理解和应用分步计数原理和分类计数原理。 2. 掌握解决排列组合问题的常用策略 ;能运用解题策略解决简单的综合应用题。提高学生解决问题分 析问题的能力 3. 学会应用数学思想和方法解决排列组合问题 复习巩固 1. 分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有 m i 种不同的方法,在第 2类办法中有m 2种不同的方 法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有: N m i m 2 L m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有叶种不同的方法,做第2步有m 2种不同的方法,… 做第n 步有m n 种不同的方法,那么完成这件事共有: N mi m 2 L m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事 ,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少 类。 3. 确定每一步或每一类是排列问题 (有序)还是组合(无序)问题,元素总数是多少及取出多少个元素 . 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置 . 先排末位共有C ; 然后排首位共有C 1 最后排其它位置共有 A 3 由分步计数原理得C 4C ;A ; 288 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法 ,若以元素分析为主,需 先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位 置。若 有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 练习题:7种不同的花种在排成一列的花盆里 多少不同的种法? 二. 相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排 A 3 ,若两种葵花不种在中间,也不种在两端的花盆里,冋有 A 5 A 2 A 2 480种不同的

高中数学排列组合难题十一种方法

~ 高考数学排列组合难题解决方法 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2 步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 … 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 两个位置 . 先排末位共有1 3C 然后排首位共有1 4C / 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 443

、 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不 种在两端的花盆里,问有多少不同的种法 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一 个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A 种不同的排法 练习题1.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1, 5在两个奇数之间,这样的五位数有多少个 解:把1,5,2,4当作一个小集团与3排队共有22A 种排法, 再排小集团内部共有2222A A 种排法,由分步计数原理共有222 222A A A 种排法. : 2.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那 么共有陈列方式的种数为254 254A A A 3. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有255 255A A A 种 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场, 则节目的出场顺序有多少种 ( 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插 入第一步排好的6个元素中间包含首尾两个空位共有种4 6A 不同的方法, 由分步计数原理,节目的不同顺序共有5456A A 种 小集团排列问题中,先整体后局部,再结合其它策略进行处理。

高中数学排列组合难题十一种方法

高考数学排列组合难题解决方法 1. 分类计数原理(加法原理) 完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有: N = mi + m2 j + m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第步有种不同的方法,那么完成这件事共有: N = mi江m2汇川X m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进 行,确定分多少步及多少类。 3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略

解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有 然后排首位共有 最后排其它位置共有 由分步计数原理得 练习题:7种不同的花种在排成一列的xx,若两种葵花不种在中间,也不种在两端的xx,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有种不同的排法 练习题1.用1,2,3,4,5 组成没有重复数字的五位数其中恰有两个偶数夹1, 5在两个奇数之间,这样的五位数有多少个? 解:把1,5,2,4当作一个小集团与3排队共有种排法,再排小集团内部共有种排法,由分步计数原理共有种排法. 1524

排列组合难题二十一种方法

排列组合难题二十 种方法(含答案详解)

排列组合难题二十一种方法 解决排列组合综合性问题的一般 过程如下: 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定 分多少步及多少类。 3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取 出多少个元素. 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一. 特殊元素和特殊位置优先策略 例1.由0,123,4,5 可以组成多少个没有重复数字五位奇数 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端 的花 盆里,问有多少不同的种法? 二. 相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元 素, 再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可 得共有A 5A !A ; 480种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三. 不相邻问题插空策略 例3. 一个晚会的节目有4个舞蹈,2个相声 ,3个独唱,舞蹈节目不能连续出场,则节目 的 出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有A 5种,第二步将4舞蹈插入第一步排 好的 6个元素中间包含首尾两个空位共有种 A 6不同的方法,由分步计数原理,节目 的不同顺序共有A 5A 4 _____ 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目 如果 将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数 为 四. 定序问题倍缩空位插入策略 解:由于末位和首位有特殊要求 先排末位共有C ; 然后排首位共有C 4 最后排 其它位置共有A 由分步计 数原理得C 4C 3A 3 ,应该优先安排,以免不賞求的元素 288 这两个位置 C 4 A 4 C ;

高中数学排列组合难题二十一种方法学生版 (1)

1 高考数学排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此 解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =++ +种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =?? ?种不同的方法. 3. 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例 2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续 出场,则节目的出场顺序有多少种? 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 四.定序问题倍缩空位插入策略 例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两 个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法 六.环排问题线排策略 例6. 8人围桌而坐,共有多少种坐法? 练习题:6颗颜色不同的钻石,可穿成几种钻石圈 七.多排问题直排策略 例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法 练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就 座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 八.排列组合混合问题先选后排策略 例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法. 练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种 不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 种 九.小集团问题先整体后局部策略 例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1, 5在两个奇数之间,这样的五位数有多少个? 练习题: 1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为 2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有几种 十.元素相同问题隔板策略 例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 练习题: 1. 10个相同的球装5个盒中,每盒至少一有多少装法? 2 .100x y z w +++=求这个方程组的自然数解的组数 十一.正难则反总体淘汰策略 例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的 取法有多少种? 练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种? 十二.平均分组问题除法策略 例12. 6本不同的书平均分成3堆,每堆2本共有多少分法? 1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法? 2.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的分组方法 3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为______ 十三. 合理分类与分步策略 例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要 演出一个2人唱歌2人伴舞的节目,有多少选派方法 1.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须

排列组合难题二十一种方法(含答案详解)

排列组合难题二十一种方法 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有1 4C 最后排其它位置共有34A 由分步计数原理得113434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的 花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元 素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A =种不同的排法 乙 甲丁 丙 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的 出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种4 6A 不同的方法,由分步计数原理,节目 的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 C 14A 34C 1 3

排列组合问题常用方法(二十种)

解排列组合问题常用方法(二十种) 一、定位问题优先法(特殊元素和特殊位置优先法) 例1、由01,2,3,4,5, 可以组成多少个没有重复数字五位奇数? 分析:特殊元素和特殊位置有特殊要求,应优先考虑。末位和首位有特殊要求。先排末位,从1,3,5三个数中任选一个共有13C 种组合;然后排首位,从2,4和剩余的两个奇数中任选一个共有1 4C 种组合;最后 排中间三个数,从剩余四个数中任选三个共有34A 种排列。由分步计数原理得113344288C C A =。 变式1、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多 少不同的种法? 分析:先种两种不同的葵花在不受限制的四个花盒中共有24A 种排列,再种其它葵花有5 5A 种排列。由 分步计数原理得25451440A A =。 二、相邻问题捆绑法 例2、7人站成一排 ,其中甲乙相邻且丙丁相邻,共有多少种不同的排法? 分析:分三步。先将甲乙两元素捆绑成整体并看成一个复合元素,将丙丁两元素也捆绑成整体看成一个复合元素,再与其它元素进行排列,同时在两对相邻元素内部进行自排。由分步计数原理得522522480A A A =。 变式2、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。 分析:命中的三枪捆绑成一枪,与命中的另一枪插入未命中四枪形成的五个空位,共有25A 种排列。 三、相离问题插空法 例3、一个晚会节目有4个舞蹈,2个相声,3个独唱,舞蹈不能连续出场,则节目出场顺序有多少种? 分析:相离问题即不相邻问题。分两步。第一步排2个相声和3个独唱共有55A 种排列,第二步将4个 舞蹈插入第一步排好后形成的6个空位中(包含首尾两个空位)共有46A 种排列,由分步计数原理得545643200A A =。 变式3、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个新节 目插入原节目单中且不相邻,那么不同插法的种数为 。 分析:将2个新节目插入原定5个节目排好后形成的6个空位中(包含首尾两个空位)共有2 6A 种排列, 由分步计数原理得2630A =。 四、定序问题除序(去重复)、空位、插入法 例4、7人排队,其中甲、乙、丙3人顺序一定,共有多少种不同的排法? 分析:(除序法)除序法也就是倍缩法或缩倍法。对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数。共有不同排法种数为:7733 840A A =。 (空位法)设想有7把椅子,让除甲、乙、丙以外的四人就坐,共有4 7A 种坐法;甲、乙、丙坐 其余的三个位置,共有1种坐法。总共有47840A =种排法。 思考:可以先让甲乙丙就坐吗?(可以) (插入法)先选三个座位让甲、乙、丙三人坐下,共有3 7C 种选法;余下四个空座位让其余四人 就坐,共有44A 种坐法。总共有3474840C A =种排法。 变式4、10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少种不同的 排法? 分析:10人身高各不相等且从左至右身高逐渐增加,说明顺序一定。若排成一排,则只有一种排法; 现排成前后两排,因此共有510252C =种排法。

相关主题
文本预览
相关文档 最新文档