当前位置:文档之家› 焊接钢管9种焊接工艺方法

焊接钢管9种焊接工艺方法

焊接钢管9种焊接工艺方法
焊接钢管9种焊接工艺方法

焊接钢管9种焊接工艺方法

1.高频电阻焊

利用高频电流的集肤效应和邻近效应,快速加热管坯钢带边缘使之达到熔融状态,在挤压辊作用下挤压溶合金属实现焊接的方法。

2.埋弧焊

焊接电弧在焊剂的覆盖下实现电弧焊接的方法。焊接金属熔池在焊剂覆层保护下凝固成焊缝,焊剂熔融层冷却为渣壳覆盖在焊缝外表面。

3.钨极惰性气体保护焊(TIG)

利用纯钨或活化钨(钍钨、铈钨等)作为电极的惰性气体保护焊成钨极惰性气体保护焊,其英文简称为TIG焊。它是在惰性气体的保护下,利用钨电极与焊件间产生的电弧热熔化母材和填充焊丝的一种焊接方法。

4.熔化极惰性气体保护焊(GMAW)

使用焊丝为熔化电极的惰性气体保护焊。

5.CO2气体保护焊

用纯度>99.8%的CO2作保护气体的熔化极气体保护焊。

6.混合气体保护焊

由两种或两种以上气体,按一定比例组成的混合气体作为保护气体的气体保护焊。

氩弧焊:使用氩气作为保护气体的气体保护焊。

7.脉冲氩弧焊

利用基值电流保持主电弧的电离通道,并周期性地加一同极性高峰值脉冲电流产生脉冲电弧,以熔化金属并控制熔滴过渡的氩弧焊。

8.等离子弧焊

借助水冷喷嘴对电弧的拘束作用,获得较高能量密度的等离子弧进行焊接的方法。

9.热钎焊

焊接过程中,采用比母材熔点低的金属材料作钎料,将焊件和钎料加热到高于钎料熔点、低于母材熔点的温度,利用液态钎料润湿母材,填充连接间隙并与母材相互扩散实现连接焊件的方法称为钎焊。常用的复合钢钎焊方法为感应钎焊。

不锈钢管道焊接工艺

不锈钢管道焊接工艺 1 技术特征 1.1材质规格:304( 相当于0Cr18Ni9) 1.2工作介质: 水软水 1.3设计压力: 2工作压力:5Kg/CM1.42试验压力: 7.5Kg/CM1.52 本工程编制依据2.1 F43C技术文件. 2.2 国标GB50236-98《现场设备、工业管道焊接工程施工及验收规范》 2.3 国标GB50235-97《工业金属管道施工及验收规范》 2.4 本公司焊接工艺评定报告:HG1 3 焊工 3.1 焊工应具有“锅炉压力容器压力管道焊工考试规则”规定的焊工考试合格证。 3.2 焊工进入现场后应按GB50236-98规定先进行焊接实际操作考试合格,经总包方认可发证后方能担任本项目的焊接工作。 4 焊接检验 4.1焊接检验人员应熟悉F43C技术文件及有关国标和本工艺。 4.2对管材焊材按规定进行检验、填表验收。 对违反者进行教育帮,对焊工是否执行本工艺进行全面监督检查4.3.. 助得以改正。对严重违反者或教育不改者有权令其停止焊接工作。以

确保焊接质量。 4.4 做好本工艺第7条“焊接后检查和管理工作”。 4.5 邀请和欢迎总包方和监理方检查人员检查焊接质量。 5 焊前准备 5.1.1 管材、焊材必须具有符合规定的合格证明,并与实物核对无误。 5.1.2 管材型号为304级相当等于我国的0Cr18Ni9规格标准。按项目图纸规定。 5.1.3 不锈钢焊丝型号规格为:H0Cr20Ni10Ti φ2.5mm φ2.0mm 5.1.4 不锈钢电焊条型号规格:A132 φ3.2mm φ2.5mm 5.1.5 铈钨电极型号规格:WCe-20 φ2.0mm 5.1.6 氩气纯度为99.99%。 5.2 焊件准备 5.2.1 焊接口的分布位置必须符合国标GB50235-97和GB50236-98规范的规定。 5.2.2 管道为V型坡口,对接接头、组对应符合图1要求: 注:间隙3.5~4mm为焊接时的数据,组对点固焊时,应适当大于此数据,以补收缩。 .. . 图1.焊口组对数据

焊接工艺基础知识

第四节焊接工艺基础知识 一、焊接接头的种类及接头型式 焊接中,由于焊件的厚度、结构及使用条件的不同,其接头型式及坡口形式也不同。焊接接头型式有:对接接头、T形接头、角接接头及搭接接头等。 (一)对接接头 两件表面构成大于或等于135°,小于或等于180°夹角的接头,叫做对接接头。在各种焊接结构中它是采用最多的一种接头型式。 钢板厚度在6mm以下,除重要结构外,一般不开坡口。 厚度不同的钢板对接的两板厚度差(δ—δ1)不超过表1—2规定时,则焊缝坡口的基本形式与尺寸按较厚板的尺寸数据来选取;否则,应在厚板上作出如图1—8所示的单面或双面削薄;其削薄长度L≥3(δ—δ1)。 图1—8 不同厚度板材的对接 (a)单面削薄,(b)双面削薄 较薄板厚度δ1≤2~5 >5~9 >9~12 >12 允许厚度差(δ—δ1) 1 2 3 4 (二)角接接头 两焊件端面间构成大于30°、小于135°夹角的接头,叫做角接接头,见图1—9。这种接头受力状况不太好,常用于不重要的结构中。 图1—9 角接接头 (a)I形坡口;(b)带钝边单边V形坡口 (三)T形接头 一件之端面与另一件表面构成直角或近似直角的接头,叫做T形接头,见图1—10。 图1—10 T形接头 (四)搭接接头 两件部分重叠构成的接头叫搭接接头,见图1—11。

图1—11 搭接接头 (a)I形坡口,(b)圆孔内塞焊;(c)长孔内角焊 搭接接头根据其结构形式和对强度的要求,分为不开坡口、圆孔内塞焊和长孔内角焊三种形式,见图1—11。 I形坡口的搭接接头,一般用于厚度12mm以下的钢板,其重叠部分≥2(δ1+δ2),双面焊接。这种接头用于不重要的结构中。 当遇到重叠部分的面积较大时,可根据板厚及强度要求,分别采用不同大小和数量的圆孔内塞焊或长孔内角焊的接头型式。 二、焊缝坡口的基本形式与尺寸 (一)坡口形式 根据坡口的形状,坡口分成I形(不开坡口)、V形、Y形、双Y形、U形、双U形、单边V形、双单边Y形、J形等各种坡口形式。 V形和Y形坡口的加工和施焊方便(不必翻转焊件),但焊后容易产生角变形。 双Y形坡口是在V形坡口的基础上发展的。当焊件厚度增大时,采用双Y形代替V形坡口,在同样厚度下,可减少焊缝金属量约1/2,并且可对称施焊,焊后的残余变形较小。缺点是焊接过程中要翻转焊件,在筒形焊件的内部施焊,使劳动条件变差。 U形坡口的填充金属量在焊件厚度相同的条件下比V形坡口小得多,但这种坡口的加工较复杂。 (二)坡口的几何尺寸 (1)坡口面待焊件上的坡口表面叫坡口面。 (2)坡口面角度和坡口角度待加工坡口的端面与坡口面之间的夹角叫坡口面角度,两坡口面之间的夹角叫坡口角度,见图1—12。 (3)根部间隙焊前在接头根部之间预留的空隙叫根部间隙,见图1—12。其作用在于打底焊时能保证根部焊透。根部间隙又叫装配间隙。 (4)钝边焊件开坡口时,沿焊件接头坡口根部的端面直边部分叫钝边,见图1—12。钝边的作用是防止根部烧穿。 (5)根部半径在J形、U形坡口底部的圆角半径叫根部半径(见图1—12)。它的作用是增大坡口根部的空间,以便焊透根部。

焊接作业指导书及焊接工艺

焊接作业指导书及焊接 工艺 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

焊接作业指导书及焊接工艺 1.目的:明确工作职责,确保加工的合理性、正确性及可操作性。规范安全操作,防患于未然,杜绝安全隐患以达到安全生产并保证加工质量。 2.范围: .适用于钢结构的焊接作业。 .不适用有特殊焊接要求的产品及压力容器等。 3.职责:指导焊接操作者实施焊接作业等工作。 4.工作流程 作业流程图 4.1.1.查看当班作业计划 4.1.2.阅读图纸及工艺 4.1.3.按图纸领取材料或半成品件 4.1.4.校对工、量具;材料及半成品自检 4.1. 5.焊接并自检 4.1.6.报检

.基本作业: 4.2.1.查看当班作业计划:按作业计划顺序及进度要求进行作业,以满足生产进度的需要。 4.2.2.阅读图纸及工艺:施焊前焊工应仔细阅读图纸、技术要求及焊接工艺文件,明白焊接符号的涵义。确定焊接基准和焊接步骤;自下料的要计算下料尺寸及用料规格,参照工艺要求下料。有半成品分件的要核对材料及尺寸,全部满足合焊图纸要求后再组焊。 4.2.3.校准:组焊前校准焊接所需工、量具及平台等。 4.2.4.自检、互检:所有焊接件先行点焊,点焊后都要进行自检、互检,大型、关键件可由检验员配合检验,发现问题须及时调整。 4.2. 5.首件检验:在批量生产中,必须进行首件检查,合格后方能继续加工。 4.2.6.报检:工件焊接完成后及时报检,操作者需在图纸加工工艺卡片栏及施工作业计划上签字。(外加工件附送货单及自检报告送检)。 5.工艺守则: .焊前准备

CrMo钢管焊接工艺

15CrMo钢管焊接工艺 焊接工艺 方案Ⅰ:焊接预热,采用ER80S-B2L焊丝,TiG焊打底。E8018-B2焊条,焊条电弧焊盖面,焊后进行局部热处理。 方案Ⅱ:采用ER80S-B2L焊丝,TiG焊打底。E309Mo-16焊条,焊条填充电弧焊盖面,焊后不进行热处理。 焊丝和焊条的化学成分及力学性能见表1。 表1 焊接材料的化学成分和力学性能 型号 C Mn Si Cr Ni Mo S P δb/Mpa δ,% ; ER80S-B2L ≤ . < ≤≤≤500 25 ; E8018-B2 ≤≤ 550 19 ; E309Mo-16≤~~~~≤≤ 550 25 ; 焊前准备 试件采用15CrMo钢管,规格为φ325×25,坡口型式及尺寸见图1。

焊前用角向磨光机将坡口内外及坡口边缘50mm范围内打磨至露出金属光泽,然后用丙酮清洗干净。 试件为水平固定位置,对口间隙为4mm,采用手工钨极氩弧焊沿园周均匀点焊六处,每处点固长度应不小于20mm。焊条按表2的规范进行烘烤。 焊条烘烤规范 焊条型号烘烤温度保温时间 E8018-B2 300 ℃ 2h E309Mo-16 150 ℃ 工艺参数 按方案Ⅰ焊前需进行预热,根据Tto-Bessyo等人提出的计算预热温度公式: To=350√[C](℃)式中,To——预热温度,℃。 [C]=[C]x [C]p [C]p=[C]x [C]x=C (Mn Cr)/9 Ni/18 7Mo/90 式中, [C]x——成分碳当量; [C]p——尺寸碳当量; S——试件厚度(本文中S=25mm); [C]x=C (Mn Cr)/9 7/90Mo= [C]p= 则To=138℃

焊接工艺规范及操作规程

焊接工艺规范及操作规程 1.目的和适用范围 1.1 本规范对本公司特殊过程――焊接过程进行控制,做到技术先进、经济合理、安全适用、确保质量。 1.2 本规范适用于各类铁塔结构、桁架结构、多层和高层梁柱框架结构等工业与民用建筑和一般构筑物的钢结构工程中,钢材厚度≥4mm的碳素结构钢和低和金高强度结构钢的焊接。适用的焊接方法包括:手工电弧焊、气体保护焊、埋弧焊及相应焊接方法的组合。2.本规范引用如下标准: JGJ81-2002《建筑钢结构焊接技术规程》 GB50205-2001《钢结构工程施工质量验收规范》 GB50017-2003《钢结构设计规范》 3.焊接通用规范 3.1 焊接设备 3.1.1 焊接设备的性能应满足选定工艺的要求。 3.1.2 焊接设备的选用: 手工电弧焊选用ZX3-400型、BX1-500型焊机 CO2气体保护焊选用KRⅡ-500型、HKR-630型焊机 埋弧自动焊选用ZD5(L)-1000型焊机 3.2 焊接材料 3.2.1 焊接材料的选用应符合设计图纸的要求,并应具有钢厂和焊接材料厂出具的质量证明书或检验报告;其化学成份、力学性能和其它质量要求必须符合国家现行标准规定。3.2.2 焊条应符合现行国家标准《碳钢焊条》(GB/T5117),《低合金钢焊条》(GB/T5118)的规定。 3.2.3 焊丝应符合现行国家标准《熔化焊用钢丝》(GB/T14957)、《气体保护电弧焊用碳钢、低合金钢焊丝》(GB/T8110)及《碳钢药芯焊丝》(GB/T10045)、《低合金钢药芯焊丝》(GB/T17493)的规定。 3.2.4 埋弧焊用焊丝和焊剂应符合现行国家标准《埋弧焊用碳钢焊丝和焊剂》(GB/T5293)、《低合金钢埋弧焊用焊剂》(GB/T12470)的规定。

钢管焊接施工工艺

焊接钢管施工工艺 2010/9/14 13:48:28 焊接钢管施工工艺的流程:5.1 焊缝间隙的控制将带钢送入焊管机组,经多道轧辊滚压,带钢逐渐卷起,形成有开口间隙的圆形管坯,调整挤压辊的压下量,使焊缝间隙控制在1~3mm,并使焊口两端齐平。如间隙过大,则造成邻近效应减少,涡流热量不足,焊缝晶间接合不良而产生未熔合或开裂。如间隙过小则造成邻近效应增大,焊接热量过大,造成焊缝烧损;或者焊缝经挤压、滚压后形成深坑,影响焊缝表面质量。 5.2 焊接温度控制焊接温度主要受高频涡流热功率的影响,根据公式(2)可知,高频涡流热功率主要受电流频率的影响,涡流热功率与电流激励频率的平方成正比;而电流激励频率又受激励电压、电流和电容、电感的影响。激励频率公式为: f=1/[2π(CL)1/2]...(1) 式中:f-激励频率(Hz);C-激励回路中的电容(F),电容=电量/电压;L-激励回路中的电感,电感=磁通量/电流上式可知,激励频率与激励回路中的电容、电感平方根成反比、或者与电压、电流的平方根成正比,只要改变回路中的电容、电感或电压、电流即可改变激励频率的大小,从而达到控制焊接温度的目的。对于低碳钢,焊接温度控制在1250~1460℃,可满足管壁厚3~5mm焊透要求。另外,焊接温度亦可通过调节焊接速度来实现。当输入热量不足时,被加热的焊缝边缘达不到焊接温度,金属组织仍然保持固态,形成未熔合或未焊透;当输入热时不足时,被加热的焊缝边缘超过焊接温度,产生过烧或熔滴,使焊缝形成熔洞。 5.3 挤压力的控制管坯的两个边缘加热到焊接温度后,在挤压辊的挤压下,形成共同的金属晶粒互相渗透、结晶,最终形成牢固的焊缝。若挤压力过小,形成共同晶体的数量就小,焊缝金属强度下降,受力后会产生开裂;如果挤压力过大,将会使熔融状态的金属被挤出焊缝,不但降低了焊缝强度,而且会产生大量的内外毛刺,甚至造成焊接搭缝等缺陷。 5.4 高频感应圈位置的调控高频感应圈应尽量接近挤压辊位置。若感应圈距挤压辊较远时,有效加热时间较长,热影响区较宽,焊缝强度下降;反之,焊缝边缘加热不足,挤压后成型不良。 5.5 阻抗器是一个或一组焊管专用磁棒,阻抗器的截面积通常应不小于钢管内径截面积的70%,其作用是使感应圈、管坯焊缝边缘与磁棒形成一个电磁感应回路,产生邻近效应,涡流热量集中在管坯焊缝边缘附近,使管坯边缘加热到焊接温度。阻抗器用一根钢丝拖动在管坯内,其中心位置应相对固定在接近挤压辊中心位置。开机时,由于管坯快速运动,阻抗器受管坯内壁的磨擦而损耗较大,需要经常更换。 5.6 焊缝经焊接和挤压后会产生焊疤,需要清除。清除方法是在机架上固定刀具,靠焊管的快速运动,将焊疤刮平。焊管内部的毛刺一般不清除。 5.7 工艺举例现以焊制φ32×2mm 直缝焊管为例,简述其工艺参数:带钢规格:2×98mm 带宽按中径展开加少量成型余量钢材材质:Q235A 输入励磁电压:150V 励磁电流:1.5A 频率:50Hz 输出直流电压:11.5kV 直流电流:4A 频率:120000Hz 焊接速度:50米/分钟参数调节:根据焊接线能量的变化及时调节输出电压和焊接速度。参数固定后一般不用调整。 这样的焊接钢管施工的工艺焊接时产生的线能量小,对母材热影响区影响程度也小。多丝焊接后道焊丝对前道焊丝可起到消除焊接时产生应力的作用,从而对钢管的机械性能有所改善。

焊接工艺方案模板

1项目要求 根据业主提供的质量计划书和图纸, 具体要求为: ?角焊缝焊角尺寸达到图纸要求, 焊缝成型美观, 无缺陷。 由于本次作业焊接接头没有NDT无损检验及机械性能要求, 我单位要求构件成型后的焊缝质量为: ?角焊缝焊角尺寸满足图纸要求; ?焊缝目检达到ISO 5817 B级( 焊缝外观质量最高要求) , 具体见附表A。2焊接工艺 本次焊接工艺依据美国焊接标准AWS D1.1, 钢结构焊接规范第三章免除焊接工艺评定相关条款制定了焊接工艺参数, 焊接材料等其它工艺参数。 2.1依据文件 ?AWS D1.1 American Welding Standard D1.1 美国焊接标准, 钢结构焊接规范 ?ISO 5817 熔焊接头焊接缺陷质量等级 ?煤矿综放成套设备质量计划 2.2母材及焊材 本项目待焊母材为Q235B和Q345B, 相当与AWS D1.1材料组别的第I组和第II组材料, 规格尺寸、接头形式及焊接方法如下表。焊材选用符合AWS A5.18气体保护电弧焊用碳钢焊丝和焊棒的技术条件, 保护气体符合AWS A5.32焊接用保护气体技术条件。 表1 材料表

3控制焊接变形 根据图纸要求: 件10垫板及件4槽板分别与件7连接板有垂直度和平行度的精度要求, 为提高工件焊后尺寸精度, 减少尺寸矫正工作量, 需要尽量控制减小焊接变形。 3.1刚性固定 根据车间以往类似电缆槽体的生产经验, 焊后变形较为严重, 主要是倾向一侧弯曲变形严重。主要原因是在施焊过程中没有对工件施加刚性固定, 工件在无约束情况下比较容易变形, 因此要求对电缆槽体7号件连接板宽度方向( 如图1所示) 施加螺栓或钢钳固定。 3.2 焊接顺序 焊接顺序是控制变形的必要方法, 在刚性约束前提下, 焊接顺序为( 图1中a,b,c,d) : 件11筋板与件10垫板、件12筋板与件13插板角焊缝, 再连接件10与件7( 顺序最好为由中间向两边) , 然后为三组筋板、插板与连接板间的角焊缝( 先完成件12与件7一侧的角焊缝) , 三组件的完成顺序为先完成中间一组, 然后靠边两组。总之, 原则是先完成几组纵向焊缝, 再由中间向两侧完成横向焊缝的作业。 为保证焊缝成型质量及角焊缝尺寸, 要求本次角焊缝采用AWS D1.1中1F位置即船型焊位置 作业, ( 如果现场变换工作位置困难, 在保证焊缝成型质量和焊角尺寸的情况下, 焊接操作者自行掌握焊接位置, 但要求最长尺寸的角焊缝1660mm采用1F位置) 。

不锈钢管道焊接工艺

不锈钢管道焊接工艺 Document number:BGCG-0857-BTDO-0089-2022

摘要:本文介绍了不锈钢管道TIG+MAG焊接工艺,与全氩焊和氩电联焊相比,TIG+MAG焊的生产效率大大提高,焊接质量有所提高。该项技术已在电厂管道焊接中得到应用。 1 案例分析 0Cr18Ni9不锈钢φ530mm×11mm 大管水平固定全位置对接接头主要用于电厂润滑油管道中,焊接难度较高, 对焊接接头质量要求较高,内表面要求成形良好,凸起适中,焊后要求PT、RT检验。以往均采用TIG 焊或手工电弧焊,前者效率低、成本高,后者质量难以保证且效率低。为既保证质量又提高效率,采用TIG内、外填丝法焊底层,MAG焊填充及盖面层,使质量、效率都得到保证。 0Cr18Ni9不锈钢热膨胀率、导电率均与碳钢及低合金钢差别较大,且熔池流动性差,成形较差,特别在全位置焊接时更突出。在MAG焊过程中, 焊丝伸出长度必须小于10mm,焊枪摆动幅度、频率、速度及边缘停留时间配合适当,动作协调一致,随时调整焊枪角度,使焊缝表面边缘熔合整齐, 成形美观,以保证填充及盖面层质量。 2 焊接方法及焊前准备 焊接方法 材质为0Cr18Ni9,管件规格为φ530mm×11 mm,采用手工钨极氩弧焊打底,混合气体(CO2+Ar)保护焊填充及盖面焊,立向上的水平固定全位置焊接。 焊前准备

2.2.1 清理油、锈等污物,将坡口面及周围10mm内修磨出金属光泽。 2.2.2 检查水、电、气路是否畅通,设备及附件应状态良好。 2.2.3 按尺寸进行装配,定位焊采用肋板固定(2点、7点、11点为定位块固定),也可采用坡口内点固,但必须注意定位焊质量。 2.2.4 管内充氩气保护。 3 TIG焊工艺 焊接参数 采用φ2.5 mm的Wce-20钨极,钨极伸出长度4~6mm,不预热,喷嘴直径12mm,其它参数见表1。 操作方法 3.2.1 管子对接水平固定焊缝是全位置焊接。因此焊接难度较大,为防止仰焊内部焊缝内凹,打底层采用仰焊部位(六点两侧各60°)内填丝,立、平焊部位外填丝法进行施焊。 3.2.2 引弧前应先在管内充氩气将管内空气置换干净后再进行焊接,焊接过程中焊丝不能与钨极接触或直接深入电弧的弧柱区,否则造成焊缝夹钨和破坏电弧稳定,焊丝端部不得抽离保护区,以避免氧化,影响质量。 3.2.3 由过6点5mm处起焊,无论什么位置的焊接,钨极都要垂直于管子的轴心,这样能更好地控制熔池的大小,而且可使喷嘴均匀地保护熔池不被氧化。

常用焊接方法—焊接工艺

常用焊接方法——焊接工艺 我公司是生产自动焊接设备的大型厂家。作为公司员工,就更应该了解常用焊接方法及焊接工艺。结合设备调试,这里将常用的埋弧焊、气体保护焊、钨极氩弧焊作为简要的讲述,以供有关人员参考。 一、埋弧焊 电弧在焊剂层下燃烧进行焊接的方法称为埋弧焊。主要优点:劳动条件好,节省焊接材料和电能,焊缝质量好,生产效率高等。但不适合薄板焊接。(当焊接电流小于100A时,电弧稳定性差,目前板厚小于1mm的薄板还无法采用埋弧焊)只限于水平或倾斜度不大的位置施焊。 埋弧焊是高效焊接常用方法之一。主要用于:焊接各种钢板结构。焊接碳素结构钢、低合金结构钢、不锈钢、耐热钢和复合材料以及堆焊耐磨、耐蚀合金等。 焊接工艺参数对焊接质量影响较大的有:焊接电流、电弧电压、焊接速度、焊丝直径与伸出长度、焊丝倾角、装配间隙与坡口大小等。此外焊剂层厚度及粒度对焊接质量也有影响。下面分别讲述它们对焊接质量的影响: 1.焊接电流: 焊接电流是决定熔深的主要因素。在一定范围内,焊接电流增加,焊缝的熔深和余高都增加。而焊缝的宽度增加不大。增大焊接电流能提高生产率,但在一定的焊接速度下,焊接电流过大会使热影响区过大,并产生焊瘤及焊件被烧穿等缺陷。若焊接电流过小,测熔深不足,

熔合不好、未焊透和夹渣,并使焊缝成形变坏。 2.电弧电压: 电弧电压是决定熔宽的主要因素。电弧电压增加时,弧长增加,熔深减小,焊缝宽度变宽,余高减小,电弧电压过大,溶剂熔化量增加,电弧不稳,严重时会产生咬边和气孔等。 3.焊接速度: 焊接速度增加,母材熔合比较小。焊接速度过高时,会产生咬边,未焊透,电弧偏吹和气孔等缺陷,焊缝余高大而窄成形不好。 4.焊丝直径与伸出长度: 当焊接电流不变时,减小焊丝直径,电流密度增加,熔深增大,成形系数减小。焊丝伸出长度增加时,熔深速度和余高都增加。 5.焊丝倾角: 焊丝前倾,焊缝成形系数增加,熔深变浅,焊缝宽度增加。焊丝后倾,熔深与余高增,。熔宽明显减小,焊缝成形不变。 6.装配间隙与坡口: 在其他工艺参数不变的条件下,装配间隙与坡口角度增大时,熔合比与余高减小,熔深增大,焊缝厚度基本保持不变。 7、焊机层厚度与粒度: 焊剂层太薄时,容易露弧,电弧保护不好,容易产生气孔或裂纹。焊剂层太厚,焊缝变窄,成形不好。 一般情况下,焊剂粒度对焊缝成形影响不大,但采用小直径焊丝焊薄板时,焊剂粒度对焊缝成形就有影响。若焊剂颗粒太大,电弧不

管道焊接工艺

管道焊接工艺 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

上海佳豪船舶工程设计有限公司董-- 摘要: 本文介绍了管道全位置下向焊操作工艺及技术要点,采用本工艺进行施工焊接可提高生产效率,降低焊接成本,焊接质量可*,接头机械性能满足要求,焊缝成形美观,具有较广阔的应用前景。 关键词:管道;下向焊;焊接工艺 Vertical down position welding process and its foreground Abstract: This article introduced the welding operation procedure and main technol ogy of vertical down position weld of pipe. Using this welding process can improve t he welding efficiency and reduce the cost. The welding joint can be qualified in mec hanical property and reduce the cost. The welding joint can be qualified in mechanic al property and figuration. So it have a wide appliance foreground. 1 前言 管道下向焊是从管道上顶部引弧,自上而下进行全位置焊接的操作技术,该方法焊接速度快,焊缝成形美观,焊接质量好,可以节省焊接材料,降低工人的劳动强度,是普通手工电弧焊所不能比拟的,现已较广泛应用于大口径长输管道的焊接,在电力建设中的全位置中低压大径薄壁管的焊接中具有一定的推广价值。 2 焊接材料选用 下向焊通常要选择适当的焊接电流、焊条角度和焊接速度,通过压住电弧直拖向下或稍作摆动来完成焊接。普通焊条易出现下淌铁水和淌渣问题,而采用管道下向焊专用焊条,严格执行焊接规范,则可解决这些问题。 通常下向焊焊条可分为两类:一类为纤维素型,如美国林肯公司的E7010-G、日本日铁公司生产的E6010和E7010-G及国产的天津金桥牌E6010等,该类焊条工艺性能好,气孔敏感性小,低温韧性高,一般应用于输油、输水管道;另一类是低氢型焊条,如德国蒂林公司生产的E8018 -G等,该类焊条焊后焊缝金属韧性好,抗裂性好,广泛应用于输气碳钢管道焊接填充及盖面焊中。 纤维素型焊条焊渣量少,电弧吹力大、挺度足,防止了焊渣及铁水向下淌,而且电弧的穿透力大,特别适用于厚壁容器及钢管的打底层焊接,可以免去铲根等操作,从而提高工作效率,改善劳动条件,但由于其焊缝中氢含量较高,所以对于高压管道的焊接国内目前一般采用纤维素焊条打底加低氢型焊条填充及盖面的焊接工艺。 3 焊前准备 3.1 母材及规格 水平钢管对接母材牌号:20 规格:¢ 133*10 mm 3.2 焊材 纤维素型:AWS E7010 ¢作根部填充层焊接; 低氢型: E8018-G ¢盖层焊接 焊材的烘干 下向焊焊条使用前应按说明书要求进行烘干。一般纤维素型焊条烘干温度为70~80 ,保温, 低氢型焊条烘干温度为350 ~400 ,保温1~2h。 3.4 焊接设备 选用直流焊机,如林肯INVERTIC-I-300 逆变焊机等。 3.5 坡口型式及对口尺寸

焊接图- 焊接工艺基础知识

1 焊接工艺基础知识 1.1 焊接接头的种类及接头型式 用焊接方法连接的接头称为焊接接头(简称为接头)。它由焊缝、熔合区、热影响区及其邻近的母材组成。在焊接结构中焊接接头起两方面的作用,第一是连接作用,即把两焊件连接成一个整体;第二是传力作用,即传递焊件所承受的载荷。 根据GB/T3375—94《焊接名词术语》中的规定,焊接接头可分为10种类型,即对接接头、T形接头、十字接头、搭接接头、角接接头、端接接头、套管接头、斜对接接头、卷边接头和锁底接头,如图1。其中以对接接头和T形接头应用最为普遍。 (一)对接接头 两件表面构成大于或等于135°,小于或等于180°夹角的接头,叫做对接接头。在各种焊接结构中它是采用最多的一种接头型式。 钢板厚度在6mm以下,除重要结构外,一般不开坡口。 厚度不同的钢板对接的两板厚度差(δ—δ1)不超过表1—1规定时,则焊缝坡口的基本形式与尺寸按较厚板的尺寸数据来选取;否则,应在厚板上作出如图1—1所示的单面或双面削薄;其削薄长度L≥3(δ—δ1)。 图1—1 不同厚度板材的对接 (a)单面削薄,(b)双面削薄 表1-1

较薄板厚度δ1 ≤2~5 >5~9 >9~12 >12 允许厚度差 1 2 3 4 (δ—δ1) 两焊件端面间构成大于30°、小于135°夹角的接头,叫做角接接头,见图1—2。这种接头受力状况不太好,常用于不重要的结构中。 图1—2 角接接头 (a)I形坡口;(b)带钝边单边V形坡口 (三)T形接头 一件之端面与另一件表面构成直角或近似直角的接头,叫做T形接头,见图1—3。 图1—3 T形接头 (四)搭接接头 两件部分重叠构成的接头叫搭接接头,见图1—4。 图1—4 搭接接头 (a)I形坡口,(b)圆孔内塞焊;(c)长孔内角焊 搭接接头根据其结构形式和对强度的要求,分为不开坡口、圆孔内塞焊和长孔内角焊三种形式,见图1—4。 I形坡口的搭接接头,一般用于厚度12mm以下的钢板,其重叠部分≥2(δ1+δ2),双面焊接。这种接头用于不重要的结构中。 当遇到重叠部分的面积较大时,可根据板厚及强度要求,分别采用不同大小和数量的圆孔内塞焊或长孔内角焊的接头型式。 1.2焊缝坡口的基本形式与尺寸 根据设计或工艺需要,将焊件的待焊部位加工成一定几何形状的沟槽称为坡口。开坡口的目的是为了得到在焊件厚度上全部焊透的焊缝。

管道焊接工艺

上海佳豪船舶工程设计有限公司董-- 摘要: 本文介绍了管道全位置下向焊操作工艺及技术要点,采用本工艺进行施工焊接可提高生产效率,降低焊接成本,焊接质量可*,接头机械性能满足要求,焊缝成形美观,具有较广阔的应用前景。 关键词:管道;下向焊;焊接工艺 Vertical down position welding process and its foreground Abstract:This article introduced the welding operation procedure and mai n technology of vertical down position weld of pipe. Using this welding pro cess can improve the welding efficiency and reduce the cost. The welding j oint can be qualified in mechanical property and reduce the cost. The weld ing joint can be qualified in mechanical property and figuration. So it have a wide appliance foreground. 1 前言 管道下向焊是从管道上顶部引弧,自上而下进行全位置焊接的操作技术,该方法焊接速度快,焊缝成形美观,焊接质量好,可以节省焊接材料,降低工人的劳动强度,是普通手工电弧焊所不能比拟的,现已较广泛应用于大口径长输管道的焊接,在电力建设中的全位置中低压大径薄壁管的焊接中具有一定的推广价值。 2 焊接材料选用 下向焊通常要选择适当的焊接电流、焊条角度和焊接速度,通过压住电弧直拖向下或稍作摆动来完成焊接。普通焊条易出现下淌铁水和淌渣问题,而采用管道下向焊专用焊条,严格执行焊接规范,则可解决这些问题。

管道焊接施工工艺标准

管道焊接施工工艺标准 1.适用范围 本工艺标准适用于工厂管道预制加工和野外现场管道安装工程的焊接施工作业指导。 2.引用标准 2.1《特种设备焊接工艺评定》JB4708-2008 2.2《工业金属管道工程施工及验收规范》GB50235-97 2.3《现场设备、工业管道焊接工程施工及验收规范》GB50236-98 2.4《电力建设施工及技术验收规范》(火力发电厂管道篇)DL5031-1994 2.5《电力建设施工及技术验收规范》(火力发电厂焊接篇)DL5007-1992 2.6《化工金属管道工程施工及验收规范》HG20225-95 2.7《石油化工剧毒、可燃介质管道施工及验收规范》SH3501-2001 2.8《西气东输管道工程焊接施工及验收规范》1(2010年6月4日) 2.9《石油天然气站内工艺管道焊接工程施工及验收规范》SY0402-2000 2.10《石油和天然气管道穿越工程施工及验收规范》SY/T4079-1995 2.11《钢质管道焊接及验收》SY/T 4103-2005 2.12《输油输气管道线路工程施工技术规范》Q/CVNP 59-2001 2.13《工业设备及管道绝热工程施工及验收规范》GBJ126-89 2.14《给水排水管道工程施工及验收规范》GB50268-2008 2.15《钢制压力容器焊接工艺评定》JB4708-2000 2.16《焊接工艺评定规程》(电力行业)DL/T868-2004 2.17《火力发电厂锅炉压力容器焊接工艺评定规程》(电力行业)SD340-1989

2.18《核电厂相关焊接工艺标准》(ASME ,RCC-M) 2.19《核电厂常规岛焊接工艺评定规程》(核电)DL/T868-2004 2.20《锅炉焊接工艺评定》JB4420-1989 2.21《蒸汽锅炉安全技术监察规程》附录I(锅炉安装施工焊接工艺评定)(1999版) 2.22《石油天然气金属管道焊接工艺评定》SY/T0452-2002 2.23《工业金属管道工程质量检查评定标准》GB50184-93 2.24《锅炉压力容器焊接考试管理规则》(国家质监总疫局2002版) 2.25《承压设备无损检测》JB4730-2005.1,2,3,4,5各分册 3.术语. 3.1焊接电弧焊:指用手工操作电焊条的一种电弧焊焊接方法。管道焊接常用上向焊和下向焊两种。 3.2自动焊:指用焊接机械操作焊丝的一种电弧焊焊接方法。管道焊接常用热丝熔化极氩弧焊、涂层焊丝氩弧焊、药芯焊丝富氩二氧化碳焊混、(半)自动下向焊、二氧化碳(半)自动焊、埋弧自动焊等焊六种。 3.3钨极氩弧焊:指用手工操作焊丝的一种惰性气体保护焊焊接方法。 4.施工准备 由现场施工项目经理组织,项目部管理人员参与,按准备工作计划,有序做好人力、物资、技术(含施工图深化设计)等准备工作,将施工准备工作贯穿于施工全过程(阶段施工准备、专业施工准备、工序施工准备)。 4.1技术准备 4.1.1熟悉技术图纸、讨论并进行技术交底。

焊接工艺及方法

焊接工艺及方法点焊方法和工艺。 1、焊点形成过程: (1)预压: (2)通电焊接: (3)锻压阶段:

二、点焊工艺参数选择 通常是根据工件的材料和厚度,参考该种材料的焊接条件表选取,首先确定电极的端面形状和尺寸。其次初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样,经检查熔核直径符合要求后,再在适当的范围内调节电极压力,焊接时间和电流,进行试样的焊接和检验,直到焊点质量完全符合技术条件所规定的要求为止。最常用的检验试样的方法是撕开法,优质焊点的标志是:在撕开试样的一片上有圆孔,另一片上有圆凸台。厚板或淬火材料有时不能撕出圆孔和凸台,但可通过剪切的断口判断熔核的直径。必要时,还需进行低倍测量、拉抻试验和X光检验,以判定熔透率、抗剪强度和有无缩孔、裂纹等。 以试样选择工艺参数时,要充分考虑试样和工件在分流、铁磁性物质影响,以及装配间隙方面的差异,并适当加以调整。 三、不等厚度和不同材料的点焊

当进行不等厚度或不同材料点焊时,熔核将不对称于其交界面,而是向厚板或导电、导热性差的一边偏移,偏移的结果将使薄件或导电、导热性好的工件焊透率减小,焊点强度降低。熔核偏移是由两工件产热和散热条件不相同引起的。厚度不等时,厚件一边电阻大、交界面离电极远,故产热多而散热少,致使熔核偏向厚件;材料不同时,导电、导热性差的材料产热易而散热难,故熔核也偏向这种材料调整熔核偏移的原则是:增加薄板或导电、导热性好的工件的产热而减少其散热。常用的方法有: (1)采用强条件使工件间接触电阻产热的影响增大,电极散热的影响降低。电容储能焊机采用大电流和短的通电时间就能焊接厚度比很大的工件就是明显的例证。 (2)采用不同接触表面直径的电极在薄件或导电、导热性好的工件一侧采用较小直径,以增加这一侧的电流密度、并减少电极散热的影响。 (3)采用不同的电极材料薄板或导电、导热性好的工件一侧采用导热性较差的铜合金,以减少这一侧的热损失。 (4)采用工艺垫片在薄件或导电、导热性好的工件一侧垫一块由导热性较差的金属制成的垫片(厚度为0.2-0.3mm),以减少这一侧的散热。

氩弧焊的焊接方法与工艺

氩弧焊的焊接方法 ?教学目的:掌握好手工钨极氩弧焊的焊前准备、运焊把、送丝、引弧、焊接、收弧的技巧 ?具体要求: ?1、了解焊弧焊的原理、特点和分类 ?2、掌握好氩弧焊焊前准备和焊接方法 ?3、掌握好氩焊在焊接过程中产的缺陷和解决的办法 ?4、适用于有接焊接基础人员,其焊件需要进行无损检测、内部和外观要求有较高要求的标准焊件。 ?1、氩弧焊的原理: ?氩弧焊是使用惰性气体氩气作为保护气体的一种气电保护焊的焊接方法。?2、氩弧的特点: ?(1)焊缝质量高,由于氩气是一种惰性气体,不与金属起化学反应,合金元素不会被烧损,而氩气也不熔于金属,焊接过程基本上是金属熔化和结晶的过程,因此,保护较果好,能获得较为纯净及高质量的焊缝?(2)焊接变形应力小,由于电弧受氩气流的压缩和冷却作用,电弧热量集中,且氩弧的温度又很高,故热影响区小,故焊接时应力与变形小,特别造用于薄件焊接和管道打底焊。 ?(3)焊接范围广,几乎可以焊接所有金属材料,特别适宜焊接化学成份活泼的金属和合金。 ?3、氩弧焊的分类: ?氩弧焊根据电极材料的不同可分为钨极氩弧焊(不熔化极)和熔化极氩弧焊。根据其操作方法可分为手工、半自动和自动氩弧焊。根据电源又可以分为直流氩弧焊、交流氩弧焊和脉冲氩弧焊。 ?4、焊前准备: ?(1)阅读焊接工艺卡,了解施焊工件的材质、所需要的设备、工具和相关工艺参数,其中包括选用正确的焊机,(如焊接铝合金则需要用交流焊机),正确的选用钨极和气体流量, ?首先,要从焊接工艺卡上得知焊接电流的大小等工艺参数。然后选用钨极(一般来说直径2.4mm用的比较多,它的电流造应范围是150A—250A,铝例外)。

压力管道焊接工艺规程

压力管道焊接工艺规程 1 适用范围 本规程适用于工业管道或公用管道中材质为碳素钢、低合金钢、耐热钢、不锈钢和异种钢等压力管道的焊条电弧焊、钨极氩弧焊以及二氧化碳气体保护焊的焊接施工。 2 主要编制依据 2.1 GB50236-98《现场设备、工业管道焊接工程施工及验收规范》; 2.2 GB/T20801-2006《压力管道规范-工业管道》; 2.3 SH3501-2001《石油化工剧毒、可燃介质管道工程施工及验收规范》; 2.4 GB50235-97《工业金属管道工程施工及验收规范》; 2.5 CJJ28-89 《城市供热管网工程施工及验收规范》; 2.6 CJJ33-89 《城镇燃气输配工程施工及验收规范》; 2.7 GB/T5117-1995 《碳钢焊条》; 2.8 GB/T5118-1995 《低合金钢焊条》; 2.9 GB/T983-1995 《不锈钢焊条》; 2.10 YB/T4242-1984 《焊接用不锈钢丝》; 2.11 GB1300-77 《焊接用钢丝》; 2.12 其他现行有关标准、规范、技术文件。 3 施工准备 3.1 技术准备 3.1.1 压力管道焊接施工前,应依据设计文件及其引用的标准、规范,并依 据我公司焊接工艺评定报告编制出焊接工艺技术文件(焊接工艺卡或作业指

导书)。如果属本公司首次焊接的钢种,则首先要制定焊接工艺评定指导书,然后对该种材料进行工艺评定试验,合格后做出焊接工艺评定报告。 3.1.2 编制的焊接工艺技术文件(焊接工艺卡或作业指导书)必须针对工程 实际,详细写明管道的设计材质、选用的焊接方法、焊接材料、接头型式、具体的焊接施工工艺、焊缝的质量要求、检验要求及焊后热处理工艺(有要求时)等。 3.1.3 压力管道施焊前,根据焊接作业指导书应对焊工及相关人员进行技 术交底,并做好技术交底记录。 3.1.4 对于高温、高压、剧毒、易燃、易爆的压力管道,在焊接施工前应 画出焊口位置示意图,以便在焊接施工中进行质量监控。 3.2 对材料的要求 3.2.1 被焊管子(件)必须具有质量证明书,且其质量符合国家现行标准 (或部颁标准)的要求;进口材料应符合该国家标准或合同规定的技术条件。 3.2.2 焊接材料(焊条、焊丝、钨棒、氩气、二氧化碳气、氧气、乙炔气 等)的质量必须符合国家标准(或行业标准),且具有质量证明书。其中钨棒宜采用铈钨棒;氩气纯度不应低于99.95%;二氧化碳气纯度不低于99.5%; 含水量不超过0.005% 。 3.2.3 压力管道予制和安装现场应设置符合要求的焊材仓库和焊条烘干 室,并由专人进行焊条的烘干与焊材的发放,并做好烘干与发放记录。 3.3 焊接设备 3.3.1 焊接机具设备主要包括:交流焊机、直流焊机、氩弧焊机、高温烘 干箱、中温烘干箱、恒温箱、二氧化碳气体保护焊机、焊条保温筒、内磨机

埋弧焊焊接工艺及操作方法

弧焊焊接工艺及操作方法 一、焊前准备 1准备焊丝焊剂,焊丝就去污、油、锈等物,并有规则地盘绕在焊丝盘内,焊剂应事先烤干(250°C下烘烤1—2小时),并且不让其它杂质混入。工件焊口处要去油去污去水。 2接通控制箱的三相电源开关。 3检查焊接设备,在空载的情况下,变位器前转与后转,焊丝向上与向下是否正常,旋转 焊接速度调节器观察变位器旋转速度是否正常;松开焊丝送进轮,试控启动按扭和停止 按扭,看动作是否正确,并旋转电弧电压调节器,观察送丝轮的转速是否正确。 4弄干净导电咀,调整导电咀对焊丝的压力,保证有良好的导电性,且送丝畅通无阻。 5按焊件板厚初步确定焊接规范,焊前先作焊接同等厚度的试片, 根据试片的熔透情况(X光透视或切断焊缝,视焊缝截面熔合情况)和表面成形,调整焊接规范,反复试验后确定最好的焊接规范。 6使电咀基本对准焊缝,微调焊机的横向调整手轮,使焊丝与焊缝对准。7按焊丝向下按扭,使焊丝与工件接近,焊枪头离工件距离不得小于15mm,焊丝伸出长度不得小与30mm。 8检查变位器旋转开关和断路开关的位置是否正确,并调整好旋转速度。 9打开焊剂漏头闸门,使焊剂埋住焊丝,焊剂层一般高度为30—50mm。 二、焊接工作 1按启动按扭,此时焊丝上抽,接着焊丝自动变为下送与工件接触摩擦并引起电弧,以保证电弧正常燃烧,焊接工作正常进行。 2焊接过程中必须随时观察电流表和电压表,并及时调整有关调节器(或按扭) 。使其符合所要求的焊接规范,在发现网路电压过低时应立刻暂停焊接工作,以免严重影响熔透质量,等网路电压恢复正常后再进行工作。在使用4mm焊丝时要求焊缝宽度>10mm,焊接沟槽时焊接速度≈15m/h,电压≈24V,电流≈300A,在接近表面时,电压>27V,电流≈450A。在焊接球阀时一般在焊第一层时尽量用低电压小电流,因无良好冷却怕升温过高损坏内件及内应力大。在焊第二层及以后一定通水冷却,电压及电流均可加大,以焊渣容易清理为好。 3焊接过程还应随时注意焊缝的熔透程度和表面成形是否良好, 熔透程度可观察工件的反 面电弧燃烧处红热程度来判断,表面成形即可在焊了一小段时,就去焊渣观察,若发现 熔透程度和表面成形不良时及时调节规范进行挽救,以减少损失。 4注意观察焊丝是否对准焊缝中心,以防止焊偏,焊工观察的位置应与引弧的调整焊丝时的位置一样,以减少视线误差,如焊小直径筒体的内焊缝时,可根据焊缝背面的红热情 况判断此电弧的走向是否偏斜,进行调整。 5经常注意焊剂漏斗中的焊剂量,并随时添加,当焊剂下流不顺时就及时用棒疏通通道,排除大块的障碍物。 三、焊接结束 1关闭焊剂漏斗的闸门,停送焊剂。 2、轻按(即按一半深,不要按到底)停止按扭,使焊丝停止送进,但电弧仍燃烧,以填满金属熔池,然后再将停止按扭按到底,切断焊接电流,如一下子将停止按扭按到底,不 但焊缝末端会产生熔池没有填满的现象,严重时此处还会有裂缝,而且焊丝还可能被粘

管道焊接施工工艺要点

管道焊接作业施工规程 一总则 1 适用范围 1.1 本规程适用于石油、化工、电力、冶金、轻纺等行业建设施工现场的碳素钢钢管(含碳量≤0.3%)的焊接,在施工中遵守本规程外,还应根据工程特点进行焊接工艺评定,编制详细的《焊接作业工艺评定指导书》; 1.2 适用于各种管道、各种材料的氩弧焊打底和全氩弧焊接; 1.3遵守设计文件技术要求和规定以及国家现行的管道施工及验收规范中管道焊接规定。 2 编制依据 目前现行管道施工及验收规范如下: GB50235---97 《工业金属管道工程施工及验收规范》 GB50236---98 《现场设备、工业管道焊接工程及验收规范》DL5007----92 《电力建设施工及验收技术规范》(焊接篇) 炼化建501--74 《高压钢制管道施工及验收技术规范》 SY0401-----98 《输油输气管道线路工程施工及验收规范》SY/T4071—93 《管道下向焊接工艺规程》 3 对材料的要求 管材、管件、阀件、焊接材料应具有出厂质量合格证书或按规范要求的质量复验报告。 4 焊接施工程序

二手工电弧焊 1 手工电弧焊焊前准备 1.1 焊缝的设置应避开应力集中区,便于焊接和热处理,并符合下列要求 1.1.1 钢板卷板相邻筒节组对,纵缝之间的间距大于3倍壁厚且大于100mm; 1.1.2 管道对接焊口的中心线距管子弯曲起点不应小于管子外径,且不小于100mm,与吊、支架边缘的距离不小于50mm; 1.1.3 管道两相邻对接焊口中心线的距离L,当公称直径小于150mm时,L不小于管外径;当公称直径大于或等于150mm时,L

不小于150mm; 1.1.4 管孔应尽量避开在焊缝上,如必须在焊缝及附近开孔时,在管孔两侧大于孔径且不小于60mm范围内的焊缝经无损探伤合格; 1.1.5 管子的坡口型式和尺寸的选用,应考虑保证焊接接头质量,填充金属少,作业条件好,便于操作及减少焊接变形等原则,并符合《手工电弧焊焊接接头的基本形式和尺寸》(GB986--80)规定; 1.1.6 钢管的切割与加工,对于焊缝级别高的管道宜采用机械方法进行,对焊缝级别低的管道可采用等离子切割、氧---乙炔火焰等热加工方法,但必须去除坡口表面的氧化皮,并将影响焊接质量的凸凹不平处打磨平整; 1.1.7 焊前将坡口表面及坡口边缘内侧不小于10mm范围内的油锈、漆垢等杂质清除干净,并不得有裂纹、夹层等缺陷; 1.1.8 为了防止焊接裂纹,减少焊接内应力,应避免强行组对焊缝; 1.1.9 钢管的组对要求: 1.1.9.1 等厚管子或管件的对口,应做到内壁齐平,内壁错边量要求:高级别焊缝不超过管壁厚的10%,且不大于1mm;低级别焊缝不超过管壁厚的20%,且不大于2mm; 1.1.9.2 不等厚对接焊件、组件组对要求: 当管件厚度小于或等于10mm,厚度差大于3mm及管壁厚度大于10mm,厚度差大于薄壁厚度的30%或超过5mm时,将超厚部分按4:1削薄; 1.1.10 焊条使用前说明书规定进行烘烤,烘烤次数不得超过2次,对重要部件的焊接用焊条,使用时应装入100--150℃专用保温箱

相关主题
文本预览
相关文档 最新文档