当前位置:文档之家› 年产5万吨烧碱工艺流程初步设计

年产5万吨烧碱工艺流程初步设计

年产5万吨烧碱工艺流程初步设计
年产5万吨烧碱工艺流程初步设计

北京化工大学

毕业设计(论文)年产5万吨烧碱洗涤工艺设计

学院继续教育学院

专业名称化工工艺

班级 11化工班

姓名毛宏秀

指导教师王广菊

诚信承诺书

本人郑重承诺:我所呈交的毕业设计《年产5万吨烧碱洗涤工艺设计》是在指导教师的指导下,独立开展研究取得的成果,文中引用他人的观点和材料,均在文后按顺序列出其参考文献,设计使用的数据真实可靠。

承诺人签名:

日期:年月日

毕业设计(论文)任务书

设计(论文)题目:年产5万吨烧碱洗涤工艺设计

函授站:甘肃函授站专业:化工工艺

班级: 11化工工艺高级版学生姓名:毛宏秀

指导教师(含职称):王广菊 ( 老师 )

1.设计(论文)的主要任务及目标

(1)现代工业主要通过电解饱和NaCl溶液来制备烧碱,主要采取隔膜电解法和离子膜电解法。

(2)主要通过对隔膜法制烧碱的介绍以及烧碱工艺洗涤段作出细的致的计算,得出结论。

(3)明确生产的步骤,注意事项,更深层次的了解烧碱的生产过程。

2.设计(论文)的基本要求和内容

(1)摘要(200-300字);

(2)目录;

(3)文献综述(2000-3000字);

(4)性质及用途(2000-3000字);

(5)生产原理(500-800字);

(6)工艺计算(4000-5000字);

(7)总结(500-1000字);

(8)参考文献(10篇以上);

(9)致谢;

3.主要参考文献

(1) 李相彪,俞慧玲主编《烧碱生产技术》(下册)[M].2005年7月

(2)张浩勤、陆美娟主编《化工原理》新版(上、下册),[M].化学工业出版社,2008 年4月

(3)王振中编《化工原理》(上册)[M].1986年6月第1版

(4)汤善甫、朱思明主编《化工设备机械基础》,[M].华东理工大学出版社,2004年12月

(5)邹安丽、张怀安主编《化工机器与设备》,[M].化学工业出版社,1991年6月第1版

(6)化工设备设计全书编辑委员会,《塔设备设计》,[M].上海科学技术出版社,1988

(7)陈声宗主编,《化工设计》,[M].化学工业出版社,2001

(8)王德祥,新式氯气处理工艺简介,《氯碱工业》[M].2000年1月第一期

北京化工大学毕业设计(论文)4.进度安排

摘要

NaOH是一种常见的重要强碱。

其固体又被称为烧碱、火碱、片碱、苛性钠等,是一种白色固体,有吸水性,可用作干燥剂,且在空气中易潮解(因吸水而溶解的现象,属于物理变化);溶于水,同时放出大量热。

其液体是一种无色,有涩味和滑腻感的液体。

氢氧化钠的用途十分广泛,在化学实验中,除了用做试剂以外,由于它有很强的吸湿性,还可用做碱性干燥剂。烧碱在国民经济中有广泛应用,许多工业部门都需要烧碱。使用烧碱最多的部门是化学药品的制造,其次是造纸、炼铝、炼钨、人造丝、人造棉和肥皂制造业。另外,在生产染料、塑料、药剂及有机中间体,旧橡胶的再生,制金属钠、水的电解以及无机盐生产中,制取硼砂、铬盐、锰酸盐、磷酸盐等,也要使用大量的烧碱。工业用氢氧化钠应符合国家标准 GB 209-2006;工业用离子交换膜法氢氧化钠应符合国家标准 GB/T 11199-89;化纤用氢氧化钠应符合国家标准 GB 11212-89;食用氢氧化钠应符合国家标准 GB 5175-85。

在工业上,氢氧化钠通常称为烧碱,或叫火碱、苛性钠。这是因为较浓的氢氧化钠溶液溅到皮肤上,会腐蚀表皮,造成烧伤。它对蛋白质有溶解作用,有强烈刺激性和腐蚀性(由于其对蛋白质有溶解作用,与酸烧伤相比,碱烧伤更不容易愈合)。用0.02%溶液滴入兔眼,可引起角膜上皮损伤。小鼠腹腔内LD50: 40 mg/kg,兔经口LDLo: 500 mg/kg。粉尘刺激眼和呼吸道,腐蚀鼻中隔;溅到皮肤上,尤其是溅到粘膜,可产生软痂,并能渗入深层组织,灼伤后留有瘢痕;溅入眼内,不仅损伤角膜,而且可使眼睛深部组织损伤,严重者可致失明;误服可造成消化道灼伤,绞痛、粘膜糜烂、呕吐血性胃内容物、血性腹泻,有时发生声哑、吞咽困难、休克、消化道穿孔,后期可发生胃肠道狭窄。由于强碱性,对水体可造成污染,对植物和水生生物应予以注意。

固体氢氧化钠可装入0.5毫米厚的钢桶中严封,每桶净重不超过100 公斤;塑料袋或二层牛皮纸袋外全开口或中开口钢桶;螺纹口玻璃瓶、铁盖压口玻璃瓶、塑料瓶或金属桶(罐)外普通木箱;螺纹口玻璃瓶、塑料瓶或镀锡薄钢板桶(罐)外满底板花格箱、纤维板箱或胶合板箱;镀锡薄钢板桶(罐)、金属桶(罐)、塑料瓶或金属软管外瓦楞纸箱。包装容器要完整、密封,应有明显的“腐蚀性物品”标志。铁路运输时,钢桶包装的可用敞车运输。起运时包装要完整,装载应稳妥。运输过程中要确保容器不泄漏、不倒塌、不坠落、不损坏,防潮防雨。如发现包装容器发生锈蚀、破裂、孔洞、溶化淌水等现象时,应立即更换包装或及早发货使用,容器破损可用锡焊修补。严禁与易燃物或可燃物、酸类、食用化学品等混装混运。运输时运输车辆应配备泄漏应急处理设备。不得与易燃物和酸类共贮混运。失火时,可用水、砂土和各种灭火器扑救,但消防人员应注意水中溶入烧碱后的腐蚀性。

目录

第1章烧碱的制备工艺简介 (4)

1.1整流 (5)

1.2盐水精制 (5)

1.3电解 (6)

1.4氯氢处理 (7)

1.5液碱蒸发 (8)

1.6固碱产生 (8)

第2章烧碱生产概述 (9)

2.1烧碱生产的主要方法 (9)

2.2氢气的性质及其用途 (9)

2.2.1物理性质 (9)

2.2.2化学性质 (9)

2.2.3氢气的用途 (9)

2.3烧碱氢气处理的目的 (10)

2.4烧碱氢气处理的工艺流程 (10)

2.5烧碱烧碱氢气处理工艺流程简图 (11)

2.6烧碱氢气处理中的工艺指标 (11)

第3章工艺计算 (12)

3.1一段洗涤塔的物料衡算 (12)

3.1.1一段洗涤塔的物料衡算基准 (12)

3.1.2一段洗涤塔的储存槽氢气(80)中水冷含量 (12)

3.1.3一段洗涤塔的物料衡算计算 (13)

3.2一段洗涤塔热量衡算 (14)

3.2.1入塔气体带入热量 (15)

3.2.2冷却水带热量 (15)

3.2.3出塔气体带出热量 (15)

3.2.4一段洗涤塔的热量守恒的计算 (16)

3.2.5一段洗涤塔热量衡算 (16)

3.3二段洗涤塔的物料衡算 (17)

3.3.1物料衡算的计算依据 (17)

3.3.2物料衡算的计算 (17)

3.4二段洗涤塔的热量衡算 (18)

3.4.1二段进塔气体热量的计算 (18)

3.4.2冷却水带出热量的计算 (18)

3.4.3二段出塔气体热量的计算 (19)

3.4.4二段洗涤塔的热量守恒的计算 (19)

3.4.5二段洗涤塔热量衡算表 (24)

3.5气体中氢气含量的计算 (20)

3.5.1气体中氢气含量的计算 (20)

3.5.2干气体中氢气的百分数 (20)

第4章主要设备的工艺计算 (21)

4.1一段洗涤塔的相关计算 (21)

4.1.1一段洗涤塔的气体流量的计算 (21)

4.1.2一段洗涤塔的冷却水喷淋量及管经的计算 (22)

4.1.3一段洗涤塔塔经的计算 (23)

4.1.4一段洗涤塔塔高度的确定 (26)

4.1.5喷嘴输送的确定 (26)

4.1.6一段洗涤塔管经的计算 (26)

4.2二段洗涤塔的相关计算 (27)

4.2.1二段洗涤塔进塔气体和出塔气体流量的计算 (27)

4.2,2二段洗涤塔冷却水喷淋量及管经的计算 (27)

4.2.3二段洗涤塔塔经的计算 (28)

4.2.4二段洗涤塔高度的确定 (31)

4.2.5二段洗涤塔的喷嘴数的确定 (31)

4.2.6二段洗涤塔气体进口管经和出口管经的计算 (31)

4.3氢气缓冲罐的计算 (32)

附录 (33)

参考文献 (34)

致谢 (35)

第1章烧碱的制备工艺简介

现代工业主要通过电解饱和NaCl溶液来制备烧碱。电解法又分为水银法、隔膜法和离子膜法,我国目前主要采用的是隔膜法和离子膜法,这二者的主要区别在于隔膜法制碱的蒸发工序比离子膜法要复杂,而离子膜法多了淡盐水脱氯及盐水二次精制工序。

目前我国主要采取隔膜电解法和离子膜电解法。在这次年产五万吨烧碱工艺流程序初步设计中我采取的是隔膜法制烧碱的氢气处理方法,并简要讨论工艺中的能耗情况。原料为粗盐(含大量杂质的氯化钠),根据生产工艺中的耗能情况,将烧碱制法分为整流、盐水精制、盐水电解、液碱蒸发、氯氢处理、固碱生产和废气吸收工序等七个流程。

据测算,电解法烧碱生产吨碱综合能耗在各工序的分布如下: 整流2.0%;盐水精制3.9% ; 电解53.2%;氯氢处理1.2%;液碱蒸发25.1%;固碱生产14.6%。从上述可知,电解和液碱蒸发是主要耗能工序。电解工序中的电耗约为吨碱电耗的90%,碱蒸发中的蒸汽消耗占吨碱蒸汽消耗的74%以上。

1-整流2-盐水精制3-电解4-氯氢处理

5-液碱蒸发

6-固碱生产

图1 烧碱工艺总流程示意图

1.1整流

整流是将电网输入的高压交流电转变成供给电解用的低压直流电的工序,其能耗主要是变压、整流时造成的电损,它以整流效率来衡量。整流效率主要取决于采用的整流装置,整流工序节能途径是提高整流效率。当然减少整流器输出到电解槽之间的电损也是不容忽略的。

1.2盐水精制

等有害离子和固体杂质)获将工业盐用水溶解饱和并精制(除去Ca2+、M g2+、S 02-

4

得供电解用精制饱和盐水,是盐水精制工序的功能。

一次盐水精制:

采用膜过滤器(不预涂)

图2 盐水一次精制流程图

二次盐水精制:

二次盐水精制采用螯合树脂塔进行吸附。

图3 盐水二次精制流程图

一次盐水工段送来的一次精制盐水中钙、镁等离子可以被螯合树脂选择性吸附,而吸附的饱和树脂可用盐酸、氢氧化钠进行再生,从而使树脂达到重复使用的目的。

盐水精制工序的能耗主要是加热溶解固体盐的蒸汽和动力电耗,它们分别约占吨碱电耗和吨碱汽耗的0.2%和12%。因此,在此工序,节能措施主要是如何利用工厂的余热(废蒸汽或热水)来加热溶解固体盐,而采用盐水自流流程无疑也会节约动力电消耗。

1.3电解

盐水二次精制后,添加部分淡盐水经阳极液进料总管以及软管送入各单元槽的阳极室中。

阳极液电解产生淡盐水和氯气,经阳极分离器后,氯气从淡盐水中被分离出来送氯气处理工序,淡盐水流到淡盐水循环槽由泵送去脱氯塔。

图4 精制盐水电解示意图

图5 电解反应方程式

能耗主要是电解直流电耗,影响直流电耗的因素是槽电压和电流效率,直流电耗与槽电压成正比,与电流效率成反比。因此,降低电解槽的槽电压和提高电流效率是电解工序的主要节能途径。

1.4 氯氢处理

氯气处理工序均包括氯气洗涤、冷却除雾、干燥、压缩;氢气处理均包括氢气洗涤、压缩、脱氧、干燥。

离子膜法制碱时,建议氯气处理工艺方案:湿氯气经氯水洗涤,钛管换热器,氯气除盐、降温后经一段填料塔、二段泡罩塔干燥,使氯气含水量≤50wtppm,氯气输送选用大型离心式氯气压缩机(透平压缩机)。通常根据氯气压缩机压力的不同,将氯气液化方式分为高压法、中压法和低压法三种。高压法消耗冷冻量少,不需要制冷机,能耗低。但对氯气处理工艺、氯气输送设备的要求高,增加投资费用。因此,国内一

般采用中、低压液化方法生产液氯。如下图所示。建议氢气处理方案:选择氢气洗涤塔直接洗涤冷却降温、列管换热器间接冷却,水环式氢气压缩机输送。

图6 电解后氯气处理示意图

1-氯气洗涤塔;2-鼓风机;3-Ⅰ段冷却器;4-Ⅱ段冷却器;5-水雾捕集器;

6-填料干燥塔;7-泡罩干燥塔;8-酸雾捕集器;9-氯压机

1.5 液碱蒸发

将电解槽生产的液碱通过蒸发系统用蒸汽加热将一部分水蒸出,并将绝大部分盐(N a C I) 分离出去,从而获得成品液碱。

蒸发的能耗主要是蒸汽,当然动力电也是值得注意的。蒸发系统的加热蒸汽供给的热量主要消耗在(1)预热物料至沸点所需热量;(2)蒸发水分所需热量;(3)碱液的浓缩热;(4)氯化钠析出结晶热;(5)设备的热损失。

1.6 固碱生产

将蒸发获得的液碱采用大锅熬煮或升膜一降膜一闪蒸方法进一步浓缩生产固碱,其主要消耗是燃料(煤、重油、氢气)。因此,固碱生产节能主要是充分利用燃料燃烧热量和节约燃料的流程等。

第2章 烧碱生产概述 2.1烧碱生产的主要方法简介

目前烧碱生产方式主要采取:水银电解法 、隔膜电解法、苛化法、离子膜法三种方法制烧碱。我国主要采取隔膜电解法和离子膜电解法。在这次年产5万吨烧碱氢处理工序初步设计中我采取的是隔膜法制烧碱的氢气处理方法。

隔膜法电解总反应方程式:2NaCl+2H 2O=2NaOH+Cl 2↑+H 2↑

2.2氢气的性质及其用途

2.2.1物理性质

760mmHg 时为0.08987g/l ,沸点为-252.7℃;结晶温度是-259.1℃;与空气之比

重是0.0695或???

??141;在水中溶解度很小,标准状态下溶于水中之氢气体积为0.0215。

而在镍、钯和铂内的溶解度很大,一体积能解几百体积氢。氢气的爆炸上限和下限分别为74.2%和4.1%(体积分数)

氢气除用于合成氯化氢制取盐酸和聚氯乙烯外,另一大用途时植物油加氢生产硬化油。此外还用于炼钨、生产多晶硅以及有机化合物的加氢等。 2.2.2化学性质

(1)氢气具有可燃性,当它不纯净时燃烧反应发生爆炸;但是其纯度很高时能在空气里安静的燃烧。

(2)氢气具有还原性,它能与某些金属氧化物反应使金属还原。 (3)氢气具有稳定性,氢气在常温下的化学性质是稳定的。 2.2.3氢气的用途

(1)氢气可以用于焊接或切割金属,熔化熔点很高的石英和加工石英制品。因为它在纯氧中燃烧的火焰(氢氧焰)可达3000℃,可以使许多金属熔化。

(2)氢气可以产生氢氧焰、制氢氧电池,可以填充气球、冶炼金属钨和钼。氢用于合成甲醇,合成人工石油等。

(3)氢还是一种理想的燃料氢气的燃烧产物是水且污染少。液态的氢是一种高能燃料,可供发射火箭、宇宙飞船、导弹等使用。氢气做为燃料具有很好的发展前途。同

时氢气也是重要的化工原料。

综上所述:由以上叙述可以看出烧碱生产中所产生的氢气具有很高的回收价值,并且氢气处理工序较为简单,投资费用不高,高纯度的氢气可以供多种行业使用。因此须对制烧碱中的氢气进行处理。

2.3烧碱氢气处理的目的

是以鼓泡的形式出来的,所以其带有较高的温度和部分杂质。

在电解过程中,H

2

(1)其带有大量的水蒸气,温度越高,在蒸汽中的饱和水蒸气量越大,会影响氢气的纯度。

表2-1 饱和水蒸气表(按温度排列)

(2)氢气中还带有NaOH 、NaCl。因为氢气是从电解液中出来的,不可避免的就带有NaOH、NaCl等盐类杂质这些杂质必须除去。

(3)从电解槽中以鼓泡的形式出来的氢气温度太高(一般在80~90℃),必须进行降温,否则会影响后续的加工工艺要求。

所以氢气主要通过冷却水洗涤的处理方式达到降低氢气温度除去水分,洗去NaOH、NaCl等水溶性杂质的目的以提高氢气的纯度和利用价值。

2.4氢气处理的工艺流程

电解出来的饱和湿氢气中含有大量的水和其他气体,一般采用间接法和直接法除去以达到工艺要求。由于在本次设计中不充分考虑热综合利用,所以采用直接法进行氢气的处理,可以简化工艺流程,节约投资费用。它是由电解槽中出来的氢气经氢气缓冲罐后进入一段洗涤塔洗去一部分的杂质及使氢气冷却至50℃后在经二段洗涤塔除杂质及冷却至30℃,之后再经过丝网除雾器除去盐和碱的雾沫后,用罗茨鼓风机抽送至分配台进行下一阶段的分配。

2.5氢气处理工艺流程简图氢气处理工艺流程图见下,据此进行物料衡算和热量衡算:

图7 氢气处理工艺流程图

2.6氢气处理中的工艺指标(1)氢气纯度指标:﹥98%

(2)冷却水温度;25℃

第3章 工艺计算 3.1一段洗涤塔的物料衡算

3.1.1一段洗涤塔的物料衡算基准 (1)以生产5万吨100%NaOH 为基准

有化学方程式:2NaCl + 2H 2O = 2NaOH + H 2↑ + C l 2↑ 2×40 2 5×107

m 计算可得:

m=40

210527???=0.125×107

(Kg )

m —生产5万吨烧碱的H 2的质量

(2)经处理后的氢气纯度为98%。 (3)出电解槽后的氢气温度按80℃计算。 (4)查相关数据得:

进入冷却塔的氢气温度为80℃是饱和水蒸气分压为0.483Kgf/cm 2,为50℃时饱和水蒸气分压为0.1258 Kgf/cm 2,为30℃时饱和水蒸气分为0.0433 Kgf/cm 2 (5)由于氢气在水中的溶解度很小,故氢气在水的溶解度忽略不计。 (6)饱和水蒸气含量及水量计算:按道尔顿分压定律计。 3.1.2一段洗涤塔的出槽氢气(80℃)中的水汽含量

设出槽氢气(80℃)中的水汽含量为X ; 据道尔顿分压定律:

B

A

B A A P P n n y =

=

Kg

X X X X X X X X

77

7

1007.17.3080350288.07.3080350268.00556.0483.098.0210125.0483.018181483.098

.0210125.01818?===-???? ?????+?==??+

则出槽气体组成:

氢气:0.625×106Kmol 0.125×107Kg 水汽:0.594×106

Kmol 1.07×107

Kg 其他气体:12755Kmol 369895Kg 3.1.3一段洗涤塔的物料衡算计算 (1)据公式:n=

M m

得 2

12500002=H n =0.625×106(Kmol )

其他气体组成:1275598

.002

.021250000=?(kmol )

(2)根据道尔顿分压定律计算水量:设管路中(由80℃降至50℃)的冷凝水量为W 这时气体中水的分子为:(1.07×107-W )/18 气体的分子总数为:

18

1007.198.021025.176W

-?+??

据道尔顿分压定律:

B

A

B A A P P n n y =

=

Kg

W W W W

W

677

71086.87842

.069468087842.0144413283909407842

.01258.0637755181007.11258.011258.098.0210125.0181007.1?==

=-=

-?-=

??-?

则出他气体组成:

氢气:0.625×106(kmol ) (1.25×106 Kg )

水气:0.102×106(kmol ) (1.07×107-8.86×106=1.84 ×106 Kg ) 其他气体:12755(kmol )(12755×29=369895 Kg )

表3-1 第一段洗涤塔总物料衡算表

年产5万吨100%烧碱氢气处理中 氢气:0.625×106(kmol )

一段进塔氢气中含水汽含量:0.594×106(kmol ) 一段出塔氢气中含水总量:0.102×106(koml ) 其它气体:12755(kmol )

3.2一段洗涤塔热量衡算

查相关数据得:相关热力数据表

3-2 相关热力数据

3.2.1入塔气体带入热量

Q

1

=(80+273)×1.25×106×3.439×4.187

=6.354×109 KJ

Q

2

=1.07×107×2642.4=2.827×1010 KJ

Q

3

=(80+273)×369895×0.244×4.187

=1.334×108 KJ

3.2.2冷却水带出热量

设冷却水量为W

2

kg,温度25℃,冷却水出塔温度为35℃;此时出塔冷却水比热熔约为1×4.187 KJ/(Kg·K)。

则出塔水量: W

2+W

1

=W

2

+8.86×106

冷却水带入热量:Q

4=W

2

×(273+25) ×1×4.187

冷却水带出热量:Q

5=(W

2

+8.86×106)×(273+35)×1×4.187

3.2.3出塔气体带出热量

Q

6

=(273+35)×1.25×106×3.421×4.187=5.783×109 KJ

烧碱的制作工艺流程

烧碱得制备工艺简介 烧碱得制备方法有两种:苛化法与电解法。现代工业主要通过电解饱与NaCl溶液来制备烧碱。电解法又分为水银法、隔膜法与离子膜法,我国目前主要采用得就是隔膜法与离子膜法,这二者得主要区别在于隔膜法制碱得蒸发工序比离子膜法要复杂,而离子膜法多了淡盐水脱氯及盐水二次精制工序。 目前国内得烧碱生产主要采用得就是离子膜电解法生产烧碱,我们主要针对离子膜电解法介绍烧碱得制作工艺,并简要讨论工艺中得能耗情况。原料为粗盐(含大量杂质得氯化钠),根据生产工艺中得耗能情况,将烧碱制法分为整流、盐水精制、盐水电解、液碱蒸发、氯氢处理、固碱生产与废气吸收工序等七个流程。 据测算,电解法烧碱生产吨碱综合能耗在各工序得分布如下: 整流2、0%;盐水精制3、9% ; 电解53、2%;氯氢处理1、2%;液碱蒸发25、1%;固碱生产14、6%。从上述可知,电解与液碱蒸发就是主要耗能工序。电解工序中得电耗约为吨碱电耗得90%,碱蒸发中得蒸汽消耗占吨碱蒸汽消耗得74%以上。 图1?烧碱工艺总流程示意图 1整流: 整流就是将电网输入得高压交流电转变成供给电解用得低压直流电得工序,其能耗主要就是变压、整流时造成得电损,它以整流效率来衡量。整流效率主要取决于采用得整流装置,整流工序节能途径就是提高整流效率。当然减少整流器输出到电解槽之间得电损也就是不容忽略得。 2盐水精制: 将工业盐用水溶解饱与并精制(除去Ca2+、M g2+、S 02-4等有害离子与固体杂质)获得供电解用精制饱与盐水,就是盐水精制工序得功能。 一次盐水精制: 采用膜过滤器(不预涂) 1-整流2-盐水精制3-电解4-氯氢处理 5-液碱蒸发 6-固碱生产

小结(硫铵工段)

硫铵工段小结(9月5日—9月20日)1工艺流程 实习一段时间后,绘制工艺流程图如下: 煤气 氨汽 12 34 5 6 7 5 8 6 9 10 11 12 13 1415 16 17 硫酸 煤气 1:预热器; 2:饱和器; 3:满流槽; 4:母液贮槽;5:结晶槽; 6:离心机; 7:输送机; 8:干燥器 9:硫铵贮斗; 10:热风机; 11:旋风除尘器; 12:湿式除尘器; 13:大母液泵; 14:结晶泵; 15:小母液泵; 16:送风机; 17:引风机 硫铵工艺流程图 2工艺说明 来自冷鼓工段的煤气,经煤气预热器,加热到70-80℃进入硫铵饱和器上段的喷淋室,来自蒸氨工段的氨汽在煤气进入饱和器前与其混合。在饱和器内煤气分成两股沿饱和器内壁与内除酸器外壁的环形空间流动,并与喷洒的循环母液逆流接触,煤气与母液充分接触,使其中的氨被母液中的硫酸所吸收,生成硫酸铵,然后煤气合并成一股,沿原切线方向进入饱和器内的除酸器,分离煤气中夹带的酸雾后进入洗脱苯工段。 在饱和器下部取结晶室上部的母液,用大母液泵连续抽送至上端喷淋室。从饱和器满流口引出的母液,经加酸后,由水封槽溢流流入满流槽,然后通过小母液泵抽送至饱和器喷淋管,经喷嘴喷洒吸收煤气中的氨。饱和器母液中不断有硫

铵晶核生成,且沿饱和器内的中心管道进入下端的结晶室,在此,大量循环母液的搅动,晶核逐渐长大成大颗粒结晶沉积在结晶室底部,用结晶泵将其连同一部分母液送至结晶槽,在此分离的硫铵结晶和少量母液排放到离心机内进行离心分离,滤除母液,离心分离出的母液与结晶槽溢流出来的母液一同自流回饱和器。 从离心机分离出的硫铵结晶,由螺旋输送机送至沸腾干燥器,经热空气干燥后进入硫铵贮斗,然后称量包装进入成品库。沸腾干燥器用的热空气是由送风机从室外引入,空气经热风器,用煤气点燃后送入,沸腾干燥器排出的热空气经旋风除尘器捕集夹带的的细粒硫铵结晶后,由排风机抽送至湿式除尘器,进行再除尘后排入大气。 从罐区来的硫酸进入硫酸高位槽,经控制机构自流入饱和器的满流管,调节饱和器内溶液的酸度。硫酸高位槽溢流出的硫酸,进入硫酸贮槽,当硫酸贮槽内的硫酸到一定量时,用硫酸泵送回硫酸高位槽作补充。 硫铵饱和器是周期性的连续操作设备。应定期加酸补水,当用水冲洗饱和器时,所形成的大量母液从饱和器满流口溢出,通过插入液封内的满流管流入满流槽,再经满流槽流至母液贮槽,暂时贮存。满流槽和母液槽液面上的酸焦油可用人工捞出。而在每次大加酸后的正常生产过程中,又将所贮存的母液用母液泵送回饱和器作补充。此外,母液贮槽还可供饱和器检修、停工时,贮存饱和器内的母液用。 3生产技术指标 母液的酸度:4—6%; 大加酸时的酸度:8—10%; 洗水温度应保持在≥60℃; 水洗操作时间:≤1h; 硫酸消耗不超过850kg/t; 预热器后煤气温度70—90℃; 饱和器母液温度:50—55℃; 饱和器后煤气含氨:≤30mg/m3; 饱和器阻力:1—5KPa,不大于6KPa; 预热器阻力:500Pa;

烧碱工艺

第三章工程分析 一、现有工程工程概况及污染源调查 (一)产品及规模 现有工程主要产品及生产规模为: 烧碱30000t/a,液氯18000t/a,盐酸21000t/a。 (二)生产工艺 该厂现有3万吨/年烧碱装置为金属阳极隔膜电解法,其工艺过程主要包括化盐、电解、氢处理、氯处理、液氯、碱蒸发、盐酸等工段。 1、盐水工段 盐水生产是将原料盐溶解成饱和的氯化钠溶液,并经精制反应、澄清、过滤、中和等过程使之成为电解所需的合格的精盐水。在盐水生产过程中,排放物主要是盐泥。 2、电解工段 将化盐工段送来的精制盐水连续均匀地分别输入各个电解槽,在直流电的作用下,盐水被电解生成H2、Cl2、NaOH溶液。 在阳极上产生的氯气经氯气管送至氯气处理工序;在阴极上产生的氢气导入氢气管送至氢气站,电解液自阴极箱导出管导出,流入电解液总管,送蒸发工段。反应原理为:阳极反应:2Cl-2e → Cl2 阴极反应:2H2O+2e →H2↑+2OH- Na++OH-→ NaOH 总反应式:2NaCl+2H2O=2NaOH+Cl2↑+H2↑ 由上述食盐水溶液电解反应式可知,电解过程中每生成一吨100%NaOH电解液,可同时产生0.886吨氯气及0.025吨氢气,需要折合100%NaCl1.461吨。 3、氢气处理工段 自电解工段来的80~90℃的高温氢气通过冷凝,除去所含水份,再用罗茨鼓风机加压送入氯化氢合成工段。 4、氯气处理及液氯工段

由电解来的80~90℃的高温氯气首先经过冷却,然后经三组并联的泡沫干燥塔,在塔板上与溢流下来的浓硫酸呈泡沫状充分接触,氯气中的水份被浓硫酸除去。 冷却时产生的含氯废水,现有装置直接排全厂循环水池。 由氯气处工序来的压缩氯气,经液化机组以氨制冷,将氯气在低温下液化,冷凝下来的液氯进入计量槽和液氯贮槽,并灌瓶包装出售,液化尾气送盐酸工段。 5、电解液蒸发工段 来自电解工段的电解液含碱浓度只有10%左右,把电解液用泵送入三效蒸发器,经过蒸发,碱液被浓缩至32-35%,然后进行冷却、配碱,分配合格的碱用泵送入碱栈台。 6、盐酸合成工段 反应式:H2+Cl2=2HCl 自氯氢处理来的氯气和氢气分别进入各自的缓冲器,再经各自的阻火器后,进入合成炉反应,生成的氯化氢气体由顶部加入的来自尾气吸收塔的稀盐酸吸收,再冷却制成盐酸,未被吸收的氯化氢气体经尾气吸收塔用水吸收,生成稀盐酸流入合成炉,剩余尾气由水喷射泵抽走。制成的盐酸送入成品酸罐出售。 工艺流程见图3-1。

焦化厂工艺流程文字叙述及流程图

备煤 炼焦所用精煤,一方面由外部购入,另一方面由原煤经洗煤后所得,洗精煤由皮带机送入精煤场。精煤经受煤坑下的电子自动配料称将四种煤按相应的比例送到带式输送机上除铁后,进入可逆反击锤式粉碎机粉碎后(小于3mm占90%以上),经带式输送机送至焦炉煤塔内供炼焦用。 炼焦 装煤推焦车在煤塔下取煤,捣固成煤饼后,按作业计划从机侧推入炭化室内。煤饼在炭化室内经过一个结焦周期的高温干馏,炼成焦炭并产生荒煤气。 炭化室内的煤饼结焦成熟后,由装煤推焦机推出并通过拦焦机的导焦栅送入熄焦车内。熄焦车由电机牵引至熄焦塔熄焦。熄焦后的焦炭卸至凉焦台,冷却后送往筛焦楼进行筛分和外运。 煤在干馏过程中产生的荒煤气汇集到炭化室的顶部空间,经上升管、桥管进入集气管。700℃的荒煤气在桥管内经过氨水喷洒后温度降至85℃左右,煤气和冷凝下来的焦油氨水一起经吸煤气管道送入煤气回收车间进行煤气净化及焦油回收。 焦炉加热燃用的净化煤气经预热器预热至45℃左右进入地下室,通过下喷管把煤气送入燃烧室立火道,燃烧后的废气经烟道、烟囱排入大气。 冷鼓

由焦炉送来的80-83℃的荒煤气,沿吸煤气管道入气液分离器。经气液分离后,煤气进入初冷器进行两段间接冷却;上段用32℃循环水冷却煤气,下段用16-18℃低温水冷却煤气,使煤气冷却至22℃,然后经捕雾器入电捕焦油器除去悬浮的焦油雾后进入鼓风机,煤气由鼓风机加压送至脱硫工段。 在初冷器下段用含有一定量焦油、氨水的混合液进行喷洒,以防止初冷器冷却水管外壁积萘,提高煤气冷却效果。 由气液分离器分离出的焦油氨水混合液自流入机械化氨水澄清槽,进行氨水、焦油和焦油渣的分离。分离后的氨水自流入循环氨水中间槽,用泵送到焦炉集气管喷洒冷却荒煤气,多余的氨水(即剩余氨水)送入剩余氨水槽,焦油自流入焦油中间槽,然后用泵将焦油送至焦油贮槽,静置脱水后外售,分离出的焦油渣定期用车送至煤场掺入精煤中炼焦。 脱硫 来自冷鼓工段的粗煤气进入脱硫塔下部与塔顶喷淋下来的脱硫 液逆流接触洗涤后,煤气经捕雾段除去雾滴后全部送至硫铵工段。 从脱硫塔中吸收了H2S的脱硫液送至再生塔下部与空压站来的压缩空气并流再生,再生后的脱硫液返回脱硫塔塔顶循环喷淋脱硫,硫泡沫则由再生塔顶部扩大部分排至硫泡沫槽,再由硫泡沫泵加压后送熔硫釜连续熔硫,生产硫磺外售。熔硫釜内分离的清液送至溶液循环槽循环使用。

硫酸烧碱储运工艺流程

(1)硫酸储运工艺流程 汽车槽车运来的98%浓硫酸溶液通过卸车软管靠重力流入半地下的浓硫酸卸车罐中(350V102),通过设在浓硫酸卸车罐上的潜液泵(350P102)将浓硫酸送到浓硫酸储罐(350V-101AB)中储存,再通过浓硫酸送料泵(350P101AB)将浓硫酸送到三套循环水装置。 由于浓硫酸温度低于10.5℃时易发生结晶,因此对于硫酸储罐和管线采用95℃热水进行伴热,为了安全,储罐伴热采取外部盘管伴热加温度调节进行控制。 每台硫酸储罐均设置了液位计、温度计、压力检测仪表,并对温度、压力、高低液位进行报警,汽车槽车来料采用地中衡计量,送出的硫酸由各装置分别计量,本站不考虑计量设施。 考虑三套循环水对浓硫酸的需求量以及外购硫酸的运输问题,设置2台150 m3浓硫酸储罐,1台30m3浓硫酸卸车罐,储罐的体积按24天储量设计。考虑硫酸的吸水性,在硫酸储罐增加氮封设施。 (2)烧碱储运工艺流程 汽车槽车运来的32%烧碱溶液通过卸车软管靠重力流入半地下的烧碱溶液卸车罐中(350V104),通过设在烧碱卸车罐上的潜液泵(350P104)将烧碱送到烧碱储罐(350V-103AB)中储存,再通过烧碱溶液送料泵(350P103AB)将烧碱溶液送到甲醇合成装置、热电站、MTO 装置、烯烃分离装置和污水处理站。 由于32%的烧碱溶液温度低于5℃时易发生结晶,因此对于烧碱溶液储罐和管线采用95℃热水进行伴热,其中储罐伴热采取内盘管伴热加温度调节进行控制。 每台烧碱溶液储罐均设置了液位计、温度计检测仪表,并对温度、高低液位进行报警,汽车槽车来料采用地中衡计量,送出的烧碱溶液由各装置分别计量,本站不考虑计量设施。 根据各装置对烧碱的需求量,设置2台300 m3烧碱贮罐,烧碱贮罐的体积按15天储量设计。

烧碱工艺简介

烧碱生产工艺简介 建厂伊始,我公司采用从日本旭化成高电密自然循环复极式电解槽及相关工艺,装置运行状况优良,被日本旭化成公司评为中日合作示范工厂。零极距离子膜电解技术是近年来投入运行的节能型电解技术,国家已开始大规模推广,我公司已在新建四期装置上使用,现有装置也要进行零极距技术改造,进一步降低顿碱电耗和生产成本。 烧碱生产系统包括一次盐水精制、电解、氯氢处理、氯化氢合成、高压液氯和蒸发固碱六个工序。以下是各工序工艺流程介绍: 1、一次盐水精制: 本工序利用预处理器和凯膜过滤器为中心设备,采用热水化盐、空气吹出、膜过滤等物理方法和烧碱—纯碱化学沉淀方法相结合达到盐水精制的目的,最终得到含盐305g/l,可溶性钙镁杂质不大于4mg/l,悬浮物不大于1mg/l的合格一次盐水,供给电解使用。同时,通过淡盐水外送纯碱生产系统并补充生产水以及膜法除硝装置来避免硫酸根富集,稳定生产。 其主要工艺为60℃左右、310g/L浓度的粗盐水,加入过量烧碱溶液,使镁离子生成氢氧化镁沉淀;其反应为Mg2++2OH-=Mg(OH) 2 ↓ 随后混有氢氧化镁沉淀的粗盐水先加压溶气,再进入预处理器泄压析气,氢氧化镁沉淀作为空气析出的凝结核积聚空气小气泡,比重减小,与氯化铁絮凝剂作用后,其上升为浮泥从顶部排出;大颗粒氢氧化镁和原盐中的泥沙等下沉为底泥排出;随后澄清液进入后反应槽,与过量纯碱溶液发生反应,残余少量氢氧化镁被生成的碳酸钙沉淀共沉,其反应方程式为 Ca2++CO 32-=CaCO 3 ↓ 沉淀颗粒通过凯膜过滤器一次性滤出,得到60℃、310g/L,钙镁离子浓度总和小于4mg/L 的合格一次盐水。 2、电解: 电解工序是烧碱生产的核心,主要设备是电解槽、螯合树脂塔和真空脱氯塔。在工艺上,一次盐水含钙镁离子浓度不能满足电解要求,需将合格一次盐水送入串联运行的螯合树脂塔,通过离子交换除去重金属离子,得到钙镁离子浓度总和小于0.02mg/L的二次精制盐水,送入电解槽阳极室通电电解;在电解槽阳极室,精盐水中的Cl-放电生成氯气,水合Na+穿过离子膜进入阴极室;同时,阴极室内的稀烧碱液中氢离子放电生成氢气,氢氧根与进来的Na+结合生成烧碱。总化学反应方程式为 2NaCl+2H2O-通电→2NaOH+Cl2↑+H2↑ 未参加电解反应的淡盐水溶解少量氯气,从电解槽流出,经缓冲后由泵输送进入真空脱氯塔。塔内绝对压力在34kPa,对应状态盐水沸点在72℃左右,淡盐水(85℃左右)进入脱氯塔内发生过热沸腾,氯气和水蒸气迅速进入气相并不断被气泵抽出压入氯气总管,完成物理脱氯;脱氯后淡盐水靠亚硫酸钠化学还原脱除残余游离氯后返回盐水化盐。电解槽阴极室生成的烧碱大部分经缓冲后泵送高位槽,加水稀释后进入电解槽继续反应,少量引出作为产品,进入蒸发工序或直接售出。 3、氯氢处理: 电解输送的高温湿氯气先经过填料洗涤塔淋洗降温至35℃左右,再经过列管冷却器降温至12~15℃左右,除去湿氯气中97%以上的水分,然后通过串联的填料硫酸干燥塔和泡罩硫酸干燥塔将氯气含水将至100ppm以下完成干燥任务,最终由氯气压缩机加压至140kPa左右, 1

焦化厂硫铵工段设计毕业设计说明书

XXX 大学 本科生毕业设计 姓名:学号: 学院: 专业: 设计题目:焦化厂硫铵工段设计 指导教师:职称:教授 年月

中国矿业大学毕业设计任务书 学院专业年级学生姓名 任务下达日期: 毕业设计日期: 毕业设计题目:120万吨焦化厂硫铵工段设计 毕业设计主要内容和要求: 1.按照设计规模并根据焦化设计规范的要求,对焦化厂硫铵工段的生产进 行工艺论证,确定工艺流程。 2.根据工艺流程和设计规范进行工艺物料平衡,水平衡和热量平衡计算, 根据计算结果进行设备选型。 3.对硫铵工段的生产设备和工艺管道进行设计布置,绘制硫铵生产的工艺 流程图,总平面布置图,设备与工艺管道平面图和立体图,绘制一张主要设备的装配图。 4.根据生产要求,对硫铵工段设计的非工艺技术部分提出设计要求,根据 岗位设置与岗位操作编制岗位人员编制。 5.进行硫铵工段的建设投资估算和产品生产成本的经济技术分析。 6.编制设计说明书。 院长签字:指导教师签字:

指导教师评语(①基础理论及基本技能的掌握;②独立解决实际问题的能力;③研究内容的理论依据和技术方法;④取得的主要成果及创新点;⑤工作态度及工作量;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等): 成绩:指导教师签字: 年月日

评阅教师评语(①选题的意义;②基础理论及基本技能的掌握;③综合运用所学知识解决实际问题的能力;③工作量的大小;④取得的主要成果及创新点;⑤写作的规范程度;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等): 成绩:评阅教师签字: 年月日

大学毕业设计答辩及综合成绩

内容摘要 本设计为年产焦炭120万吨焦化厂回收车间硫铵工段的工艺设计,该焦化厂拟建于徐州市西北郊区.本设计内容包括:生产原理、工艺流程、计算及设备的选型、工艺布置、操作规程、成本估算、经济分析等。 本设计采用技术成熟的饱和器法中半直接法来回收煤气中的氨,工艺流程如下:从冷凝工段来得煤气首先进入煤气预热器,然后进入饱和器,在饱和器内,煤气中的氨与硫酸反应生产硫铵,硫铵经后续操作分离,从饱和器出来的煤气经除酸器后送往粗苯工段。 工艺计算包括饱和器的物料和热量平衡计算,通过计算来确定母液的适宜温度和煤气预热温度。通过对主要设备如饱和器、除酸器、煤气预热器、沸腾干燥器、蒸氨塔、循环泵、结晶泵等的计算。 同时根据本设计的规模,对工段的工艺布置原则作了简要说明,对工段生产操作也作了简要说明,对非工段部分提出了一些具体要求,通过岗位操作定员知道本工段需要职工人员数。 根据本设计的规模,对投资和赢利情况作了估算。 最后,给出了图纸目录及说明。 本设计在老师的悉心指导下,同学的帮助下完成,在此表示感谢!!!

烧碱、PVC生产工艺摘要

氯碱公司烧碱、PVC生产工艺摘要 一、烧碱生产工艺 包括一次盐水、二次盐水及电解、氯氢处理、氯化氢合成及盐酸、液氯及包装、蒸发及固碱等工段。 生产32%烧碱、50%烧碱、99%片碱、液氯、高纯盐酸、副产次氯酸钠、稀硫酸、为氯乙烯生产提供合格的氯化氢气体。 1.一次盐水工段 本工段任务是经过化学方法和物理方法去除原盐中Ca、Mg 等可溶性和不溶性杂质、有机物,为二次盐水及电解工序输送合格的一次盐水。 2.二次盐水及电解 二次盐水及电解是烧碱工序的核心,任务是在电解槽中生产出32%烧碱产品,氢气、氯气送氯氢处理工段,淡盐水返回一次盐水工序化盐。其中电解工序岗位环境被办公室人员所熟知,氯碱公司的电解槽(两期)现已成为集团标准参观路线的重要部分。 3.氯氢处理工段 该工段包括氯气处理、氢气处理、事故氯气吸收。目的是分别将电解工段生产的氯气和氢气进行冷却、干燥并压缩输送到下游工段,同时吸收处理事故状态下产生的氯气,副产次氯酸钠。 4.液氯及包装工段 液氯工段的任务是将平衡生产的部分富余氯气进行压缩、

液化并装瓶。通常根据氯气压缩机压力的不同,将氯气液化方式分为高压法、中压法和低压法三种。 5.氯化氢合成及盐酸 本工段任务是将氯氢处理工段来的氯气和氢气,在二合一石墨合成炉内进行燃烧,合成氯化氢气体,经冷却后送至氯乙烯工序。从液氯来的液化尾氯气与氢气进入二合一石墨合成炉,生成氯化氢气体。经石墨冷却器冷却,再经两级降膜吸收器和尾气塔,用纯水吸收,生成31%的高纯盐酸供电解工段使用或对外销售。 6.蒸发及固碱工段 本工段任务是将电解工段生产的部分32%烧碱浓缩为50%烧碱和99%片碱。采用世界先进的瑞士博特公司降膜工艺及设备,降膜法生产片碱的能耗低于国内传统的大锅法,而且生产环境好、连续稳定便于控制。 二、PVC生产工艺 主要分为制备乙炔、合成氯乙烯、氯乙烯聚合三个主要工序。 1.乙炔发生 主要分为电石破碎、乙炔发生、乙炔清净和渣浆处理三部分。 电石破碎:将合格的原料电石,通过粗破机和细破机进行破碎处理。 乙炔发生:破碎合格的原料电石,经准确计量后,投入到乙炔发生器内进行水解反应,制成粗乙炔气体,供清净工序生

离子膜烧碱工艺流程

离子膜烧碱工艺流程 https://www.doczj.com/doc/4210240614.html,/thread-437527-1-1.html CAD 邢家悟主编《离子膜法制烧碱操作问答》(化学工业出版社,2009年7月) 第一章盐水精制甲元 1.盐水精制的目的 氯碱工业生产过程中,无论采用海盐、湖盐、岩盐或卤水中的哪一种原料,都含有Ca2+、Mg2+、SO2-等无机杂质,以及细菌、藻类残体、腐殖酸等天然有机物和机械杂质。这些杂质在化盐时会被带入盐水系统中,如不去除将会造成离子膜的损伤,从而使其效率下降,破坏电解槽的正常生产,并使离子膜的寿命大幅度缩短。盐水中一些杂质会在电解槽中产生副反应,降低阳极电流效率,并对阳极寿命产生影响。因此,盐水必须进行精制操作除去盐水中的大量杂质,生产满足离子膜电解槽运行要求的精制盐水。 2.盐水精制工艺简述 直至20世纪70年代中期,传统絮凝沉降盐水精制工艺基本上没有实质性发展;目前用于离子膜法电解的盐水精制工艺是在上述方法基础上增加二次过滤和二次精制先进工艺技术形成的。其工艺流程为∶饱和粗盐水加入精制反应剂,经过精制反应后加入絮凝剂进入澄清桶澄清,澄清盐水经砂滤器粗滤后,再经α-纤维素预涂碳素管过滤器二次过滤,使盐水中的悬浮物小于1×10-6,然后进入离子交换树脂塔,进行二次精制,得到满足离子膜电解槽运行要求的精制盐水。其工艺流程简图如图1所示。 第二章电解单元 92.离子膜电解槽电解反应的基本原理 离子膜电解槽电解反应的基本原理是将电能转换为化学能,将盐水电解,生成NaOH、Cl2、H2,如图20所示,在离子膜电解槽阳极室(图示左侧),盐水在离子膜电

解槽中电离成Na+和Cl-,其中Na+在电荷作用下,通过具有选择性的阳离子膜迁移到阴极室(图示右侧),留下的Cl-在阳极电解作用下生成氯气。阴极室内的H2O电离成为H+和OH-,其中OH-被具有选择性的阳离子挡在阴极室与从阳极室过来的Na+结合成为产物NaOH,H+在阴极电解作用下生成氢气。 93.离子膜电解槽的类型 离子膜电解槽按照单元槽的结构形式不同,分为单极式离子膜电解槽(图21)和复极式离子膜电解槽(图22)。单极式离子膜电解槽是指在一个单元槽上只有一种电极,即单元槽是阳极单元槽或阴极单元槽,不存在一个单元槽上既有阳极又有阴极的情况。复极式离子膜电解槽是指在一个单元槽上,既有阳极又有阴极(每台离子膜电解槽的最端头的端单元槽除外),是阴阳极一体的单元槽。 94.不同类型离子膜电解槽的供电方式 离子膜电解槽的供电方式有两种∶并联和串联。在一台单极式离子膜电解槽内部(参见图23),直流供电电路是并联的,因此总电流即为通过各个单元槽的电流之和,各单元槽的电压基本相等,所以单极式离子膜电解槽的特点是低电压大电流。

离子膜烧碱生产工艺浅析

龙源期刊网 https://www.doczj.com/doc/4210240614.html, 离子膜烧碱生产工艺浅析 作者:许明 来源:《中国化工贸易·上旬刊》2017年第03期 摘要:离子膜法生产烧碱是目前世界上最先进的制碱技术,国内许多氯碱企业虽然也发 现了成套引进的生产工艺存在某些工艺设计不合理、原材料及能源浪费等问题,但由于氯碱生产属于高危生产行业,且离子膜烧碱生产系统自动化程度高、联锁点多、技术复杂,一旦出现失误极易造成严重的安全环保事故和巨大的经济损失等原因,一直没有研究开发出有效的解决办法,致使我国的离子膜烧碱生产工艺一直无大的改进或实质性进展。本文分析了离子膜烧碱生产工艺。 关键词:离子膜;能耗;烧碱;生产工艺 离子膜电解法又称膜电槽电解法,是利用阳离子交换膜将单元电解槽分隔为阳极室和阴极室,使电解产品分开的方法。离子膜电解法是在离子交换树脂(见离子交换剂)的基础上发展起来的一项新技术。利用离子交换膜对阴阳离子具有选择透过的特性,容许带一种电荷的离子通过而限制相反电荷的离子通过,以达到浓缩、脱盐、净化、提纯以及电化合成的目的。这项技术已经用于氯碱的生产,海水和苦咸水的淡化,工业用水和超纯水的制备,酶、维生素与氨基酸等药品的精制,电镀废液的回收,放射性废水的处理等方面,其中应用最广泛、成效最显著的是氯碱工业。在氯碱工业中,利用阳离子交换膜电解槽电解食盐或氯化钾水溶液来制造氯气、氢气和高纯度的烧碱(氢氧化钠)或氢氧化钾。 1 离子膜烧碱生产工艺 1.1 配水 在电解的工序中,需要脱离掉淡盐水中多余的硫酸根。被输送到一次盐水工序的淡盐水包含两个部分:第一部分便是流经自动控制的装置调节出的盐水;第二部分是存储在储槽中的上清液(已经沉淀处理)。从其它的工序中回收出来的水,调节所用的水和盐泥中排滤出的滤液,经过一定比例的调和就形成了化盐水。 1.2 化盐和盐水的精制 把化盐水的温度调到适合,在盐池的底部经过逆流的方式接触到原盐,在逆流的水流中 添加氢氧化钠溶液同液体中的镁离子发生化学反应,产生沉淀氢氧化镁而被分离出去,有机质也被逐步的分解为较小的分子。经过混合器加压后的粗盐水,会进入预处理器中。在盐水中的小分子和悬浮状的物质就会以沉淀的形式被除去。留在反应槽里面的清盐水经过膜分离之后,合格的还要进行第二次的盐水再精制。螯合树脂就是二次精制中必备的药品。过滤后的一次盐

烧碱的制作工艺流程

烧碱的制备工艺简介 烧碱的制备方法有两种:苛化法和电解法。现代工业主要通过电解饱和NaCl溶液来制备烧碱。电解法又分为水银法、隔膜法和离子膜法,我国目前主要采用的是隔膜法和离子膜法,这二者的主要区别在于隔膜法制碱的蒸发工序比离子膜法要复杂,而离子膜法多了淡盐水脱氯及盐水二次精制工序。 目前国内的烧碱生产主要采用的是离子膜电解法生产烧碱,我们主要针对离子膜电解法介绍烧碱的制作工艺,并简要讨论工艺中的能耗情况。原料为粗盐(含大量杂质的氯化钠),根据生产工艺中的耗能情况,将烧碱制法分为整流、盐水精制、盐水电解、液碱蒸发、氯氢处理、固碱生产和废气吸收工序等七个流程。 据测算,电解法烧碱生产吨碱综合能耗在各工序的分布如下: 整流2.0%;盐水精制3.9% ; 电解53.2%;氯氢处理1.2%;液碱蒸发25.1%;固碱生产14.6%。从上述可知,电解和液碱蒸发是主要耗能工序。电解工序中的电耗约为吨碱电耗的90%,碱蒸发中的蒸汽消耗占吨碱蒸汽消耗的74%以上。 1-整流2-盐水精制3-电解4-氯氢处理 5-液碱蒸发 6-固碱生产 图1 烧碱工艺总流程示意图 1整流: 整流是将电网输入的高压交流电转变成供给电解用的低压直流电的工序,其能耗主要是变压、整流时造成的电损,它以整流效率来衡量。整流效率主要取决于采用的整流装置,整流工序节能途径是提高整流效率。当然减少整流器输出到电解槽之间的电损也是不容忽略的。 2盐水精制: 将工业盐用水溶解饱和并精制(除去Ca2+、M g2+、S 02-4等有害离子和固体杂质)获得供电解用精制饱和盐水,是盐水精制工序的功能。 一次盐水精制: 采用膜过滤器(不预涂) Ca2++CO32-→CaCO3 Mg2++2OH-→MgOH2

离子膜烧碱的工业分析

离子膜烧碱的工业分析-----中间产品及副产物分析 离子膜烧碱就是采用离子交换膜法电解食盐水而制成烧碱(即氢氧化钠)。其主要原理是因为使用的阳离子交换膜,该膜有特殊的选择透过性,只允许阳离子通过而阻止阴离子和气体通过,即只允许H+、Na+通过,而Cl-、OH-和两极产物H2和Cl2无法通过,因而起到了防止阳极产物Cl2和阴极产物H2相混合而可能导致爆炸的危险,还起到了避免Cl2和阴极另一产物NaOH反应而生成NaClO影响烧碱纯度的作用。 离子膜法电解制碱是世界上工业化生产烧碱当中最先进的工艺方法,具有能耗低、三废污染少、成本低及操作管理方便等优点。副产的氯气和氢气,可以合成盐酸,或深加工氯下游产品如PVC、有机硅及甲烷氯化物等。 淡盐水脱氯 淡盐水脱氯有两种工艺路线:一种采用空气吹除法,该法脱氯效果欠佳,从淡盐水中分离出来的废氯气纯度低,无法汇入湿氯气总管送氯气处理工序,只能由烧碱液循环吸收,制成次氯酸钠溶液。另一种采用真空脱氯法,该法脱氯效果较好,通过蒸汽喷射器或真空泵提供的真空系统将含氯淡盐水中的游离氯抽出分离后进入湿氯气总管。建议采用真空法淡盐水脱氯工艺技术。 氯氢处理(含废氯气处理) 1、氯气处理 由电解槽出来的湿氯气,温度高并伴有大量的水蒸气和杂质,具有较强的腐蚀性,必须经过冷却、干燥和净化处理。 氯气处理系统分为冷却、干燥、输送三部分。 冷却选用填料式洗涤塔,能够较好地除去湿氯气带出的盐雾,填料采用CPVC 花环。氯气冷凝下来的氯水回收送淡盐水脱氯工序。 对于干燥部分,在实践应用中已采用过多种干燥塔型和不同的组合方式,比较典型的有: a、一段泡沫塔、二段泡沫塔; b、一段填料塔、二段泡沫塔; c、一段填料塔、二段泡罩塔。 国内采用最多的是填料塔和泡沫塔组合,这是两种典型的塔。 泡沫塔的特点是结构简单、造价低、塔板数多;缺点是操作弹性小、不便于增加硫酸循环量,操作弹性仅为15%,塔板阻力降大,一般为100-200mmH2O, 而且开孔的加工精度、酸泥沉积等因素易影响其操作稳定性。 填料塔操作弹性大,易操作,压降小,但投资大,有效塔板数少。 泡罩塔的特点介于泡沫塔与填料塔制碱,塔板数多,压降与泡沫塔相当,操作弹

离子膜法制烧碱的生产工艺总结

离子膜法制烧碱的生产工艺总结 本文着重介绍了离子膜法制烧碱的生产工艺过程中的离子膜法碱液蒸发的特点以及影响碱液蒸发的因素。标签:离子膜法隔膜法蒸汽分离器 离子膜法制烧碱是烧碱生产工艺的常用制法之一,但是在目前烧碱生产工艺中所见的比例并不是很大,所以我们必须仔细的认识一下子膜法制烧碱的工艺特点 一、离子膜法碱液蒸发的特点 1.流程简单,简化设备,易于操作。由于离子膜碱液仅含有极微量的盐,所以,在其整个蒸发浓缩过程中,即使是生产99的固碱,也无须除盐。这就是极大的简化了流程设备,即隔膜碱蒸发必须有的除盐的设备及工艺工程都被取消(如旋液分离器、盐沉降槽、分离机、回收母液贮罐等),而且,由于在蒸发过程中没有盐的析出,也就很难发生管道阻塞,系统打水问题,使操作容易进行。 2.浓度高,蒸发水量少,蒸汽消耗低。离子膜法碱液的浓度高,一般在30~33,比隔膜法碱液的10~11要高很大,因而大量的减少了浓缩所用的蒸汽。若以32的碱液为例,如果产品的浓度为50,则每吨50的成品碱需蒸出水量为:1.15t,而隔膜法电解碱液若同样浓缩到50,则一般要蒸出6.5t的水量(隔膜碱液浓度按10.5计)。也就是说,浓缩到同样的50,离子膜碱液蒸发比隔膜碱液蒸发少蒸出约5. 4t水。由于蒸发水量的减少,蒸汽消耗就大幅度下降。以双效流程为例,一般仅耗汽0.73~0.78t/t(100碱),另外蒸汽的空间也相应的减少,使设备的投资也相应的降低。 二、影响碱液蒸发的因素 1.生蒸汽压力。蒸汽是碱液蒸发中的主要热源,生蒸汽(或称一次蒸汽)的压力高低对蒸发能力有很大的影响。通常较高的一次蒸汽压力,使系统获得较大的温差,单位时间所传递的热量也相应的增加,因而也使装备具有较大的生产能力。当然,蒸汽压力也不能过高,因为过高的蒸汽压力容易使加热管内碱液温度上升过高,造成液体的沸腾,形成汽膜,降低了传热系数,反而使装备能力受到影响。同样,蒸汽压力偏低,经过加热器的碱液不能达到需要的温度,减少了单位时间内的蒸发量,使蒸发强度降低。 因此,选择适宜的蒸汽压力是保证蒸发强度的重要因素。另外,保持蒸汽的饱和度也是至关重要的。因为,饱和蒸汽冷凝潜热是其可提供的最大热量;再则,保持蒸汽压力的稳定也是保持操作的主要因素之一,因为,加热蒸汽压力的波动,就会使蒸发过程很不稳定,从而直接影响了进出口物料的浓度、温度,甚至影响液面、真空度、产品质量等。 2.蒸发器的液位控制。在循环蒸发器的蒸发过程中,维持恒定的蒸发器液位

硫铵工段操作规程(一)

硫铵工段操作规程(一) 一、工艺流程简述 煤气鼓风机送来的煤气进入喷淋式硫铵饱和器。煤气在饱和器上段分两股进入环形室,与循环母液逆流接触,其中的氨被母液中的硫酸吸收,生成硫酸铵。脱氨后的煤气在饱和器的后室合并成一股,经小母液循环泵连续喷洒洗涤后,沿切线方向进入饱和器内旋风式除酸器,分出煤气中所夹带的酸雾,再经气液分离器进一步除去酸雾后,送至终冷洗苯工段。 饱和器下段上部的母液经大母液循环泵连续抽出送至饱和器上段环形喷洒室循环喷洒,喷洒后的循环母液经中心降液管流至饱和器的下段。在饱和器的下段,晶核通过饱和介质向上运动,使晶体长大,并引起晶粒分级。当饱和器下段硫铵母液中晶比达到25%-40%(v%)时,用结晶泵将其底部的浆液抽送至室内结晶槽。饱和器满流口溢出的母液自流至满流槽,再用小母液循环泵连续抽送至饱和器的后室循环喷洒,以进一步脱出煤气中的氨。 饱和器定期加酸加水冲洗时,多余母液经满流槽满流到母液贮槽;加酸加水冲洗完毕后,再用小母液循环泵逐渐抽出,回补到饱和器系统。 设置母液加热器对母液进行加热,可以提高硫铵质量,当饱和器母液系统水不平衡(水分过剩)时,可通过母液加热器对母液进行加热,使多余的水分从煤气系统中带走,以维持系统的水平衡。 室内结晶槽中的硫铵结晶积累到一定程度时,将结晶槽底部的硫铵浆液经视镜控制排放到硫铵离心机,经离心机离心分离后,硫铵结晶从硫铵母液中分离出来。从离心机分出的硫铵结晶经溜槽排放到振动流化床干燥器,经干燥、冷却后进入硫铵贮斗。从硫铵贮斗出来的硫铵结晶经半自动称量、包装后送入成品库。 离心机滤出的母液与结晶槽满流出来的母液一同自流回饱和器的下段。干燥硫铵后的尾气经旋风分离器分离大量粉尘后,由引风机抽送至排气气洗净塔,用循环母液喷洒进一步除去残留粉尘,再经雾沫分离器除去夹带的液滴后排放至大气。 硫铵工段所需的93%浓硫酸定期由油库工段送至硫铵工段硫酸高置槽,再经流量控制仪表及视镜加到饱和器系统的满流槽。 在脱硫工段检修时,蒸氨工段的氨汽接入饱合器前煤气中。 艺流程图如下:

烧碱在工业上的制造流程及其由来

烧碱在工业上的制造流程及其由来 烧碱是氢氧化钠的俗称,又可命名为火碱、苛性钠,是一种具有很强腐蚀性的强碱,一般为片状或颗粒形态,易溶于水(溶于水时放热)并形成碱性溶液,另有潮解性,易吸取空气中的水蒸气和二氧化碳。工业品含有少量的氯化钠和碳酸钠,是白色不透明的晶体。有块状,片状,粒状和棒状等,可与酸类起中和作用而生成盐和水。 工业上生产烧碱的方法有苛化法和电解法两种。苛化法按原料不同分为纯碱苛化法和天然碱苛化法;电解法可分为隔膜电解法和离子交换膜法。 1、纯碱苛化法 将纯碱、石灰分别经化碱制成纯碱溶液、化灰制成石灰乳,于99~101℃进行苛化反应,苛化液经澄清、蒸发浓缩至40%以上,制得液体烧碱。将浓缩液进一步熬浓固化,制得固体烧碱成品。苛化泥用水洗涤,洗水用于化碱。 2、天然碱苛化法 天然碱经粉碎、溶解(或者碱卤)、澄清后加入石灰乳在95~100℃进行苛化,苛化液经澄清、蒸发浓缩至NaOH浓度46%左右、清液冷却、析盐后进一步熬浓。制得固体烧碱成品。苛化泥用水洗涤,洗水用于溶解天然碱。 3、隔膜电解法 将原盐化盐后加入纯碱、烧碱、氯化钡精制剂除去钙、镁、硫酸根离子等杂质,再于澄清槽中加入聚丙烯酸钠或苛化麸皮以加速沉淀,砂滤后加入盐酸中和,盐水经预热后送去电解,电解液经预热、蒸发、分盐、冷却,制得液体烧碱,进一步熬浓即得固体烧碱成品。盐泥洗水用于化盐。 4、离子交换膜法

将原盐化盐后按传统的办法进行盐水精制,把一次精盐水经微孔烧结碳素管式过滤器进行过滤后,再经螫合离子交换树脂塔进行二次精制,将二次精制盐水电解,于阳极室生成氯气,阳极室盐水中的Na+通过离子膜进入阴极室与阴极室的OH生成氢氧化钠,H+直接在阴极上放电生成氢气。电解过程中向阳极室加入适量的高纯度盐酸以中和返迁的OH-,阴极室中应加入所需纯水。在阴极室生成的高浓度纯烧碱,可以直接作为液碱产品,也可以进一步熬浓,制得周体烧碱成品。 枣庄金灶沐商贸有限公司产品品质严格按照 ISO9000质量管理体系运行,使产品品质不断得到提升,功能不断改进,使得企业90%以上的产品已进入精细化工领域。在新产品开发方面,研制成功的粉状硅酸钠、偏硅酸钠和透明液体硅酸钠等产品已相继进入国际市场,其中,偏硅酸钠已经成为企业新的经济增长点,去年前五个月出口为280吨,而今年同期增加到560吨,增长了86%。目前,公司的新产品不仅畅销国际市场,而且已经取代了进口产品。 详情可查:https://www.doczj.com/doc/4210240614.html,

硫铵工段工艺技术操作规程

硫铵工段工艺技术操作规程 一.工艺简介 来自冷鼓工段的粗煤气经煤气预热器,用~0.5MPa蒸汽加热至60℃-70℃进入硫铵饱和器上段的喷淋室,在此煤气分成两股沿饱和器内壁与除酸器外壁的环形空间流动,循环母液逆向喷洒,使煤气与母液充分接触,煤气中的氨被母液中的硫酸吸收,生成硫酸铵结晶。然后煤气沿切断方向进入硫铵饱和器内的除酸器,分离煤气中夹带的酸雾滴,再经旋流板除酸器进一步除酸后送往洗脱苯工段。煤气进入除酸器前,用来自喷洒泵的母液进行二次喷洒,以进一步除去煤气中的氨。 在硫铵饱和器内发生的主要反应如下: H2SO4+NH3→NH4HSO4 (1) H2SO4+2NH3→(NH4)2SO4 (2) NH4HSO4+NH3→(NH4)2SO4 (3) 在硫铵饱和器下段结晶室上部的母液,用母液循环泵连续抽送至上段喷淋室进行喷洒,吸收煤气中的氨,并循环搅动母液改善硫铵的结晶过程。 硫铵饱和器母液中不断有硫铵结晶生成,且沿饱和器的中心管进入下段的结晶室,用结晶泵将其连同一部分母液送至结晶槽,在此分离的硫铵结晶及少量母液排放到离心机内进行离心分离,滤除母液,并用热水洗涤结晶降低成品酸度,保证成品质量。 离心机分离的母液与结晶槽溢流出来的母液一同自流回硫铵饱和

器。 从离心机卸出硫铵结晶,由螺旋输送机运至振动流化床干燥器,经热空气干燥,冷空气冷却后,进入硫铵贮斗,然后经重力式包装磅秤称量包装,用手推车运入成品库。 振动流化床干燥器用的热空气是由送风机从室外吸入空气经热风器用蒸汽加热至130℃-140℃后送入,开车时器内温度应高于正常操作温度10℃左右,在加料前15min往器内送入适量热风加热升温。冷空气由冷风机从室外吸入后送入干燥器,将热的硫铵颗粒降温冷却,以防结块。振动流化床干燥器排出的热空气经旋风除尘器捕集夹带的细粒硫铵结晶后,由排风机抽至水浴除尘器洗涤后排入大气。旋风除尘器捕集的细粒硫铵定期排入硫铵贮斗,尾气由排风机送至水浴除尘器,进行湿法再除尘,最后排入大气。 外购的92.5%的硫铵先卸入卸酸槽中后经卸酸槽液下泵送至硫铵贮槽中贮存,再由硫酸泵送至硫酸高位槽,经控制阀自流入满流槽,调节饱和器酸度。 硫铵饱和器是周期性的连续操作设备,当定期大加酸、补水并用水冲洗硫铵饱和器时,所形成的大量母液从硫铵饱和器满流口溢出,通过插入液封内的满流管流入满流槽,再经满流槽满流至母液贮槽暂时贮存。满流槽及母液贮槽液面上的酸焦油可用人捞出。而在两次大加酸的正常生产过程中,又将所贮存的母液用母液喷洒泵送回硫铵饱和器使用。此外,母液贮槽还可供饱和器检修,停工时贮存饱和器内的母液之用。

烧碱生产实用实用工艺及流程

学习资料注意保存 烧碱(学名氢氧化钠)是可溶性的强碱。纯碱(学名碳酸钠)实际上是个盐,由于它在水中发生水解作用而使溶液呈碱性,再由于它和烧碱有某些相似的性质,所以它与烧碱并列,在工业上叫做“两碱”。 烧碱和纯碱都易溶于水,呈强碱性,都能提供Na+离子。这些性质使它们被广泛地用于制肥皂、纺织、印染、漂白、造纸、精制石油、冶金及其他化学工业等各部门中。 普通肥皂是高级脂肪酸的钠盐,一般是用油脂在略为过量的烧碱作用下进行皂化而制得的。 如果直接用脂肪酸作原料,也可以用纯碱来代替烧碱制肥皂。 印染、纺织工业上,也要用大量碱液去除棉纱、羊毛等上面的油脂。生产人造纤维也需要烧碱或纯碱。例如,制粘胶纤维首先要用18~20%烧碱溶液(或纯碱溶液)去浸渍纤维素,使它成为碱纤维素,然后将碱纤维素干燥、粉碎,再加 最后用稀碱液把磺酸盐溶解,便得到粘胶液。再经过滤、抽真空(去气泡),就可用以抽丝了。

精制石油也要用烧碱。为了除去石油馏分中的胶质,一般在石油馏分中加浓硫酸以使胶质成为酸渣而析出。经过酸洗后,石油里还含有酚、环烷酸等酸性杂质以及多余的硫酸,必须用烧碱溶液洗涤,再经水洗,才能得到精制的石油产品。 在造纸工业中,首先要用化学方法处理,将含有纤维素的原料(如木材)与化学药剂蒸煮制成纸浆。所谓碱法制浆就是用烧碱或纯碱溶液作为蒸煮液来除去原料中的木质素、碳水化合物和树脂等,并中和其中的有机酸,这样就把纤维素分离出来。 在冶金工业中,往往要把矿石中的有效成分转变成可溶性的钠盐,以便除去其中不溶性的杂质,因此,常需要加入纯碱(它又是助熔剂),有时也用烧碱。例如,在铝的冶炼过程中,所用的冰晶石的制备和铝土矿的处理,都要用到纯碱和烧碱。又如冶炼钨时,也是首先将精矿和纯碱焙烧成可溶的钨酸钠后,再经酸析、脱水、还原等过程而制得粉末状钨的。 在化学工业中,制金属钠、电解水都要用烧碱。许多无机盐的生产,特别是制备一些钠盐(如硼砂、硅酸钠、磷酸钠、重铬酸钠、亚硫酸钠等等)都要用到烧碱或纯碱。合成染料、药物以及有机中间体等也要用到烧碱或纯碱。 烧碱生产工艺

离子膜烧碱工艺(整理过)要点

离子膜烧碱工艺 一、工艺流程简介 烧碱目前以离子膜工艺为主。按流程顺序分为一次盐水、二次盐水精制、电 解、淡盐水脱氯、Cl 2处理、H 2 处理等工序。核心工序是二次盐水精制和电解部 分。 盐水一次精制的主要目的是控制悬浮物(SS)与各种杂质离子的含量在要求的范围内,为盐水二次精制作准备。盐水二次精制最主要部分是螯合树脂塔,,使粗盐水经过树脂塔后除去二价阳离子。部分工艺在二次精制中盐水进螯合树脂塔之前设置碳素管或其它类型过滤器,以进一步降低盐水中的悬浮物的含量。电解部分是烧碱制备流程的关键工序,符合电解要求指标的精制盐水流经电解槽时,在一定直流电作用下,离子经离子交换膜的发生迁移,最终在阴极液相形成 烧碱,阳极液相产生淡盐水,阴极气相生成H 2,阳极气相生成Cl 2 。 二、离子交换膜法电解制碱的主要生产流程 工艺流程图 精制的饱和食盐水进入阳极室;纯水(加入一定量的NaOH溶液)加入阴极 室,通电后H 2O在阴极表面放电生成H 2 ,Na+则穿过离子膜由阳极室进入阴极室, 此时阴极室导入的阴极液中含有NaOH;Cl-则在阳极表面放电生成Cl 2 。电解后的淡盐水则从阳极室导出,经添加食盐增加浓度后可循环利用。 阴极室注入纯水而非NaCl溶液的原因是阴极室发生反应为2H++2e-=H2↑;而Na+则可透过离子膜到达阴极室生成NaOH溶液,但在电解开始时,为增强溶液导电性,同时又不引入新杂质,阴极室水中往往加入一定量NaOH溶液。

三、具体工艺流程 盐水精制单元 工艺简述:饱和粗盐水加入精制反应剂,经过精制反应后加入絮凝剂进入澄清桶澄清,澄清盐水经砂滤器粗滤后,再经α-纤维素预涂碳素管过滤器二次过滤,使盐水中的悬浮物小于1×10-6,然后进入离子交换树脂塔,进行二次精制,得到满足离子膜电解槽运行要求的精制盐水。其工艺流程简图如图1所示。 ①一次盐水精制 一次澄清盐水的制备是氯碱生产工艺至关重要的工段,精制效果的好坏直接影响产品的质量和产量。 bc 精制原理 ①除镁 镁离子常以氯化物的形式存在于原盐中,精制时向粗盐水中加入 烧碱溶液生成不溶性的氢氧化镁沉淀。 反应方程式:MgCl 2+2NaOH=Mg(OH) 2 ↓+2NaCl 离子反应方程式:Mg2++2OH-=Mg(OH) 2 ↓ 为使反应完全,控制氢氧化钠过量,本反应速度快几乎瞬间完成,是本工艺中的前反应。 ②除钙 钙离子一般以氯化钙和硫酸钙的形式存在于原盐中,精制时向粗盐水中加入碳酸钠溶液使生成不溶性的碳酸钙沉淀,反应方程式: CaCl 2+Na 2 C0 3 =CaC0 3 ↓+2NaCl CaS0 4+Na 2 C0 3 =CaC0 3 ↓+Na 2 S0 4 离子反应方程式: Ca2++CO 32-=CaC0 3 ↓ 为使反应完全,碳酸钠一般控制过量,本反应速度较慢,反应速度受温度影响较大,一般在50℃左右,在碳酸钠过量情况下需半小时方能

相关主题
文本预览
相关文档 最新文档