当前位置:文档之家› 核心素养提升练 利用导数研究函数的极值、最值

核心素养提升练 利用导数研究函数的极值、最值

核心素养提升练     利用导数研究函数的极值、最值
核心素养提升练     利用导数研究函数的极值、最值

核心素养提升练

利用导数研究函数的极值、最值

(30分钟 60分)

一、选择题(每小题5分,共25分)

1.已知函数f(x)=x3-x2+cx+d有极值,则c的取值范围为( )

A.c<

B.c≤

C.c≥

D.c>

【解析】选A.因为f(x)=x3-x2+cx+d,

所以f′(x)=x2-x+c,要使f(x)有极值,则方程f′(x)=x2-x+c=0有两个实数解,

从而Δ=1-4c>0,所以c<.

2.已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则f(x) ( )

A.既有极小值,也有极大值

B.有极小值,但无极大值

C.有极大值,但无极小值

D.既无极小值,也无极大值

【解析】选B.由导函数图象可知,y=f′(x)在(-∞,x0)上为负,y=f′(x)在

(x0,+∞)上非负,所以y=f(x)在(-∞,x0)上递减,在(x0,+∞)上递增,所以y=f(x)在x=x0处有极小值,无极大值.

3.设动直线x=m与函数f(x)=x3,g(x)=ln x的图象分别交于点M,N,则|MN|的最小值为( )

A.(1+ln 3)

B.ln 3

C.1+ln 3

D.ln 3-1

【解析】选A.设F(x)=f(x)-g(x)=x3-ln x,求导得:F′(x)=3x2-.

令F′(x)>0得x>;

令F′(x)<0得0

所以当x=时,F(x)有最小值为F=+ln 3=(1+ln 3).

4.若函数f(x)=e-x+tln x有两个极值点,则实数t的取值范围是( )

A. B.

C. D.

【解析】选A.f′(x)=-e-x+=0有两个正根,即t=xe-x有两个正根,令g(x)=xe-x, g′(x)=e-x-xe-x,当g′(x)>0时,x<1,故y=g(x)在(0,1)上单调递增,在(1,+∞)

上单调递减,g(x)max=g(1)=,当x→+∞时,g(x)>0,所以t∈.

5.(2019·南充模拟)若函数f(x)=x3+x2-ax-4在区间(-1,1)内恰有一个极值点,则实数a的取值范围为 ( )

A.(1,5)

B.[1,5)

C.(1,5]

D.(-∞,1)∪(5,+∞)

【解析】选B.由题意f′(x)=3x2+2x-a,函数开口向上,对称轴为x=-,若函数f(x)在区间(-1,1)内恰有一个极值点,则

即解得1≤a<5.

二、填空题(每小题5分,共15分)

6.已知函数f(x)=aln 2x+bx在x=1处取得最大值ln 2-1,则a=________,

b=________.

【解析】f′(x)=+b=(x>0),

当f′(x)=0时,x=-,当x=1时,函数取得最大值ln 2-1,即

解得a=1,b=-1.

答案:1 -1

7.(2018·珠海模拟)已知函数f(x)=5sin x-12cos x,当x=x0时,f(x)有最大值13,则tan x0=______.

【解析】f(x)=5sin x-12cos x

=13sin(x-θ)(cos θ=,sin θ=)

当x=x0时f(x)有最大值13,

所以x0-θ=+2kπ,k∈Z

所以x0=θ++2kπ,

tan x0=tan(θ++2kπ)=tan(θ+)

===-.

答案:-

8.若函数f(x)=x3-3x在区间(a,6-a2)上有最小值,则实数a的取值范围是

________.

【解析】若f′(x)=3x2-3=0,则x=±1,且x=1为函数的极小值点,x=-1为函数的极大值点.函数f(x)在区间(a,6-a2)上有最小值,则函数f(x)的极小值点必在区间(a,6-a2)内,且左端点的函数值不小于f(1),即实数a满足a<1<6-a2且

f(a)=a3-3a≥f(1)=-2.解a<1<6-a2,得-

a3-3a+2≥0,a3-1-3(a-1)≥0,(a-1)(a2+a-2)≥0,即(a-1)2(a+2)≥0,即a≥-2,故实数a的取值范围为[-2,1).

答案:[-2,1)

三、解答题(每小题10分,共20分)

9.已知函数f(x)=.

(1)求函数f(x)在(1,f(1))处的切线方程.

(2)证明:f(x)仅有唯一的极小值点.

【解析】(1)因为f′(x)=,所以k=f′(1)=-2.又因为f(1)=e+2,所以切线方程为:y-(e+2)=-2(x-1),即

2x+y-e-4=0.

(2)令h(x)=e x(x-1)-2,则h′(x)=e x·x,

所以x∈(-∞,0)时,h′(x)<0,x∈(0,+∞)时,h′(x)>0.当x∈(-∞,0)时,易知h(x)<0,

所以f′(x)<0,f(x)在(-∞,0)上没有极值点.

当x∈(0,+∞)时,因为h(1)=-2<0,h(2)=e2-2>0,所以f′(1)<0,f′(2)>0,f(x)在(1,2)上有极小值点.

又因为h(x)在(0,+∞)上单调递增,所以f(x)仅有唯一的极小值点.

10.已知二次函数f(x)=x2+ax+b+1,关于x的不等式f(x)-(2b-1)x+b2<1的解集为(b,b+1),其中b≠0.

(1)求a的值.

(2)令g(x)=,若函数φ(x)=g(x)-kln(x-1)存在极值点,求实数k的取值范围,并求出极值点.

【解析】(1)因为f(x)-(2b-1)x+b2<1的解集为(b,b+1),即x2+(a-2b+1)x+b2+b<0的解集为(b,b+1),所以方程x2+(a-2b+1)x+b2+b=0的解为x1=b,x2=b+1,所以

b+(b+1)=-(a-2b+1),解得a=-2.

(2)φ(x)的定义域为(1,+∞).

由(1)知f(x)=x2-2x+b+1,所以g(x)==x-1+,所以

φ′(x)=1--=,

因为函数φ(x)存在极值点,所以φ′(x)=0有解,

所以方程x2-(2+k)x+k-b+1=0有两个不同的实数根,且在(1,+∞)上至少有一根, 所以Δ=(2+k)2-4(k-b+1)=k2+4b>0.

解方程x2-(2+k)x+k-b+1=0得x1=,x2=.

①当b>0时,x1<1,x2>1,

所以当x∈时,φ′(x)<0,当x∈

(,+∞)时,φ′(x)>0,

所以φ(x)在(1,)上单调递减,在(,+∞)上单调递增,

所以φ(x)极小值点为.

②当b<0时,由Δ=k2+4b>0得k<-2,或k>2,若k<-2,则

x1<1,x2<1,

所以当x>1时,φ′(x)>0,所以φ(x)在(1,+∞)上单调递增,不符合题意;

若k>2,则x1>1,x2>1,

所以φ(x)在上单调递增,在

(,)上单调递减,在

(,+∞)上单调递增,

所以φ(x)的极大值点为,极小值点为. 综上当b>0时,k取任意实数,函数φ(x)的极小值点为;当

b<0时,k>2,函数φ(x)的极小值点为,极大值点为

.

(20分钟40分)

1.(5分)(2019·郑州模拟)已知函数f(x)=x3-9x2+29x-30,实数m,n满足

f(m)=-12,f(n)=18,则m+n= ( )

A.6

B.8

C.10

D.12

【解析】选A.因为三次函数的图象一定是中心对称图形,所以可设其对称中心为(a,c),f(x)=x3-9x2+29x-30=(x-a)3+b(x-a)+c=x3-3ax2+(3a2+b)x-a3-ab+c,

所以解得

所以f(x)的图象关于点(3,3)中心对称,又

f(m)=-12,f(n)=18,==3,所以=3,m+n=6.

2.(5分)(2019·宿州模拟)已知函数f(x)=ax-x 2-ln x 存在极值,若这些极值的和大于5+ln 2,则实数a 的取值范围为 ( ) A.(-∞,4) B.(4,+∞) C.(-∞,2) D.(2,+∞)

【解析】选B.f(x)=ax-x 2-ln x,x ∈(0,+∞),

则f ′(x)=a-2x-=-,

因为函数f(x)存在极值,所以f ′(x)=0在(0,+∞)上有根,即2x 2-ax+1=0在(0, +∞)上有根,所以Δ=a 2-8≥0,显然当Δ=0时,f(x)无极值不合题意;所以方程必有两个不等实根.

记方程2x 2-ax+1=0有两根.

为x 1,x 2,x 1+x 2=,x 1x 2=.

f(x 1),f(x 2)是函数f(x)的两个极值,由题意得

f(x 1)+f(x 2)=a(x 1+x 2)-(

+

)-(ln x 1+ln x 2)

=-+1-ln >5-ln ,

化简解得a 2>16,满足Δ>0,

又x 1+x 2=>0,即a>0, 所以a 的取值范围是(4,+∞).

3.(5分)已知定义在(-∞,0)∪(0,+∞)上的函数f(x)的导函数为f′(x),且

=x4,f(2)=8e2,则f(x)>e的解集为( )

A.(-∞,-)∪(,+∞)

B.(,+∞)

C.(-∞,-1)∪(1,+∞)

D.(1,+∞)

【解析】选D.依题意=x4,则=e x,即

=e x,故′=e x,故=e x+c;因为f(2)=8e2,故c=0,故

f(x)=x3e x;易知当x<0时, f(x)<0,故只需考虑x>0的情况即可;因为

f′(x)=3x2e x+x3e x,可知当x>0时, f′(x)>0,故函数f(x)在(0,+∞)上单调递增;注意到f(1)=e,故f(x)>e的解集为(1,+∞).

4.(12分)(2018·丰台模拟)已知函数f(x)=e x-a(ln x+1)(a∈R).

(1)求曲线y=f(x)在点(1,f(1))处的切线方程.

(2)若函数y=f(x)在上有极值,求a的取值范围.

【解析】函数f(x)的定义域为(0,+∞),f′(x)=e x-.

(1)因为f(1)=e-a,f′(1)=e-a,所以曲线y=f(x)在点(1,f(1))处的切线方程为y-(e-a)=(e-a)(x-1)即y=(e-a)x.

(2)f′(x)=e x-.

(ⅰ)当a≤0时,对于任意x∈,都有f′(x)>0,所以函数f(x)在上为增函数,没有极值,不合题意.

(ⅱ)当a>0时,令g(x)=e x-,则g′(x)=e x+>0.所以g(x)在上单调递增,

即f′(x)在上单调递增,所以函数f(x)在上有极值,等价于

所以所以

5.(13分)已知函数f(x)=-2ln x的图象在x=1处的切线过点

(0,2-2a),a,b∈R.

(1)若a+b=,求函数f(x)的极值点.

(2)设x1,x2(x1≠x2)是函数f(x)的两个极值点,若

【解析】因为f′(x)=,所以f′(1)=a+b-2.又f(1)=a-b,曲线

y=f(x)在x=1处的切线过点(0,2-2a),所以=a+b-2,得a=b.

(1)因为a+b=,所以a=b=,

令f′(x)=0,得2x2-5x+2=0,

解得x=或2,所以f(x)的极值点为或2.

(2)因为x1,x2是方程f′(x)==0的两个根,且a=b,

所以x1x2=1,a==,

因为1,a>0,

所以f(x1)是函数f(x)的极大值,f(x2)是函数f(x)的极小值,所以要证|f(x2)-f(x1)|<1,只需f(x1)-f(x2)<1,

f(x1)-f(x2)=ax1--2ln x1-(ax2--2ln x2)=2(ax1--2ln x1)

=4(-ln x1)=4(-ln ),

令t=,则

设h(t)=-ln t=1--ln t,

则h′(t)=-<0,函数h(t)在上单调递减,所以h(t)

所以f(x1)-f(x2)<4h()=<1.

高中数学:导数与函数的极值、最值练习

高中数学:导数与函数的极值、最值练习 (时间:30分钟) 1.函数f(x)=ln x-x在区间(0,e]上的最大值为( B ) (A)1-e (B)-1 (C)-e (D)0 解析:因为f′(x)=-1=,当x∈(0,1)时,f′(x)>0;当x∈(1,e]时, f′(x)<0,所以f(x)的单调递增区间是(0,1),单调递减区间是(1,e],所以当x=1时,f(x)取得最大值ln 1-1=-1. 2.(豫南九校第二次质量考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为( C ) (A)4 (B)2或6 (C)2 (D)6 解析:因为f(x)=x(x-c)2, 所以f′(x)=3x2-4cx+c2, 又f(x)=x(x-c)2在x=2处有极小值, 所以f′(2)=12-8c+c2=0,解得c=2或6, c=2时,f(x)=x(x-c)2在x=2处有极小值; c=6时,f(x)=x(x-c)2在x=2处有极大值; 所以c=2. 3.函数f(x)=3x2+ln x-2x的极值点的个数是( A ) (A)0 (B)1 (C)2 (D)无数 解析:函数定义域为(0,+∞),且f′(x)=6x+-2=,不妨设g(x)=6x2-2x+1. 由于x>0,令g(x)=6x2-2x+1=0,则Δ=-20<0, 所以g(x)>0恒成立,故f′(x)>0恒成立, 即f(x)在定义域上单调递增,无极值点. 4.(银川模拟)已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=ln x-ax(a>),当x∈(-2,0)时,f(x)的最小值为1,则a的值等于( D ) (A)4 (B)3 (C)2 (D)1 解析:由题意知,当x∈(0,2)时,f(x)的最大值为-1. 令f′(x)=-a=0,得x=,

导数与函数的单调性、极值、最值

教学过程 一、课堂导入 问题:判断函数的单调性有哪些方法?比如判断2x y=的单调性,如何进行? 因为二次函数的图像我们非常熟悉,可以画出其图像,指出其单调区间,再想一下,有没有需要注意的地方? 如果遇到函数x y3 x 3- =,如何判断单调性呢?你能画出该函数的图像吗? 定义是解决问题的最根本方法,但定义法较繁琐,又不能画出它的图像,那该如何解决呢?

二、复习预习 函数是描述客观世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.函数的单调性与函数的导数一样都是反映函数变化情况的,那么函数的单调性与函数的导数是否有着某种内在的联系呢?

三、知识讲解 考点1 利用导数研究函数的单调性 如果在某个区间内,函数y=f(x)的导数f′(x)>0,则在这个区间上,函数y=f(x)是增加的;如果在某个区间内,函数y=f(x)的导数f′(x)<0,则在这个区间上,函数y=f(x)是减少的. 利用导数研究函数的单调性、极值、最值可列表观察函数的变化情况,直观而且条理,减少失分.

求极值、最值时,要求步骤规范、表格齐全;含参数时,要讨论参数的大小. 注意定义域优先的原则,求函数的单调区间和极值点必须在函数的定义域内进行. ①若f′(x)在x0两侧的符号“左正右负”,则x0为极大值点; ②若f′(x)在x0两侧的符号“左负右正”,则x0为极小值点; ③若f′(x)在x0两侧的符号相同,则x0不是极值点.

(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. (2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值. (3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下: ①求f(x)在(a,b)内的极值; ②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.

利用导数求函数的单调区间、极值和最值

精锐教育学科教师辅导讲义 讲义编号____________________ 学员编号: 年 级: 课时数及课时进度:3(3/60) 学员姓名: 辅导科目: 学科教师: 学科组长/带头人签名及日期 课 题 利用导数学求函数单调区间、极值和最值 授课时间: 备课时间: 教学目标 1、能熟练运用导数求函数单调区间、判定函数单调性; 2、能用导数求函数的极值和最值。 重点、难点 考点及考试要求 教学内容 一、利用导数判定函数的单调性并求函数的单调区间 1.定义:一般地,设函数)(x f y =在某个区间内有导数,如果在这个区间内0)(' >x f ,那么函数)(x f y = 在 为这个区间内的增函数;如果在这个区间内 0)(' x f 解不等式,得x 的范围就是递增区间. ③令 0)('

二、利用导数求函数的极值 1、极大值 一般地,设函数)(x f 在点x 附近有定义,如果对 x 附近的所有的点,都有)( )(0 x f x f <,就说)(0 x f 是函数的一 个极大值,记作()x y f 0=极大值 ,x 0是极大值点 2、极小值 一般地,设函数)(x f 在x 附近有定义,如果对 x 附近的所有的点,都有)( )(0 x f x f >就说)(0 x f 是函数) (x f 的一个极小值,记作 ()x y f 0=极小值 ,x 0是极小值点 3、极大值与极小值统称为极值 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点: (ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小. (ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示, x 1 是极大值点, x 4 是极小值点,而)()( 1 4 x x f f >. (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点 f(x 2)f(x 4) f(x 5) f(x 3) f(x 1) f(b) f(a) x 5 x 4x 3x 2 x 1b a x O y 4、判别()x f 0 是极大、极小值的方法: 若 x 满足 0)(0' =x f ,且在x 0的两侧)(x f 的导数异号,则x 0是)(x f 的极值点,()x f 0是极值,并且如果 )(' x f 在 x 两侧满足“左正右负”,则x 是)(x f 的极大值点,()x f 0 是极大值;如果)(' x f 在x 0两侧满足“左负右正” ,则x 0是)(x f 的极小值点,()x f 是极小值 5、求可导函数)(x f 的极值的步骤: (1)确定函数的定义区间,求导数 )(' x f

第三十九讲:函数的极值最值与导数

第三十九讲 函数的极值、最值与导数 一、引言 1.用导数求函数的极大(小)值,求函数在连续区间上的最大最小值,或利用求导法解决一些实际应用问题是函数内容的继续与延伸,这种解决问题的方法使复杂问题变得简单化,因而已逐渐成为高考试题的又一热点. 2.考纲要求:了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值和极小值,能求出最大值和最小值;会利用导数解决某些实际问题. 3.考情分析:2010年高考预测对本专题内容的考查将继续以解答题形式与解析几何、不等式、平面向量等知识结合,考查最优化问题,加强了能力考查力度,使试题具有更广泛的实际意义,更体现了导数作为工具分析和解决一些函数性质问题的方法. 二、考点梳理 1.函数的极值: 一般地,设函数()y f x =在0x x =及其附近有定义,如果)(0x f 的值比0x 附近所有各点的函数值都大,我们说()0f x 是函数()y f x =的一个极大值;如果)(0x f 的值比0x 附近所有各点的函数值都小,我们说()y f x =是函数()y f x =的一个极小值.极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 理解极值概念要注意以下几点: (1)极值是一个局部概念.由定义可知,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小. (2)函数的极值不是唯一的.即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值.如下图所示,1x 是极大值点,4x 是极小值点,而4()f x >)(1x f . 2.函数极值的判断方法: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,

用导数求函数的极值..

用导数来求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+= x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数)(x f 定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f , 当2=x 时,函数取得极大值2 4)2(-=e f . 3.函数的定义域为R . .) 1() 1)(1(2)1(22)1(2)(2 2222++-=+?-+='x x x x x x x x f

令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数 )(x f 在0x 处有极值的必要条件,如果再加之0x 附近导数的符号相反,才能断定函数在0x 处 取得极值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2 --=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定.在函数)(x f 的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点.这两类点就是函数)(x f 在定义内可能取到极值的全部“可疑点”. 解:1..3) 2(533)5(2)5(32)(33323x x x x x x x x x f -=+-= +-= ' 令0)(='x f ,解得2=x ,但0=x 也可能是极值点. 当0x 时,0)(>'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是增函数; 当20<

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

高中数学典型例题详解和练习-利用导数求函数的极值

利用导数求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+=x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数 )(x f 定义域内所有可能的极值点, 然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f ,

当2=x 时,函数取得极大值24)2(-=e f . 3.函数的定义域为R . .)1()1)(1(2)1(22)1(2)(2 2222++-=+?-+='x x x x x x x x f 令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数)(x f 在0x 处有极值的必要条 件,如果再加之0x 附近导数的符号相反,才能断定函数在0x 处取得极 值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2--=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极

导数与函数极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】

试卷分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞ 【答案】B 【解读】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】 试卷分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

专题2.13 利用导数求函数的单调性、极值、最值(解析版)

第十三讲 利用导数求函数的单调性、极值 、最值 【套路秘籍】 一.函数的单调性 在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 二.函数的极值 (1)一般地,求函数y =f (x )的极值的方法 解方程f ′(x )=0,当f ′(x 0)=0时: ①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x ); ②求方程f ′(x )=0的根; ③考查f ′(x )在方程f ′(x )=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 三.函数的最值 (1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值. (2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值. 【套路修炼】 考向一 单调区间 【例1】求下列函数的单调区间: (1)3 ()23f x x x =-; (2)2 ()ln f x x x =-. (3))f (x )=2x -x 2. 【答案】见解析 【解析】(1)由题意得2 ()63f x x '=-. 令2 ()630f x x '=->,解得2x <- 或2 x >. 当(,2x ∈-∞- 时,函数为增函数;当)2 x ∈+∞时,函数也为增函数. 令2 ()630f x x '=-<,解得22x - <<.当(22 x ∈-时,函数为减函数.

用导数求函数的极值.

用导数来求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+=x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数)(x f 定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f , 当2=x 时,函数取得极大值2 4)2(-=e f . 3.函数的定义域为R . .) 1()1)(1(2)1(22)1(2)(22222++-=+?-+='x x x x x x x x f

令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数 )(x f 在0x 处有极值的必要条件, 如果再加之0x 附近导数的符号相反,才能断定函数在0x 处取得极值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2--=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定.在函数)(x f 的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点.这两类点就是函数)(x f 在定义内可能取到极值的全部“可疑点”. 解:1..3)2(533)5(2)5(32 )(33323x x x x x x x x x f -=+-=+-=' 令0)(='x f ,解得2=x ,但0=x 也可能是极值点. 当0x 时,0)(>'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是增函数; 当20<

导数与函数的极值、最值-高考理科数学试题

(十五)导数与函数的极值、最值 [小题常考题点——准解快解] 1.(2018·太原一模)函数y=f(x)的导函数的图象如图所示,则下列说法错误的是() A.(-1,3)为函数y=f(x)的单调递增区间 B.(3,5)为函数y=f(x)的单调递减区间 C.函数y=f(x)在x=0处取得极大值 D.函数y=f(x)在x=5处取得极小值 解析:选C由函数y=f(x)的导函数的图象可知,当x<-1或35或-10,y=f(x)单调递增.所以函数y=f(x)的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞).函数y=f(x)在x=-1,5处取得极小值,在x=3处取得极大值,故选项C错误,故选C. 2.函数f(x)=2x3+9x2-2在[-4,2]上的最大值和最小值分别是() A.25,-2 B.50,14 C.50,-2 D.50,-14 解析:选C因为f(x)=2x3+9x2-2,所以f′(x)=6x2+18x,当x∈[-4,-3)或x∈(0,2]时,f′(x)>0,f(x)为增函数,当x∈(-3,0)时,f′(x)<0,f(x)为减函数,由f(-4)=14,f(-3)=25,f(0)=-2,f(2)=50,故函数f(x)=2x3+9x2-2在[-4,2]上的最大值和最小值分别是50,-2. 3.已知a∈R,函数f(x)=1 3x 3-ax2+ax+2的导函数f′(x) 在(-∞,1)上有最小值, 若函数g(x)=f′(x) x,则() A.g(x)在(1,+∞)上有最大值B.g(x)在(1,+∞)上有最小值C.g(x)在(1,+∞)上为减函数D.g(x)在(1,+∞)上为增函数 解析:选D函数f(x)=1 3x 3-ax2+ax+2的导函数f′(x)=x2-2ax+a,f′(x)图象的 对称轴为x=a,又f′(x)在(-∞,1)上有最小值,所以a<1.函数g(x)=f′(x) x=x+ a x-2a, g′(x)=1-a x2= x2-a x2,当x∈(1,+∞)时,g′(x)>0,所以g(x)在(1,+∞)上为增函数.故

用导数法求函数的最值的练习题解析

用导数法求函数的最值的练习题解析 一、选择题 1.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若 M =m ,则f ′(x )( ) A .等于0 B .大于0 C .小于0 D .以上都有可能 [答案] A [解析] ∵M =m ,∴y =f (x )是常数函数 ∴f ′(x )=0,故应选A. 2.设f (x )=14x 4+13x 3+1 2x 2在[-1,1]上的最小值为( ) A .0 B .-2 C .-1 D.13 12 [答案] A [解析] y ′=x 3+x 2+x =x (x 2+x +1) 令y ′=0,解得x =0. ∴f (-1)=5 12,f (0)=0,f (1)=13 12 ∴f (x )在[-1,1]上最小值为0.故应选A.

3.函数y =x 3+x 2-x +1在区间[-2,1]上的最小值为( ) A.22 27 B .2 C .-1 D .-4 [答案] C [解析] y ′=3x 2+2x -1=(3x -1)(x +1) 令y ′=0解得x =1 3 或x =-1 当x =-2时,y =-1;当x =-1时,y =2; 当x =13时,y =22 27;当x =1时,y =2. 所以函数的最小值为-1,故应选C. 4.函数f (x )=x 2-x +1在区间[-3,0]上的最值为( ) A .最大值为13,最小值为34 B .最大值为1,最小值为4 C .最大值为13,最小值为1 D .最大值为-1,最小值为-7 [答案] A [解析] ∵y =x 2-x +1,∴y ′=2x -1,

利用导数求函数的极值

1 函数专题(导数内容为主) 彬县范公中学 张登峰 一、利用导数定义的求解 例1.已知f(x)在x=a 处可导,且f ′(a)=b ,求下列极限: (1)h h a f h a f h 2)()3(lim 0--+→?; (2)h a f h a f h )()(lim 20-+→? 解:(1)h h a f a f a f h a f h h a f h a f h h 2)()()()3(lim 2)()3(lim 00--+-+=--+→→ b a f a f h a f h a f h a f h a f h h a f a f h a f h a f h h h h 2)('2 1)('23)()(lim 213)()3(lim 232)()(lim 2)()3(lim 0000=+=---+-+=--+-+=→→→→ (2)?? ????-+=-+→→h h a f h a f h a f h a f h h 22020)()(lim )()(lim 00)('lim )()(lim 0220=?=?-+=→→a f h h a f h a f h h 二、利用导数求函数的极值 例 求下列函数的极值: 1. x e x x f -=2)(;2. .6)(2--=x x x f 3. 1ln 2+=x y 解:函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f ,∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f ,∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f ,当2=x 时,函数取得极大值24)2(-=e f . 2.?????<<-++-≥-≤--), 32(,6),32(,6)(22x x x x x x x x f 或 ∴?? ???=-=<<-+->-<-').32(,),32(,12),32(,12)(x x x x x x x x f 或不存在或

导数与函数的极值、最值

导数与函数的极值、最值 【题型突破】 利用导数解决函数的极值问题 ?考法1根据函数图象判断函数极值的情况 【例1】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是() A.函数f(x)有极大值f(2)和极小值f(1) B.函数f(x)有极大值f(-2)和极小值f(1) C.函数f(x)有极大值f(2)和极小值f(-2) D.函数f(x)有极大值f(-2)和极小值f(2) D ?考法2求已知函数的极值 【例2】已知函数f(x)=(x-2)(e x-ax),当a>0时,讨论f(x)的极值情况.[解]∵f′(x)=(e x-ax)+(x-2)(e x-a) =(x-1)(e x-2a), ∵a>0,由f′(x)=0得x=1或x=ln 2a. ①当a=e 2时,f′(x)=(x-1)(e x-e)≥0,∴f(x)单调递增,故f(x)无极值. ②当0<a<e 2时,ln 2a<1,当x变化时,f′(x),f(x)的变化情况如下表: x (-∞,ln 2a)ln 2a (ln 2a,1)1(1,+∞) f′(x)+0-0+ f(x)极大值极小值 ③当a>e 2时,ln 2a>1,当x变化时,f′(x),f(x)的变化情况如下表: x (-∞,1)1(1,ln 2a)ln 2a (ln 2a,+∞) f′(x)+0-0+ f(x)极大值极小值

综上,当0<a <e 2时,f (x )有极大值-a (ln 2a -2)2,极小值a -e ; 当a =e 2 时,f (x )无极值; 当a >e 2时,f (x )有极大值a -e ,极小值-a (ln 2a -2)2. ?考法3 已知函数极值求参数的值或范围 【例3】 (1)已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b =________. (2)若函数f (x )=e x -a ln x +2ax -1在(0,+∞)上恰有两个极值点,则a 的取值范围为( ) A .(-e 2,-e) B .? ? ???-∞,-e 2 C .? ? ???-∞,-12 D .(-∞,-e) (1)-7 (2)D [方法总结] 1.利用导数研究函数极值问题的一般流程 2.已知函数极值点和极值求参数的两个要领 (1)列式:根据极值点处导数为0和极值列方程组,利用待定系数法求解. (2)验证:因为一点处的导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性. A .2或6 B .2 C .23 D .6 (2)(2019·广东五校联考)已知函数f (x )=x (ln x -ax )有极值,则实数a 的取值范围 是( )

利用导数求函数的极值和最值

利用导数求函数的极值和最值 上课时间: 上课教师 上课重点:掌握导数与函数极值最值的的关系 上课规划:解题方法和技巧 考点一 函数的单调性与极值 1、函数2 ()(1)f x x x =-的极大值与极小值分别是___________. 2、函数31()443 f x x x =-+的极大值是 ;极小值是 . 3、曲线3223y x x =-共有____个极值. 4、函数3()3(0)f x x ax b a =-+>的极大值为6,极小值为2,则()f x 的单调递减区间是 . 5、求函数43()4f x x x =-的单调区间与极值点. 6、求函数3()3f x x x =-的单调区间与极值. 7、求函数32()32f x x x =-+的单调区间与极值. 8、求函数42()23f x x x =-+的单调区间与极值.

探究:用导数法求函数()(0)b f x x b x =+>的单调区间与极值 6、有下列命题: ①0x =是函数3y x =的极值点; ②三次函数32()f x ax bx cx d =+++有极值点的充要条件是230b ac ->; ③奇函数32()(1)48(2)f x mx m x m x n =+-+-+在区间(4,4)-上是单调减函数. 其中假命题的序号是 . 考点二 利用函数的极值求参数或取值范围 例题:已知函数c bx ax x x f +++=23)(,且知当1-=x 时取得极大值7,当3=x 时取得极小值,试求函数)(x f 的极小值,并求c b a ,,的值。

(一)定值 1、设函数32()1f x x ax bx =++-,若当1x =时,有极值为1,则函数32()g x x ax bx =++的单调递减区间为 . 2、函数32()39f x x ax x =++-,已知()f x 在3x =-时取得极值,则a =( ) A .2 B .3 C .4 D .5 3、函数3()4f x ax bx =++在12x =-有极大值283 ,在22x =有极小值是43 -, 则a = ;b = . 4、若函数322y x x mx =-+,当13 x =时,函数取得极大值,则m 的值为( ) A .3 B .2 C .1 D .23 (二)取值范围 1、设a ∈R ,若函数x y e ax x =+∈R , 有大于零的极值点,则( ) A .1a <- B .10a -<< C .10a e -<< D .e a 1 -< 2、若函数3()63f x x bx b =-+在(01),内有极小值,则实数b 的取值范围是( ) A .(01), B .(1)-∞, C .(0)+∞, D .102?? ?? ? , 3、函数3 1()43 f x x a x =++有极大值又有极小值,则a 的取值范围 是 . 4、若函数[]32()33(2)1f x x ax a x =++++有极大值又有极小值,则a 的取值范

导数与函数的极值、最值

导数与函数的极值、最值 最新考纲了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次). 知识梳理 1.函数的极值与导数 (1)判断f(x0)是极值的方法 一般地,当函数f(x)在点x0处连续且f′(x0)=0, ①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值; ②如果在x0附近的左侧f′(x)≤0,右侧f′(x)≥0,那么f(x0)是极小值. (2)求可导函数极值的步骤: ①求f′(x); ②求方程f′(x)=0的根; ③检查f′(x)在方程f′(x)=0的根的左右两侧的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值. 2.函数的最值与导数 (1)函数f(x)在[a,b]上有最值的条件 如果在区间[a,b]上函数y=f(x)的图象是连续不断的曲线,那么它必有最大值和最小值.

(2)设函数f(x)在[a,b]上连续且在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下: ①求f(x)在(a,b)内的极值; ②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值. 诊断自测 1.判断正误(在括号内打“√”或“×”) 精彩PPT展示 (1)函数在某区间上或定义域内极大值是唯一的.(×) (2)函数的极大值不一定比极小值大.(√) (3)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.(×) (4)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.(√) 2.函数f(x)=-x3+3x+1有() A.极小值-1,极大值1 B.极小值-2,极大值3 C.极小值-2,极大值2 D.极小值-1,极大值3 解析因为f(x)=-x3+3x+1,故有y′=-3x2+3,令y′=-3x2+3=0,解得x =±1,于是,当x变化时,f′(x),f(x)的变化情况如下表:

利用导数求函数的极值

函数专题(导数内容为主) 彬县范公中学 张登峰 一、利用导数定义的求解 例1.已知f(x)在x=a 处可导,且f ′(a)=b ,求下列极限: (1)h h a f h a f h 2) ()3(lim 0--+→?; (2)h a f h a f h )()(lim 20-+→? 解:(1)h h a f a f a f h a f h h a f h a f h h 2) ()()()3(lim 2)()3(lim 00 --+-+=--+→→ b a f a f h a f h a f h a f h a f h h a f a f h a f h a f h h h h 2)('21 )('23)()(lim 213)()3(lim 232)()(lim 2)()3(lim 0000=+=---+-+=--+-+=→→→→ (2)?? ????-+=-+→→h h a f h a f h a f h a f h h 22020)()(lim ) ()(lim 00)('lim ) ()(lim 0220=?=?-+=→→a f h h a f h a f h h 二、利用导数求函数的极值 例 求下列函数的极值: 1. x e x x f -=2)(;2. .6)(2--=x x x f 3. 1ln 2+=x y 解:函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f ,∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f ,∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f ,当2=x 时,函数取得极大值2 4)2(-=e f . 2.?????<<-++-≥-≤--), 32(,6), 32(,6)(22x x x x x x x x f 或 ∴?? ? ??=-=<<-+->-<-').32(,),32(,12),32(,12)(x x x x x x x x f 或不存在或

导数与函数的极值、最值练习含答案

第2课时 导数与函数的极值、最值 一、选择题 1.下列函数中,既是奇函数又存在极值的是 ( ) A .y =x 3 B .y =ln(-x ) C .y =x e -x D .y =x +2 x 解析 由题可知,B ,C 选项中的函数不是奇函数,A 选项中,函数y =x 3单调递增(无极值),D 选项中的函数既为奇函数又存在极值. 答案 D 2.(2017·石家庄质检)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,若t =ab ,则t 的最大值为 ( ) A .2 B .3 C .6 D .9 解析 f ′(x )=12x 2-2ax -2b ,则f ′(1)=12-2a -2b =0,则a +b =6, 又a >0,b >0,则t =ab ≤? ????a +b 22 =9,当且仅当a =b =3时取等号. 答案 D 3.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ? ???? a >12,当x ∈(-2,0)时, f (x )的最小值为1,则a 的值等于 ( ) A.14 B.13 C.1 2 D .1 解析 由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1 a , 当00;当x >1 a 时,f ′(x )<0.

∴f (x )max =f ? ???? 1a =-ln a -1=-1,解得a =1. 答案 D 4.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是 ( ) A .(-1,2) B .(-∞,-3)∪(6,+∞) C .(-3,6) D .(-∞,-1)∪(2,+∞) 解析 ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根, ∴Δ=4a 2-4×3×(a +6)>0,即a 2-3a -18>0, ∴a >6或a <-3. 答案 B 5.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),若x =-1为函数f (x )e x 的一个极值点,则下列图像不可能为y =f (x )图像的是 ( ) 解析 因为[f (x )e x ]′=f ′(x )e x +f (x )(e x )′=[f (x )+f ′(x )]e x ,且x =-1为函数f (x )e x 的一个极值点,所以f (-1)+f ′(-1)=0;选项D 中,f (-1)>0,f ′(-1)>0,不满足f ′(-1)+f (-1)=0. 答案 D 二、填空题 6.(2017·咸阳模拟)已知函数f (x )=x 3+ax 2+3x -9,若x =-3是函数f (x )的一个极值点,则实数a =________.

相关主题
文本预览
相关文档 最新文档