当前位置:文档之家› 药剂学电子书第五版 (第四章表面活性剂)

药剂学电子书第五版 (第四章表面活性剂)

药剂学电子书第五版 (第四章表面活性剂)
药剂学电子书第五版 (第四章表面活性剂)

第四章表面活性剂

第一节概述

一、表面活性剂的概念

一定条件下的任何纯液体都具有表面张力,20℃时,水的表面张力为72.75mN·m-1。当溶剂中溶入溶质时,溶液的表面张力因溶质的加入而发生变化,水溶液表面张力的大小因溶质不同而改变,如一些无机盐可以使水的表面张力略有增加,一些低级醇则使水的表面张力略有下降,而肥皂和洗衣粉可使水的表面张力显著下降。使液体表面张力降低的性质即为表面活性。表面活性剂是指那些具有很强表面活性、能使液体的表面张力显著下降的物质。此外,作为表面活性剂还应具有增溶、乳化、润湿、去污、杀菌、消泡和起泡等应用性质,这是与一般表面活性物质的重要区别。

二、表面活性剂的结构特征

表面活性剂分子一般由非极性烃链和一个以上的极性基团组成,烃链长度一般在8个碳原子以上,极性基团可以是解离的离子,也可以是不解离的亲水基团。极性基团可以是羧酸及其盐、磺酸及其盐、硫酸酯及其可溶性盐﹑磷酸酯基﹑氨基或胺基及它们的盐,也可以是羟基、酰胺基、醚键﹑羧酸酯基等。如肥皂是脂肪酸类(R-COO-)表面活性剂,其结构中的脂肪酸碳链(R-)为亲油基团,解离的脂肪酸根(COO-)为亲水基团。

三、表面活性剂的吸附性

1.表面活性剂分子在溶液中的正吸附表面活性剂在水中溶解时,当水中表面活性剂的浓度很低时,表面活性剂分子在水-空气界面产生定向排列,亲水基团朝向水而亲油基团朝向空气。当溶液较稀时,表面活性剂几乎完全集中在表面形成单分子层,溶液表面层的表面活性剂浓度大大高于溶液中的浓度,并将溶液的表面张力降低到纯水表面张力以下。表面活性剂在溶液表面层聚集的现象称为正吸附。正吸附改变了溶液表面的性质,最外层呈现出碳氢链性质,从而表现出较低的表面张力,随之产生较好的润湿性、乳化性、起泡性等。如果表面活性剂浓度越低,而降低表面张力越显著,则表面活性越强,越容易形成正吸附。因此,表面活性剂的表面活性大小,对于其实际应用有着重要的意义。

2.表面活性剂在固体表面的吸附表面活性剂溶液与固体接触时,表面活性剂分子可能在固体表面发生吸附,使固体表面性质发生改变。极性固体物质对离子表面活性剂的吸附在低浓度下其吸附曲线为S形,形成单分子层,表面活性剂分子的疏水链伸向空气。在表面活性剂溶液浓度达临界胶束浓度时,吸附达到饱和,此时的吸附为双层吸附,表面活性剂分子的排列方向与第一层相反,亲水基团指向空气。提高溶液温度,吸附量将随之减少。对于非极性固体,一般只发生单分子层吸附,疏水基吸附在固体表面而亲水基指向空气,当表面活性剂浓度增加时,吸附量并不随之增加甚至有减少的趋势。

固体表面对非离子表面活性剂的吸附与前相似,但其吸附量随温度升高而增大,且可以从单分子层吸附向多分子层吸附转变。

第二节表面活性剂的分类

根据分子组成特点和极性基团的解离性质,将表面活性剂分为离子表面活性剂和非离子表面活性剂。根据离子表面活性剂所带电荷,又可分为阳离子表面活性剂、阴离子表面活性剂和两性离子表面活性剂。一些表现出较强的表面活性同时具有一定的起泡、乳化、增溶等应用性能的水溶性高分子,称为高分子表面活性剂,如海藻酸钠、羧甲基纤维素钠、甲基纤维素、聚乙烯醇、聚维酮等,但与低分子表面活性

剂相比,高分子表面活性剂降低表面张力的能力较小,增溶力、渗透力弱,乳化力较强,常用做保护胶体。

一、离子表面活性剂

(一)阴离子表面活性剂

阴离子表面活性剂起表面活性作用的部分是阴离子。

1.高级脂肪酸盐系肥皂类,通式为(RCOO-)nMn+。脂肪酸烃链R一般在C11~C17之间,以硬脂酸、油酸、月桂酸等较常见。根据M的不同,又可分碱金属皂(一价皂)、碱土金属皂(二价皂)和有机胺皂(三乙醇胺皂)等。它们均具有良好的乳化性能和分散油的能力,但易被酸破坏,碱金属皂还可被钙、镁盐等破坏,电解质可使之盐析。一般只用于外用制剂。

2.硫酸化物主要是硫酸化油和高级脂肪醇硫酸酯类,通式为R·O·SO3-M+,其中脂肪烃链R在C12~C18范围。硫酸化油的代表是硫酸化蓖麻油,俗称土耳其红油,为黄色或桔黄色粘稠液,有微臭,约含48.5%的总脂肪油,可与水混合,为无刺激性的去污剂和润湿剂,可代替肥皂洗涤皮肤,也可用于挥发油或水不溶性杀菌剂的增溶。高级脂肪醇硫酸酯类中常用的是十二烷基硫酸钠(SDS,又称月桂醇硫酸钠、SLS)、十六烷基硫酸钠(鲸蜡醇硫酸钠)、十八烷基硫酸钠(硬脂醇硫酸钠)等。它们的乳化性也很强,并较肥皂类稳定,较耐酸和钙、镁盐,但可与一些高分子阳离子药物发生作用而产生沉淀,对粘膜有一定的刺激性,主要用做外用软膏的乳化剂,有时也用于片剂等固体制剂的润湿剂或增溶剂。

3.磺酸化物系指脂肪族磺酸化物和烷基芳基磺酸化物等。通式分别为R·SO3-M+和RC6H5·SO3-M +。它们的水溶性及耐酸、耐钙、镁盐性比硫酸化物稍差,但即使在酸性水溶液中也不易水解。常用的品种有二辛基琥珀酸磺酸钠(阿洛索-OT)、二己基琥珀酸磺酸钠、十二烷基苯磺酸钠等,后者为目前广泛应用的洗涤剂。另外,甘胆酸钠、牛磺胆酸钠等胆酸盐也属此类,常用做胃肠道脂肪的乳化剂和单硬脂酸甘油酯的增溶剂。

(二)阳离子表面活性剂

这类表面活性剂起作用的部分是阳离子,亦称阳性皂。其分子结构的主要部分是一个五价的氮原子,所以也称为季铵化物,其特点是水溶性大,在酸性与碱性溶液中较稳定,具有良好的表面活性作用和杀菌作用。常用品种有苯扎氯铵和苯扎溴铵等。

(三)两性离子表面活性剂

这类表面活性剂的分子结构中同时具有正、负电荷基团,在不同pH值介质中可表现出阳离子或阴离子表面活性剂的性质。

1.卵磷脂卵磷脂是天然的两性离子表面活性剂。其主要来源是大豆和蛋黄,根据来源不同,又可称豆磷脂或蛋磷脂。卵磷脂的组成十分复杂,包括各种甘油磷脂,如脑磷脂、磷脂酰胆碱、磷脂酰乙醇胺、丝氨酸磷脂、肌醇磷脂、磷脂酸等,还有糖脂、中性脂、胆固醇和神经鞘脂等,其基本结构为:

在不同来源和不同制备过程的卵磷脂中各组分的比例可发生很大的变化,从而影响其使用性能。例如,在磷脂酰胆碱含量高时可作为水包油型乳化剂,而在肌醇磷脂含量高时则为油包水型乳化剂。卵磷

脂外观为透明或半透明黄色或黄褐色油脂状物质,对热十分敏感,在60℃以上数天内即变为不透明褐色,在酸性和碱性条件以及酯酶作用下容易水解,不溶于水,溶于氯仿、乙醚、石油醚等有机溶剂,是制备注射用乳剂及脂质微粒制剂的主要辅料。

2.氨基酸型和甜菜碱型这两类表面活性剂为合成化合物,阴离子部分主要是羧酸盐,其阳离子部分为季铵盐或胺盐,由胺盐构成者即为氨基酸型(R·+NH2·CH2CH2·COO-);由季铵盐构成者即为甜菜碱型(R·+N·(CH3)2·CH2·COO-)。氨基酸型在等电点时亲水性减弱,并可能产生沉淀,而甜菜碱型则无论在酸性、中性及碱性溶液中均易溶,在等电点时也无沉淀。

两性离子表面活性剂在碱性水溶液中呈阴离子表面活性剂的性质,具有很好的起泡、去污作用;在酸性溶液中则呈阳离子表面活性剂的性质,具有很强的杀菌能力。常用的一类氨基酸型两性离子表面活性剂“Tego”杀菌力很强而毒性小于阳离子表面活性剂。1%TegoMHG(十二烷基双(氨乙基)-甘氨酸盐酸盐,又称Dodecin HCL)水溶液的喷雾消毒能力强于相同浓度的洗必泰和苯扎溴铵以及70%的乙醇。二、非离子表面活性剂

这类表面活性剂在水中不解离,分子中构成亲水基团的是甘油、聚乙二醇和山梨醇等多元醇,构成亲油基团的是长链脂肪酸或长链脂肪醇以及烷基或芳基等,它们以酯键或醚键与亲水基团结合,品种很多,广泛用于外用、口服制剂和注射剂,个别品种也用于静脉注射剂。

(一)脂肪酸甘油酯

主要有脂肪酸单甘油酯和脂肪酸二甘油酯,如单硬脂酸甘油酯等。脂肪酸甘油酯的外观根据其纯度可以是褐色、黄色或白色的油状、脂状或蜡状物质,熔点在30~60℃,不溶于水,在水、热、酸、碱及酶等作用下易水解成甘油和脂肪酸。其表面活性较弱,HLB为3~4,主要用做W/0型辅助乳化剂。

(二)多元醇型

1.蔗糖脂肪酸酯蔗糖脂肪酸酯简称蔗糖酯,是蔗糖与脂肪酸反应生成的一大类化合物,属多元醇型非离子表面活性剂,根据与脂肪酸反应生成酯的取代数不同,有单酯、二酯、三酯及多酯。改变取代脂肪酸及酯化度,可得到不同HLB值(5~13)的产品。

蔗糖脂肪酸酯为白色至黄色粉末,随脂肪酸酯含量增加,可呈蜡状、膏状或油状,在室温下稳定,高温时可分解或发生蔗糖的焦化,在酸、碱和酶的作用下可水解成游离脂肪酸和蔗糖。蔗糖酯不溶于水,但在水和甘油中加热可形成凝胶,可溶于丙二醇、乙醇及一些有机溶剂,但不溶于油。主要用做水包油型乳化剂、分散剂。一些高脂肪酸含量的蔗糖酯也用做阻滞剂。

2.脂肪酸山梨坦脂肪酸山梨坦是失水山梨醇脂肪酸酯,是由山梨糖醇及其单酐和二酐与脂肪酸反应而成的酯类化合物的混合物,商品名为司盘(spans)。根据反应的脂肪酸的不同,可分为司盘20(月桂山梨坦)、司盘40(棕榈山梨坦)、司盘60(硬脂山梨坦)、司盘65(三硬脂山梨坦)、司盘80(油酸山梨坦)和司盘85(三油酸山梨坦)等多个品种,其结构如下:

脂肪酸山梨坦是粘稠状、白色至黄色的油状液体或蜡状固体。不溶于水,易溶于乙醇,在酸、碱和酶的作用下容易水解,其HLB值从1.8~3.8,是常用的油包水型乳化剂,但在水包油型乳剂中,司盘20和司盘40常与吐温配伍用做混合乳化剂;而司盘60,司盘65等则适合在油包水型乳剂中与吐温配合使用。

3.聚山梨酯(Polysorbate)是聚氧乙烯失水山梨醇脂肪酸酯,是由失水山梨醇脂肪酸酯与环氧乙烷反应生成的亲水性化合物。氧乙烯链节数约为20,可加成在山梨醇的多个羟基上,所以也是一种复杂的混合物。商品名为吐温(Tweens),美国药典品名为Polysorbate,与司盘的命名相对应,根据脂肪酸不同,有聚山梨酯20(吐温20)、聚山梨酯40、聚山梨酯60、聚山梨酯65、聚山梨酯80(吐温80)和聚山梨酯85等多种型号,其结构如下:

聚山梨酯是粘稠的黄色液体,对热稳定,但在酸、碱和酶作用下也会水解。在水和乙醇以及多种有机溶剂中易溶,不溶于油,低浓度时在水中形成胶束,其增溶作用不受溶液pH值影响。聚山梨酯是常用的增溶剂、乳化剂、分散剂和润湿剂。

(三)聚氧乙烯型

1.聚氧乙烯脂肪酸酯系由聚乙二醇与长链脂肪酸缩合而成的酯,通式为R·COO·CH2(CH2OCH2)nCH2·OH,商品有卖泽(Myrij)。根据聚乙二醇部分的分子量和脂肪酸品种不同而有不同品种。这类表面活性剂有较强水溶性,乳化能力强,为水包油型乳化剂,常用的有聚氧乙烯40硬脂酸酯等。

2.聚氧乙烯脂肪醇醚系由聚乙二醇与脂肪醇缩合而成的醚,通式为R·O·(CH2OCH2)nH,商品有苄泽(Brij),如Brij30和Brij35分别为不同分子量的聚乙二醇与月桂醇缩合物;西土马哥(Cetomacrogol)为聚乙二醇与十六醇的缩合物;平平加O(PerogolO)则是15个单位的氧乙烯与油醇的缩合物。埃莫尔弗(Emolphor)是一类聚氧乙烯蓖麻油化合物,由20个单位以上的氧乙烯与油醇缩合而成,为淡黄色油状液体或白色糊状物,易溶于水和醇及多种有机溶剂,HLB值在12~18范围内,具有较强的亲水性质。常用做增溶剂及O/W型乳化剂。如Cremophore EL为聚氧乙烯蓖麻油甘油醚,氧乙烯单位为35~40,HLB=12~14。

(四)聚氧乙烯-聚氧丙烯共聚物

本品又称泊洛沙姆(Poloxamer),商品名普郎尼克(Pluronic)。通式为HO(C2H4O)a-(C3H6O)b-(C2H4O)aH;根据共聚比例的不同,本品有各种不同分子量的产品(表10-1)。分子量可在1000~14000,HLB值为0.5~30。随分子量增加,本品从液体变为固体。随聚氧丙烯比例增加,亲油性增强;相反,随聚氧乙烯比例增加,亲水性增强。本品作为高分子非离子表面活性剂,具有乳化、润湿、分散、起泡和消泡等多种优良性能,但增溶能力较弱。Poloxamer 188(PluronicF68)作为一种水包油型乳化剂,是目前用于静脉乳剂的极少数合成乳化剂之一,用本品制备的乳剂能够耐受热压灭菌和低温冰冻而不改变其物理稳定性。

表10-1 泊洛沙姆及对应普郎尼克型号及其分子量

Poloxa mer Pluroni

c

平均分子量 a b

124 L44 2090~2360 12 20 188 F68 7680~9510 79 28 237 F87 6840~8830 64 37

338 F108 12700~10400 141 44

407 F127 9840~14600 101 56

第三节表面活性剂的理化性质和生物学性质

一、临界胶束浓度

当表面活性剂的正吸附到达饱和后继续加入表面活性剂,其分子则转入溶液中,因其亲油基团的存在,水分子与表面活性剂分子相互间的排斥力远大于吸引力,导致表面活性剂分子自身依赖范德华力相互聚集,形成亲油基团向内,亲水基团向外、在水中稳定分散、大小在胶体粒子范围的胶束(micelles)。在一定温度和一定的浓度范围内,表面活性剂胶束有一定的分子缔合数,但不同表面活性剂胶束的分子缔合数各不相同,离子表面活性剂的缔合数约在10~100,少数大于1000。非离子表面活性剂的缔合数一般较大,例如月桂醇聚氧乙烯醚在25℃的缔合数为5000。表面活性剂分子缔合形成胶束的最低浓度即为临界胶束浓度(critical micell concentration, CMC),不同表面活性剂的CMC不同,见表4-2。具有相同亲水基的同系列表面活性剂,若亲油基团越大,则CMC越小。在CMC时,溶液的表面张力基本上到达最低值。在CMC到达后的一定范围内,单位体积内胶束数量和表面活性剂的总浓度几乎成正比。

表4-2常用表面活性剂的临界胶束浓度

名称测定温度/℃CMC/molL-1名称测定温度/℃CMC/molL-1

辛烷基磺酸钠25 1.50×10-1氯化十二烷基铵25 1.6×10-2

辛烷基硫酸钠40 1.36×10-1月桂酸蔗糖酯 2.38×10-6

十二烷基硫酸钠40 8.60×10-3棕榈酸蔗糖酯9.5×10-5

十四烷基硫酸钠40 2.40×10-3硬脂酸蔗糖酯 6.6×10-5

十六烷基硫酸钠40 5.80×10-4吐温20 25 6.0×10-2

(g/L,以下同)

十八烷基硫酸钠40 1.70×10-4吐温40 25 3.1×10-2硬脂酸钾50 4.50×10-45吐温60 25 2.8×10-2

油酸钾50 1.20×10-3吐温65 25 5.0×10-2

月桂酸钾25 1.25×10-2吐温80 25 1.4×10-2

十二烷基磺酸钠25 9.0×10-3吐温85 25 2.3×10-2

(二)胶束的结构

在一定浓度范围的表面活性剂溶液中,胶束呈球形结构(图4-1a),其碳氢链无序缠绕构成内核,具非极性液态性质。碳氢链上一些与亲水基相邻的次甲基形成整齐排列的栅状层。亲水基则分布在胶束表面,由于亲水基与水分子的相互作用,水分子可深入到栅状层内。对于离子型表面活性剂,则有反离子吸附在胶束表面。随着溶液中表面活性剂浓度增加(20%以上),胶束不再保持球形结构,则转变成具有更高分子缔合数的棒状胶束(图4-1b),甚至六角束状结构(图4-1c),表面活性剂浓度更大时,成为板

状或层状结构(图4-1d和e)。从球形结构到层状结构,表面活性剂的碳氢链从紊乱分布转变成规整排列,完成了从液态向液晶态的转变,表现出明显的光学各向异性性质,在层状结构中,表面活性剂分子的排列已接近于双分子层结构。在高浓度的表面活性剂水溶液中,如有少量的非极性溶剂存在,则可能形成反向胶束,即亲水基团向内,亲油基团朝向非极性液体。油溶性表面活性剂如钙肥皂、丁二酸二辛基磺酸钠和司盘类表面活性剂在非极性溶剂中也可形成类似反向胶束。

图4-1胶束的结构

(三)临界胶束浓度测定

当表面活性剂的溶液浓度达到临界胶束浓度时,除溶液的表面张力外,溶液的多种物理性质,如摩尔电导、粘度、渗透压、密度、光散射等多种物理性质发生急剧变化。或者说,溶液物理性质发生急剧变化时的浓度即该表面活性剂的CMC。利用这些性质与表面活性剂浓度之间的关系,可推测出表面活性剂的临界胶束浓度。但测定的性质不同以及采用不同的测定方法得到的结果可能会有差异。另外,温度、浓度、电解质、pH等因素对测定结果也会产生影响。

二、亲水亲油平衡值

(一)HLB值的概念

表面活性剂分子中亲水和亲油基团对油或水的综合亲和力称为亲水亲油平衡值(hydrophile-lipophile balance,HLB)。根据经验,将表面活性剂的HLB值范围限定在0~40,其中非离子表面活性剂的HLB 值范围为0~20,即完全由疏水碳氢基团组成的石蜡分子的HLB值为0,完全由亲水性的氧乙烯基组成的聚氧乙烯的HLB值为20,既有碳氢链又有氧乙烯链的表面活性剂的HLB值则介于两者之间。亲水性表面活性剂有较高的HLB值,亲油性表面活性剂有较低的HLB值。亲油性或亲水性很大的表面活性剂易溶于油或易溶于水,在溶液界面的正吸附量较少,故降低表面张力的作用较弱。

表面活性剂的HLB值与其应用性质有密切关系,HLB值在3~6的表面活性剂适合用做W/O型乳化剂,HLB值在8~18的表面活性剂,适合用做O/W型乳化剂。作为增溶剂的HLB值在13~18,作为润湿剂的HLB值在7~9等,如图4-2所示。

图4-2 不同HLB值表面活性剂的适用范围

一些常用表面活性剂的HLB值列于表4-3。非离子表面活性剂的HLB值具有加和性,例如简单的二组分非离子表面活性剂体系的HLB值可计算如下:

(4-1)

如,用45%司盘60(HLB=4.7)和55%吐温60(HLB=14.9)组成的混合表面活性剂的HLB值为4.31。但上式不能用于混合离子型表面活性剂HLB值的计算。

表4-3常用表面活性剂的HLB值

表面活性剂HLB值表面活性剂HLB值

阿拉伯胶8.0 吐温20 16.7

西黄蓍胶13.0 吐温21 13.3

明胶9.8 吐温40 15.6

单硬脂酸丙二酯 3.4 吐温60 14.9

单硬脂酸甘油酯 3.8 吐温61 9.6

二硬脂酸乙二酯 1.5 吐温65 10.5

单油酸二甘酯 6.1 吐温80 15.0

十二烷基硫酸钠40.0 吐温81 10.0

司盘20 8.6 吐温85 11.0

司盘40 6.7 卖泽45 11.1

司盘60 4.7 卖泽49 15.0

司盘65 2.1 卖泽51 16.0

司盘80 4.3 卖泽52 16.9

司盘83 3.7 聚氧乙烯400单月桂酸酯13.1

司盘85 1.8 聚氧乙烯400单硬脂酸酯11.6

油酸钾20.0 聚氧乙烯400单油酸酯11.4

油酸钠18.0 苄泽35 16.9

油酸三乙醇胺12.0 苄泽30 9.5

卵磷脂 3.0 西土马哥16.4

蔗糖酯5~13 聚氧乙烯氢化蓖麻油12~18

泊洛沙姆188 16.0 聚氧乙烯烷基酚12.8

阿特拉斯G-263 25~30 聚氧乙烯壬烷基酚醚15.0

(二)HLB值的理论计算法

如果把表面活性剂的HLB值看成是分子中各种结构基团贡献的总和,则每个基团对HLB值的贡献可以用数值表示,这些数值称为HLB基团数(group number),将各个HLB基团数代入下式,即可求出表面活性剂的HLB值,该计算值与一些实验测定法的结果有很好的一致性:

HLB=Σ(亲水基团HLB数)-Σ(亲油基团HLB数)+7

如十二烷基硫酸钠的HLB值为:

HLB=38.7-(0.475×12)+7=40.0

表面活性剂的一些常见基团及其HLB基团数列于表4-4。

表4-4 用于计算HLB值的基团数

亲水基团基团数亲油基团基团数

-SO4Na 38.7 -CH- 0.475

-SO3Na 37.4 -CH2- 0.475

-COOK 21.1 -CH30.475

-COONa 19.1 =CH- 0.476

-N=9.4 -CH2-CH2-CH2-O- 0.15

酯(失水山梨醇环) 6.8 -CH-CH2-O- 0.15

酯(自由) 2.4 CH3

-COOH 2.1 苯环 1.662

-OH(自由) 1.9 -CF2- 0.870

-O- 1.3 -CF30.870

-OH(失水山梨醇环)0.5 CH3

-(CH2CH2O)- 0.33 -CH2-CH-O- 0.15

三、Krafft点与昙点

(一)Krafft点

对于离子型表面活性剂,例如十二烷基硫酸钠在水中的溶解度随温度变化曲线AKB,如图9-10。可以看出随温度升高,其溶解度在某一温度K点急剧升高,转折点K对应的温度称克拉费特点(Krafft point)。而此点对应的溶解度即为该离子型表面活性剂的临界胶团浓度(图中虚线对应浓度)。当溶液中表面活性剂的浓度未超过溶解度时,在区域Ⅰ为溶液状态AK线以下;当继续加入表面活性剂时,则有表面活性剂析出,在区域ⅡAKB线以上;此时再升高温度,体系又成为澄明溶液,KB曲线以下(区域Ⅲ),但与Ⅰ相不同,相是表面活性剂的胶束溶液。

图9-10 十二烷基硫酸钠在水中的溶解度与温度关系

Krafft点是离子型表面活性剂的特征值,Krafft点越高的表面活性剂,临界胶团浓度越小。Krafft点也是表面活性剂应用温度的下限,或者说,只有在温度高于Krafft点表面活性剂才能更好的发挥作用。如十二烷基硫酸钠的Krafft点为8℃,而十二烷基磺酸钠的Krafft点为70℃,在室温条件下使用,前者作增溶剂为好,后者的Krafft点高就不够理想。

(二)昙点(Cloud Point)

对非离子型表面活性剂在水溶液中得溶解度随温度升高而下降,使溶液变浊,称此变浊温度为昙点(Cloud point),亦称浊点。昙点是非离子型表面活性剂的特征值。此类表面活性剂的昙点在70~100℃,例如吐温20为90℃;吐温60为76℃;吐温80为93℃。吐温类产生昙点的原因是温度升高,聚氧乙烯链与水之间的氢键断裂,水合能力下降,溶解度反而减小,溶液变浊出现昙点,冷却时氢键重新形成,又澄明。在聚氧乙烯链相同时,碳氢链越长,则昙点越低;在碳氢链长相同时,聚氧乙烯链越长则昙点越高。

四、表面活性剂的生物学性

(一)表面活性剂对药物吸收的影响

研究发现表面活性剂的存在可能增进药物的吸收也可能降低药物的吸收,取决于多种因素的影响。如药物在胶束中的扩散、生物膜的通透性改变、对胃排空速率的影响、粘度等,很难作出预测。

如果药物被增溶在胶束内,药物从胶束中扩散的速度和程度及胶束与胃肠生物膜融合的难易程度具有重要影响。如果药物可以顺利从胶束内扩散或胶束本身迅速与胃肠粘膜融合,则增加吸收,例如应用吐温80明显促进螺内酯的口服吸收。

表面活性剂溶解生物膜脂质增加上皮细胞的通透性,从而改善吸收,如十二烷基硫酸钠改进头孢菌素钠、四环素、磺胺脒、氨基苯磺酸等药物的吸收。吐温80和吐温85增加一些难溶性药物的吸收则是因其在胃肠中形成高粘度团块降低了胃排空速率。但当聚氧乙烯类或纤维素类表面活性剂增加胃液粘度而阻止药物向粘膜面的扩散时,则吸收速率随粘度上升而降低。

许多表面活性剂对胰岛素鼻粘膜吸收有促进作用,例如分别将含有1%Poloxamer108、1%Brij35或癸酸钠(NaCap)的胰岛素溶液,经大鼠鼻腔给药半小时后,即可引起血糖较大幅度的降低。以8U/kg剂量给药半小时后血糖可降为给药前血糖值的60%左右,这说明含1%表面活性剂的胰岛素溶液从鼻粘膜吸收迅速而有效。降血糖作用持续时间也较长,均可持续5小时以上。

(二)表面活性剂与蛋白质的作用

蛋白质分子结构中氨基酸的羧基在碱性条件下发生解离而带有负电荷,在酸性条件下则结构中的氨基或胍基发生解离而带有正电荷。因此在两种不同带电情况下,分别与阳离子表面活性剂或阴离子表面活性剂发生电性结合。此外,表面活性剂还可能破坏蛋白质二维结构中的盐键、氢键和疏水键,从而使蛋白质各残基之间的交联作用减弱,螺旋结构变得无序或受到破坏,最终使蛋白质发生变性。

(三)表面活性剂的毒性

一般而言,阳离子表面活性剂的毒性最大,其次是阴离子表面活性剂,非离子表面活性剂毒性最小。两性离子表面活性剂的毒性小于阳离子表面活性剂。小鼠口服0.063%氯化烷基二甲铵后显示慢性毒性作用,而口服1%二辛基琥珀酸磺酸钠仅有轻微毒性,而相同浓度的十二烷基硫酸钠则没有毒性反应。非离子表面活性剂口服一般认为无毒性,例如成人每天口服4.5~6 g吐温80,连续28天,有的人服用达4年之久,都未见明显的毒性反应。

表面活性剂用于静脉给药的毒性大于口服。一些表面活性剂的口服和静脉注射的半数致死量(LD50)见表9-8。其中,仍以非离子表面活性剂毒性较低,如供静脉注射的Poloxamer188毒性很低,麻醉小鼠可耐受静脉注射10%该溶液10ml。

表9-8一些表面活性剂的半数致死量LD50(mg/kg小鼠)

品名口服静脉注射

苯扎氯铵(洁尔灭)350 30

氯化十六烷基吡啶200 30

脂肪酸磺酸钠 1 600~6 500 60~350

蔗糖单脂肪酸酯20 000 56~78

吐温20 >25 000 3 750

吐温80 >25 000 5 800

Poloxamer188 15 000 7 700

聚氧乙烯甲基蓖麻油醚 6 640

阳离子及阴离子表面活性剂不仅毒性较大,而且还有较强的溶血作用。例如0.001%十二烷基硫酸钠溶液就有强烈的溶血作用。非离子表面活性剂的溶血作用较轻微,在亲水基为聚氧乙烯基非离子表面活性剂中,以吐温类的溶血作用最小,其顺序为:聚氧乙烯烷基醚>聚氧乙烯烷芳基醚>聚氧乙烯脂肪酸酯>吐温类;吐温20>吐温60>吐温40>吐温80。目前吐温类表面活性剂仍用于某些肌肉注射液中。

(四)表面活性剂的刺激性

虽然各类表面活性剂都可以用于外用制剂,但长期应用或高浓度使用可能出现皮肤或粘膜损害。例如季铵盐类化合物高于1%即可对皮肤产生损害,十二烷基硫酸钠产生损害浓度为20%以上。吐温类对皮肤和粘膜的刺激性很低,但一些聚氧乙烯醚类表面活性剂浓度在5%以上即产生损害作用。

第四节表面活性剂在药物制剂中的应用

表面活性剂的应用,除一部分具有药理作用及直接用于消毒、杀菌、防腐之外,常用于油的乳化;难溶药物的增溶;悬浊液的分散与助悬;增加药物的稳定性;促进药物的吸收;固体有润湿、起泡与消泡、去垢等作用,在此仅讨论其在药物制剂中的主要作用。

一、表面活性剂的乳化作用

(一)降低界面张力

当水相与油相混合时,加入表面活性剂(乳化剂)可降低油水的界面张力,分散成稳定的乳剂。但要根据所用油及乳剂的类型选择适宜的乳化剂。

(二)形成牢固的乳化膜

乳化剂降低油水界面张力同时被吸附于乳滴的表面上,并有规律地定向排列形成膜,可阻止乳滴的合并。在乳滴周围形成的乳化剂膜称为乳化膜。乳化剂在乳滴表面上排列越整齐,乳化膜就越牢固,乳剂也就越稳定。乳化膜有三种类型:

1.单分子乳化膜

表面活性剂分子被吸附于乳滴表面,有规律地定向排列成单分子乳化剂层,增加乳剂的稳定性。若乳化剂为离子型表面活性剂,则乳化膜本身带有电荷,由于电荷互相排斥,阻止乳滴合并,使乳剂更加稳定。

2.多分子乳化膜

亲水性高分子化合物类乳化剂,在乳剂形成时被吸附于乳滴的表面,形成多分子乳化剂层,称多分子乳化膜,阻止乳滴合并,也增加分散介质的粘度,使乳剂更稳定。如阿拉伯胶作乳化剂就能形成多分子乳化膜。

3.固体微粒乳化膜

作为乳化剂使用的固体微粒对水相和油相有不同的亲合力,因而对油、水两相表面张力有不同程度的降低,在乳化过程中固体微粒被吸附于乳滴表面,在乳滴表面上排列成固体微粒膜,起阻止乳滴合并的作用,增加乳剂的稳定性。如硅皂土等乳化剂。

(三)表面活性剂乳化能力表示法

乳化能力大小通常用乳化剂溶解在液体(有机溶剂或水)时所能降低该液体的表面张力来衡量,表示方法有三种:

1.效率(efficiency)

将溶剂(水)的表面张力σ降至某一定值所需的表面活性剂的浓度,比较各表面活性剂的乳化效率,以所用浓度大小来衡量表面活性剂乳化效率,即浓度越小,乳化效率越高。

2.效力(effestiveness, efficacy)

它是以加入表面活性剂后使溶剂(水)的表面张力降至的最低值来衡量的,实际上是以表面活性剂溶液在临界胶团浓度时的表面张力来表示,即以表面活性剂溶液的σCMC来比较其效力,σCMC小则其乳化效力高。

3.效果(effects)

是以一定浓度的表面活性剂溶液(通常为1g/L),所能降低的表面张力来表示。降低越多,效果越好。

二、表面活性剂的润湿作用

在固/液界面体系中加入表面活性剂后可以降低固液界面张力,从而降低固体与液体的接触角,对固体表面起润湿作用。因此,作为润湿剂的表面活性剂,要求分子中的亲水基和亲油基应该具有适宜平衡,其HLB值一般在7~11之间,并应有适宜的溶解度。

三、表面活性剂的增溶作用

表面活性剂在水溶液中达到CMC值后,一些水不溶性或微溶性物质在胶束溶液中的溶解度可显著增加,形成透明胶体溶液,这种作用称为增溶(solubilization)。例如甲酚在水中的溶解度仅2%左右,但在肥皂溶液中,却能增加到50%。0.025%吐温80可使非洛地平的溶解度增加10倍。起增溶作用的表面活性剂称为增溶剂,被增溶的物质称为增溶质。非极性物质如苯和甲苯可完全进入胶束内烃核非极性环境而被增溶,而水杨酸这类带极性基团的分子,则以其非极性基插入胶束烃核,极性基则伸入胶束栅状层和亲水基中;一些极性较强的分子,如对羟基苯甲酸,由于分子两端都有极性基团,可完全被胶束的亲水基团所增溶。在药剂中,一些挥发油、脂溶性维生素、体激素等许多难溶性药物常可借此增溶,形成澄明溶液或提高浓度。

(一)最大增溶浓度(MAC)

胶束增溶体系是热力学稳定体系,也是热力学平衡体系。在CMC值以上,随着表面活性剂用量的增加,胶束数量增加,增溶量也应增加。当表面活性剂用量固定和增溶质达到饱和的浓度即为最大增溶浓度(maximum additive concentration,MAC)。例如,1g十二烷基硫酸钠可增溶0.262g黄体酮,1g吐温80或吐温20可分别增溶0.19g和0.25g丁香油。此时继续加入增溶质,若增溶质为液体,体系将转变成乳状液。若增溶质为固体,则溶液中将有沉淀析出。显然,表面活性剂的CMC值及聚合数不同,增溶MAC 就不同。CMC值越低、聚合数越大,MAC就越高。

(二)表面活性剂增溶作用的应用

1.增溶相图

增溶体系是指溶剂、增溶剂和增溶质组成的三元体系,三元体系的最佳配比常通过实验制作三元相图来确定。制作三元相图的一般方法是按一组比例取增溶剂和增溶质混匀,分别滴加蒸馏水至出现混浊并维持设定时间,记录此时的消耗水量,观察在继续加水时溶液有无由浊变清、再由清变浊的现象,记录该过程中加入的水量。计算所有混浊点处三组分的重量(或体积)百分数,并绘入三角坐标图中。图9-11是薄荷油-吐温20-水的三元相图,两曲线上的各点均为出现混浊或由浊变清的比例点,以曲线为分界限,表明在两相区Ⅱ、Ⅳ内的任一比例均不能制得澄明溶液;在两相区Ⅰ、Ⅲ内任一比例均可制得澄明溶液,但只有沿曲线的切线上方区域内的任意配比,如A点(代表7.5%薄荷油,42.5%吐温20和50%水),在加水稀释时才不会出现混浊。

图9-11 薄荷油-吐温20-水三元相图(20℃)

在实际增溶时,增溶剂的增溶能力可因组分的加入顺序不同出现差别。一般认为,将增溶质与助溶剂先行混合要比助溶剂先与水混合的效果好。另外,在增溶药物时,达到增溶平衡(即维持稳定的澄明或混浊状态)往往需要较长的时间。生产或使用中无需稀释,则仅用二元相图选择配比,直接在已知浓度的表面活性剂溶液中加入不同量增溶质至平衡(产生混浊或沉淀)即可。

2.解离药物的增溶

不解离的极性药物和非极性药物易为表面活性剂增溶并有较明显的增溶效果。而解离药物往往因其水溶性,进一步增溶的可能性较小甚至溶解度降低。当解离药物与带有相反电荷的表面活性剂混合时,在不同配比下可能出现增溶、形成可溶性复合物和不溶性复合物等复杂情况。例如在阳离子表面活性剂氯苯甲烃铵水溶液中,阴离子药物的增溶即出现这类现象。一般而言,表面活性剂的烃链越长,即疏水性越强,出现不溶性复合物的可能性越大。

解离药物与非解离表面活性剂的配伍很少形成不溶性复合物,但pH值可明显影响药物的增溶量。对于弱酸性药物而言,在偏酸性环境中有较大程度的增溶;对于弱碱性药物,则在偏碱性条件下有更多的增溶;作为两性离子则在等电点时有最大增溶量。

3.多组分增溶质的增溶

制剂中存在多种组分时,对主药的增溶效果取决于各组分与表面活性剂的相互作用,例如多种组分与主药竞争同一增溶位置而使增溶量减小;或者某一组分吸附或结合表面活性剂分子造成对主药的增溶量减小;但某些组分也可扩大胶束体积而增加对主药的增溶等,如苯甲酸可增加羟苯甲酯在聚氧乙烯脂肪醇醚溶液中的溶解,而二氯酚则减少其溶解。

4.抑菌剂的增溶

抑菌剂或其它抗菌药物在表面活性剂溶液中往往被增溶而降低活性,在这种情况下必须增加用量。如果在表面活性剂溶液中的溶解度越高,要求的抑菌浓度就越大。羟苯甲酯和丁酯的抑菌浓度比甲酯或乙酯低得多,但是,在表面活性剂溶液中,却需要更高的浓度才能达到相同的抑菌效果,因为丙酯和丁酯更容易在胶束中增溶。

5.表面活性剂溶液的化学稳定性

药物增溶后的稳定性可能与胶束表面的性质、结构和胶束缔合作用、药物本身的降解途径、环境的pH 值、离子强度等多种因素有关。例如在酯类药物的碱性水解反应中,水解中间产物为带负电荷的阴离子,阳离子表面活性剂的正电荷加速反应进行,阴离子表面活性剂则产生抑制作用。又如,青霉素等 -内酰胺类药物的酸水解被阳离子及非离子表面活性剂抑制而被阴离子表面活性剂催化。而青霉素V在中性溶液中的降解,离子表面活性剂和非离子表面活性剂均无保护作用也无催化作用。聚氧乙烯类非离子表面活性剂,如果在聚氧乙烯基发生部分水解和自身氧化,生成的过氧化物将促使药物氧化降解,例如聚氧乙烯脂肪醇醚溶液中的苯佐卡因极容易氧化变黄。

四、表面活性剂的起泡和消泡作用

泡沫是一层很薄的液膜包围着气体,是气体分散在液体中的分散体系。一些含有表面活性剂或具有表面活性物质的溶液,如中草药的乙醇或水浸出液,含有皂甙、蛋白质、树胶以及其它高分子化合物的溶液,当剧烈搅拌或蒸发浓缩时,可产生稳定的泡沫。这些表面活性剂通常有较强的亲水性和较高的HLB 值,在溶液中可降低溶液的界面张力而使泡沫稳定,称这些物质为起泡剂(foaming agent)。在产生稳定的泡沫情况下,加入一些HLB值为1~3的亲油性较强的表面活性剂,则可与泡沫液层争夺液膜表面而吸附在泡沫表面上,代替原来的起泡剂,而其本身并不能形成稳定的液膜,故使泡沫破坏,这种用来消除泡沫的表面活性剂称为消泡剂(antifoaming agent)。少量的辛醇、戊醇、醚类、硅酮等也可起到类似作用。

五、表面活性剂的去污作用

去污剂或称洗涤剂(detergent)是用于除去污垢的表面活性剂,HLB值一般为13~16。常用的去污剂

有油酸钠和其它脂肪酸的钠盐、钾盐、十二烷基硫酸钠或烷基磺酸钠等阴离子表面活性剂。去污剂的机理较为复杂,包括对污物表面的润湿、分散、乳化或增溶、起泡等多种过程。

六、表面活性剂的消毒和杀菌作用

大多数阳离子表面活性剂和两性离子表面活性剂都可用作消毒剂,少数阴离子表面活性剂也有类似作用,如甲酚皂、甲酚磺酸钠等。表面活性剂的消毒和杀菌作用可归结于它们与细菌生物膜蛋白质的强烈相互作用使之变性或破坏。这些消毒剂在水中都有比较大的溶解度,根据使用浓度,可分别用于手术前皮肤消毒、伤口或粘膜消毒、器械消毒和环境消毒等,如苯扎溴铵为一种广谱杀菌剂,皮肤消毒、局部湿敷和器械消毒分别用其0.5%苯扎溴铵醇溶液、0.02%苯扎溴铵水溶液和0.05%苯扎溴铵水溶液(含0.5%亚硝酸钠)。

药剂学名词解释

1 绪论 1.Pharmaceutics (Pharmacy) 药剂学: 是研究药物制剂的基本理论,处方设计,制备工艺,质量控制,合理使用等内容的综合性应用技术科学. 2.Dosage forms 剂型: 适合于疾病的诊断、治疗或预防的需要而制备的与一定给药途径相适应的给药形式,就叫做药物剂型,简称剂型. 3.Pharmaceutical preparations 药物制剂:各种剂型中的具体药物或者为适应治疗或预防的需要而制备的不同给药形式的并规定有适应症、用法和用量的具体品种,简称制剂. 4.DDS 指在防治疾病的过程中所采用的不同于普通剂型的各种新型的给药形式和方法 5.Pharmacopoeia 药典:是一个国家记载药品标准,规格的法典,一般由国家药典委员会组织编著,出版,并由政府颁布,执行,具有法律约束力. 6.Formulation 生产处方:是制剂生产或者调配的重要书面文件,是配料和成本核算的依据,包括药物,用量,配制方法以及工艺等内容。 7.Prescription 医师处方: 医生对病人用药的重要书面文件,包括药品的种类,数量和用法。 8.Prescritption (Ethical) drug 处方药: 必须凭执业医师或执业助理医师的处方才可调配,购买并在医生指导下使用的药品. 9.OTC 非处方药: 不需凭执业医师或执业助理医师的处方,消费者可以自行判断,购买和使用的药品. 2液体制剂 10.Liquid preparations 液体制剂: 指药物分散在适宜的分散介质中形成的供内服或外用的液体形态的制剂。 11.Solubilizer 增溶剂: 指具有增溶能力的表面活性剂.Solubilization增溶: 指某些难溶性药物在表面活性剂作用下,在溶剂中溶解度增大并形成澄清溶液的过程 12.Hydrotropy agents 助溶剂: 指难溶性药物与加入的第三种物质在溶剂中形成可溶性分子间的络合物,复盐或缔合物等,以增加药物在溶剂中的溶解度,这第三种物质称为助溶剂。 13.Cosolvents 潜溶剂: 使药物的溶解度出现极大值的混合溶剂cosolvency 潜溶:混合溶剂中各溶剂达某一比例时药物溶解度出现极大值的现象 14.Solutions 溶液剂: 指药物溶解于溶剂中形成的澄明液体制剂。15.Aromatic waters 芳香水剂: 指芳香挥发性药物的饱和或近饱和的水溶液16.Syrups 糖浆剂:指含药物的浓蔗糖水溶液17.Tinctures 酊剂: 指药物用规定浓度乙醇浸出或溶解而制成的澄清液体制剂18.Spirits 醑剂: 指挥发性药物的浓乙醇溶液19.Glycerins 甘油剂: 指药物溶于甘油中制成的专供外用的溶液剂。20.Paints 涂剂: 用纱布、棉花蘸取后涂搽皮肤,口或喉部黏膜的液体制剂21.Sols 溶胶剂: 指固体药物微粒分散在水中形成的非均匀状态的液体制剂,又称疏水胶体溶液,属热力学不稳定系统。 22.Suspensions 混悬剂: 指难溶性固体微粒分散在分散介质中形成的非均匀的液体制剂。属热力学不稳定体系。23.Flocculating agents 絮凝剂: 使混悬微粒絮凝时加入的电解质或使混悬剂产生絮凝作用的附加剂 24.Emulsions 乳剂: 指两种互不相溶的液体,其中一种液体以小液滴状态分散在另一种液体中所形成的非均相分散体系。 25.Emulsifying agents/Emulsifier: 乳化剂: 能显著降低油水两相表面张力并能在乳滴周围形成牢固的乳化膜的物质26.Liniments 搽剂:指专供揉搽皮肤表面用的液体制剂27.Lotions 洗剂:指专供涂抹,敷于皮肤的外用液体制剂28.Nasal drops 滴鼻剂:专供滴入鼻腔内使用的液体制剂29.Ear drops 滴耳剂:供滴入耳腔内的外用液体制剂30.Gargles 含漱剂:指用于喉咙,口腔清洗的液体制剂31.Drop dentifrices 滴牙剂:指用于局部牙孔的液体制剂

药剂学电子书第五版(第六章 注射剂)

第六章注射剂 第一节概述 一.注射剂的定义及特点 (一)定义 注射剂(injections)系指药物制成的供注入体内的灭菌溶液、乳状液、混悬液,以及供临用前配成溶液或混悬液的无菌粉末或浓溶液。 (二)特点 注射剂是应用最广泛的剂型之一,主要因为它具备下列优点: (1)药效迅速注射剂直接注入人体组织吸收快,而静脉注射,由于是直接进入血管而没有吸收阶段,所有剂型中起效最快,可用于抢救危重病人。 (2)剂量准确、作用可靠注射剂属于非胃肠道给药途径,不受胃肠道诸因素影响,因此剂量准确、作用可靠。 (3)适于不能口服给药的病人对有吞咽困难及处于昏迷的病人,均可注射给药 (4)适于不能口服的药物某些药物,如胰岛素可被消化液破坏,异丙肾上腺素在肠系膜被生物转化,而链霉素与胃内溶物形成不能吸收的复合物。因此,这些药物都可制成注射剂而发挥疗效。 (5)可产生定位、靶向及长效作用局部麻醉药注射剂可以产生局部定位作用,脂质体、微球等微粒系统静脉注射具有靶向作用,而混悬型注射剂,特别是油性混悬剂,及皮下注射微球等均具有长效作用。 虽然注射剂应用广泛,但也存在缺点: (1)使用不便除少数的注射剂,如胰岛素注射剂由于需长期注射,病人经过培训可自行注射外,注射剂一般不能自己使用,需由经过训练的医护人员注射,以保证安全。 (2)注射疼痛注射引起局部组织损伤或由于药物的性质等导致疼痛感,影响病人使用的顺从性,在婴幼儿中尤其显著。 一种新型的无针型喷射式注射器(jet injector)正在国外逐步推广应用。这种设备是使用压力代替针头进行注射。它的特点是消除患者对针头的恐惧感,同时也减少针头注射时的疼痛及注射部位的损伤。Bennett等将14名患者随机分为两组,分别用针头注射器及喷射式注射器皮下给以抗焦虑药速眠安(Midazolam)。结果表明,喷射式注射器更舒服,针头注射器具有持续性疼痛。血药浓度的数据表明,喷射式注射器比针头注射器更快达到峰值,但两者之间的峰值没有显著差异[1]。Munshi等使用喷射式注射器对100名3~13岁的儿童进行牙科局部麻醉的临床评价,结果表明儿童明显喜欢该注射器,不象对针头注射器那样产生生理及心理的排斥[2]。 (3)生产过程复杂、对生产的环境及设备要求高为保证注射剂的安全与有效,需要经过较为复杂的生产过程;同时注射剂是所有剂型中对生产环境要求最高的剂型,并且要求一定生产设备保证产品质量及提高生产效率。 二、注射剂的分类及给药途径 (一)按分散系统分类: 1.溶液型注射剂 对于易溶于水而且在水溶液中稳定的药物,则制成溶液型注射剂,如氯化钠注射液,葡萄糖注射液等。

药剂学电子书第五版(第七章 散剂)

第七章散剂、颗粒剂、胶囊剂 第一节固体制剂概述 本章与下一章介绍的是常用的固体剂型。在这里,我们首先以片剂为例,介绍一些有关固体剂型的共性问题:显然,某片剂在规定的时间内未能溶出规定量的药物(称为溶出度不合格),该片剂将无法发挥其应有的疗效,也就是说,片剂口服后,必须经过崩解、溶出、吸收等几个过程,其中任何一个环节发生问题都将影响药物的实际疗效。上述几个过程可以图解如下: 片剂──→崩解(裂碎成小颗粒)──→药物从小颗粒中溶出──→胃肠液中的药物溶液──→药物从胃肠粘膜吸收进入血液循环──→分布于各个组织器官──→发挥治疗作用 未崩解的片剂,其表面积十分有限,溶出量很小,溶出速度也很慢;崩解后,形成了众多的小颗粒,所以总表面积急剧增加,药物的溶出量和溶出速度一般也会大大加快。 对于片剂和多数固体剂型(如散剂、胶囊剂等)来说,下述Noyes-Whitney方程可说明剂型中药物溶出的规律。Noyes-Whitney方程的形式是: dC/dt = k S Cs 式中:dC/dt──溶出速度;k──溶出速度常数;S──溶出质点暴露于介质的表面积;Cs──药物的溶解度。 上式表明,药物从固体剂型中的溶出速度与溶出速度常数k、药物粒子的表面积S、药物的溶解度Cs成正比。故而可采取以下一些的方法来加以改善药物的溶出速度: ①可采用药物微粉化的方法来增加表面积S,从而加快药物的溶出速度。 ②制备研磨混合物:疏水性药物单独粉碎时,随着粒径的减小,表面自由能增大,粒子易发生重新聚集的现象,粉碎的实际效率不高,与此同时,这种疏水性的药物粒径减小、比表面积增大,会使片剂的疏水性增强,不利于片剂的崩解和溶出。如果将这种疏水性的药物与大量的水溶性辅料共同研磨粉碎制成混合物,则药物与辅料的粒径都可以降低到很小,又由于辅料的量多,所以在细小的药物粒子周围吸附着大量水溶性辅料的粒子,这样就可以防止细小药物粒子的相互聚集,使其稳定地存在于混合物中;当水溶性辅料溶解时,细小的

药剂学-表面活性剂

第九章 表面活性剂

内容提要
表面活性剂在药物制剂的制备中被广泛应用, 其结构特征是具有亲水性与亲脂性两种基团, 其作用是能显著降低分散系的表面(界面)张 力,因此可用作乳化剂、助悬剂、增溶剂、促 吸收剂、润湿剂、起泡剂与消泡剂、去污剂 等,是药用乳剂、悬浊剂、脂质体等的重要辅 料。本章重点讨论表面活性剂的基本性质(如 CMC值、HLB值、Krafft点与昙点等)与测定
方法等。

第一节 表面活性剂分类
一、表面活性剂[1~3] 纯液体在一定温度有一定的表面张力,是液体的物
理常数。 当在水中加入无机盐或糖类物质时,则水的表面张
力略有升高; 当在水中加入低级脂肪醇、脂肪酸时,则水的表面
张力下降,称此类物质为水的表面活性物质。 当在水中加入油酸钠、十二烷基硫酸钠时,则水的
表面张力能够显著的降低,称此类物质为该溶剂的表 面活性剂(surfactant)。

表面活性剂分子的结构特征是由具有极性 的亲水基和非极性的亲油基组成,而且两部分 分处两端。因此,表面活性剂具有既亲水又亲 油的两亲性质,但具有两亲性的分子不一定都 是表面活性剂。

二、表面活性剂的类型[4~6]
表面活性剂分类方法有多种,根据来源可分为天然表 面活性剂与合成表面活性剂;
根据溶解性质可分为水溶性表面活性剂与油溶性表面 活性剂;
根据极性基团的解离性质分为离子型表面活性剂与非 离子型表面活性剂两大类;
再根据离子型表面活性剂所带电荷,又分为阳离子、 阴离子、两性离子表面活性剂。每类中又可根据亲水 或亲油基团分为不同的种类。

药剂学电子书 第五版

第一节概述 一、药剂学基本概念 药剂学(pharmacy,pharmaceutics)是研究制剂的处方设计、配制理论、生产技术和质量控制等综合性应用技术的科学。研究制剂生产工艺理论的科学称为制剂学(science of preparation)。研究方剂的配制、服用等有关技术和理论的科学称为调剂学(science of prescription)。制剂学和调剂学以往也总称为药剂学。由于医药工业的发展和药品管理的规范化,制剂生产成为主导,因此近来药剂学与药物制剂学的含义基本一致。 药物(drugs)是指原料药,即用以防治人类和动物疾病以及对机体生理机能有影响的物质,可分为中药与天然药物、化学药物(包括抗生素)、生物技术药物三大类。中药(traditional Chinese medicine)系指我国经典著作收载的、为中医师传统使用的药材和饮片。生物技术药物(biotechnical drugs)系指通过生物技术获得的药物,主要包括重组细胞因子药物、重组激素类药物、重组溶栓药物、基因工程疫苗、治疗性抗体和基因药物等。 任何一种药物,在供临床应用之前,都必须制成适合于治疗或预防应用的、与一定给药途径相适应的给药形式,称为药物剂型(drug dosage forms,简称剂型)。例如片剂、注射剂、胶囊剂、软膏剂、栓剂、气雾剂等为剂型,是制剂的基本形式,剂型为集体名词。中药剂型也往往包括著名传统中药剂型如丸、丹、膏、散等,和现代中药剂型如颗粒剂、胶囊剂、片剂、注射剂等。 药物制剂(drug preparations,简称制剂)是指根据药典或国家标准将药物制成适合临床要求并具有一定质量标准,用于预防、治疗、诊断人的疾病,有目的地调节人的生理机能并规定有适应症、用法和用量的物质,包括中成药、化学合成药制剂、生物技术药物制剂、放射性药品和诊断药品等,制剂也是剂型中的品种,亦即通常所谓的药品,例如罗红霉素片、注射用抑肽酶、细胞色素C注射液、头孢克洛胶囊、醋酸氟轻松软膏、甲硝唑栓、盐酸异丙肾上腺素气雾剂等。 临时处方剂(prescriptions)是指按医师临时处方专为某一病人配制的,并明确指出用法和用量的制剂,例如人工肾透析液、腹腔透析液、化疗药、肠胃营养液等。

药学英语第五版原文翻译

IntroductiontoPhysiology Introduction Physiologyisthestudyofthefunctionsoflivingmatter.Itisconcernedwithhowanorganismperformsitsv ariedactivities:howitfeeds,howitmoves,howitadaptstochangingcircumstances,howitspawnsnewgenerati ons.Thesubjectisvastandembracesthewholeoflife.Thesuccessofphysiologyinexplaininghoworganismsp erformtheirdailytasksisbasedonthenotionthattheyareintricateandexquisitemachineswhoseoperationisgo vernedbythelawsofphysicsandchemistry. Althoughsomeprocessesaresimilaracrossthewholespectrumofbiology—thereplicationofthegenetic codefororexample—manyarespecifictoparticulargroupsoforganisms.Forthisreasonitisnecessarytodivid ethesubjectintovariouspartssuchasbacterialphysiology,plantphysiology,andanimalphysiology. Tostudyhowananimalworksitisfirstnecessarytoknowhowitisbuilt.Afullappreciationofthephysiolog yofanorganismmustthereforebebasedonasoundknowledgeofitsanatomy.Experimentscanthenbecarriedo uttoestablishhowparticularpartsperformtheirfunctions.Althoughtherehavebeenmanyimportantphysiolo gicalinvestigationsonhumanvolunteers,theneedforprecisecontrolovertheexperimentalconditionshasmea ntthatmuchofourpresentphysiologicalknowledgehasbeenderivedfromstudiesonotheranimalssuchasfrog s,rabbits,cats,anddogs.Whenitisclearthataspecificphysiologicalprocesshasacommonbasisinawidevariet yofanimalspecies,itisreasonabletoassumethatthesameprincipleswillapplytohumans.Theknowledgegain edfromthisapproachhasgivenusagreatinsightintohumanphysiologyandendoweduswithasolidfoundation fortheeffectivetreatmentofmanydiseases. Thebuildingblocksofthebodyarethecells,whicharegroupedtogethertoformtissues.Theprincipaltype softissueareepithelial,connective,nervous,andmuscular,eachwithitsowncharacteristics.Manyconnective tissueshaverelativelyfewcellsbuthaveanextensiveextracellularmatrix.Incontrast,smoothmuscleconsists https://www.doczj.com/doc/487649068.html,anssuchasthebrain,theh eart,thelungs,theintestines,andtheliverareformedbytheaggregationofdifferentkindsoftissues.Theorgans arethemselvespartsofdistinctphysiologicalsystems.Theheartandbloodvesselsformthecardiovascularsyst em;thelungs,trachea,andbronchitogetherwiththechestwallanddiaphragmformtherespiratorysystem;thes keletonandskeletalmusclesformthemusculoskeletalsystem;thebrain,spinalcord,autonomicnervesandgan glia,andperipheralsomaticnervesformthenervoussystem,andsoon. Cellsdifferwidelyinformandfunctionbuttheyallhavecertaincommoncharacteristics.Firstly,theyareb oundedbyalimitingmembrane,theplasmamembrane.Secondly,theyhavetheabilitytobreakdownlargemol eculestosmalleronestoliberateenergyfortheiractivities.Thirdly,atsomepointintheirlifehistory,theyposses sanucleuswhichcontainsgeneticinformationintheformofdeoxyribonucleicacid(DNA). Livingcellscontinuallytransformmaterials.Theybreakdownglucoseandfatstoprovideenergyforother activitiessuchasmotilityandthesynthesisofproteinsforgrowthandrepair.Thesechemicalchangesarecollect ivelycalledmetabolism.Thebreakdownoflargemoleculestosmalleronesiscalledcatabolismandthesynthes isoflargemoleculesfromsmalleronesanabolism. Inthecourseofevolution,cellsbegantodifferentiatetoservedifferentfunctions.Somedevelopedtheabil itytocontract(musclecells),otherstoconductelectricalsignals(nervecells).Afurthergroupdevelopedtheabi litytosecretedifferentsubstancessuchashormonesorenzymes.Duringembryologicaldevelopment,thispro cessofdifferentiationisre-enactedasmanydifferenttypesofcellareformedfromthefertilizedegg. Mosttissuescontainamixtureofcelltypes.Forexample,bloodconsistsofredcells,whitecells,andplatele ts.Redcellstransportoxygenaroundthebody.Thewhitecellsplayanimportantroleindefenseagainstinfection 生理学简介 介绍 生理学是研究生物体功能的科学。它研究生物体如何进行各种活动,如何饮食,如何运动,如何适应不断改变的环境,如何繁殖后代。这门学科包罗万象,涵盖了生物体整个生命过程。生理学成功地

人卫第七版药剂学重点整理

第一章绪论 1、药剂学: 研究药物制剂得基本理论、处方设计、制备工艺、质量控制及合 理使用得综合性应用技术科学 2.剂型:为适应治疗或预防得需要而制备得不同给药形式,称为药物剂型,简称剂型(Dosage form) 3. 制剂: 为适应治疗或预防得需要而制备得不同给药形式得具体品种,称为 药物制剂,简称 药剂学任务:就是研究将药物制成适于临床应用得剂型,并能批量生产安全、有效、稳定得制剂,以满足医疗卫生得需要、 药物剂型得重要性: 改变药物作用性质,降低或消除药物得毒副作用,调节药物作用速度,靶向作用,影响药效 药剂学得分支学科工业药剂学物理药剂学药用高分子材料学生物药剂学 药物动力学临床药剂学 药典作为药品生产、检验、供应与使用得依据 第二章:药物制剂得稳定性 药物制剂稳定性得概念 药物制剂得稳定性系指药物在体外得稳定性,就是指药物制剂在生产、运输、贮藏、周转,直至临床应用前得一系列过程中发生质量变化得速度与程度、 药用溶剂得种类(一)水溶剂就是最常用得极性溶剂、其理化性质稳定,能与身体组织在生理上相适应,吸收快,因此水溶性药物多制备成水溶液 (二)非水溶剂在水中难溶,选择适量得非水溶剂,可以增大药物得溶解度。 1.醇类如乙醇、2.二氧戊环类3。醚类甘油。4。酰胺类二甲基乙酰胺、能与水混合,易溶于乙醇中。5.酯类油酸乙酯。6、植物油类如豆油、玉米油、芝麻油、作为油性制剂与乳剂得油相、7、亚砜类如二甲基亚砜,能与水、乙醇混溶。 介电常数(dielectricconstant) 溶剂得介电常数表示在溶液中将相反电荷分开得能力,它反映溶剂分子得极 性大小、 溶解度参数溶解度参数表示同种分子间得内聚能,也就是表示分子极性大小得 一种量度。溶解度参数越大,极性越大。 溶解度(solubility)就是指在一定温度下药物溶解在溶剂中达饱与时得浓度,就是反映药物溶解性得重要指标。溶解度常用一定温度下100g溶剂中(或100

药剂学(崔福德主编第七版)

药剂学常考试题集锦 一、名词解释 1.Critical micelle concentration (CMC):临界胶束浓度,表面活性剂分子缔合形成胶束的最低浓度即为临界胶束浓度。(A卷考题)P37 2.Krafft point:即克拉夫特点,离子型表面活性剂在温度较低时溶解度很小,但随温度升高而逐渐增加,当到达某一特定温度时,溶解度急剧陡升,把该温度称为克拉夫特点。(A卷考题)P41 3. cloud poing: 即昙点,也称为浊点,某些含聚氧乙烯基的非离子表面活性剂的溶解度开始随温度上升而加大,到某一温度后其溶解度急剧下降,使溶液变混浊,甚至产生分层,但冷后又可恢复澄明。这种由澄明变混浊的现象称为起昙,这个转变温度称为昙点。(B卷考题)P42 4.助溶:系指难溶性药物与加入的第三种物质在溶剂中形成可溶性分子络合物、复盐或分子缔合物等,以增加药物在溶剂中溶解度的过程。(A卷和B卷考题) 5、脂质体:是指将药物包封于类脂质双分子层形成的薄膜中间所制成的超微型球状体,是一种类似微型胶囊的新剂型。(B卷考题)6.碘值:脂肪不饱和程度的一种度量,等于100g脂肪所摄取碘的克数。检测时,以淀粉液作指示剂,用标准硫代硫酸钠液进行滴定。碘值大说明油脂中不饱和脂肪酸含量高或其不饱和程度高。

7. 酸值:酸值又称酸价。是指中和1g天然脂肪中的游离酸所需消耗氢氧化钾的毫克数。酸值的大小反映了脂肪中游离酸含量的多少。P194 8.Pyrogen: 热原,是微生物的代谢产物。热原=内毒素=脂多糖。9.增溶 10. 置换价 11. F0值 12. Prodrug:前体药物,也称前药、药物前体、前驅藥物等,是指经过生物体内转化后才具有药理作用的化合物。前体药物本身没有生物活性或活性很低,经过体内代谢后变为有活性的物质,这一过程的目的在于增加药物的生物利用度,加强靶向性,降低药物的毒性和副作用。目前前体药物分为两大类:载体前体药物(carrier-prodrug)和生物前体(bioprecursor)。 二、写出下列英文对应的中文名称 SDS:十二烷基硫酸钠p32(也简写为 SLS, 但简写为SDS 更常用)emulsions:乳剂p157 active targeting preparation:主动靶向制剂p445 passive targeting preparation:被动靶向制剂p445 Tween 80:聚氧乙烯失水山梨醇脂肪酸酯p35 Span 80:失水山梨醇脂肪酸酯p34 β-CD:β-环糊精p356

药剂学课后习题答案

药剂学一一第一章散剂、颗粒剂和胶囊剂(注意:蓝的是答案,红的是改正的) 三、分析题 1 ?通过比较散剂、颗粒剂及胶囊剂的制备,分析它们的作用特点? 2 ?举例分析在散剂处方配制过程中,混合时可能遇到的问题及应采取的相应措施 同步测试参考答案 一、单项选择题 1 ? D 2. C 3. B 4. B 5. B 6. A 7. C 8. D 9. C 10. A 二、多项选择题 1 . AC 2. BC 3. ABCD 4. AC 5. ABC 6. ABCD 7. ABC 8. BC 三、分析题 1 ?答: 2 ?答:混合时可能遇到问题有固体物料的密度差异较大时,先加密度小的再加密度大的,颜色差异较大时先加色深再加色浅的,混合比例悬殊时按等量递加法混合,混合中的液化或润湿时,应针对不同的情况解决,若是吸湿性很强药物(如胃蛋白酶等)在配制时吸潮,应在低于其临界相对湿度以下的环境下配制,迅速混合,密封防潮; 若混合后引起吸湿性增强,则可分别包装。 关键字:固体物料,密度差异,密度小,密度大,颜色差异,色深,色浅,混合比例,等量递加法,润湿,液 化,吸湿性很强,临界相对湿度,密封防潮,分另甩装。 药剂学一一第二章片剂 同步测试答案 一、单项选择题 1 . B 2. B 3.D 4. B 5. C 6. A 7. D 8. B 9. C 10 . B 二、多项选择题 1 . ABC 2 . ABCD 3 . BCD 4 . ABD 5 . ABCD 6 . ABCD 7 . BD 8 . BCD 9 . BD 10 . AB 三、处方分析题 1. 硝酸甘油主药,17 %淀粉浆黏合,硬脂酸镁润滑,糖粉、乳糖可作填充、崩解、黏合 2. 红霉素主药,淀粉填充、崩解,10%淀粉浆黏合 药剂学一一第三章液体制剂 四、计算题

药剂学电子书第五版 (第四章表面活性剂)

第四章表面活性剂 第一节概述 一、表面活性剂的概念 一定条件下的任何纯液体都具有表面张力,20℃时,水的表面张力为72.75mN·m-1。当溶剂中溶入溶质时,溶液的表面张力因溶质的加入而发生变化,水溶液表面张力的大小因溶质不同而改变,如一些无机盐可以使水的表面张力略有增加,一些低级醇则使水的表面张力略有下降,而肥皂和洗衣粉可使水的表面张力显著下降。使液体表面张力降低的性质即为表面活性。表面活性剂是指那些具有很强表面活性、能使液体的表面张力显著下降的物质。此外,作为表面活性剂还应具有增溶、乳化、润湿、去污、杀菌、消泡和起泡等应用性质,这是与一般表面活性物质的重要区别。 二、表面活性剂的结构特征 表面活性剂分子一般由非极性烃链和一个以上的极性基团组成,烃链长度一般在8个碳原子以上,极性基团可以是解离的离子,也可以是不解离的亲水基团。极性基团可以是羧酸及其盐、磺酸及其盐、硫酸酯及其可溶性盐﹑磷酸酯基﹑氨基或胺基及它们的盐,也可以是羟基、酰胺基、醚键﹑羧酸酯基等。如肥皂是脂肪酸类(R-COO-)表面活性剂,其结构中的脂肪酸碳链(R-)为亲油基团,解离的脂肪酸根(COO-)为亲水基团。 三、表面活性剂的吸附性 1.表面活性剂分子在溶液中的正吸附表面活性剂在水中溶解时,当水中表面活性剂的浓度很低时,表面活性剂分子在水-空气界面产生定向排列,亲水基团朝向水而亲油基团朝向空气。当溶液较稀时,表面活性剂几乎完全集中在表面形成单分子层,溶液表面层的表面活性剂浓度大大高于溶液中的浓度,并将溶液的表面张力降低到纯水表面张力以下。表面活性剂在溶液表面层聚集的现象称为正吸附。正吸附改变了溶液表面的性质,最外层呈现出碳氢链性质,从而表现出较低的表面张力,随之产生较好的润湿性、乳化性、起泡性等。如果表面活性剂浓度越低,而降低表面张力越显著,则表面活性越强,越容易形成正吸附。因此,表面活性剂的表面活性大小,对于其实际应用有着重要的意义。 2.表面活性剂在固体表面的吸附表面活性剂溶液与固体接触时,表面活性剂分子可能在固体表面发生吸附,使固体表面性质发生改变。极性固体物质对离子表面活性剂的吸附在低浓度下其吸附曲线为S形,形成单分子层,表面活性剂分子的疏水链伸向空气。在表面活性剂溶液浓度达临界胶束浓度时,吸附达到饱和,此时的吸附为双层吸附,表面活性剂分子的排列方向与第一层相反,亲水基团指向空气。提高溶液温度,吸附量将随之减少。对于非极性固体,一般只发生单分子层吸附,疏水基吸附在固体表面而亲水基指向空气,当表面活性剂浓度增加时,吸附量并不随之增加甚至有减少的趋势。 固体表面对非离子表面活性剂的吸附与前相似,但其吸附量随温度升高而增大,且可以从单分子层吸附向多分子层吸附转变。 第二节表面活性剂的分类 根据分子组成特点和极性基团的解离性质,将表面活性剂分为离子表面活性剂和非离子表面活性剂。根据离子表面活性剂所带电荷,又可分为阳离子表面活性剂、阴离子表面活性剂和两性离子表面活性剂。一些表现出较强的表面活性同时具有一定的起泡、乳化、增溶等应用性能的水溶性高分子,称为高分子表面活性剂,如海藻酸钠、羧甲基纤维素钠、甲基纤维素、聚乙烯醇、聚维酮等,但与低分子表面活性

药剂学复习资料(一)

药剂学复习资料(一)

无菌与灭菌制剂复习题 一、单项选择题 1.注射剂的制备中,洁净度要求最高的工序为(C ) A.配液 B.过滤 C.灌封 D.灭菌 2 .( C )常用于注射液的最后精滤 A.砂滤棒 B.垂熔玻璃棒 C.微孔滤膜 D.布氏漏斗 3. NaCl 等渗当量系指与 1g ( A )具有相等渗透压的 NaCl 的量。 A.药物 B.葡萄糖 C.氯化钾 D.注射用水 4. 安瓿宜用( B )方法灭菌。 A.紫外灭菌 B.干热灭菌 C.滤过除菌 D.辐射灭菌 5.( C )为我国法定制备注射用水的方法。 A.离子交换树脂法 B.电渗析法 C.重蒸馏法 D.凝胶过滤法 6.( C )注射剂不许加入抑菌剂。 A.静脉 B.脊椎 C.均是 D.均不是

7.注射剂最常用的抑菌剂为( B )。 A.尼泊金类 B.三氯叔丁醇 C.碘仿 D. 醋酸苯汞 8.滴眼液中用到 MC 其作用是( C )。 A.调节等渗 B.抑菌 C.调节粘度 D. 医疗作用 9. NaCl 作等渗调节剂时,若利用等渗当量法计算,其用量的计算公式为( A )。 A .x=0.9%V - EW B .x=0.9%V + EW C .x=0.9V - EW D .x=0.09%V - EW 10.( B )兼有抑菌和止痛作用。 A.尼泊金类 B.三氯叔丁醇 C.碘仿 D.醋酸苯汞 11.注射用水除符合蒸馏水的一般质量要求外, 还应通过( B )检查。 A.细菌 B.热原 C.重金属离子 D. 氯离子 12. 配制 1% 盐酸普鲁卡因注射液 200ml ,需 加氯化钠( A )克使成等渗溶液。 (盐酸普鲁卡因的氯化钠等渗当量为 0.18 ) A .1.44g B .1.8g C .2g D .0.18g

药剂学人卫版第七版名词解释

1.pharmacopoeia P9 药典是一个国家记载药品标准、规格的法典,一般由国家药典委员会组织编纂、出版,并由政府颁布、执行,具有法律约束力。 2. solubilization P23 增溶是指某些表面活性剂增大难溶性药物的溶解度的作用。 3. isotonic solution P179 等张溶液系指与红细胞膜张力相等的溶液。 4. critical micell concentration P37 表面活性剂分子在溶剂中缔合形成胶束的最低浓度即为临界胶束浓度。 5. Krafft point P41 十二烷基硫酸钠(SDS)等离子型表面活性剂在水中的溶解度随着温度的变化而变化。当温度升高至某一点时,表面活性剂的溶解度急剧升高,该温度称为krafft 点。 6. microemulsion P158 微乳,即纳米乳(nanoemulsion),乳滴粒子小于100nm时称纳米乳,粒径一般在10-100nm范围。 7. liposome P402 将药物包封于类脂质双分子薄层中所制成的超微球形载体制剂,称为脂质体。 8. crystal form 晶形 9. passive targeting preparation P445 被动靶向制剂系指由于载体的粒径、表面性质等特殊性使药物在体内特定靶点或部位富集的制剂。 10. thixlotropy P117 触变性是指在一定温度下,非牛顿流体在恒定剪切力(振动、搅拌、摇动)的作用下,黏性减小,流动性增大,当外界剪切力停止或减小时,体系粘度随时间延长而恢复原状的一种性质。 11. Cosolvency P23 在混合溶剂中各溶剂在某一比例时,药物的溶解度比在各单纯溶液中的溶解度大,而且出现极大值,这种现象称为潜溶。 12. Sterilization P181 灭菌系指用适当的物理或化学等方法杀灭或除去所有致病和非致病微生物、繁殖体和芽孢的手段。 13. suppositories P298栓剂系指药物与适宜基质制成供腔道给药的固状制剂。 14. Angle of repose P98 休止角系指粒子在粉体堆积层的自由斜面上滑动时所受重力和粒子间摩擦力达到平衡而处于静止状态下测得的最大角。 15. elastic recovery P109 弹性恢复 16. supercritical fluid extration(SFE)P328 超临界流体提取法是利用超临界流体提取分离药材中有效成分或有效部位的新技术。 17. Solid dispersion P347 固体分散体是指药物高度分散在适宜的载体材料中形成的一种固态物质。 18. inclusion compound P356 包合物系指一种分子被全部或部分包合于另一种分子的空穴结构内形成的特殊的复合物。 19. Microencapsulation P378 微囊化是利用天然的或合成的高分子材料作为囊材,制备囊膜,将固态药物或液态药物包裹成微囊(microcapsule);若使药物溶解和分散在高分子材料中,形成骨架型微小球状实体,称为微球(microspgere)。 20. Prodrug P447 前药是通过化学反应将药物活性集团改构或衍生形成的一种新的惰性结构,其本身不具有药理活性,在体内特定的靶组织中经化学反应或酶降解,再生为活性药物而发挥治疗作用。 21.OTC P12 非处方药系指不需凭借执业医师或执业助理医师的处方,消费者可以自行判断购买和使用的药品。 22.emulsions P157 乳剂系指互不相溶的两种液体混合,其中一相液体以液滴状分散于另一相液体中形成的非均匀相液体分散体系。

药剂学电子书-第五版(第九章--片剂)

第九章片剂 第一节概述 一.定义、特点 片剂(tablets)系指药物与适宜辅料通过制剂技术制成的片状制剂。根据应用目的和制备方法,可改变其大小、形状、片重、硬度、厚度、崩解和溶出的特性及其它特性。极大部分片剂用于口服,也有用于舌下、口腔粘膜或阴道粘膜。由于其使用方便,质量稳定,生产机械化程度高等多种原因,片剂在世界各国药物制剂中占有重要地位,是最广泛应用的一种剂型,在我国历年药典二部中,片剂占40%左右。 片剂创用于19世纪40年代,20世纪50年代前,片剂的生产主要凭经验,20世纪50年代初由Higuchi T 等人研究并科学地阐明片剂制造过程中的规律和机理以来,对片剂的研究日趋深入。20世纪60年创立生物药剂学,对片剂及其他口服固体制剂指出了更科学的标准,更保证了片剂应用于病人的安全性和有效性。同时片剂的生产技术、机械设备也有很大发展,如流化喷雾制粒,湿法高速制粒,高速自动控制压片机,自动程序包衣设备等以及新型优质辅料的开发和利用等,对改善片剂的生产条件、提高片剂的质量和生物利用度等均起到重要的作用。 片剂的优点为:①可以制成不同类型的各种片剂,例如:分散(速效)片、控释(长效)片、肠溶包衣片、咀嚼片及口含片等,也可以制成两种或两种以上药物的复方片剂,从而满足临床医疗或预防的不同需要。②质量稳定,剂量准确,应用方便。③片剂是将药物粉末(或颗粒)加压而制得的一种密度较高、体积较小的固体制剂体积小,携带、运输、贮存方便。④生产机械化、自动化程度高,成本较低。 片剂的缺点:①婴、幼儿和昏迷病人服用困难。②处方和工艺设计不妥容易出现溶出和吸收等方面的问题。 二、片剂的分类 按制法的不同,片剂可分为压制片(compressed tablets)和模印片(molded tablets)两类。现代广泛应用的片剂几乎都是压制片剂。模印片已极少应用,故不再介绍。 按用途和用法的不同,片剂可分为口服片剂、口腔用片剂和其他途径应用的片剂,分述如下: 1.口服片剂 指供口服的片剂,此类片剂中的药物主要是经胃肠道吸收而发挥作用,亦可在胃肠道局部发挥作用。 (1)普通片(conventional tablets)即普通压制片,是指将药物与辅料混合压制而成,一般用水吞服,应用最广。一般不包衣的片剂多属此类。 (2)包衣片(coated tablets)指在压制片(既素片或称片芯)外包衣膜的片剂,一般包衣的目的是增加片剂中药物的稳定性,掩盖药物的不良气味,改善片剂的外观等。包衣片可分为以下几种。①

注射剂参比制剂使用标准操作规程

注射剂参比制剂使用标准操作规程 目的:建立注射剂参比制剂使用的标准操作规程,为质量研究人员进行参比制剂的质量研究工作提供参考。 范围:质量研究人员。 规程: 一、参比制剂的选择 首选原研厂家,或美国橙皮书、日本橙皮书公布的厂家,同剂型同规格不同时间段生产的(效期内前中后)三批样品。 二、参比制剂的购买与存储 购买的参比制剂在核对无误后应建立台帐,置冷库(或按制剂标注的存储条件)保存,保管好说明书、外包装、标签和发票。 三、参比制剂的使用 1、参比制剂的使用应填写领用记录。 2、参比制剂对比前检验(即0天检验):取三批参比样品各1瓶,按以下项目顺序进行检验,直到1瓶参比制剂的内容物用完为止,每个项目在保证检验准确的条件下尽可能减少供试品用量:性状、有关物质、异构体(或光学异构体)、pH值、水分、溶液澄清度与颜色、含量、可见异物。 3、专属性研究(破坏试验):取一批参比制剂2瓶,分别进行高温、光照、酸、碱、氧化破坏试验,与一批自研产品同步进行,对比参比制剂和自研产品各强制降解条件下产生的杂质数量、种类和含量是否一致。 4、影响因素试验:取一批参比制剂6瓶,分别于高温、高湿、光照条件下各放2瓶,于试验5天和10天每个分别取1瓶进行检测(按以下项目顺序进行检验,直到1瓶参比制剂的内容物用完为止,每个项目在保证检验准确的条件下尽可能减少供试品用量:性状、有关物质、异构体、pH值、水分、溶液澄清度与颜色、含量、可见异物),与一批自研产品同步进行,对比参比制剂和自研产品在影响因素条件下各项检测结果和变化趋势的异同,产生的杂质数量、种类和含量是否一致。如果参比制剂比较昂贵,试验5天的点可以不做。 5、加速试验:取三批参比制剂各4瓶,分别置于加速试验条件下的稳定性试验箱中,于第1、2、3和6月分别取1瓶进行检测(按以下项目顺序进行检验,

药剂学实验3(注射剂)

小容量注射剂的制备 一、实验目的 1.掌握空安瓿与垂熔玻璃滤器的处理方法。 2.掌握注射液的配制、滤过、灌封、灭菌等基本操作。 3.熟悉小容量注射剂的漏气检查和澄明度检查。 4.掌握注射剂的质量要求和手工生产的工艺过程及操作要点。 5.熟悉微孔滤膜的选择,预处理和使用方法。 6. 熟悉易氧化药物溶液稳定化的方法。 7.通过实验了解抗氧剂及金属络合剂的抗氧作用。 二、实验指导 1.配液配液用器具按要求处理洁净干燥后使用。一般配液方法有两种。 (1)稀配法:即将原料药加入溶剂中,一次配成所需的浓度。 (2)浓配法:即将原料药加入部分溶剂中,配成浓溶液,加热滤过,必要时可加活性炭处理,也可冷藏后再过滤,然后稀释到所需浓度。 4.滤过过滤方法有加压滤过,减压滤过和高位静压滤过等。滤器的种类也较多,以供粗滤、预滤和精滤。按实验室条件,安装好滤过装置。 5.灌封将滤清的药液立即灌封。要求剂量准确,药液不沾安瓿颈壁。易氧化药物,在灌装过程中可通惰性气体。 6.灭菌与检漏安瓿熔封后按规定及时灭菌。灭菌完毕,趁热取出放入冷的1% 亚甲蓝溶液中检漏。 7.药物制剂的基本要求是安全、有效、稳定。药物制剂稳定性系指药品从生产、贮存、直至临床应用的整个过程中,保持其物理、化学、微生物学稳定性,并保持其疗效和用药的安全性。 三、实验内容 1.维生素C注射液的制备 [处方] 维生素C 10.5g 碳酸氢钠 4.9g 焦亚硫酸钠0.3g 0.5%依地酸二钠1ml 注射用水加至100 ml [制备] 取配制总量80%的注射用水,通二氧化碳(或氮气)饱和,加维生素C溶解后,分次缓缓加入碳酸氢钠,搅拌使溶;另将焦亚硫酸钠和依地酸二钠溶于适量注射用水中;将两液合并,搅匀,调pH值6.0~6.2,添加二氧化碳(或氮气)饱和的注射用水至足量,取样测定含量合格后,滤过至澄明,在二氧化碳(或氮气)气流下灌封,100℃流通蒸气灭菌15分钟,即可。 [作用与用途] 维生素类药物。用于防治坏血病,也用于急慢性传染性疾病及紫癜等辅助治疗。 [用法与用量] 静脉或肌内注射,一次0.1~0.25g,一日0.25~0.5g. [附注] (1)维生素C分子中有烯二醇结构,易氧化。其水溶液与空气接触,自动氧化成脱氢

相关主题
文本预览
相关文档 最新文档