当前位置:文档之家› 基于MATLAB的运动模糊图像恢复技术

基于MATLAB的运动模糊图像恢复技术

基于MATLAB的运动模糊图像恢复技术
基于MATLAB的运动模糊图像恢复技术

基于MATLAB的运动模糊图像恢复技术

王洪珏

(温州医学院,浙江,温州)

摘要:MATLAB是当今流行的科学计算软件,它具有很强的数据处理能力。在其图像处理工具箱中有四个图像复原函数,本文就这些函数的算法原理、运用和恢复处理效果结合实力效果作简要对比讨论。

0前言

图像复原时图像处理中一个重要的研究课题。图像在形成、传输和记录的过程中,由于传感器的噪声、摄像机未对好焦、摄像机与物体相对运动、系统误差、畸变、噪声等因素的影响,使图像往往不是真实景物的完善影像。这种图像在形成、传输和记录过程中,由于成像系统、传输介质和设备的不完善,使图像质量下降的过程称为图像的退化。图像复原就是通过计算机处理,对质量下降的图像加以重建或恢复的过程。

图像复原过程一般为:找退化原因→建立退化模型→反向推演→图像复原

1算法产生概述

开发算法时,首先要创建图像退化的线性数学模型,接着选择准则函数,并以适当的数学形式表达,然后进行数学推演。推演过程中通常要进行表达形式(即空域形式、频域形式、矩阵-矢量形式或变换域形式)的相互转换,最后得到图像复原算式。

退化数学模型的空域、频域、矢量-矩阵表达形式分别是:

g(x,y)=d(x,y)*f(x,y)+n(x,y)

G(u,v)=D(u,v)〃F(u,v)+N(u,v)

g=HF+n

其中:g(x,y)、d(x,y)、f(x,y)、n(x,y)分别为观测的退化图像、模糊函数、原图像、加性噪声,*为卷积运算符,(x=0,1,2,…,M-1),(y=0,1,2,…,N-1)。

2运动模糊的产生

景物与相机之间的相对运动通常会使相机所成的像存在运动模糊。对于线性移不变模糊,退化图像u0可以写成,u0=h*u+n,其中h为模糊核,*表示卷积,n为加性噪声。

由du/dt=0,文献[5]将这种运动模糊过程描述为波动方程:

аu/аt+V xаu/аx+ V yаu/аy=0

其中,V x=dx/dt, V y=dy/dt为x,y方向上的速度分量并且通过分析该方程的达朗贝尔解得出结论:

vаu0/аx=u(x)-u(x-L)

其中即退化图像沿运动方向的导数等于原始图像和其移位L后图像的差,这里L也可以认为是模糊长度。

在MATLAB中,可以由fspecial函数创建一个确定类型的PSF(点扩散函数),然后使用这个PSF与原始图像进行卷积,从而得到退化(模糊)的图像。

3维纳滤波图像复原MATLAB实现

MATLAB图像处理工具箱提供了维纳滤波图像复原函数deconvwnr,该函数的语法格下:

J=deconvwnr(I,PSF)

J=deconvwnr(I,PSF,NSR)

J=deconvwnr(I,PSF,NCORR,ICORR)

说明:

J=deconvwnr(I,PSF)用于复原由于PSF以及可能的加性噪声卷积退化的图像I,该算法利用图像和噪声的相关矩阵,从估计图像与真实图像之间的最小均方误差意义上来说是最佳的。在没有噪声的情况下,维纳滤波器退化成理想的逆滤波器。

J=deconvwnr(I,PSF,NSR)中的NSR是信噪功率比,NSR可以是标量,或者是和图像I 一样大小尺寸的数组,NSR的默认值为0。

J=deconvwnr(I,PSF,NCORR,ICORR)中的NCORR和ICORR分别是噪声和原始图像的自相关函数。NCORR和ICORR是不超过原始图像的尺寸和维数的任意尺寸和维数。一个N维的NCORR或ICORR数组对应每一维的自相关,如果PSF为向量,则向量NCORR或ICORR代表第一维的自相关函数;如果PSF为数组,则一维的自相关函数由PSF所有的非单维对称计算推得,标量NCORR或ICORR表示噪声或图像的功率。

4最小二乘方图像复原MATLAB实现

MATLAB图像工具箱子提供了deconvreg函数,用来完成对模糊图像的约束最小二乘方复原。deconvreg函数语法格式如下:

J=deconvreg(I,PSF)

J=deconvreg(I,PSF,NOISEPOWER)

J=deconvreg(I,PSF,NOISEPOWER,LRANGE)

J=deconvreg(I,PSF,NOISEPOWER,LRANGE,REGOP)

[J,LAGRA]=deconvreg(I,PSF,...)

说明:

J=deconvreg(I,PSF)用于复原由于PSF以及可能的加性噪声退化的图像,在保持图像平滑的条件下,该算法在估计图像和实际图像间的最小二乘方误差的意义上来说是最佳的。

J=deconvreg(I,PSF,NOISEPOWER)中的NOISEPOWER是加性噪声功率,默认值是0;

J=deconvreg(I,PSF,NOISEPOWER,LRANGE)中的向量LRANGE制定了寻找最佳解的范围,该算法就是在LRANGE的范围内找到最佳的拉格朗日乘数。如果LRANGE是标量,算法假定LAGRA已经给定并等于LRANGE,此时忽略NOISEPOWER的值。LRANGE默认的范围为[le-9 le9];

J=deconvreg(I,PSF,NOISEPOWER,LRANGE,REGOP)中的REGOP是约束自相关的规则化算子。拉普拉斯算子是保持图像平滑的默认算子。REGOP的维数不能超过图像的维数,任意非单维必须与PSF的非单维相对应。

[J,LAGRA]=deconvreg(I,PSF,...)输出复原图像J以及拉格朗日乘数。

5Lucy-Richardson图像复原MATLAB实现

当已知PSF,但对噪声的信息知道很少或者不知道噪声信息时,可以用Lucy-Richardson 算法得到效果较好的复原图像。Lucy-Richardson采用迭代法,能够按照泊松噪声统计标准求出给定PSF卷积后,最有可能成为输入模糊图像的图像。MATLAB提供了deconvlucy函数,该函数通过加速收敛的迭代算法完成图像的复原。为了改善图像复原的质量,光学系统的特性也可以作为该函数的输入参数。deconvlucy函数的语法格式如下:

J=deconvlucy(I,PSF)

J=deconvlucy(I,PSF,NUMIT)

J=deconvlucy(I,PSF,NUMIT,DAMPAR)

J=deconvlucy(I,PSF,NUMIT,DAMPAR,WEIGHT)

J=deconvlucy(I,PSF,NUMIT,DAMPAR,WEIGHT,READOUT)

J=deconvlucy(I,PSF,NUMIT,DAMPAR,WEIGHT,READOUT,SUBSMPL)

说明:

J=deconvlucy(I,PSF用于恢复由PSF卷积和可能的加性噪声引起的退化的图像。该算法基于结果复原图像J的极大似然值,它是原始图像在泊松统计标准下的一个实例。

J=deconvlucy(I,PSF,NUMIT)中的NUMIT用于指定deconvlucy函数迭代的次数,如果不指定,默认值为10。

J=deconvlucy(I,PSF,NUMIT,DAMPAR)中的DAMPAR用于指定结果图像的偏差阈值,默认值为0;该参数指定了在收敛过程中,结果图像J与原始图像I背离的程度。

J=deconvlucy(I,PSF,NUMIT,DAMPAR,WEIGHT)中的WRIGHT表示每个像素的加权值,它记录了每个像素反映相机记录的质量。

J=deconvlucy(I,PSF,NUMIT,DAMPAR,WEIGHT,READOUT)中的READOUT制定了加性噪声值和读出相机噪声值,默认值为0。

J=deconvlucy(I,PSF,NUMIT,DAMPAR,WEIGHT,READOUT,SUBSMPL)中的SUBSMPL描述了已知PSF时子采样次数,默认值为1。

6盲去卷积图像复原MATLAB实现

盲去卷积复原实在不知道PSF的情况下,利用原始模糊图像,同时顾及PSF和清晰图像的一种恢复方法。MATLAB提供了盲去卷积复原函数deconvblind,该函数的语法格式如下:[J,PSF]= deconvblind(I,INITPSF)

[J,PSF]= deconvblind(I,INITPSF,NUMIT)

[J,PSF]= deconvblind(I,INITPSF,NUMIT,DAMPAR)

[J,PSF]= deconvblind(I,INITPSF,NUMIT,DAMPAR,WEIGHT)

[J,PSF]= deconvblind(I,INITPSF,NUMIT,DAMPAR,WEIGHT,READOUT)

[J,PSF]=deconvblind(...FUN,P1,P2,...,PN)

说明:

[J,PSF]= deconvblind(I,INITPSF)利用最大似然算法去卷积图像I,返回复原图像J 和复原的PSF。INITPSF表示PSF的估计值;参数NUMIT用于指定迭代的次数,默认值为10;参数DAMPAR用于指定结果图像的偏差阈值,默认值为0;参数WEIGHT制定了在图像复原中,采用输入图像I的哪些像素。参数READOUT用于指定相应的加性噪声值和读出相机的噪声值,默认为0。

[J,PSF]=deconvblind(...FUN,P1,P2,...,PN)中的FUN是一个描述PSF附加约束的函数。

原图

像运动模糊后图

维纳滤波修复图

像最小二乘方修复图

Lucy-Richardson 修复图

像盲去卷积修复图像

附录:

I=Imread('football.jpg');

Len=30;

Theta=45;

PSF=fspecial('motion',Len,Theta);

BlurredA=imfilter(I,PSF,'circular','conv');

Wnrl=deconvwnr(BlurredA,PSF);¨

BlurredD=imfilter(I,PSF,'circ','conv');

INITPSF=ones(size(PSF));

[K DePSF]=deconvblind(BlurredD,INITPSF,30);

BlurredB=imfilter(I,PSF,'conv');

V=0.02;

Blurred_I_Noisy=imnoise(BlurredB,'gaussian',0,V);

NP=V*prod(size(I));

J=deconvreg(Blurred_I_Noisy,PSF,NP);

BlurredC=imfilter(I,PSF,'symmetric','conv');

V=0.002;

BlurredNoisy=imnoise(BlurredC,'gaussian',0,V);

Luc=deconvlucy(BlurredNoisy,PSF,5);

subplot(2,3,1);imshow(I);title('原图像');

subplot(2,3,6);imshow(PSF);title('运动模糊后图像');

subplot(2,3,2);imshow(Wnrl);title('维纳滤波修复图像');

subplot(2,3,3);imshow(J);title('最小二乘方修复图像');

subplot(2,3,4);imshow(Luc);title('Lucy-Richardson 修复图像');

subplot(2,3,5);imshow(K);title('盲去卷积修复图像');

参考文献:

[1] 陈波.一种新的运动模糊图像恢复方法[J].深圳:深圳大学数学与计算机科学学院,2008.

[2] 刘刚,王立香,董延.MATLAB数字图像处理[M].机械工业出版社,2010.

[3] 康实.MATLAB的图像处理工具箱中图像复原函数的比较[J].广州:广东交通职业技术学院,2006.

[4] 徐志影,李晋平.MATLAB及其在图像处理中的应用[J].徐州:中国矿业大学资源学院,2003.

[5] CAI LIDONG.Traveling wave equation and restoration of motion blurred images[J]. Acta Automatica Sinica,2003,29(3):466-471.

运动模糊图像复原算法实现及应用

任务书 1、课程设计目的: 1)提高分析问题、解决问题的能力,进一步巩固数字图像处理系统中的基本原理与方法。 2)熟悉掌握一门计算机语言,可以进行数字图像应用处理的开发设计。 2、课程设计的题目:运动模糊图像复原算法实现及应用 1)创建一个仿真运动模糊PSF来模糊一幅图像(图像选择原理)。 2)针对退化设计出复原滤波器,对退化图像进行复原(复原的方法自定)。 3)对退化图像进行复原,显示复原前后图像,对复原结果进行分析,并评价复原算法。 3、课程设计方案制定: 1)程序运行环境是Windows 平台。 2)开发工具选用matlab、VC++、VB、C#等,建议选用matlab作为编程开发工具,可以达到事半功倍的效果、并降低编程难度。 3)以组件化的思想构建整个软件系统,具体的功能模块根据选定的不同题目做合理的划分。 4、课程设计的一般步骤: 1)选题与搜集资料:选择课题,进行系统调查,搜集资料。 2)分析与设计:根据搜集的资料,进行功能分析,并对系统功能与模块划分等设计。 3)程序设计:掌握的语言,编写程序,实现所设计的功能。 4)调试与测试:自行调试程序,同学之间交叉测试程序,并记录测试情况。 5)验收与评分:指导教师对每个成员开发对的程序进行综合验收,综合设计报告,根据课程设计成绩的判定方法,评出成绩。 5、要求

1)理解各种图像处理方法确切意义。 2)独立进行方案的制定,系统结构设计合理。 3)程序开发时,则必须清楚主要实现函数的目的和作用,需要在程序书写时做适当的注释。 目录 摘要 (2) 一、概述 (3) 1.1选题背景 (3) 1.2课程设计目的 (4) 1.3设计内容 (5) 二、图像退化与复原 (6) 2.1图像退化与复原的定义 (6) 2.2图像退化模型 (7) 2.3运动模糊图像复原的方法 (7) 2.3.1逆滤波复原法 (8) 2.3.2维纳滤波的原理 (9) 三、运动模糊图象复原的matlab实现 (10) 3.1维纳滤波复原 (10) 3.2约束最小二乘滤波复原 (10) 3.3 运动模糊图像复原实例 (11) 四、课程设计总结与体会 (14)

运动模糊图像

目录 第1章绪论 ....................................................................... 错误!未定义书签。选题目的及背景 ........................................................................... 错误!未定义书签。国内外发展和现状 ....................................................................... 错误!未定义书签。数字图像恢复技术的应用领域 ................................................... 错误!未定义书签。论文的内容与基本结构 ............................................................... 错误!未定义书签。第2章运动模糊图像退化模型 .......................................... 错误!未定义书签。图像噪声 ....................................................................................... 错误!未定义书签。噪声的特征................................................................................ 错误!未定义书签。噪声的分类................................................................................ 错误!未定义书签。图像退化模型 ............................................................................... 错误!未定义书签。退化模型.................................................................................... 错误!未定义书签。论文的内容与基本结构 ............................................................... 错误!未定义书签。第3章图像复原 .................................................................... 错误!未定义书签。退化模型 ....................................................................................... 错误!未定义书签。噪声的特征................................................................................ 错误!未定义书签。噪声的特征................................................................................ 错误!未定义书签。噪声的分类................................................................................ 错误!未定义书签。退化模型 ....................................................................................... 错误!未定义书签。噪声的特征................................................................................ 错误!未定义书签。噪声的特征................................................................................ 错误!未定义书签。噪声的分类................................................................................ 错误!未定义书签。结论与展望 ............................................................................. 错误!未定义书签。致谢 ...................................................................................... 错误!未定义书签。参考文献................................................................................. 错误!未定义书签。

运动模糊图像的质量分析与评价

运动模糊图像的质量分析与评价 摘要:提出了一种新的图像质量评价标准,通过图像的运动模糊参数来估计出图像由于运动而造成的信息损失量,并通过信息损失的多少来评价图像的质量。实验表明,该方法能客观地体现出运动模糊图像的质量与运动模糊参数之间的关系,这种关系对于图像的质量评价特别是有参考条件下的图像质量评价具有良好的效果。同时还根据活动度和图像灰度梯度能客观地表示图像细节部分的特性。将图像分块,并从8个方向对图像进行分析,客观地评价出无参考条件下直线运动模糊图像的质量。关键词:质量评价;运动模糊参数;信息损失;直线运动模糊;活动度 图像的去模糊是图像处理中的一个重要分支,在获取图像过程中,由于物体与相机之间的相对运动会造成得到的图像总会有一定程度的模糊。在现实生活中,运动模糊图像广泛存在,图像会因为摄像者与对象之间的角度和物体与相机之间的相对运动速度等的差异而导致所得到的运动模糊图像有着不同的质量,这种差异即为图像的运动模糊参数的差异。找出图像的质量与其运动模糊参数之间的关系具有重要的意义。因为在去除这些模糊之前往往要通过一定的评价来估计出图像的质量,能否准确地估计出图像质量对图像后期的去模糊处理有着重要的意义。目前大多数情况下,对模糊图像的质量评价一般采用主观的评价方法,但是主观评价不能建立一定的数学模型,而且由于主观差异的存在,不同人的知识背景和主观目的、兴趣等的不同而得出不同的结论,不能适用于很多场合。而客观质量的评价方法大致可以分为无参考图像的质量评价和有参考图像的质量评价。1 传统的图像质量分析算法图像的质量分析一般为有参考条件下的质量分析和无参考条件下的质量分析两种[1-4]。无参考判断图像的质量评价是指在不借助任何参考图像的前提下,对模糊图像的质量进行评价。而有参考图像的质量评价是指将模糊的图像与参考图像(即原图像)进行对比,得出图像的质量。传统的图像质量分析算法:(1)梯度函数。在数字图像中,图像的梯度函数可以用来对图像进行图像的边缘提取及其图像的二值化,一般来说,可以认为图像越是清晰,其图像的灰度就会变化越剧烈,就应该具有相对比较大的图像梯度值。利用梯度函数估计图像的质量一般有灰度梯度能量函数、Robert梯度和拉普拉斯(Laplacian)算子。下面以Laplacian(四邻域微分)算子和梯度幅值介绍图像的梯度函数的评价方法。对于一幅图像,对图像中的每一个像素在2×2的领域内采用Laplacian算子,得到四邻域微分值,然后再将得到的每一个微分值求和。Laplacian算子(四邻域微分)的方法如下:利用相邻像素之间的方差[6]对图像的质量进行分析,图像质量越好,相邻像素点间的灰度差值就越大,从而S值也就越大。(3)基于图像相似度方法这种方法主要是针对在有参考图像条件下的图像质量评价,图像的相似度[7]主要利用均方差误差、平均绝对值误差、修正最大范数、多分辨率误差、均方信噪比及峰值信噪比等对图像的质量进行判断。此方法主要是将模糊图像与参考图像的各种特征进行比较,二者误差越小,它们的相似度就越大,然后通过与原始图像的相似程度来判断图像的质量。以均方误差为例,一幅图像中,其均方差为:式中,b(x,y)是图像抛出点的边缘信息抛出量,I(x,y)是图像在像素点(x,y)的信息量。一般情况下,通过式(8)在有参考图像的条件下,只要估计出图像的运动模糊参数就可估计出图像的质量。(2)统计边缘信息一幅图像的主要信息,主要是通过其边缘信息量的多少来显示,边缘不明显的图像,可以认为其模糊度越大。一幅m×n的图像,对其进行边缘提取之后,图像中所显示的轮廓信息就是其包含的信息量。即边缘信息量: 通过对图3~图6图像的分析可以看出,在同一幅图像下,由于运动而导致的模糊图像中,越是模糊的图像的边缘信息抛出率η越大。而对于不同的图像,可以通过计算η来比较其质量,η越小,图像越清晰,则e越大,与图像的内容没有关系。在这一规律情况下,

维纳维纳滤波实现模糊图像恢复

维纳滤波实现模糊图像恢复 摘要 维纳滤波器是最小均方差准则下的最佳线性滤波器,它在图像处理中有着重要的应用。本文主要通过介绍维纳滤波的结构原理,以及应用此方法通过MA TLAB 函数来完成图像的复原。 关键词:维纳函数、图像复原 一、引言 在人们的日常生活中,常常会接触很多的图像画面,而在景物成像的过程中有可能出现模糊,失真,混入噪声等现象,最终导致图像的质量下降,我们现在把它还原成本来的面目,这就叫做图像还原。引起图像的模糊的原因有很多,举例来说有运动引起的,高斯噪声引起的,斑点噪声引起的,椒盐噪声引起的等等,而图像的复原也有很多,常见的例如逆滤波复原法,维纳滤波复原法,约束最小二乘滤波复原法等等。它们算法的基本原理是,在一定的准则下,采用数学最优化的方法从退化的图像去推测图像的估计问题。因此在不同的准则下及不同的数学最优方法下便形成了各种各样的算法。而我接下来要介绍的算法是一种很典型的算法,维纳滤波复原法。它假定输入信号为有用信号与噪声信号的合成,并且它们都是广义平稳过程和它们的二阶统计特性都已知。维纳根据最小均方准则,求得了最佳线性滤波器的的参数,这种滤波器被称为维纳滤波。 二、维纳滤波器的结构 维纳滤波自身为一个FIR 或IIR 滤波器,对于一个线性系统,如果其冲击响应为()n h ,则当输入某个随机信号)(n x 时, Y(n)=∑-n )()(m n x m h 式(1) 这里的输入 )()()(n v n s n x += 式(2) 式中s(n)代表信号,v(n)代表噪声。我们希望这种线性系统的输出是尽可能地逼近s(n)的某种估计,并用s^(n)表示,即 )(?)(y n s n = 式(3) 因而该系统实际上也就是s(n)的一种估计器。这种估计器的主要功能是利用当前的观测值x(n)以及一系列过去的观测值x(n-1),x(n-2),……来完成对当前信号值的某种估计。维纳滤波属于一种最佳线性滤波或线性最优估计,是一最小均方误差作为计算准则的一种滤波。设信 号的真值与其估计值分别为s(n)和)(?n s ,而它们之间的误差 )(?)()(e n s n s n -= 式(4) 则称为估计误差。估计误差e(n)为可正可负的随机变量,用它的均方值描述误差的大小显然

【精选】运动模糊图像复原

数字图象处理实验报告 2011年5月5日 目录 1 绪论 (3) 2、图像退化与复原 (4) 2.1 图像降质的数学模型 (4) 2.2匀速直线运动模糊的退化模型 (5) 2.3点扩散函数的确定 (7)

2.3.1典型的点扩散函数 (7) 2.3.2运动模糊点扩散函数的离散化 (8) 3、运动模糊图象的复原方法及原理 (9) 3.1逆滤波复原原理 (9) 3.2维纳滤波复原原理 (10) 3.3 有约束最小二乘复原原理 (11) 4、运动模糊图像复原的实现 (12) 4.1 运动模糊图像复原的MATLAB实现 (13) 4.2 复原结果比较 (16) 实验小结 (16) 参考文献 (17) 前言 在图象成像的过程中,图象系统中存在着许多退化源。一些退化因素只影响一幅图象中某些个别点的灰度;而另外一些退化因素则可以使一幅图象中的一个空间区域变得模糊起来。前者称为点退化,后者称为空间退化。图象复原的过程无论是理论分析或是数值计算都有特定的困难。但由于图象复原技术在许多领域的广泛应用,因而己经成为迅速兴起的研究热点。 图象复原就是研究如何从所得的变质图象中复原出真实图象,或说是研究如何从获得的信息中反演出有关真实目标的信息。造成图象变质或者说使图象模糊的原因很多,如果是因为在摄像时相机和被摄景物之间有相对运动

而造成的图象模糊则称为运动模糊。所得到图象中的景物往往会模糊不清,我们称之为运动模糊图象。运动模糊图象在日常生活中普遍存在,给人们的实际生活带来了很多不便。作为一个实用的图象复原系统,就得提供多种复原算法,使用户可以根据情况来选择最适当的算法以得到最好的复原效果。 图象复原关键是要知道图象退化的过程,即要知道图象退化模型,并据此采取相反的过程以求得原始(清晰)象。由于图象中往往伴随着噪声,噪声的存在不仅使图象质量下降,而且也会影响了图象的复原效果。从上面论述可以知道,运动造成图象的退化是非常普遍的现象,所以对于退化后的图象进行复原处理非常具有现实意义。图象复原的目的就是根据图象退化的先验知识,找到一种相应的反过程方法来处理图象,从而尽量得到原来图象的质量,以满足人类视觉系统的要求,以便观赏、识别或者其他应用的需要。 1、绪论 数字图象处理研究有很大部分是在图象恢复方面进行的,包括对算法的研究和针对特定问题的图象处理程序的编写。数字图象处理中很多值得注意的成就就是在这个方面取得的。 在图象成像的过程中,图象系统中存在着许多退化源。一些退化因素只影响一幅图象中某些个别点的灰度;而另外一些退化因素则可以使一幅图象中的一个空间区域变得模糊起来。前者称为点退化,后者称为空间退化。此外还有数字化、显示器、时间、彩色,以及化学作用引起的退化。总之,使图象发生退化的原因很多,但这些退化现象都可用卷积来描述,图象的复原过程就可以看成是一个反卷积的问题。反卷积属于数学物理问题中的一类“反问题”,反问题的一个共同的重要属性是其病态,即其方程的解不是连续地依赖于观测数据,换句话说,观测数据的微小变动就可能导致解的很大变动。因此,由于采集图象受噪声的影响,最后对于图象的复原结果可能偏离真实图象非常远。由于以上的这些特性,图象复原的过程无论是理论分析或是数值计算都有特定的困难。但由于图象复原技术在许多领域的广泛应用,因而己经成为迅速兴起的研究热点。 本次实验主要在PSF对图像进行运动模糊退化处理的基础上,采用逆滤波、维纳滤波和最小二乘滤波来实现图像的复原。

matlab模糊图像恢复数字图像处理

实验六 模糊图像恢复 一、实验目的 本实验是一个综合性实验,要求学生巩固学习多个知识点和内容,主要有: 1、理解掌握运动图像的退化模型; 2、掌握维纳滤波法的原理和实现方法; 3、在不同的噪声和点扩散函数参数下进行恢复,并比较结果; 4、通过分析和实验得出相应的结论。 二、实验准备 1、运动模糊退化模型:运动模糊是图像退化的一种,可以用数学表达式刻画出来。对线性移(空)不变系统,退化模型可表示为:g(x,y)=h(x,y)*f(x,y)+n(x,y)。对匀速直线运动而言,退化图像为: ()()()[]?--=T dt t y y t x x f y x g 000,, 其中x 0(t)和y 0(t)分别表示x 和y 方向的运动分量。并假设退化系统是线性移不变的,光学成像过程是完善的,快门开关是瞬间完成的。 对上式进行傅立叶变换,则得频域表达式为 ()()()[]()()[]()[]()()()[]{}) ,(),(2exp ,2exp ,2exp ,,000000v u H v u F dt t vy t ux j v u F dt dxdy vy ux j t y y t x x f dxdy vy ux j y x g v u G T T =+-=???? ????+---=+-=??????+∞∞-+∞∞-+∞∞-+∞ ∞-πππ 其中 ()()()[]{}dt t vy t ux j v u H T ?+-=0002exp ,π 假设景物只在x 方向匀速运动,在T 时间内共移动距离是a ,即x 0(t)=at/T ,y 0(t)=0,则 ()()[]ua j ua ua T dt T at u j v u H T ππππ-=?? ???? -=?exp sin 2exp ,0 在Matlab 中可用滤波器卷积的方法仿真出运动模糊图像。

(完整word版)运动模糊图像复原开题报告

数字图像处理大作业 - 运动模糊图像复原 开题报告 小组成员:张博文、范桂峰、笪腾飞 一、研究意义 相机对物体成像时 ,由于平台的颤振,在曝光时间内成像器件与物体之间往往存在着相对运动 ,在像面上产生像移 ,因此拍出来的图像是被运动模糊后的图像。这种图像质量较差 ,对比度和分辨率均降低 ,需要进行恢复。 二、研究现状 如果这种相对运动属于平动,则可以把模糊过程看作一个线性位移不变的系统。因此 ,如果知道了系统的冲激响应 ,在这里是点扩展函数 ( PSF) ,就可以用来恢复图像。但是 ,模糊过程的点扩展函数往往是不知道的,因此图像恢复的关键就变成了如何推导点扩展函数。如 Marius Tico 从图像序列入手 ,通过一帧快速曝光未被运动模糊,但却因曝光不足而信噪比很低的图像,以及一帧曝光充足但被运动模糊了的图像来计算点扩展函数,然后恢复。但更多的研究还是集中在如何从单帧被模糊了的图像中找出点扩展函数,主要有2类 ,一类从空域直接入手,利用差分、相关等等各种方法计算,另一种则是通过图像变换后的频谱域中的零值点来计算,这些方法往往只能计算特殊运动形式的点扩展函数 ,主要是匀速直线运动,而且受噪声影响精度比较低。相机的振动通常比较复杂 ,这些方法的适用性受到限制,因此 ,需要找到一种能够不受运动形式和运动方向限制的计算模糊过程点扩展函数的方法。 一种方法是利用了利用经阈值化处理的Radon 变换估计模糊方法,通过微分自相关法估计模糊长度,最后应用带最优窗的维纳滤波进行图像复原,该算法能够较为精确地估算出运动模糊图像的模糊参数并取得了较好的恢复效果,提升了图像恢复的抗噪性能,具有实际参考价值。这是属于第一种空域处理方法。 另一种方法是运动模糊图像经傅立叶变换后在频域有频谱零点进行参数估计,通过霍夫变换初步求得运动模糊图像的点扩展函数,当估计出运动模糊图像的点扩展函数的参数后,用神经网络方法进行恢复。这种恢复模型可以对任意角

基于MATLAB的运动模糊图像恢复技术

基于MATLAB的运动模糊图像恢复技术 王洪珏 (温州医学院,浙江,温州) 摘要:MATLAB是当今流行的科学计算软件,它具有很强的数据处理能力。在其图像处理工具箱中有四个图像复原函数,本文就这些函数的算法原理、运用和恢复处理效果结合实力效果作简要对比讨论。 0前言 图像复原时图像处理中一个重要的研究课题。图像在形成、传输和记录的过程中,由于传感器的噪声、摄像机未对好焦、摄像机与物体相对运动、系统误差、畸变、噪声等因素的影响,使图像往往不是真实景物的完善影像。这种图像在形成、传输和记录过程中,由于成像系统、传输介质和设备的不完善,使图像质量下降的过程称为图像的退化。图像复原就是通过计算机处理,对质量下降的图像加以重建或恢复的过程。 图像复原过程一般为:找退化原因→建立退化模型→反向推演→图像复原 1算法产生概述 开发算法时,首先要创建图像退化的线性数学模型,接着选择准则函数,并以适当的数学形式表达,然后进行数学推演。推演过程中通常要进行表达形式(即空域形式、频域形式、矩阵-矢量形式或变换域形式)的相互转换,最后得到图像复原算式。 退化数学模型的空域、频域、矢量-矩阵表达形式分别是: g(x,y)=d(x,y)*f(x,y)+n(x,y) G(u,v)=D(u,v)〃F(u,v)+N(u,v) g=HF+n 其中:g(x,y)、d(x,y)、f(x,y)、n(x,y)分别为观测的退化图像、模糊函数、原图像、加性噪声,*为卷积运算符,(x=0,1,2,…,M-1),(y=0,1,2,…,N-1)。 2运动模糊的产生 景物与相机之间的相对运动通常会使相机所成的像存在运动模糊。对于线性移不变模糊,退化图像u0可以写成,u0=h*u+n,其中h为模糊核,*表示卷积,n为加性噪声。 由du/dt=0,文献[5]将这种运动模糊过程描述为波动方程:

基于MATLAB的运动模糊图像处理

基于MATLAB的运动模糊图像处理 提醒: 我参考了文献里的书目和网上的一些代码而完成的,所以误差会比较大,目前对于从网上下载的模糊图片的处理效果很不好,这是我第一次上传自己完成的实验的文档,希望能帮到一些人吧。 研究目的 在交通系统、刑事取证中图像的关键信息至关重要,但是在交通、公安、银行、医学、工业监视、军事侦察和日常生活中常常由于摄像设备的光学系统的失真、调焦不准或相对运动等造成图像的模糊,使得信息的提取变得困难。但是相对于散焦模糊,运动模糊图像的复原在日常生活中更为普遍,比如高速运动的违规车辆的车牌辨识,快速运动的人群中识别出嫌疑人、公安刑事影像资料中提取证明或进行技术鉴定等等,这些日常生活中的重要应用都需要通过运动模糊图像复原技术来尽可能地去除失真,恢复图像的原来面目。因此对于运动模糊图像的复原技术研究更具有重要的现实意义。 图像复原原理 本文探讨了在无噪声的情况下任意方向的匀速直线运动模糊图像的复原问题,并在此基础上讨论了复原过程中对点扩散函数(PSF)的参数估计从而依据自动鉴别出的模糊方向和长度构造出最为近似的点扩散函数,构造相应的复原模型,实现运动模糊图像的复原;在模糊图像自动复原的基础上,根据恢复效果图的纹理特征和自动鉴别出的模糊长度和角度,人工调整模糊方向和长度参数,使得复原效果达到最佳。 实验过程 模糊方向的估计: 对图1(a)所示的原始图像‘车牌’图像做方向θ=30?,长度L=20像素的匀速直线运动模糊,得到退化图像如图1(b)

1(a) 1(b) j=imread('车牌1.jpg'); figure(1),imshow(j); title('原图像'); len=20; theta=30; psf=fspecial('motion',len,theta); j1=imfilter(j,psf,'circular','conv'); figure,imshow(j1); title('PSF 模糊图像'); 图1(c)和1(d)分别为原图像和模糊图像的二次傅里叶变化

实验五 图像复原

信息工程学院实验报告 课程名称:数字图像处理Array 实验项目名称:实验五图像复原实验时间: 班级:姓名:学号: 一、实验目的 1.了解图像退化/复原处理的模型; 2. 掌握图像复原的原理及实现方法; 3. 通过本实验掌握利用MATLAB编程实现图像的恢复。 4. 掌握matlab代码的调试方法,熟悉常见代码错误及改正方法。 二、实验步骤及结果分析 MATLAB图像处理工具箱包含四个图像复原函数,请参照教材第126页例6.8编程实现图像复原。 1.用点扩散(PSF)函数创建运动模糊图像,修改参数改变模糊程度。 a) 无噪声运动模糊图像 b) 有噪声运动模糊图像 程序代码: I=imread('cameraman.tif'); %读取图像 subplot(1,3,1); imshow(I,[]);%显示图像 title('原始图像'); PSF=fspecial('motion',25,11); %运动模糊函数,运动位移是25像素,角度是11 Blurred=imfilter(I,PSF,'conv','circular'); %对图像运动模糊处理 subplot(1,3,2); imshow(Blurred,[]);title('无噪声运动模糊图像'); %显示无噪声运动模糊图像 Noise=0.05*randn(size(I)); %正态分布的随机噪声 BlurredNoisy=imadd(Blurred,im2uint8(Noise));%对退化后的图像附加噪声 subplot(1,3,3); imshow(BlurredNoisy,[]);title('有噪声运动模糊图像'); %显示运动模糊且加噪声后图像 执行结果:

数字图像复原技术中运动模糊图像相关问题研究

数字图像复原技术中运动模糊图像相关问题研究【摘要】随数字图像复原处理技术是当前数字图像处理领域的重要研究课题之一,运动模糊图像的复原是数字图像复原处理技术中较常见也是较难解决的一类问题。本论文的研究工作正是围绕运动模糊图像复原技术展开。分析运动模糊图像的成因以及成像过程;建立运动模糊退化模型;用维纳滤波复原方法对模糊图像进行复原;根据维纳滤波运动模糊图像复原方法中的不足之处,引入介绍了一种新的方法,降低了原有算法的复杂度,改进了维纳滤波。本文主要研究了维纳滤波复原方法并对其进行了改进,其他复原方法有待我们进一步研究。 【关键词】数字图像复原处理技术;运动模糊图像复原;维纳滤波复原;改进维纳滤波复原 图像成像的过程中存在很多的退化源,数字图像在获取、传输和存储过程中受各种原因的影响,会造成图像质量的退化,典型的表现有图像模糊、失真、有噪声等。运动模糊图像是由于相机和被拍摄对象之间的相对运动而造成的模糊现象,这一现象在日常生活中经常遇到,因此运动模糊图像复原技术便成为目前图像复原技术的研究热点之一,运动模糊图像复原是数字图像处理中的一个重要课题。它研究的主要目的是改善给定的图像质量并尽可能复原图像。图像复原的目的就是尽可能恢复被退化图像的本来面目。 运动模糊图像的复原方法研究非常具有现实意义。无论在日常生活还是在国防军工领域,运动造成图像模糊现象普遍存在,这给人

们生活和航空侦察等造成很多不便,所以很有必要对运动模糊图像的恢复做深入研究。在交通系统、刑事取证中图像的关键信息至关重要,但是在交通、公安、银行、医学、工业监视、军事侦查和日常生活中常常由于摄像设备的光学系统的失真、调焦不准或相对运动等造成图像的模糊,使得信息的提取变得困难。通过对于运动模糊图像的复原,使图像变的清晰,便于更好地提取相应信息。因此对于运动模糊图像的复原技术研究更具有重要的现实意义。 一、图像复原的基本概念 图像复原技术,也称为图像去卷积技术,它是按着图像模糊的反过程进行,其目的是获取清晰的,未被污染的图像的近似值,从而我们可以使用相关信息来正确解读图像所包含的有效信息。要想复原图像,其中必须要知道的是模糊是空域不变的还是空域变化的:空域不变意味着模糊和位置无关。也就是说,一个模糊的物体无论从图像的那个位置看都是一样的。空域变化意味着模糊和位置有关。也就是说,模糊图像中的物体因位置变化而看起来有所不同。 二、维纳滤波图像复原 从噪声中提取信号波形的各种估计方法中,维纳滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号,而不只是它的几个参量。 设维纳滤波器的输入为含噪声的随机信号。期望输出与实际输出之间的差值为误差,对该误差求均方,即为均方误差。因此均方误差越小,噪声滤除效果就越好。为使均方误差最小,关键在于求冲

High-quality Motion Deblurring from a Single Image(运动图像去模糊)中文翻译

高质量单幅图片运动去模糊 celerychen 译 摘要:我们提出了一种从单一图片去除运动模糊的算法。我们的方法在去模糊图像的计算过程中,对于卷积核的估计和清晰图像,采用统一的概率模型。我们分析了当前去模糊方法中通常存在的人工痕迹的产生原因,而后在我们的概率模型中引入了一些新的术语。这些术语包括模糊图像噪声的空域随机模型,还有新的局部平滑先验知识。通过对比度约束,即使是低对比的模糊图像,也能减少人工振铃效应。最后,我们描述了一种有效的优化方案,通过交替估计模糊核和清晰图像的复原过程直到收敛。经过这些步骤,我们能够在一个低的计算复杂度的时间内获得一个高质量的清晰图像。我们的方法生成的图像质量相当于用多张模糊图片生成的清晰图片的效果,而后者的方法需要额外的硬件资源。 关键字运动去模糊人工振铃图像增强滤波 1.介绍 数字摄像机最常见的人工痕迹之一是由于相机的抖动引起的运动模糊。在很多情况下,光线不足,要避免使用快速的长快门;这一不可避免将使我们的快照变得模糊和令人失望。在数字图像处理领域,从单张运动模糊的照片中恢复出清晰的图像,是一个长期和根本性的研究课题。如果我们假定模糊核,或者说是点扩散函数PSF是线性时不变的,这一问题可以被概括为图像的反卷积问题。图像的反卷积问题可以进一步分为盲反卷积和非盲反卷积。在非盲反卷积的问题当中,卷积核被认为是已知的或者在别处已经计算得出了,剩下的问题就是估计不模糊的清晰的自然图像。传统的方法例如维纳滤波和RL反卷积方法在几十年之前就已经被提出了。但是,他们现在仍然被广泛采用,因为他们简单高效。然而,这些方法在在图像的强边缘出易于产生令人生厌的人工振铃的痕迹。盲反卷积问题当中,卷积核和清晰的自然图像均是未知的,而且问题甚至是高度病态的。自然图像结构的复杂性和卷积核形状的任意性,很容易使得先验概率的估计出现过拟合或欠拟合。 在本论文当中,我们通过探究盲反卷积问题产生的可视人工痕迹例如振铃效应产生的原因开始。我们的研究表明,如果模糊图像没有噪声并且卷积核被准备无误的估计而没有误差,现有的反卷积方法能够高效的执行的很好。因此,我们注意到,一个固有的带噪图像的好的模型和一个更明确的处理由于卷积核估计误差造成的可视人工痕迹的方法,对于产生好的结果是有本质上的提高的。基于这样的想法,我们提出了一个统一的概率模型。不管是盲反卷积问题还是非盲反卷积问题,通过一种高级的迭代优化方案,交替地估计卷积核和复原图像直到收敛。这种方法的迭代过程就是求解相应的最大后验概率问题。我们的算法使用一个很粗糙的核估计方法来初始化卷积核【例如一条直线】,我们的方法收敛的结果能够保持复杂图像的结构和边缘细节的清晰,同时避免人工振铃的痕迹,参见图一。 为了实现这些结果,我们的技术主要得益于三方面的因素。首先,一种新的图像噪声空域随机分布模型。这个模型有助于我们分离在图像的噪声估计和卷积核估计过程中产生的误

基于MATLAB的运动模糊图像处理

基于 MATLAB 的运动模糊图像处理 提醒: 我参考了文献里的书目和网上的一些代码而完成的,所以误差会比较大,目前对于从网上下载的模糊图片的处理效果很不好,这是我第一次上传自己完成的实验的文档,希望能帮到一些人吧。 研究目的 在交通系统、刑事取证中图像的关键信息至关重要,但是在交通、公安、银行、医学、工业监视、军事侦察和日常生活中常常由于摄像设备的光学系统的失真、 调焦不准或相对运动等造成图像的模糊,使得信息的提取变得困难。但是相对于散焦模糊,运动模糊图像的复原在日常生活中更为普遍,比如高速运动的违规车辆的车牌辨识,快速运动的人群中识别出嫌疑人、公安刑事影像资料中提 取证明或进行技术鉴定等等,这些日常生活中的重要应用都需要通过运动模糊 图像复原技术来尽可能地去除失真,恢复图像的原来面目。因此对于运动模糊图像的复原技术研究更具有重要的现实意义。 图像复原原理 本文探讨了在无噪声的情况下任意方向的匀速直线运动模糊图像的复原问题, 并在此基础上讨论了复原过程中对点扩散函数 (PSF)的参数估计从而依据自动鉴别 出的模糊方向和长度构造出最为近似的点扩散函数,构造相应的复原模 型,实现运动模糊图像的复原;在模糊图像自动复原的基础上,根据恢复效果图的纹理特征和自动鉴别出的模糊长度和角度,人工调整模糊方向和长度参 数,使得复原效果达到最佳。 实验过程 模糊方向的估计: 对图 1(a)所示的原始图像‘车牌’图像做方向= 30,长度 L=20像素的匀速直线运动模糊,得到退化图像如图1(b)

1(a)1(b) j=imread('车牌 1.jpg');len=20; theta=30; figure(1),imshow(j);psf=fspecial('motion',len,theta); title(' 原图像');j1=imfilter(j,psf,'circular','conv'); figure,imshow(j1); title('PSF模糊图像'); 图 1(c)和 1(d)分别为原图像和模糊图像的二次傅里叶变化

运动模糊图像复原课程设计

% 目录 摘要 (2) 1、引言 (3) 2、图像的退化模型 (4) 模糊图像的一般退化模型 (4) 匀速直线运动模糊的退化模型 (6) 离散函数的退化模型 (7) , 3、运动模糊图像的复原方法及原理 (9) 有约束最小二乘复原原理 (9) 逆滤波复原原理 (10) 维纳滤波复原原理 (11) 4、图像复原仿真过程与结果分析 (13) 运动模糊图像复原仿真过程 (13) 结果分析 (16) 总结 (17) … 参考文献 (18)

摘要 、 随着计算机技术的发展,计算机的运行速度和运算精度得到进一步提高,其在图像处理领域的应用日见广泛。图像复原是数字图像处理的重要组成部分,而运动模糊图像复原又是图像复原中的重要课题之一。本论文研究目的在于将传统的光学理论与正在发展的数字图像处理方法相结合,利用计算机对运动模糊图像进行复原,进一步提高运动模糊图像的复原精度,降低在拍摄过程中对光学设备精度和拍摄人员的要求。可广泛用于天文、军事、道路交通、医学图像、工业控制及侦破等领域,具有十分重要的现实意义。 $

第一章引言 在实际的日常生活中,人们要接触很多图像,画面。而在景物成像这个过程里可能会出现模糊、失真或混入噪声,最终导致图像质量下降,这种现象称为图像“退化”。因此我们可以采取一些技术手段来尽量减少甚至消除图像质量的下降,还原图像的本来面目,即在预定义的意义上改善给定的图像,这就是图像复原。尽管图像增强和图像复原之间有重叠部分,但前者主要是主观处理,而图像复原大部分是客观处理。复原通过使用退化现象的先验知识试图重建或恢复一副退化的图像。因此,复原技术趋向于将退化模型化并用相反的处理来恢复原图像,即考虑用模糊函数来消除图像的模糊。引起图像模糊有多种多样的原因,举例来说有运动引起的,高斯噪声引起的,斑点噪声引起的,椒盐噪声引起的等等。 本文主要研究离焦模糊图像的复原,离焦模糊图像是指在拍摄时景物与相机的相对运动引起的离焦 ,或是成像区域内不同深度的对象所引起不同程度的离焦 ,还有由于在成像区域中存在不同深度的对象会使自动调焦系统引起混淆而导致拍摄的相片离焦等。因此本文研究使用MATLAB把退化现象模型化,并利用维纳(Wiener)滤波、约束最小二乘滤波算法、逆滤波等常用的滤波方法用MATLAB进行了仿真实现,为人们在不同的应用场合及不同的图像数据条件下选择不同的复原算法提供了一定的依据. ·

模糊图像复原技术在刑事侦查中的应用

龙源期刊网 https://www.doczj.com/doc/4310373515.html, 模糊图像复原技术在刑事侦查中的应用 作者:刘飞飞 来源:《科技与创新》2016年第11期 摘要:随着科学技术应用的飞速发展,图像处理的数字化水平不断提高,各种图像显示 设备的升级更加快速,因此人们在应用图像处理或者图像显示的过程中能够深刻感受到技术带来的新体验以及信息化应用水平的提高。这也给人们的生活带来的极大的便利。这些图像处理技术不仅应用与人们的日常生活,也被广泛应用于军事、交通等各个领域。通过详细介绍模糊图像复原技术在刑事侦查中的应用,揭示了图像处理系统的提升对于刑事侦查工作的影响。 关键词:模糊图像;复原技术;矫正;刑事侦查 中图分类号:DF793.2 文献标识码:A DOI:10.15913/https://www.doczj.com/doc/4310373515.html,ki.kjycx.2016.11.153 文章编号:2095-6835(2016)11-0153-02 众所周知,图像应用技术给人们的生活带来了各种便利。不管是日常生活,还是文化艺术体验,图像给人们以直观、真实的感受。通过对光学图像的获取,经过几个程序显示在镜头、底片、储存介质上,帮助我们记录生活、记录思想。但是,光学传输过程受到各种介质的影响,成像系统的千差万别,都会对图像产生不同的影响。因此,我们经常会遇到图像像素重叠、失焦、对比度较差等问题,这些问题会导致成像图片的质量较差。而图像复原技术就是对退化图像进行。因此,从图像模糊的成因、图像复原技术以及其应用三个方面进行说明。 1 模糊图像的成因 一般来说,模糊图像的成因分为两个方面:①外部原因。例如在光学图像的获取过程中,外界天气不佳、目标与成像系统的运动、目标在场景中景深不一致等因素造成捕获图像过于模糊。②自身因素。由于自身摄影技术水平有限,使得记录中的图像退化,产生模糊图像。这对于刑事侦查过程中的目标识别、追踪所产生的影响不言而喻。 这样的图像对比度较低——虽然能看得到,但却看不清,给具体的监控工作带来了不小的困难。因此,我们需要具体分析模糊图像产生的因素,减少模糊图像出现的概率。我们可以从以上两个成因中看出,外界因素对于模糊图像的影响最为直接。曝光不足、曝光过度、恶劣天气、噪声干扰都会使得图像的质量下降,并且由于储存设备本身在对图像进行压缩之后,也会在一定程度上压缩图像的相关细节。因此,在这些情况下,我们就需要对模糊图像进行复原。 2 模糊图像复原技术及其应用

运动模糊图像的复原

摘要 运动模糊图像的复原是图像复原中较常见也是较难的一类,在智能交通系统中有着广泛的应用。本文面向车牌识别应用,对运动模糊图像的复原技术进行了系统的研究与实现。 匀速直线运动模糊图像复原的关键在于运动模糊方向和长度的自动鉴别两个方面。将原图像视为各向同性的一阶马尔科夫过程,通过用双线性插值来进行方向微分,实现了运动模糊方向的自动鉴别算法;根据分析模糊图像的频谱图出现黑色条带的原因、条件以及它的精确位置,实现了运动模糊长度自动鉴别算法。 针对复杂成像情况下的运动模糊图像复原工作,着重解决了含噪运动模糊图像和局部运动模糊图像的复原问题;综合应用椒盐噪声检测器和基于带可变正则化参数的径向基神经网络(I也FN)方法,实现了组合滤波器去噪算法,采用改进的局部运动模糊对象提取算法实现局部运动模糊图像的复原。 开发了车牌模糊图像复原系统。该系统对模糊长度和模糊角度均具有较高的鉴别精度,对于含有噪声的运动模糊图像和局部模糊图像进行相应的去噪处理和对局部模糊对象进行提取,并提供参数调整机制以获得最佳的复原效果。自动实现各种类型的运动模糊车牌图像的清晰恢复,复原的效果图可直接应用于后续的车牌识别等工作。 关键词:图像复原,运动模糊,模糊方向,模糊长度,噪声,局部模糊,车牌识别 ABSTRACT The restoration of motion-blurred images is a familiar and also difficult type in image restoration,thus the study of the motion-blurred image restoration is of very extensive operation significance.Towards the license plate recognition application,we systemically study and implement the technology of motion-blurred image restoration. The key problem of restoring constant-speed straight-line motion-blurred images lies in the estimation of motion-blurred direction and motion-blurred length.The original image obeys isotropy Markov process with rank one,Can efficiently identify it with high precision via on directional derivation using bilinear interpolation;realizes automatic estimation of motion-blurred length;according to the reason and condition of black strips in the spectrum images of motion-blurred images and specified the exact positions of black strips,a method to accurately estimate the blurring length of uniform linear motion blurred images is implemented.For the restoration of motion-blurred images in complex imaging environment,this paper emphasizes on the restoration of noisy motion-blurred images and partial motion-blurred images,realizes a combined filter using both the salt-and-pepper noise detector and radial basis function network approaches,and devises the picking estimation for partial motion-blurred images.we develop a system of motion.blurred license plate images restoration.The system results in precise discrimination for blurred length and blurred direction,to the noisy motion-blurred image and partial blurred image,the system can implement the process of wiping out noises and picking up the partial blurred objects,and realizes the perfect

相关主题
相关文档 最新文档