当前位置:文档之家› 超长混凝土结构温度裂缝控制措施

超长混凝土结构温度裂缝控制措施

超长混凝土结构温度裂缝控制措施
超长混凝土结构温度裂缝控制措施

超长混凝土结构温度裂缝控制措施

[摘要]:随着建筑业的迅猛发展,经常会遇到超长钢筋混凝土结构中无缝设计和施工的问题。在超长无缝混凝土结构的设计与施工中,混凝土裂缝的控制是一个很重要的课题。本文通过对一个超长结构工程实例分析,提出控制和减少超长混凝土结构温度收缩裂缝的措施。

[关键词]:超长混凝土结构混凝土裂缝裂缝预防与控制

Control measures of temperature crack in super-long concrete structure

Zheng GuoDong

(WISDRI (Wuhan)Architechural Design & Consultant Co.,LtdWuhan 430077)

Abstract:. With the rapid development of building industry, often encounter of super-long reinforced concrete structure seamless design and construction problems. In ultra-long concrete structure design and construction, the control of concrete crack is a very important task. Based on a structural analysis of engineering examples, and puts forward the control and reduction of temperature contraction crack in super-long concrete structure measures.

Key word:super-long concrete structureConcrete crack Prevention and control of cracks in

建筑工程中,混凝土结构的裂缝较为普遍,裂缝的类型也很多,但按成因基本可归结为由外荷和变形引起的两大类裂缝。其中由混凝土收缩和温度变形引起的收缩裂缝和温度裂缝以及由这两种变形共同引起的温度收缩裂缝是实际工程中最常见的裂缝。随着建筑向大型化和多功能发展,超长建筑或大柱网建筑不断出现,混凝土强度等级的提高,施工中泵送混凝土工艺的应用,使超长混凝土结构易出现的温度收缩裂缝有逐渐增多的趋势。本文通过对一工程实例的分析,提出防止和减轻超长混凝土结构温度收缩裂缝的设计及施工技术措施。

1:工程简介

某大型商业综合体位于安徽省合肥市高新开发区,地下为三层地下室,地上为由8层商业及47层酒店。酒店与商业结构分缝后,商业部分的为柱网为8.4mx8.4m,总尺寸为125.2mx84m,为超长结构。见结构平面布置图:2:控制温度收缩裂缝的措施

2.1设计控制措施

本结构控制温度效应的设计思路是“抗放兼施,以抗为主”,其膨胀加强带所建立的预压应力,与混凝土抵抗收缩变形所产生的拉应力能达到补偿平衡。

混凝土裂缝控制技术总结

混凝土裂缝控制施工技术总结 1、工程概况 沈阳南站市政交通工程(一期工程)主体结构为东、西广场地下空间部分,涵盖旅客出站通道、地铁、公交枢纽、出租车蓄车场、社会停车及商业配套等功能。共涵盖6条匝道桥,地下空间主要包括一个地下两层建筑(局部为地下一层),公交车站候车大厅为出地下室顶板一层框架结构。本工程主体结构采用钢筋混凝土框架结构。基础采用筏板基础,混凝土强度等级C35,混凝土采用裂缝控制技术。 2、施工安排 2.1施工机械设备 主要施工机械统计表表 序号机械设备名称用途数量备注 1 塔吊配合混凝土浇筑10台 2 混凝土输送泵车混凝土浇筑辆 3 混凝土搅拌运输车混凝土运输辆 4 插入式振动棒混凝土振捣台 5 潜水泵排水台 2.2劳动力安排 主要劳动力统计表 序号工种工作内容人数

1 塔吊司机驾驶塔吊12 2 电工保证现场临时用电通畅及保护预 2 3 振动泵操作手混凝土振捣8 4 瓦工混凝土面抹光8 5 混凝土搅拌运输车司机混凝土运输12 6 木工看模、加固 4 7 钢筋工整理钢筋 4 8 小工杂活及道路清理 6 9 试验员混凝土试块制作 1 10 施工员指挥协调 2 2.3测温仪器 序号仪器名称用途数量备注 1 50Ω铜热电阻测温13 2 测温记录仪XQCJ-300 测温2台 3、施工方法 工程在比较干燥、寒冷的沈阳施工,为防止混凝土裂缝的产生及提高混凝土的成型质量,项目部技术人员重点对混凝土原材料的选择、混凝土配合比设计、混凝土温度的计算、养护材料的选用、温度应力的计算、各种资源的合理配备及施工方法的正确运用等进行了充分研究,最终确定了针对性较强的具体施工方法。 3.1混凝土用原材料 3.1.1采用P.O42.5级普通硅酸盐水泥; 3.1.2掺入适量的Ⅰ级粉煤灰减少水泥用量,降低混凝土

大体积砼温度裂缝的控制措施

大体积砼温度裂缝的控制措施 大体积砼温度裂缝的控制措施 摘要:本文重点阐述了大体积砼温度裂缝产生的原因及从砼原材料、外加剂和掺合料、施工配合比、施工工艺及设计、养护等方面来综合控制砼产生温度裂缝的系列有效措施。 关键词:大体积砼、裂缝原因、控制措施 中图分类号:P184.5+3 文献标识码:A 文章编号: 一、大体积砼的提出和概念 目前,全国各地高层、超高层建筑、大型设备基础、高耸结构物等大量出现。在这些结构中,大体积砼被得到了广泛的应用。 那么,究竟什么是大体积砼呢?到目前为止还没有一个统一的定义。不同国家的定义有所不同。美国砼学会有过规定:“任何就地浇筑的大体积砼,其尺寸之大,必须要求采取措施解决水化热及随之引起的体积变形问题,以最大的限度减少开裂”。日本建筑学会(JASSS)标准的定义是:“结构断面最小尺寸在80cm 以上,同时水化热引起的砼内最高温度与外界气温之差预计超过25℃的砼称之为大体积砼” [1]。我国的定义是:大体积砼一般是指最小断面尺寸大于或等于1m 的结构物,其尺寸已经大到必须采用相应的技术措施,需要妥善处理砼的内外温差,才能合理解决由温度应力引起其裂缝开展的砼结构。 与普通砼相比,大体积砼具有结构厚、体积大、钢筋密、工程条件复杂和施工技术要求高等特点,除了满足强度、刚度、整体性和耐久性等要求以外,主要应解决好控制温度变形的发生和因此引起的裂缝开展。 二、大体积砼裂缝产生的原因和机理 建筑工程中的大体积砼结构中,由于结构截面大,水泥用量多,水泥水化所所释放的水化热会产生较大的温度变化和收缩作用,由此形成的温度收缩应力是导致钢筋砼产生裂缝的主要原因。这种裂缝有表面裂缝和贯通裂缝两种。表面裂缝是由于砼表面和内部的散热条件不同,温度外低内高,形成了温度剃度,是砼内部产生压应力,表面

混凝土裂缝控制技术的应用

裂缝是混凝土建筑物主要的老化病害之一,主要由干缩、砼自身质量、水泥水化热、温度、钢筋锈蚀、地基变形、荷载、碱骨料反应、地基冻胀等原因引起。 小浪底水利枢纽南岸引水口工程洞室衬砌工程混凝土的设计指标为C20P8F100。施工条件:泵送,洞外拌和,洞内浇筑,洞内恒温17~180C。为控制裂缝的产生,施工中采取了以下措施。 1.控制干缩裂缝 混凝土的干缩裂缝主要是由于毛细管压力造成的。毛细管孔隙在干燥过程中逐步失水,产生很大的毛细管张力,混凝土体积产生收缩,由于混凝土周围存在约束,内部又有拉应力,当拉应力超过混凝土材料抗拉强度时,便产生了干缩裂缝。 干缩裂缝的控制方法有: 1.1降低混凝土单位用水量:用水量的增加势必使剩余水增加,因此,从确保混凝土耐久性出发,应降低混凝土单位用水量。 1.2水泥的影响:不同水泥,混凝土收缩也不同,按收缩值大小排序:矿渣水泥>普通水泥>粉煤灰水泥。 1.3降低混凝土周围约束:若混凝土周围约束过大,内部拉应力无法释放,拉应力增大而使混凝土干裂,因此,应减少混凝土的分仓长度,以使混凝土内部拉应力能够充分释放。 1.4添加膨胀剂:适量添加膨胀剂后可以使混凝土体积膨胀,在混凝土内部产生压应力,部分抵消了混凝土因毛细孔隙干燥而产生的拉应力,从而起到控制干缩裂缝的作用。 本工程在控制混凝土干缩裂缝方面采用了上述1~3项方法。其中单位用水量为182kg,采用普通425#水泥,浇筑中掺用粉煤灰,分段浇筑长度在10m左右。 2.控制混凝土因自身质量欠缺而形成的裂缝 高强混凝土水泥的强度等级和水泥用量相对较高,开裂现象比较普遍,因此,高强混凝土不一定是高性能混凝土,而高性能混凝土因具有较高的体积稳定性,收缩变形较小而使抗裂性能大大提高,同时高强混凝土必须采用高效减水剂和超细活性掺和料作为混凝土的第五和 第六部分,来提高混凝土的密实性和抗渗能力。因本工程采用泵送施工工艺,要求的坍落度和水泥用量均较大,必须用掺加外加剂的方法来达到既减水又不使混凝土坍落度损失过大的目的,以及添加超细活性掺和料来达到降低水化热、改善与提高混凝土性能和节约水泥的目的。 综合上述两点,我们采用下表所示的混凝土配合比(单位:kg/m3)。 按上表配比,砂率38%、水灰比0.50、坍落度160~180mm、木钙掺量0.25%、粉煤灰掺量15%。 因混凝土中掺加粉煤灰技术在我省水利行业尚处于探索阶段,固替代量并不很大,只有15%,但根据有关资料,混凝土中单方水泥用量每增减10kg,水化热相应升降1~1.20C,即因本工程中掺用粉煤灰而使混凝土内部温度下降了约5.5~6.50C,从一定程度上控制了裂缝的产生。 3.控制水化热开裂 水泥水化后放出大量的热量,使混凝土内外形成较大的温差,从而在温度应力的作用下形成裂缝。特别是在夏季施工,中午气温一般在摄氏370C,露天存放的石子表面温度可达摄氏500C,砼出机口温度在摄氏300C左右,混凝土水化后内部温度更高。为控制混凝土水化开裂,施工中采用了以下措施。 3.1骨料降温 骨料的温度控制主要通过搭盖凉棚和洒水降温来进行。搭盖凉棚可避免太阳光直射,减

大体积混凝土裂缝产生原因及其预防控制措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 大体积混凝土裂缝产生原因及其预防控制措施(正 式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-1365-69 大体积混凝土裂缝产生原因及其预 防控制措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、前言 随着我国基础建设的快速发展,大体积混凝土施工日益增多(如斜拉桥的索塔、承台及基础、高层建筑的箱型基础或筏型基础),而大体积混凝土施工中普遍会遇到裂缝控制问题,这是因为混凝土体积大,聚集的大量水化热会导致混凝土内外散热不均匀,在受到内外约束的情况下,混凝土内部会产生较大的温度应力并很可能导致裂缝产生,最终为工程结构埋下严重质量隐患。因此,大体积混凝土施工中应严格控制裂缝产生和发展,以保证工程质量。 二、大体积混凝土裂缝类型及裂缝产生原因分析

大体积混凝土结构裂缝主要包括干燥收缩裂缝、塑性收缩裂缝、自身收缩裂缝、安定性裂缝、温差裂缝、碳化收缩裂缝等。 1.收缩裂缝 混凝土在逐渐散热和硬化过程中会导致其体积的收缩,对于大体积混凝土,这种收缩更加明显。如果混凝土的收缩受到外界的约束,就会在混凝土体内产生相应的收缩应力,当产生的收缩应力超过当时的混凝土极限抗拉强度,就会在混凝土中产生收缩裂缝。影响混凝土收缩的主要因素主要是混凝土中的用水量、水泥用量及水泥品种。混凝土中的用水量和水泥用量越高,混凝土收缩就越大。水泥品种对干缩量及收缩量也有很大的影响,一般中低热水泥和粉煤灰水泥的收缩量较小。

混凝土裂缝控制技术总结学习资料

混凝土裂缝控制技术 总结

混凝土裂缝控制施工技术总结 1、工程概况 沈阳南站市政交通工程(一期工程)主体结构为东、西广场地下空间部分,涵盖旅客出站通道、地铁、公交枢纽、出租车蓄车场、社会停车及商业配套等功能。共涵盖6条匝道桥,地下空间主要包括一个地下两层建筑(局部为地下一层),公交车站候车大厅为出地下室顶板一层框架结构。本工程主体结构采用钢筋混凝土框架结构。基础采用筏板基础,混凝土强度等级C35,混凝土采用裂缝控制技术。 2、施工安排 2.1施工机械设备 主要施工机械统计表表 2.2劳动力安排 主要劳动力统计表

2.3测温仪器 3、施工方法 工程在比较干燥、寒冷的沈阳施工,为防止混凝土裂缝的产生及提高混凝土的成型质量,项目部技术人员重点对混凝土原材料的选择、混凝土配合比设计、混凝土温度的计算、养护材料的选用、温度应力的计算、各种资源的合理配备及施工方法的正确运用等进行了充分研究,最终确定了针对性较强的具体施工方法。 3.1混凝土用原材料 3.1.1采用P.O42.5级普通硅酸盐水泥; 3.1.2掺入适量的Ⅰ级粉煤灰减少水泥用量,降低混凝土水化热; 3.1.3掺入聚丙烯腈纤维改善混凝土性能;

3.1.4混凝土坍落度控制在180±30mm; 3.1.5采用泵送剂改善混凝土拌合物泵送性能; 3.1.6采用抗裂防水剂增加混凝土抗压防渗能力; 3.2混凝土裂缝预控 在混凝土浇筑前通过对混凝土里表温差、保温材料及温度应力的计算,采用了以下方法进行裂缝控制: 3.2.1根据混凝土内部温度的计算,在混凝土浇筑后第三天混凝土中心温升至45℃左右,比当时室外温度(-5℃)高出50℃,为防止大体积混凝土因温差过大产生裂缝,先在混凝土的外露面盖一层塑料薄膜,再将两层麻袋盖在薄膜上,薄膜间与麻袋间互相搭接,确保混凝土无外露部位,以保温保湿; 3.2.2根据温度应力的计算,与该混凝土的抗拉强度相比较后,发现不会因温差导致混凝土收缩裂缝的产生。

混凝土裂缝的控制措施

摘要 混凝土的裂缝问题是一个普遍存在而又难于解决的工程实际问题。本文从设计、材料、配合比、施工现场养护等方面对混凝土工程中常见的一些裂缝的成因进行了分析探讨。针对混凝土裂缝产生的原因,在混凝土结构设计、混凝土材料选择、配合比优化、以及施工现场的养护等方面提出了控制裂缝发展的措施。依据相关文献,并总结了混凝土裂缝的处理方法:表面处理法、填充法、灌浆法、结构补强法、混凝土置换法、电化学防护法、仿生自愈合法等。 关键词:混凝土,裂缝,成因,控制

目录 第1章概述 (7) 1.1 课题的提出 (7) 1.2 本论文的研究内容 (7) 1.3本论文的研究方法 (8) 第2章裂缝的成因 (8) 2.1 设计原因 (9) 2.2 材料原因 (9) 2.3 混凝土配合比设计原因 (10) 2.4 施工及现场养护原因 (10) 2.5使用原因(外界因素) (11) 第3章裂缝的控制措施 (11) 3.1 设计方面 (11) 3.1.1 设计中的‘抗’与‘放’ (11) 3.1.2尽量避免结构断面突变带来应力集中 (11) 3.1.3采用补偿收缩混凝土技术 (12) 3.1.4 设计上要注意容易开裂部位 (12) 3.1.5 重视构造钢筋 (13) 3.2 材料选择 (13) 3.3 混凝土配合比设计 (13) 3.4 施工方面 (14) 3.4.1 模板的安装及拆除 (14) 3.4.2 混凝土的制备 (15) 3.4.3 混凝土的运输 (15) 3.4.4 混凝土的浇筑 (16)

3.4.5 混凝土的养护 (17) 3.5 管理方面 (18) 3.6 环境方面 (18) 第4章混凝土裂缝的处理方法 (19) 4.1 混凝土裂缝的处理方法 (19) 4.1.1.表面处理法 (19) 4.1.2填充法 (19) 4.1.3灌浆法 (19) 4.1.4.结构补强法 (19) 4.1.5混凝土置换法 (20) 4.1.6电化学防护法 (16) 4.1.7仿生自愈合法 (20) 第5章结论 (20) 5.1 混凝土裂缝产生原因 (20) 5.2 混凝土裂缝的控制措施 (21) 5.3 混凝土裂缝的处理方法 (21) 参考文献 (23)

连续浇筑钢筋混凝土超长结构裂缝控制新技术[详细]

连续浇筑钢筋混凝土超长结构裂缝控制新技术 第1章UEA补偿收缩混凝土的抗裂原理 在水泥中内掺10%~I2%UEA,可制成UEA补偿收缩混凝土,在限制条件下,UEA产生的膨胀能转变为0.2~0.7米Pa的预压应力储存于结构中.这一预压应力可抵消结构中产生的拉应力,从而防止或减少收缩裂缝的出现.在限制条件下,掺入UEA后,混凝土产生限制膨胀来抵消混凝土由于干缩和冷缩引起的限制收缩,从而达到避免或减少混凝土开裂的目的,这就是UEA补偿收缩混凝土的抗裂原理. UEA补偿收缩混凝土能完全补偿混凝土的干缩,并且能使混凝土在中期获得微弱膨胀,以补偿混凝土的冷缩.其补偿收缩模式可用图3-3-l表示. 图3.3-l中: ①——混凝土散热冷缩变形曲线; ②——气温变化引起的冷缩曲线; ③——③=①十②; ④——符合冷缩与干缩联合补偿的最终变形曲线. ST——最大冷缩值; S2——最大收缩值; D——最终变形,亦即最终收缩(短时间); S c——弹性压缩; ?2米——混凝土湿养膨胀阶段达到的最大限制膨胀率; S k——混凝土的极限拉伸值. 在实际应用中,首先确定混凝土初始温度和水化热温升达到最高温度后的降温冷缩变形曲线②,其次确定气温下降曲线①和以后周期性变化引起的叠加冷缩曲线③.最后选定适宜的限制膨胀?2米和湿养膨胀时间t来对冷缩和干缩进行联合补偿.最大冷缩值ST可根据最大降温值(℃)和混凝土的线膨胀系数计算. 当混凝土的最终变形(亦即最终收缩)D= ?2米- ?2 + ? e - ST < S k时,混凝土不会开裂. 第2章抗裂分析、伸缩缝间距讨论及工程应用简介 北京当代购物中心工程的箱形基础,长90米,宽90米,底板厚70米米,墙厚350米米,配筋率为0. 4%,钢筋直径为20米米,混凝土设计标号为C30,采用525号普通水泥,水泥单方用量366千克/米3,水灰比0.50,施工季节气温为7~l2℃.该工程采用UEA混凝土作结构自防水,内掺l2%UEA,UEA混凝土湿养膨胀阶段达到的最大限制膨胀率为4.28×l0-4.该底板经1年观察,无裂缝. 第1节抗裂分析 由于水热化引起混凝土内部绝热升温: 考虑基础上、下表面一维散热,散热系数为0.5~0.6,取0.6,则由于水热化引起的温升值为: T1=0.6 T 米ax=0.6×70.9=42.5(℃) 环境气温7~12℃,取其平均差值

混凝土结构裂缝控制及处理措施浅述

混凝土结构裂缝控制及处理措施浅述 摘要:随着我国城市化进程的不断推进,建设项目规模不断扩大,建设速度不 断提高,现阶段混凝土结构中出现各种裂缝成为常态;对混凝土结构裂缝的成因 进行分析,从而采取有效的裂缝控制及裂缝处理措施,才能确保建筑工程的质量 及结构安全。 关键词:混凝土;建筑结构;裂缝控制;处理 1混凝土结构裂缝的分类及成因 1.1 干缩裂缝 混凝土浇筑完在凝结的过程中,需要对混凝土进行养护,在此过程中,混凝 土中的水分会蒸发使混凝土产生干缩。混凝土外表面的水分蒸发较快,因此变形 较大,而内部水分变化相对较慢,因此变形较小,这样产生的内外变形差,使混 凝土表面产生拉应力,从而在混凝土表面产生裂缝,即干缩裂缝。 干缩裂缝多出现在混凝土的表面,为浅细裂缝,呈平行线状或网状,宽度多 在0.02~0.2mm之间。干缩裂缝会使混凝土的抗渗性降低,使钢筋的锈蚀加快, 影响混凝土结构的耐久性。 1.2 温度裂缝 引起温度裂缝的主要原因是温度变化,由温度变化引起的裂缝可以分为两种,一种是内部温度变化引起,另一种是外部温度变化引起。 水泥经过高温高压烧制而成,水泥的水化及凝固过程中,将产生大量的热量,当混凝土浇筑后,随着混凝土的逐渐凝结,混凝土内部温度发生变化,将会产生 收缩,从而产生裂缝,这就是内部温度变化引起的裂缝。 由于外部环境温度变化,混凝土外部与内部存在温差,温差的存在,就是热 量传递的过程,热量传递直到内外温度达到平衡为止,在热量传递过程中就会有 收缩力的产生,从而导致了裂缝的产生,这就是外部温度变化引起的裂缝。 1.3 混凝土材料问题引起的裂缝 ①干燥收缩裂缝。而混凝土毛细孔缝中水分的不断蒸发将导致混凝土出现收缩,以上原因引起的混凝土干缩值为0.04%~0.06%,而混凝土干燥后的可拉伸值 极低,导致混凝土出现干燥收缩裂缝。 ②混凝土膨胀裂缝。水泥中含有氧化镁、氧化钙,遇水后的体积会的膨胀增加;水泥、外加剂中含有大量的碱,其与活性硅进行化学反应会增加混凝土的体积;混凝土在高温条件之会加快钙矾石的分解,而在常规条件下的钙矾石就会不 断膨胀直到破裂。以上原因导致各种混凝土膨胀裂缝出现。 1.4 施工工艺问题引起的裂缝 混凝土起模、浇筑、拆模等施工环节的控制质量不到位,未严格按国家及行 业相关规范、规程执行,混凝土结构也可能会出现裂缝。 1.5 混凝土结构使用环境变化的裂缝 混凝土结构均是在一定假定使用环境条件下进行设计,一旦使用环境发生恶化,使用环境恶化到一定的时间及程度,混凝土耐久性会出现问题,也将产生裂缝。 1.6 结构设计产生的受力裂缝 结构设计上也会产生混凝土裂缝,设计引起的混凝土裂缝有两种情况。 (1)按设计规范混凝土结构本身是可以带裂缝工作,但裂缝宽度必须控制 在一定的范围。也即当我们的设计按规范要求选择了一定的裂缝控制标准,在混

简述大体积混凝土温度控制措施

大体积混凝土温度控制措施 摘要:在大体积混凝土工程中, 为了防止温度裂缝的产生或把裂缝控制在某个界限内, 必须进行温度控制。一般要选用合适的原料和外加剂,控制混凝土的温升,延缓混凝土的降温速率;选择合理的施工工艺,采取相应的降温与养护措施,及时进行安全监测,避免出现裂缝,以保证混凝土结构的施工质量。在此对大体积混凝土温度控制措施进行了探讨。 关键词:大体积混凝土,温度裂缝,温度控制,水化热 随着我国各项基础设施建设的加快和城市建设的发展, 大体积混凝土已经愈来愈广泛地应用于大型设备基础、桥梁工程、水利工程等方面。这种大体积混凝土具有体积大、混凝土数量多、工程条件复杂和施工技术要求高等特点, 在设计和施工中除了必须满足强度、刚度、整体性和耐久性的要求外, 还必须控制温度变形裂缝的开展, 保证结构的整体性和建筑物的安全。因此控制温度应力和温度变形裂缝的扩展, 是大体积混凝土设计和施工中的一个重要课题。 大体积混凝土的温度裂缝的产生原因 大体积混凝凝土施工阶段产生的温度裂缝,时期内部矛盾发展的结果,一方面是混凝土内外温差产生应力和应变,另一方面是结构的外约束和混凝土各质点间的内约束阻止这种应变,一旦温度应力超过混凝土所能承受的抗拉强度,就会产生裂缝。 1、水泥水化热 在混凝土结构浇筑初期,水泥水化热引起温升,且结构表面自然散热。因此,在浇筑后的3 d ~5 d,混凝土内部达到最高温度。混凝土结构自身的导热性能差,且大体积混凝土由于体积巨大,本身不易散热,水泥水化现象会使得大量的热聚集在混凝土内部,使得混凝土内部迅速升温。而混凝土外露表面容易散发热量,这就使得混凝土结构温度内高外低,且温差很大,形成温度应力。当产生的温度应力( 一般是拉应力) 超过混凝土当时的抗拉强度时,就会形成表面裂缝 2、外界气温变化 大体积混凝土结构在施工期间,外界气温的变化对防止大体积混凝土裂缝的产生起着很大的影响。混凝土内部的温度是由浇筑温度、水泥水化热的绝热温度和结构的散热温度等各种温度叠加之和组成。浇筑温度与外界气温有着直接关系,外界气温愈高,混凝土的浇筑温度也就会愈高;如果外界温度降低则又会增加大体积混凝土的内外温差梯度。如果外界温度的下降过快,会造成很大的温度应力,极其容易引发混凝土的开裂。另外外界的湿度对混凝土的裂缝也有很大的影响,外界的湿度降低会加速混凝土的干缩,也会导致混凝土裂缝的产生。大体积混凝土的温度控制措施 针对大体积混凝土温度裂缝成因, 可从以下几方面制定温控防裂措施。 一、温度控制标准 混凝土温度控制的原则是:(1)尽量降低混凝土的温升、延缓最高温度出现时间;(2)降低降温速率;(3)降低混凝土中心和表面之间、新老混凝土之间的温差以及控制混凝土表面和气温之间的差值。温度控制的方法和制度需根据气温(季节)、混凝土内部温度、结构尺寸、约束情况、混凝土配合比等具体条件确定。 二、混凝土的配置及原料的选择 1、使用水化热低的水泥 由于矿物成分及掺合料数量不同, 水泥的水化热差异较大。铝酸三钙和硅酸三钙含量高的, 水化热较高, 掺合料多的水泥水化热较低。因此选用低水化热或中水化热的水泥品种配制混凝土。不宜使用早强型水泥。采取到货前先临时贮存散热的方法, 确保混凝土搅拌时水泥温

混凝土裂缝成因分析及控制方法

混凝土裂缝成因分析及控制方法 摘要:混凝土结构裂缝是当今工程领域非常难以解决的一个问题,如果施工中混凝土常常出现裂缝就会影响到结构的整体性和耐久性。结合实际经验,从建筑构件、温度变化、体积收缩和施工操作等方面分析了施工期混凝土裂缝产生原因和影响因素,提出了施工期混凝土裂缝的控制技术,对在施工期如何进行混凝土裂缝控制的研究和实践有一定的指导意义。 关键词:混凝土施工;温度裂缝;裂缝控制;防治措施 1 混凝土施工中常见裂缝 1.1干缩裂缝 干缩裂缝多出现在混凝土养护结束后的一段时间或是混凝土浇筑完毕后的一周左右。水泥浆中水分的蒸发产生干缩,且这种收缩是不可逆的。干缩裂缝的产生主要是由于混凝土内外水分蒸发程度不同而导致变形不同的结果:混凝土受外部条件的影响,表面水分损失过快,变形较大,内部湿度变化较小变形较小,较大的表面干缩变形受到混凝土内部约束,产生较大拉应力而产生裂缝。相对湿度越低,水泥浆体干缩越大,干缩裂缝越易产生。干缩裂缝多为表面性的平行线状或网状浅细裂缝,宽度多在0.05~0.2mm之问,大体积混凝土中平面部位多见,较薄的梁板中多沿其短向分布。干缩裂缝通常会影响混凝土的抗渗性,引起钢筋的锈蚀影响混凝土的耐久性,在水压力的作用下会产生水力劈裂影响混凝土的承载力等等。混凝土干缩主要和混凝土的水灰比、水泥的成分、水泥的用量、集料的性质和用量、外加剂的用量等有关。 1.2塑性收缩裂缝 塑性收缩是指混凝土在凝结之前,表面因失水较快而产生的收缩。塑性收缩

裂缝一般在干热或大风天气出现,裂缝多呈中间宽、两端细且长短不一,互不连贯状态。较短的裂缝一般长20~30cm,较长的裂缝可达2~3IT1,宽l~5mm。其产生的主要原因为:混凝土在终凝前几乎没有强度或强度很小,或者混凝土刚刚终凝而强度很小时,受高温或较大风力的影响,混凝土表面失水过快,造成毛细管中产生较大的负压而使混凝土体积急剧收缩,而此时混凝土的强度又无法抵抗其本身收缩,因此产生龟裂。影响混凝土塑性收缩开裂的主要因素有水灰比、混凝土的凝结时间、环境温度、风速、相对湿度等等。 1.3沉陷裂缝 沉陷裂缝的产生是由于结构地基土质不匀、松软,或回填土不实或浸水而造成不均匀沉降所致;或者因为模板刚度不足,模板支撑问距过大或支撑底部松动等导致,特别是在冬季,模板支撑在冻土上,冻土化冻后产生不均匀沉降,致使混凝土结构产生裂缝。此类裂缝多为深进或贯穿性裂缝,其走向与沉陷情况有关,一般沿与地面垂直或呈30~45°角方向发展,较大的沉陷裂缝,往往有一定的错位,裂缝宽度往往与沉降量成正比关系。裂缝宽度受温度变化的影响较小。地基变形稳定之后,沉陷裂缝也基本趋于稳定。 1.4温度裂缝 在大体积混凝土结构中,温度应力变化及温度控制具有重要意义。这主要是由于两方面的原因:首先,在施工中混凝土常常出现温度裂缝,影响到结构的整体强度和耐久性;其次,在使用过程中,温度变化对结构的应力状态具有显著的不容忽视的影响。混凝土施工中产生裂缝有多种原因,主要是温度和湿度的变化、混凝土的脆性和不均匀性,以及结构不合理、原材料不合格(如碱骨料反应)、模板变形、基础不均匀沉降等。混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在后期降温过程中,由于表面温度散失较快,受到内部混凝土或基础的约束,使混凝土表面产生拉应力。当拉应力超过混凝土的抗拉强度时,即会出现温缩开裂。即使混凝土的内部湿度变化很小或变化较慢,但表面湿度变化较大

超长结构混凝土裂缝控制技术要点

超长结构混凝土裂缝控制技术要点 超长结构混凝土结构设计控制 为控制超长结构混凝土裂缝,应在结构设计阶段采取有效技术措施。主要应考虑以下几点。 (1)对超长结构进行温度应力验算,温度应力验算时应考虑下部结构水平刚度对变形的约束作用,结构合拢后最大温升与温降及混凝土收缩带来的不利影响,混凝土结构徐变对减少结构裂缝的有利因素,混凝土开裂对结构截面刚度的折减影响等。 (2)为有效减少超长结构混凝土裂缝,大柱网公共建筑可考虑在楼盖结构与楼板中采用预应力技术,楼盖结构框架梁应采用有粘接预应力技术,也可在楼板内配置构造无粘接预应力钢筋,建立预压力以减小因温度降温引起的拉应力,对裂缝进行有效控制。除施加预应力以外,还可加强构造配筋,采用纤维混凝土等技术措施。 (3)设计时应对混凝土结构施工提出要求,如大面积底板混凝土浇筑时采用分仓法施工,超长结构采用设置后浇带与加强带以减少混凝土收缩对超长结构

裂缝的影响。当大体积混凝土置于岩石地基时,宜在混凝土垫层上设置滑动层,以减少岩石地基对大体积混凝土的约束。 配合比要求 (1)混凝土配合比应根据原材料品质、混凝土强度等级、混凝土耐久性及施工工艺等,通过计算、试配、调整等步骤选定。 (2)配合比设计应控制胶凝材料用量。强度等级在C60以下时,最大胶凝材料用量不宜大于550kg/m3;强度等级为C60、C65时,胶凝材料用量不宜大于560kg/m3;强度等级为C70、C75、C80时,胶凝材料用量不宜大于580kg/m3;

自密实混凝土胶凝材料用量不宜大于600kg/m3;混凝土最大水胶比不宜大于0.45。 (3)大体积混凝土应采用大掺量矿物掺合料技术,矿渣粉和粉煤灰宜复合使用。 (4)纤维混凝土的配合比设计应满足JGJ/T221-2010《纤维混凝土应用技术规程》的要求。 (5)除抗压强度、抗渗等级等常规设计指标外,还应考虑满足抗裂性指标要求。 施工要求

混凝土裂缝控制技术

混凝土裂缝控制技术 混凝土裂缝控制与结构设计、材料选择和施工工艺等多个环节相关。结构设计主要涉及结构形式、配筋、构造措施及超长混凝土结构的裂缝控制技术等;材料方面主要涉及混凝土原材料控制和优选、配合比设计优化;施工方面主要涉及施工缝与后浇带、混凝土浇筑、水化热温升控制、综合养护技术等。 2..5.1技术内容 混凝土裂缝控制与结构设计、材料选择和施工工艺等多个环节相关。结构设计主要涉及结构形式、配筋、构造措施及超长混凝土结构的裂缝控制技术等;材料方面主要涉及混凝土原材料控制和 优选、配合比设计优化;施工方面主要涉及施工缝与后浇带、混凝土浇筑、水化热温升控制、综合 养护技术等。 (1)结构设计对超长结构混凝土的裂缝控制要求 超长混凝土结构如不在结构设计与工程施工阶段采取有效措施,将会引起不可控制的非结构性 裂缝,严重影响结构外观、使用功能和结构的耐久性。超长结构产生非结构性裂缝的主要原因是混 凝土收缩、环境温度变化在结构上引起的温差变形与下部竖向结构的水平约束刚度的影响。 为控制超长结构的裂缝,应在结构设计阶段采取有效的技术措施。主要应考虑以下几点: 1)对超长结构宜进行温度应力验算,温度应力验算时应考虑下部结构水平刚度对变形的约束作 用、结构合拢后的最大温升与温降及混凝土收缩带来的不利影响,并应考虑混凝土结构徐变对减少 结构裂缝的有利因素与混凝土开裂对结构截面刚度的折减影响。 2)为有效减少超长结构的裂缝,对大柱网公共建筑可考虑在楼盖结构与楼板中采用预应力技术,楼盖结构的框架梁应采用有粘接预应力技术,也可在楼板内配置构造无粘接预应力钢筋,建立预压 力,以减小由于温度降温引起的拉应力,对裂缝进行有效控制。除了施加预应力以外,还可适当加 强构造配筋、采用纤维混凝土等用于减小超长结构裂缝的技术措施。 3)设计时应对混凝土结构施工提出要求,如对大面积底板混凝土浇筑时采用分仓法施工、对超 长结构采用设置后浇带与加强带,以减少混凝土收缩对超长结构裂缝的影响。当大体积混凝土置于 岩石地基上时,宜在混凝土垫层上设置滑动层,以达到减少岩石地基对大体积混凝土的约束作用。 (2)原材料要求 1)水泥宜采用符合现行国家标准规定的普通硅酸盐水泥或硅酸盐水泥;大体积混凝土宜采用低 热矿渣硅酸盐水泥或中、低热硅酸盐水泥,也可使用硅酸盐水泥同时复合大掺量的矿物掺合料。水 2 泥比表面积宜小于350m/kg,水泥碱含量应小于0.6%;用于生产混凝土的水泥温度不宜高于60℃, 不应使用温度高于60℃的水泥拌制混凝土。

结构混凝土温度裂缝控制措施

So forum 百家论坛 1、引言 我国自20世纪60年代开始研究防止混凝土产生温度裂缝产生的措施,目前已积累了很多成功的经验。工程上常用的防止混凝土裂缝的措施主要有:采用中、低热的水泥品种;降低水泥用量;合理分缝分块;掺加外加料选择适宜的骨料;控制混凝土的出机温度和人模温度;预埋水管、通水冷却、降低混凝土的最高温升;表面保护、保温隔热,不使表面温度散热太快,减少混凝土内外温差;采取防止混凝土裂缝的结构措施等。在结构工程的设计施工中,对于大体积混凝土结构,为防止其产生温度裂缝,除需在施工前进行认真计算外,还要做到在施工过程中采取有效的技术措施,根据我国的施工经验应着重从控制混凝土温升、延缓混凝土降温速率、减少混凝土收缩、提高混凝土极限拉伸值、改善混凝土约束程度、完善构造设计和加强施工中的温度监测等方面采取技术措施。以上这些措施不是孤立的,而是相互联系、相互制约的,施工中必须结合实际、全面考虑、合理采用,才能收到良好的效果。 2、水泥品种选择和用量控制 大体积混凝土结构引起裂缝的主要原因是:混凝土的导热性能较差,水泥水化热的大量积聚,使混凝土出现早期温升和后期降温现象,因此控制水泥水化热引起的温升,即减小降温温差,对降低温度应力,防止产生温度裂缝能起到釜底抽薪的作用。 (1)选用中热或低热的水泥品种。混凝土升温的热源是水泥水化热,选用中、低热的水泥品种,是控制混凝土温升的最基本方法。如32.5级的矿渣硅酸盐水泥,其3d内的水化热仅为同标号普通硅酸盐水泥的60%。某大型基础试验表明:选用32.5级硅酸盐水泥,比选用32.5级矿渣硅酸盐水泥,3d内水化热平均升温高5—8℃。 (2)充分利用混凝土的后期强度。根据大量的试验资料表明,Im3混凝土的水泥用量,每增减10kg,其水化热将使混凝土的温度相应升降1℃,因此为控制混凝土温升,降低温度应力,减少温度裂缝,一方面在满足混凝土强度和耐久性的前提下,尽量减少水泥用量,严格控制I m3混凝土水泥用量不超过400kg;另一方面可根据实际承受荷载的情况,对结构的强度和刚度进行复算,并取得设计单位、监理单位和质量检查部门的认可后,这样可使每立方米混凝土的水泥用量减少40—70kg,混凝土的水化热温度相应降低4~7℃,温控指标宜符合下列规定:混凝土入模温度的温升值不宜大于50C;混凝土里表温差不宜大于25℃;混凝土表面与大气温差不宜大于20℃。 3、掺加外加料 在混凝土中掺人一些适宜的外加料,可以使混凝土获得所需要的特性,尤其在泵送混凝土中更为突出。泵送性能良好的混凝土拌合物应具备三种特性:①在输送管壁形成水泥浆或水泥砂浆的润滑层,使混凝土拌合物具有在管道中顺利滑动的流动性;②为了能在各种形状和尺寸的输送管内顺利输送,混凝土拌合物要具备适应输送管形状和尺寸的变化性;为在泵送混凝土施工过程中不产生离析而造成堵塞,拌合物应具备压力变化和位置变动的抗分离性。由于影响泵送混凝土性能的因素很多,如砂石的种类、品质、级配、用量,及混凝土的砂率、坍落度、外掺料等,因此为了满足混凝土具有良好的泵送性,在进行混凝土配合比的设计中,不能用单纯增加单位用水量的方法,这样不仅会增加水泥用量,增大混凝土的收缩,而且还会使水化热升高,更容易引起裂缝。工程实践证明,在施工中单纯增加单位用水量不仅不能优化混凝土的收缩,而且还会使水化热升高,更容易引起裂缝。工程实践还证明,在施工中优化混凝土级配,掺加适宜的外加料,以改善混凝土的特征,是大体积混凝土施工中的一项重要技术措施。混凝土中常用的外加料主要是外掺剂和外掺料。 4、骨料的选择 大体积混凝土砂石料的重量占混凝土总重量的85 010左右,正确选用砂石料对保证混凝土质量、节约水泥用量、降低水化热、降低工程成本是非常重要的。骨料的选用应根据就地取材的原则,首先考虑选用生产成本低、质量优良的天然砂石料。根据国内外对人工砂石料的试验研究和生产实践,证明采用人工骨料也可以做到经济实用。 5、控制混凝土出机温度和浇筑温度加强养护 为了降低大体积混凝土的总温升,减少结构物的内外温差,控制混凝土的出机温度与浇筑温度同样非常重要。大体积混凝土浇筑后,加强表面的保温、保湿养护,对防止混凝土产生裂缝具有重大作用。保湿、保温养护的目的有三个:一是减少混凝土的内外温差,防止出现表面裂缝;二是防止混凝土过冷,避免产生贯穿裂缝,三是延缓混凝土的冷却速度,以减小新老混凝土的上下层约束。总之,在混凝土浇筑之后,尽量以适当的材料加以覆盖,采取保湿和保温措施,不仅可减少升温阶段的内外温差,防止产生表面裂缝,而且可以使水泥顺利水化,提高混凝土的极限拉伸值。防止产生过大的温度应力和温度裂缝。混凝土终凝后,在其表面蓄存一定量的水,采取蓄水养护是一种较好的方法,我国在一些工程中曾经采用,并取得良好效果,这样可以延缓混凝土内部水化热的降温速率,缩小混凝土中心和表面的温度差值,从而可控制混凝土的裂缝开展。 6、减少混凝土收缩并提高混凝土的极限拉伸值 混凝土的收缩和极限拉伸值,除与水泥用量、骨料品种和级配、水灰比、骨料含泥量等有关外,还与施工工艺和施工质量密切相关,因此通过改善混凝土的配合比和施工工艺,可以在一定程度上减少混凝土的收缩和提高混凝土极限拉伸值占,,这对防止产生温度裂缝也可起到一定的作用。大量现场试验证明,对浇筑后的混凝土进行两次振捣,能排除混凝土因泌水而在粗骨料、水平钢筋下部生成的水分空隙,提高混凝土与钢筋的握裹力,防止因混凝土沉落而出现的裂缝,减小混凝土内部微裂,增加混凝土的密实度,使混凝土的抗压强度提高10%~20%,从而可提高混凝土的抗裂性。混凝土二次振捣的恰当时间是指混凝土振捣后尚能恢复到塑性状态的时间,这是一次振捣 浅谈结构混凝土温度裂缝控制措施 谢英忠1李春武2 (1.吉林省水利水电勘测设计研究院 吉林 长春 130021; 2.吉林省高速公路管理局 吉林 长春 130022) 【摘要】结合工作实践经验,论述了建筑结构混凝土温度裂缝产生的原因、现场混凝土温度的控制和预防裂缝的具体措施, 为今后类似工程提供参考资料。 【关键词】结构混凝土 温度裂缝 施工 控制措施 【中图分类号】G25【文献标识码】A【文章编号】1672-7355(2012)08-0189-02 189 东方企业文化

墙体或混凝土裂缝控制与措施毕业论文

墙体或混凝土裂缝控制与措施毕业论文 裂缝产生的原因 裂缝产生的原因可以分为两类:(1)结构性裂缝是由于外荷载引起的,包括常规结构计算中的主要应力以及其他的结构次应力造成的受裂缝;(2)材料型裂缝,是由于非受力变形变化引起的,主要是由温度应力和混凝土的收缩引起的;(3)施工原因。 1.1 温度裂缝 温度裂缝产生的主要原因是外温差引起的温度应力。大体积混凝土由于水泥水化过程产生的水化热积累,浇筑后3~4d混凝土部温度急剧上升引起的混凝土膨胀变形,混凝土部应力表现为压应力,此时混凝土的弹性模量很小,由于温度变化引起的受基础混凝土膨胀变形仍旧很小。温度峰值过后,混凝土由升温期转为降温期,混凝土开始收缩,部应力表现为拉应力。此时混凝土的弹性模量较大,降温引起的受约束的收缩变形会产生相当大的拉应力,当拉应力超过混凝土同龄期的抗拉强度时,就会产生温度裂缝,对混凝土结构产生不同程度的危害。此外,在混凝土部温度较高时,外部环境温度低或气温骤降期间,外温差过大在混凝土表面也会产生较大的拉应力而出现表面裂缝。 1.2 收缩裂缝 收缩裂缝包括干燥收缩,塑性收缩、自身收缩、碳化收缩等。这里主要介绍干燥收缩和塑性收缩。 1.2.1 干燥收缩 干燥收缩多出现在混凝土养护结束后的一段时间或混凝土浇筑完毕后的一周左右。干缩裂缝产生的主要原因;混凝土受外部环境影响,表面水分损失过快,变性过大,部混凝土变性较小,较大的表面干缩变形受到混凝土部约束,产生较大的拉应力而产生裂缝。相对湿度越低,水泥浆体干缩越大,干缩裂缝越易产生。混凝土干缩主要与混凝土水灰比、水泥成分、水泥用量,集料性质和用量,外加剂用量等有关。 1.2.2 塑性收缩 塑性收缩是混凝土终凝前,表面因失水过快而产生的收缩,一般在干热或大风天气出现。影响混凝土塑性收缩开裂的主要因素,由水灰比、混凝土的凝结时间、环境湿度、风速、相对湿度等。 1.2.3早龄期收缩 早龄期收缩特指混凝土浇筑后3d的干燥收缩值(包括干燥收缩),文献【5】的研究表明,混凝土浇筑后早期得不到有效地保湿养护,那么早龄期,尤其是第1天的干缩被大大加剧了2. 外墙裂缝的产生原因 外墙裂缝除了以上介绍的原因外还有,就是局部设计的缺陷 2.1局部节点设计缺陷 ①保温设计中常常忽视对结构挑出部位,如阳 光、雨罩,靠外墙阳台栏板、空调室外机隔板、附 壁柱、凸窗、装饰线、靠外墙阳台分户隔墙、檐沟、 女儿墙外侧及压顶等部位的保湿。

“大体积及超长钢筋混凝土结构裂缝”控制措施标准范本

解决方案编号:LX-FS-A59922 “大体积及超长钢筋混凝土结构裂缝”控制措施标准范本 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

“大体积及超长钢筋混凝土结构裂缝”控制措施标准范本 使用说明:本解决方案资料适用于日常工作环境中对未来要做的重要工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 混凝土结构裂缝是常见的、难以避免的质量缺陷,直接影响到结构的耐久性。长期以来,人们对建筑工程中的钢筋混凝土结构质量仅要求和注重强度,而忽视了混凝土的耐久性,只对强度等级进行验收(除特殊性能砼外)。随着科学技术不断发展,人们的生活水平和需求的提高,钢筋混凝土技术的发展在建筑工程中,特别是近几年,大体积、超长、超高等钢筋混凝土结构设计越来越普遍。对大体积、超长、超高钢筋混凝土结构的裂缝缺陷,应作为一个非常值得研究和讨论的课题加以重视,以确保结构的安全性

浅谈混凝土裂缝控制措施

浅谈混凝土裂缝控制措施 摘要:本文主要从建筑工程中混凝土裂缝产生的原因和混凝土裂缝控制技术两 个方面探讨了建筑工程混凝土裂缝控制措施,通过对混凝土产生裂缝的原因进行 分析,对混凝土裂缝控制措施提出了几点建议和意见。 关键词:裂缝混凝土控制措施 一、建筑工程中混凝土裂缝产生的原因 1.水泥水化热影响。水泥在水化过程中会产生大量的热量,使混凝土内部的 温度升高,当混凝土内部和表面温差过大时,会产生温度变形和温度应力。温度 应力与温差成正比例关系,温差越大,温度应力越大,当温度应力超过混凝土内 外约束力时,就会产生裂缝。 2.内外约束条件的影响。混凝土在早期温度上升的时候,产生的膨胀受到约 束形成压应力;当温度下降时,会产生较大的拉应力。此外,混凝土的内部由于 水泥水化热而形成中心温度高,热膨胀大,所以在中心区会产生压应力,在表面 产生拉应力。如果拉应力超过混凝土的抗拉强度,混凝土将会产生裂缝。 3.楼板力学形变的影响。楼板支座处负筋下沉和楼板弹性变形对混凝土都会 造成裂缝。在施工过程中,在混凝土尚未达到设计强度时就进行拆模,或混凝土 尚未终凝就过早地施加荷载,这些均可造成混凝土楼板产生弹性变形,使混凝土 在早期无强度或强度低时承受压、拉等应力,进而导致混凝土产生裂缝。 4.外界温度变化的影响。大体积混凝土在施工阶段常受外界气温的影响。混 凝土内部温度是由浇筑温度、水泥水化热引起的绝热温度和结构的散热温度三者 的叠加。浇筑温度与外界气温直接相关,外界气温越高,浇筑温度也就越高,外 界温度降低又会使混凝土内外温度梯度增加。如果外界气温下降过快,会导致温 度应力很大,极容易造成混凝土裂缝。此外,外界的湿度对混凝土裂缝也会产生 很大影响,外界湿度降低会使混凝土的干缩加速,导致混凝土裂缝的产生。 二、建筑工程中混凝土裂缝的控制措施 1.混凝土结构设计。在设计时,应避免使用高强度混凝土,多采用中低强度 的混凝土。为了尽量减少大体积混凝土的表面裂缝,可采用合理的在承台表面增 加配筋数量的措施。虽然增加配筋数量的措施不能使裂缝的出现产生明显的改变,但可以减小温度裂缝的宽度和增加结构的整体性。大体积混凝土如果施工过程中 允许设置水平施工缝,可以依据温度裂缝要求分块设置,且应该设置必要的连接 方式。 2.混凝土浇筑施工工艺。楼层混凝土浇筑完毕24小时内,仅限于进行测量、弹线、定位等准备工作,禁止吊卸大宗材料,以此来避免振动冲击。24小时以后可以分批次吊运少量小型材料,尽量做到轻放、轻卸、分散就位。第三天后可以 正常从事楼板楼面的模板的支模施工。对于设计中确定吊卸放材料的部位的模板,在模板支撑架设前应预先考虑采用加密横杆和立杆增加模板支撑刚度的技术措施,来达到增加刚度、减少变形的目的,使该区域的抗冲击振动荷载增强;同时应在 此区域新浇筑混凝土表面铺设跳板或木模来加强保护和扩散应力,减少楼板裂缝 的产生。 3.混凝土原料的选择与配比。(1)如果混凝土采用的骨料吸收率较大,或者骨料含泥量较多、干缩较大,会增加混凝土的收缩性;如果骨料级配良好、粒径 较大,可以较少混凝土中水泥浆的用量,会减少混凝土的收缩性。掺加适量的粉 煤灰可以减少水泥用量并能降低水化热,可以有效降低混凝土用水量,减小混凝

相关主题
文本预览
相关文档 最新文档